Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF 5-year value: 5.768
IF 5-year
CiteScore value: 8.9
SNIP value: 1.713
IPP value: 5.53
SJR value: 3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
h5-index value: 51
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  30 Jul 2020

30 Jul 2020

Review status
This preprint is currently under review for the journal GMD.

The global water resources and use model WaterGAP v2.2d: Model description and evaluation

Hannes Müller Schmied1,2, Denise Cáceres1, Stephanie Eisner3, Martina Flörke4, Claudia Herbert1, Christoph Niemann1, Thedini Asali Peiris1, Eklavyya Popat1, Felix Theodor Portmann1, Robert Reinecke5, Maike Schumacher6,7, Somayeh Shadkam1, Camelia-Eliza Telteu1, Tim Trautmann1, and Petra Döll1,2 Hannes Müller Schmied et al.
  • 1Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany
  • 2Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
  • 3Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
  • 4Engineering Hydrology and Water Resources Management, Ruhr-University of Bochum, Bochum, Germany
  • 5International Centre for Water Resources and Global Change (UNESCO), Federal Institute of Hydrology, Koblenz, Germany
  • 6Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany
  • 7Computational Science Lab (CSL) at the University of Hohenheim, Germany

Abstract. WaterGAP is a global hydrological model that quantifies human use of groundwater and surface water as well as water flows and water storage and thus water resources on all land areas of the Earth. Since 1996, it has served to assess water resources and water stress both historically and in the future, in particular under climate change. It has improved our understanding of continental water storage variations, with a focus on overexploitation and depletion of water resources. In this paper, we describe the most recent model version WaterGAP 2.2d, including the water use models, the linking model that computes net abstractions from groundwater and surface water and the WaterGAP Global Hydrology Model WGHM. Standard model output variables that are freely available at a data repository are explained. In addition, the most requested model outputs, total water storage anomalies, streamflow and water use, are evaluated against observation data. Finally, we show examples of assessments of the global freshwater system that can be done with WaterGAP2.2d model output.

Hannes Müller Schmied et al.

Interactive discussion

Status: open (until 24 Sep 2020)
Status: open (until 24 Sep 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Hannes Müller Schmied et al.

Data sets

The global freshwater use and availability model WaterGAP v2.2d - Standard model output H. Müller Schmied, D. Cáceres, S. Eisner, M. Flörke, C. Herbert, C. Niemann, T. A. Peiris, E. Popat, F. T. Portmann, R. Reinecke, S. Shadkam, T. Trautmann, and P. Döll

Hannes Müller Schmied et al.


Total article views: 161 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
102 56 3 161 3 3
  • HTML: 102
  • PDF: 56
  • XML: 3
  • Total: 161
  • BibTeX: 3
  • EndNote: 3
Views and downloads (calculated since 30 Jul 2020)
Cumulative views and downloads (calculated since 30 Jul 2020)

Viewed (geographical distribution)

Total article views: 196 (including HTML, PDF, and XML) Thereof 196 with geography defined and 0 with unknown origin.
Country # Views %
  • 1



No saved metrics found.


No discussed metrics found.
Latest update: 14 Aug 2020
Publications Copernicus
Short summary
In a globalized world with large flows of virtual water between river basins and international responsibilities for sustainable development of the Earth system and its inhabitants, quantitative estimates of water flows and storages and of water demand by humans are required. Global hydrological models as such as the WaterGAP model are developed to provide this information. Here we present a thorough description, evaluation and application of the most recent model version WaterGAP v2.2d.
In a globalized world with large flows of virtual water between river basins and international...