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Abstract:27

The authors developed a three-dimensional variational (3-DVAR) aerosol28

extinction coefficient (AEC) and aerosol mass concentration (AMC) data29

assimilation (DA) system for aerosol variables in the Weather Research and30

Forecasting–Chemistry (WRF–Chem) model with the WRF–Chem using the31

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) scheme.32

They establish an AEC observation operator and its corresponding adjoint33

based on the Interagency Monitoring of Protected Visual Environments34

(IMPROVE) equation and investigate the use of lidar AEC and surface AMC35

DA to forecast mass concentration (MC) profiles of PM2.5 (particulate matter36

with an aerodynamic diameter of less than 2.5 µm) across China. Two sets of37

data were assimilated: AEC profiles captured by five conventional Mie38

scattering lidars (positioned in Beijing, Shijiazhuang, Taiyuan, Xuzhou, and39

Wuhu) and PM2.5 and PM10 MC data obtained from over 1,500 ground40

environmental monitoring stations across China. Three DA experiments (i.e., a41

PM2.5(PM10) DA experiment, a lidar AEC DA experiment, and a simultaneous42

PM2.5(PM10) and lidar AEC DA experiment) with a 12 h assimilation period43

and a 24 h forecast period were conducted. The PM2.5(PM10) DA reduced the44

root mean square error (RMSE) of the surface PM2.5MC in the initial field of45

the model by 38.6μg/m3 (64.8%). When lidar AEC data were assimilated, this46

reduction was 10.5μg/m3 (17.6%), and a 38.4μg/m3 (64.4%) reduction47

occurred when the two data sets were assimilated simultaneously, although48

only five lidars were available within the simulation region (approximately49

2.33 million km2 in size).The RMSEs of the forecasted surface PM2.5MC 24 h50

after the DA period in the three DA experiments were reduced by 6.1μg/m351

(11.8%), 1.5μg/m3 (2.9%), and 6.5μg/m3 (12.6%), respectively, indicating that52

the assimilation and hence the optimization of the initial field have a positive53

effect on the PM2.5MC forecast performance over a period of 24 h after the DA54
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period.55

1. Introduction56

Aerosol data assimilation (DA) generates a three-dimensional (3D)57

gridded analysis field capable of describing the spatial distribution of aerosols58

by integrating numerical forecasts produced by an air quality model (AQM)59

and measured aerosol data. With integrated information from various sources,60

this analysis field can more accurately describe the 3D distribution pattern of61

aerosols (Carmichael et al., 2008; Benedetti et al., 2009; Sandu et al., 2011;62

Bannister, 2017). The analysis field generated by DA can be used to63

effectively study atmospheric aerosol transmission patterns through an64

analysis of the products of a certain time series and, on this basis, further65

examine the effects of aerosols on human health, the environment, the weather,66

and the climate (Baraskar et al., 2016). The analysis field can also be used to67

determine the initial chemical conditions for an AQM. Therefore, improving68

the accuracy of the initial chemical conditions and enhancing the forecasting69

performance of the AQM for aerosols (Wu et al., 2015).70

Compared to those of meteorological and marine DA, aerosol DA71

techniques are still undeveloped, and there is a lack of variety when it comes72

to assimilable measured data, which mainly include conventional surface73

aerosol mass concentration (AMC) data and satellite-derived aerosol optical74

depth (AOD) data. Of these two types of data, surface AMC data provide mass75

concentration (MC) information for near-surface aerosols directly. AOD is a76

measure of the total extinction effects of aerosols in the vertical atmospheric77

column, which indirectly provide atmospheric column aerosol concentration78

information. Assimilating either of these two types of data can significantly79

improve the accuracy of the aerosol analysis field (Tombette et al., 2008; Niu80

et al., 2008; Schwartz et al., 2012; Jiang et al., 2013; Li et al., 2013; Saide et81
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al., 2013; Yumimoto et al., 2015, 2016; Tang et al., 2017; Peng et al., 2016;82

Xia et al.,2019; Wang et al., 2020). However, neither AOD nor surface AMC83

data are able to provide vertical aerosol profiles. Consequently, while these84

two types of data are abundant, have relatively high horizontal resolutions, and85

have excellent coverage, they play a limited role in optimizing the vertical86

structure of aerosols in the analysis field. To further improve the accuracy of87

the simulated vertical structure, it is necessary to assimilate data that contain88

vertical aerosol profile information. Zang et al. (2016) assimilated89

aircraft-measured vertical concentration profiles of aerosol components and90

found that while the profile data were limited in quantity and covered a91

relatively small area, they could still significantly improve the forecast92

accuracy of an AQM. Since direct observations of concentration profiles are93

labor-intensive and expensive, relatively few studies involving the acquisition94

and assimilation of this type of data have been reported.95

Aerosol lidar can be used to capture aerosol-backscattered laser signals at96

various heights. By inverting these signals, the aerosol extinction coefficient97

(AEC) and aerosol backscattering coefficient (ABC), which indirectly provide98

vertical AMC profile information, can be determined (Fernald et al., 1984;99

Sugimoto et al., 2008, Raut et al., 2009). Assimilating these lidar aerosol data100

can help to improve the accuracy of the vertical structure of aerosols in the101

analysis field (Tesche et al., 2007; Dilip et al., 2009; Young, S. A., and M. A.102

Vaughan, 2009; Burton et al., 2010; Milroy et al., 2011; Sugimoto et al., 2014;103

Chen et al., 2015). In addition, with the increasing number of lidar stations and104

the development of lidar network detection technology, studying lidar DA in105

order to generate more accurate 3D aerosol analysis fields has great potential.106

Compared to the assimilation of direct AMC measurements, the107

assimilation of lidar AEC data faces myriad difficulties, of which establishing108

an observation operator for the DA cost function is the most challenging. The109
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AEC is the object of the DA (i.e., observation variable), whereas the AMCs of110

various types of aerosol variables in the AQM must be optimized. To directly111

determine the optimal model aerosol variables by solving the DA cost function,112

it is necessary to map the aerosol variables in the AQM to the observation113

space by conducting a forward process on the observation operator (Kahnert et114

al., 2008), corresponding to the calculation of the AEC from the AMC. In115

addition, in 3-DVAR DA, it is also necessary to conduct the adjoint process on116

the observation operator when calculating the gradient of the cost function117

(Sandu et al., 2011). The computational program for this adjoint process on118

the observation operator relies on its forward process, leading to a large119

computational load, and the size of the program code increases nonlinearly120

with the complexity of the forward process. Moreover, when it comes to121

aerosol variables, there are many kinds of chemicals and particle-size bins so122

that the chemical model inherently involves a large computational load.123

Therefore, when using a variational method to assimilate lidar data, it is124

necessary to consider both the accuracy and complexity of the observation125

operator. Currently, there are three main methods that are used to design126

observation operators: (1) use of the Mie equation directly. Under the127

assumption that aerosol particles are uniform and spherical, the Mie equation128

describes the scattering and extinction properties of aerosol particles of any129

scale with any chemical and physical parameters (Cheng et al., 2019).130

However, because accurately solving the Mie equation involves a nonlinear131

calculation process that contains iterations, it is extremely complicated to132

implement, upgrade, and maintain the program for the reverse process on the133

observation operator. In addition, because of the lack of reliable measurements134

of essential aerosol parameters (e.g., complex refractive index, particle135

number spectrum, and hygroscopicity), it is necessary to introduce136

assumptions about these parameters in DA schemes. This renders it difficult to137

realize the high-accuracy advantage of DA schemes in practice; (2) use of the138
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Community Radiative Transfer Model (CRTM). This model is advantageous139

because it gives the Jacobian term needed for the adjoint process on the140

observation operator when conducting its forward process. Therefore,141

introducing the CRTM to a DA scheme does not require separate numerical142

computational programming for the adjoint process on the observation143

operator (Liu and Weng, 2006). DA schemes based on the CRTM have been144

applied in AOD DA research and yielded excellent results (Liu et al., 2011).145

However, the CRTM was developed for the Goddard Chemistry Aerosol146

Radiation and Transport (GOCART) aerosol scheme in the Weather Research147

and Forecasting–Chemistry (WRF–Chem) model. As a result, when applying148

the CRTM to other AQMs and aerosol schemes, it is necessary to design149

corresponding variable transformation interfaces (Cheng et al., 2019), which150

introduces additional errors; (3) use of the interagency monitoring of protected151

visual environments (IMPROVE) equation. The IMPROVE equation maps the152

relationship between the AMC and the AEC (Lowenthal et al., 2003; Ryan et153

al., 2005; Pitchford et al., 2007; Gordon et al., 2018).With relatively high154

computational accuracy, this method has been used to evaluate model155

performance and the extinction contributions of various aerosols (Kim et al.,156

2006; Roy et al., 2007; Tao et al., 2009, 2012, 2014; Cao et al., 2012a, 2012b).157

In addition, as its highest-order term is quadratic, the IMPROVE equation has158

low nonlinearity. Therefore, using the IMPROVE equation to design an159

observation operator can significantly reduce the complexity of the DA160

program. To date, no observation operator design based on the IMPROVE161

equation and subsequent variational lidar DA have been reported.162

Some progress has been made in lidar DA. For example, Sekiyama et al.163

(2010) used the Kalman filter DA method to assimilate the ABC and AEC164

profiles acquired by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite165

Observations mission and applied the assimilated data to a global chemical166
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transport model. Wang et al. (2013, 2014a, and 2014b) studied the167

assimilation of range-corrected lidar signals using the optimal interpolation168

DA method and conducted an assimilation experiment based on data captured169

by 12 lidars positioned in the Mediterranean Basin from the ACTRIS170

(Aerosols, Clouds, and Trace Gases Research InfraStructure)/EARLINET171

(European Aerosol Research Lidar Network) and one lidar positioned on the172

French Corsicain from the framework of the pre-ChArMEx173

(Chemistry-Aerosol Mediterranean Experiment)/TRAQA (TRAnsport àlongue174

distance et Qualité de l’Air). They found that DA improved the PM2.5 forecast175

performance for approximately 36 hours. However, in the above-mentioned176

studies, sequential DA methods were used, and there was no particular need to177

take into consideration the complexity of the observation operator. Cheng et al.178

(2019) assimilated lidar AEC profiles using a 3-DVAR DA method with an179

observation operator based on the CRTM that was designed for a relatively180

simple GOCART dust aerosol scheme.181

This study presents an observation operator and corresponding adjoint182

module developed for lidar AEC DA based on the IMPROVE equation, which183

was introduced into the DA system by Li et al. (2013) and Zang et al. (2016)184

for the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)185

aerosol scheme oriented to the WRF–Chem model. By applying the DA186

system, DA and forecast experiments were conducted to investigate the187

application of lidar AEC DA in PM2.5 forecasts across China based on data188

captured by five lidars (located in Beijing, Shijiazhuang, Taiyuan, Xuzhou,189

and Wuhu, respectively) as well as on PM2.5 and PM10 data collected at190

approximately 1,500 ground environmental monitoring stations across China.191

2. Materials and Methods192

2.1. AQM193
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The WRF–Chem model version 3.9.1 was selected as the AQM. The194

model has 40 vertical layers between the surface and 50 hPa, with the195

resolution gradually decreasing from the bottom up. The model domains are196

double-nested, and the second domain (D02) is centered at (114.57°E,197

37.98°N) and has 175×166 grid points with a grid interval of 9 km. D02198

covers the central and eastern regions of China (most of North China, northern199

Central China, northern East China, and eastern Northwest China) (Figure 1).200

The MOSAIC_4bin aerosol scheme was adopted for the simulations. This201

scheme, which will be described in Section 2.4, can be used to predict the202

profiles of eight aerosol types. For each aerosol type, there are four203

particle-size bins (4bins). The following summarizes the other physical and204

chemical schemes used in this study: the carbon-bond mechanism version Z205

(CBMZ) chemical reaction mechanism, the fast-J photolysis calculation206

scheme, the rapid radiative transfer model for general circulation models207

(RRTMG) shortwave radiation scheme, the RRTMG longwave radiation208

scheme, the WRF single-moment5-class microphysical scheme, the unified209

Noah land-surface parameterization scheme, the Grell 3D ensemble cumulus210

parameterization scheme, the Yonsei University planetary boundary layer211

scheme, and the revised MM5 Monin-Obukhov near-surface layer scheme.212

2.2. Data213

The AEC profiles used in this study were derived from data captured by214

five conventional Mie scattering lidars (positioned in Beijing, Shijiazhuang,215

Taiyuan, Xuzhou, and Wuhu, Figure 1) at a wavelength of 532 nm between216

0000 and 1200 Coordinated Universal Time (UTC) on November 13, 2018217

(Chen et al., 2019; Zhang et al., 2020). The temporal resolution of the data218

measured by the lidars in Shijiazhuang, Taiyuan, Xuzhou, and Wuhu was 1219

min, that is, data were captured, and a vertical AEC profile was derived every220

minute. The vertical resolution of these data was 7.5 m, that is, one AEC was221
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determined in one profile 7.5m away from the next one. The blind zone of222

these lidars was 100 m, that is, these systems could not effectively capture223

AEC data between the surface and the height of 100 m. The temporal and224

vertical resolutions of the AEC profiles captured by the lidar in Beijing were 1225

h and 15 m, respectively, and the blind zone of this lidar was 210 m. The226

relative standard deviation of the aerosol parameter profiles captured by the227

lidar over Beijing was 20.4% in the height range of 1-2 km. This lidar was228

calibrated via comparative observation of several lidars (Chen et al., 2019).229

The precision of the AEC profiles released by the other four lidars was below230

the quality margins (25% of the typical AEC observed in the planetary231

boundary layer or ±0.01km−1), as defined by Matthias et al. (2004). However,232

the relative standard deviation of the aerosol parameter profiles in the height233

range of 2-5 km released by lidar over Beijing was 35.9%. To improve the234

effectiveness of the DA, it was necessary to first perform quality control on235

and preprocess the original AEC profiles. This ensured that the lidar data236

matched the numerical model in terms of temporal and spatial resolution.237

Quality control involved four steps: (1) Entire AEC profiles passing through238

low clouds and AEC measurements in mid- and high-cloud regions were239

eliminated. Clouds were defined as regions in which the AEC was higher than240

5,000×10-6 m-1(assuming the AEC in the near-surface layer (below 150 m)241

was lower than 3,000×10-6 m-1); (2) AEC profile data were subjected to242

maximum and minimum control. AEC measurements higher than 3,000×10-6243

m-1 were each reassigned with a value of 3,000×10-6 m-1. AEC measurements244

lower than 20×10-6 m-1 were eliminated; (3) For spatial continuity, data was245

required to be continuous within a vertical space Lcon, which was set to be 90246

m in this study. Specifically, two metrics were used to examine the spatial247

continuity of the data. First, the profile with vertical resolution Lres was248

examined. After the first two steps of quality control, the remaining number of249

data points (Nremain) within the Lcon could not be less than one-third the total250
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number of data points within the Lcon (Ntotal= Lcon/Lres). Otherwise, no valid251

data would be available for the center of the Lcon. Second, the deviation of the252

valid data from the mean value of the data within the Lcon could not exceed253

three times the standard deviation (SD); (4) Data within the blind zone of a254

lidar were eliminated. In addition, because lidar signals are relatively weak255

and AMCs are extremely low above 5,000 m, data for the region above 5,000256

m were also eliminated in this study. After the quality control process, 84.32%257

of the original AEC data from the lidar over Beijing were accepted as valid258

data, and 88.75%, 54.10%, 26.74%, and 10.95% of the data from the Taiyuan,259

Wuhu, Shijiazhuang, and Xuzhou lidars, respectively, were valid.260

Preprocessing of quality control-treated AEC profiles involved two steps:261

(1) Temporal and spatial smoothing. Profiles were subjected to moving262

averaging over 30 m in the vertical direction. Temporally, the AEC profiles263

were averaged over the previous hour; (2) Data thinning. If there were264

multiple data points between two adjacent model layers in the vertical265

direction, only one was selected for assimilation. In this study, the nearest data266

point below each model layer was selected for assimilation. After processing,267

the number of assimilated AEC measurements per profile did not exceed 25,268

as there were no more than 25 model layers between the top of the lidar blind269

zone and the height of 5,000 m.270

PM2.5 and PM10 data (hereinafter referred to as PM data) used in this271

study, including 1-h MC data collected at more than 1,500 ground272

environmental monitoring stations, originated from the China National273

Environmental Monitoring Center. Most of the monitoring stations were274

distributed in cities in economically developed regions, including the Yangtze275

River Delta, the Beijing–Tianjin–Hebei region, and the Pearl River Delta. Of276

these monitoring stations, more than 790 were located within the D02 region277

(Figure 1). The assimilated PM data were collected between 0000 and 1200278
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UTC on November 13, 2018. After assimilation, forecasts for PM2.5 from 1200279

UTC on November 13, 2018 to 1200 UTC on November 14, 2018 were280

produced. In addition, the effects of DA on the forecast performance of the281

model were evaluated based on surface PM2.5 measurements. To improve the282

DA performance and the representativeness of the evaluation metrics, the283

original PM data were subjected to quality-control and preprocessing284

treatments. Quality control involved two main steps: (1) Anomalous285

elimination. Measurements that remained unchanged over a continuous period286

of 24 h were considered anomalous and removed. (2) Maximum and minimum287

control. PM2.5MC measurements higher than 600 μg/m3, PM10MC288

measurements higher than 1,200 μg/m3, and PM MC measurements less than 0289

were considered anomalies and were removed. During the DA and verification290

processes, there could be multiple PM MC measurements for one grid cell. To291

allow the measurements to represent the average PM MC within a certain area,292

the PM data used for DA and verification were subjected to grid-cell293

averaging. The PM data used for assimilation were averaged within 5×5 grid294

cells. Specifically, the PM data within the same 5×5 grid cell area were first295

examined to determine their spatial consistency. Data greater than twice the296

SD were removed. Next, the arithmetic mean of the data within the area was297

calculated and assimilated. The PM2.5MC measurements used for verification298

and model forecasts were averaged within 1×1 grid cells. Specifically, model299

forecasts were first interpolated to the location of each ground environmental300

monitoring station. Next, the arithmetic mean of the measured and forecasted301

values within the same grid cell was calculated and used as a sample for302

quantifying the evaluation metrics. The processed PM MC data for the D01303

and D02 regions were assimilated, while only the PM2.5MC data for the D02304

region were used to evaluate the effects of the DA. After the grid-cell305

averaging treatment, approximately 190 data points in the D02 region were306

assimilated each time.307
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2.3. Basic theoretical DAmodel308

To mathematically achieve 3-DVAR DA, it is necessary to establish an309

objective function to transform the DA problem to a problem of finding the310

extreme values of the function. By calculating the extreme values of the311

function using the variational method, an “optimal” analysis field is obtained.312

The following shows the mathematical form of such a function:313

)()(
2
1)()(

2
1)(J 11 yHxRyHxxxBxxx TbTb   (1)

This function describes the sum of the distance between the analysis field314

(x) and the background field (xb) and the distance between the analysis field (x)315

and the observation field (y), with the background error covariance B and the316

observation error covariance R as weights, respectively. In Equation (1), x is317

the control variable in the DA system, which is a one-dimensional (1D) vector318

composed of aerosol variables at all the 3D grid cells in the DA analysis field;319

xb is the background value (or best guess) of the control variable (as the320

forecast level of AQM increases, model forecasts are generally used as321

background fields); B is the background error covariance; y is the observation322

variable, which is a 1D vector composed of all the measurements; H is the323

observation operator, which maps the control variable to the observation space324

to ensure that the observation data can provide observation information for the325

control variable even if they are not direct measurements of the control326

variable; and R is the observation error covariance. For simultaneous327

assimilation of two or more types of observation data, the second term on the328

right side of Equation (1) can be expanded to multiple terms, each of which329

corresponds to one type of observation data. This will facilitate the330

simultaneous assimilation of observational data from various sources.331

2.4. Control variables and B332
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The MOSAIC_4bins aerosol scheme adopted in this study333

accommodated eight aerosol types, namely, black/elemental carbon (EC/BC),334

organic carbon (OC), sulfates (SO42−), nitrates(NO3−), ammonium335

salts(NH4+), chlorides(Cl−), sodium salts(Na+), and other unclassified336

inorganic compounds (OIN). There were four particle-size bins (4bin) for each337

aerosol type, namely, 0.039–0.1, 0.1–1.0, 1.0–2.5, and 2.5–10 µm. Thus, there338

were 32 model variables that represented the various aerosols. However,339

limitations in computer memory and computational capacity necessitated a340

reduction in the total number of control variables. In addition, the AECs of341

fine (PM2.5) and coarse (PM2.5–10) particles differed significantly. Thus, two342

control variables for each aerosol type were designed—one corresponding to343

fine particles (formed by combining the first three particle-size bins) and one344

corresponding to coarse particles (the fourth particle-size bin). Thus, there345

were 16 control variables in the DA scheme, namely, EC2.5, EC2.5-10, OC2.5,346

OC2.5-10, SO42.5, SO42.5-10, NO32.5, NO32.5-10, NH42.5, NH42.5-10, CL2.5, CL2.5-10,347

NA2.5, NA2.5-10, OIN2.5, and OIN2.5-10.348

There were two problems associated with calculations involving B: (1) In349

this scheme, B contained 3.5×1014 ((square of 16 (number of control variables)350

×175×166×40 (number of grid cells)) elements. Thus, it was necessary to351

mathematically treat and simplify B to facilitate numerical calculations.352

Following the method used by Li et al. (2013) and Zang et al. (2016), B was353

decomposed into a background-error standard deviation (BESD) matrix, a354

background-error horizontal correlation coefficient (BEHCC) matrix, and a355

background-error vertical correlation coefficient (BEVCC) matrix for356

calculations; (2) As the true value of B was unknown, it was necessary to357

develop a reasonable statistical method to estimate it. The National358

Meteorology Center (NMC) method (Parrish and Derber, 1992) was employed359

in this study to statistically estimate B. Specifically, the differences between360
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the 48h and 24h forecasts of the control variables were assumed to be a proxy361

of the background error. Next, B was estimated based on the covariance of the362

difference field, which was obtained by producing continuous 24 h and 48 h363

forecasts for a month using the WRF–Chem model.364

2.5. Observation operator and its ajoint365

Obtaining the observation operator involved two calculations: (1) The366

control variables at each grid cell were mapped to the observation space, that367

is, the control variables were mapped to the AEC values (or PM2.5 and368

PM10MCs); (2) The mapped values at the eight vertices of the model grid cell369

associated with the observation data were interpolated using the inverse370

distance-weighted method to the observation location. Here, we only describe371

the first step of the derivation of the observation operators, which are different372

for different observation data.373

The AEC observation operator was based on the IMPROVE equation.374

The following shows the specific form of the IMPROVE equation:375

Ext=3.025×fs(RH)×[Small Sulfate]+

6.6×fl(RH)×[Large Sulfate]+

3.096×fs(RH)×[Small Nitrate]+

6.579×fl(RH)×[Large Nitrate]+

5.04×[Small Organic Mass]+

10.98×[Large Organic Mass]+

10.0×[Elemental Carbon]+

1.0×[Fine Soil]+

(2)
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1.7×fss(RH)×[Sea Salt]+

1.0×[Coarse Mass]

The left side of Equation (2) is the AEC value Ext (unit: 10-6 m-1). The376

variables in the brackets on the right side of Equation (2) are combinations of377

the 16 control variables (unit: μg/m3). The coefficient variables fs(RH), fl(RH),378

and fss(RH) reflect the effects of hygroscopicity of fine, coarse, and sea-salt379

aerosols, respectively, under various relative humidity (HR) conditions. The380

values of the parameters given by Gordon et al. (2018) were used in this study.381

The variables (in square brackets) at each grid cell were obtained by382

combining the 16 control variables using the following method:383

Sulfate=SO42.5+α×NH42.5.384

The principle for determining α involved preferentially allocating NH42.5385

to SO42.5. The remaining NH42.5 was allocated to NO32.5.386
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[Elemental Carbon]=EC2.5395

[Fine Soil]=OIN2.5396

[Sea Salt]=CL2.5+NA2.5397

[Coarse Mass]=SO42.5-10+NO32.5-10+NH42.5-10+OC2.5-10+398

EC2.5-10+CL2.5-10+NA2.5-10+OIN2.5-10399

The observation operators for PM2.5 and PM10 were the sums of control400

variables in the corresponding particle-size bin, that is,401

PM2.5=SO42.5+NO32.5+NH42.5+OC2.5+EC2.5+CL2.5+NA2.5+OIN2.5 (4)402

PM10= PM2.5 + SO42.5-10+NO32.5-10+NH42.5-10+OC2.5-10+EC2.5-10+403

CL2.5-10+NA2.5-10+OIN2.5-10 (5)404

The corresponding adjoint process on the operators for PM and AEC405

were developed and passed the adjoint sensitivity test. For the adjoint test406

method, please refer to Zou et al. (1997).407

2.6. DA and forecast experimental design and verification analysis method408

To analyze the effects of DA on aerosol analysis and forecasts, one409

control experiment and three DA experiments were designed for a pollution410

event that occurred from November 13 to 14, 2018 (Table 1). In the control411

experiment, no chemical observation data were assimilated. Forecasts were412

produced for a 36 h period, starting at 0000 UTC on November 13, 2018. In413

the DA experiments, aerosol data were assimilated every hour for the DA414

period of 0000–1200 UTC on November 13, 2018. Next, with the analysis415

field obtained from the DA as the initial chemical field, forecasts were416

performed for a 24 h period starting at 1200 UTC on November 13, 2018. For417

the first DA cycle in each of the three DA experiments, the initial field of the418
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control experiment was used as the background field, the observation data for419

0000 UTC on November 13, 2018 were assimilated, and a DA analysis field420

was generated. With this DA analysis field as the initial field at 0000 UTC,421

November 13, 2018 in the DA experiment, 1h forecasts were produced. The422

forecasts produced for 0100 UTC, November 13, 2018 were used as the423

background field for the second DA cycle. The process was repeated for 13424

assimilation cycles. Thus, a DA analysis field for 1200 UTC, November 13,425

2018 was generated. The effects of DA on forecast performance during the426

forecast comparison period from 1200 UTC, November 13, 2018 to 1200 UTC,427

November 14, 2018 was analyzed by comparing the forecast performance of428

the DA and control experiments. In the first DA experiment, PM data alone429

were assimilated (DA_PM). In the second DA experiment, the lidar data alone430

were assimilated (DA_Ext). In the third DA experiment, PM and lidar data431

were assimilated simultaneously (DA_PM_Ext). Furthermore, 0.25°×0.25°432

6-h reanalysis data provided by the U.S. National Centers for Environmental433

Prediction (NCEP) were used as the meteorological field of the model.434

Two metrics, the regional mean and root-mean-square error (RMSE),435

were used to evaluate simulation and forecast accuracy of the PM2.5MC in the436

experiments. The closer the mean of the simulated values to the mean of the437

measurements and the smaller the RMSE, the higher the performance. Let Mi,438

Oi, N, M , and O be the simulated value sample, the measured value sample,439

the number of samples, the mean of simulated values, and the mean of the440

measurements, respectively. The following summarizes the equations for441

calculating the metrics:442
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3. Results446

3.1. BESD and BEVCC447

Under the same conditions, the larger the BESD, the larger the DA448

increment field (the difference between the “optimal” analysis field and the449

background field). Therefore, the structural pattern of the BESD significantly450

affected the distribution pattern of the DA increment field. The vertical BESD451

profiles of the 16 control variables are shown in Figure 2. The BESD differed452

significantly among the control variables. The seven control variables with the453

largest BESDs below the height of 1,000 m (corresponding to the 22nd layer of454

the model) in descending order of BESD were OIN2.5-10, NO32.5, OIN2.5,455

NH42.5, SO42.5, OC2.5, and EC2.5. As height increased, the BESD of each456

control variable decreased. The rates of decrease were the highest above the457

boundary layers at heights of 1,000–2,000 m (corresponding to the 20th–25th458

layers of the model).459

The BEVCC matrix can spread the observation information contained in460

measurements around one model layer to nearby vertical layers. Therefore,461

even if the PM data are only available at the surface, there will still be462

increments of PM near the surface (in-air) after DA. Furthermore, even though463

the lidar AEC data are not available at the surface, assimilating lidar data can464

still correct the surface PM2.5MC distribution. Figure 3 shows the BEVCC465

matrices of six control variables with relatively large BESDs (OIN2.5-10,466

NO32.5, OIN2.5, NH42.5, SO42.5, and OC2.5). The BEVCCs of the six control467

variables share certain common characteristics. The correlation decreases as468

the interlayer spacing of the model increases. Each in-air layer is positively469

correlated with the surface layer, although the correlation decreases as height470
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increases. For OIN2.5-10, the correlation coefficient between the surface and471

10th layers is 0.34, compared with 0.49-0.51 for other variables. This indicates472

that OIN2.5-10 has a significantly weaker vertical correlation and hence DA473

increments of these particles settle more rapidly than the other variables do.474

This is mainly because coarse particles settle faster vertically than fine475

particles and are concentrated near the surface in larger quantities.476

3.2. Analysis of the pollution process477

Figure 4 shows the evolutionary process of the surface PM2.5MC and the478

NCEP reanalysis surface wind field in the D02 region for the period from479

0000 UTC, November 13, 2018 to 1200 UTC, November 14, 2018 (the time480

interval between Figure 4a, b, c, and d is 12 h). At 0000 UTC on November 13,481

2018, the D02 region was predominantly controlled by a high-pressure482

circulation centered over Zibo. There was a clockwise wind field around the483

high-pressure center. Therefore, the northerlies (easterlies) east (south) of the484

high-pressure center brought clean air over the sealandward. As a result, the485

PM2.5MCs over East China were relatively low. For example, the mean486

PM2.5MC measured at the ground environmental monitoring stations in487

Nanjing was 41.8μg/m3. There were relatively slow southerlies west and488

northwest of the high-pressure center, which led to favorable conditions for489

pollutant accumulation east of the Taihang Mountains and south of the Yan490

Mountains. As a result, North China was heavily polluted by PM2.5. For491

example, the mean PM2.5MCs in Beijing and Shijiazhuang were 122.7 and492

149.3μg/m3, respectively. In addition, within the D02 region, there was a493

northeast–southwest-trending cold front near Buyant-Ovoo–Bayan-Ovoo in494

Mongolia. As time passed (Figure 4b, c, and d), the high-pressure center495

gradually moved northeastward and reached near the eastern boundary of the496

D02 region by 1200 UTC, November 14, 2018 (Figure 4d). The cold front497

gradually moved southeastward and reached the498
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Chaoyang–Beijing–Taiyuan–Xi’an line by 1200 UTC, November 14, 2018499

(Figure 4d). As the high-pressure center and the cold front moved, the level of500

pollution in North China continued to rise, and pollution gradually expanded501

northeastward to Chaoyang, southward to Zhengzhou, and westward to502

Taiyuan. The level of pollution gradually increased in the Wei and Yellow503

River Valleys east of Xi’an due to the dual action of advection by the504

easterlies and the narrow terrain, while the PM2.5MCs decreased considerably505

with the passing of the cold front due to the good dispersion conditions. There506

were no significant changes in the PM2.5MCs in East China due to the507

continuous impact of sea winds.508

3.3. Analysis of the direct effects of DA509

Figure 5 shows the AEC profile measurements, the AEC profiles in the510

analysis fields of the control and DA experiments, and the simulated RH511

profiles at four lidar stations at 0000 UTC, November 13, 2018, when the first512

DA cycle was performed. The results of the control experiment were used as513

the background field in the three DA experiments. Figures 5a, b, c, and d show514

the results for Beijing, Shijiazhuang, Taiyuan, and Wuhu, respectively. As the515

in-air RH profile (brown lines) below 1 km was basically consistent with that516

of the surface RH, the vertical changes in the AEC values in this region were517

only slightly affected by the RH. Thus, the AEC profiles were used to study518

the vertical changes in the PM2.5MC. For Beijing, the simulated AEC results519

from the control experiment (blue lines) agreed with the lidar AEC520

measurements well (Figure 5a—black lines). However, for Shijiazhuang and521

Taiyuan, the simulation underestimated the empirical results (Figure 5b and522

Figure 5c, respectively), particularly near the height of 100 m (the lowest523

height of valid lidar data), while for Wuhu, it overestimated them (Figure 5d).524

The DA increments of AEC values from the DA_PM, that is, the AEC525
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values obtained from the DA_PM experiment (green lines) minus those from526

the control experiment (blue lines), were negative for Beijing (Figure 5a),527

Taiyuan (Figure 5c), and Wuhu (Figure 5d) at the surface. They were also528

negative from the near-surface to a height of about 1000 m, although their529

absolute values were smaller than those at the surface. This is because the530

BEVCCs between each in-air layer and the surface layer were positive and531

decreased with height (Figure 3), so that the information contained in the532

surface PM MC measurements was spread to the air. However, the results of533

the adjustment of the AEC profiles were not always positive, because the534

aerosol bias of the control experiment at the surface was not always the same535

as it was in the atmosphere. Thus, they were overall positive for Beijing and536

Wuhu but negative for Taiyuan, reflecting the fact that the PM DA did not537

effectively account for the vertical aerosol distribution adjustment.538

Compared to those from the DA_PM experiments, the AEC values from539

the DA_Ext experiments (purple lines) for Taiyuan (Figure 5c) at heights of540

approximately 100 and 700 m were significantly larger than those from the541

DA_PM experiment and were consistent with the measurements (black line),542

and those for Wuhu (Figure 5d) were very close to the measurements across543

the entire profile. This suggests that the AEC observation operator whose544

design was based on the IMPROVE equation effectively facilitated 3D545

variational assimilation of lidar AEC data. In addition, although lidar data546

were not available at the surface, the DA_Ext adjusted of the surface PM MCs,547

corrected the overestimation of surface PM2.5MCs in Beijing and Wuhu, but548

increased the overestimation of surface PM2.5MCs in Taiyuan. This is549

because the information contained in the in-air AEC was spread to the surface,550

while the aerosol bias of the control experiment in the air did not always551

match that at the surface.552

The in-air AEC profiles obtained from the DA_PM_Ext experiment (red553
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lines) for the four cities almost coincided with those from the DA_Ext554

experiments above 400 m. The near-surface AEC values obtained from the555

DA_PM_Ext experiment for Beijing (Figure 5a), Taiyuan (Figure 5c), and556

Wuhu (Figure 5d) almost coincided with those from the DA_PM experiment,557

were between those from the DA_PM and DA_Ext experiments, and were558

smaller than those from both the DA_PM and DA_Ext experiments. This559

suggests that simultaneously assimilating the two types of data can fully560

integrate their observation information and reflect their respective advantages,561

thereby generating the most accurate analysis field.562

Figure 6 shows the AEC profiles measured, simulated by the control563

experiment, in the background fields and the analysis fields of the DA564

experiments at four lidar stations at 1200 UTC, November 13, 2018. The time565

of 1200 UTC, November 13, 2018 was the last time point of the DA period,566

the starting time point of the forecast period, and the time point at which 13567

DA cycles had elapsed. The background field for each of the three DA568

experiments was generated during the continuous DA period, whereas the569

results of the control experiment were obtained by a 12 h forecast starting at570

0000 UTC, November 13, 2018. As a result, there was a significant difference571

between the background fields of the three DA experiments and those of the572

control experiment.573

The DA increments of the AEC values from the DA_PM experiment574

were significant below 1000 m (green lines). These adjustments corrected the575

near-surface overestimation of the AEC values for the four cities in the control576

experiment, however, increased the underestimation for Taiyuan at heights of577

120–400 m (Figure 6c) and overestimation for Wuhu above 400 m (Figure 6d).578

Additionally, it is worth noting that there were small direct DA increments579

generated in the DA_PM experiment at this time point. This means that for the580

surface PM DA, a DA period of 11 h or less was sufficient to effectively581
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adjust aerosol distribution in this experiment. This may because aerosols were582

primarily concentrated near the surface and surface PM data covered a wide583

area and had a high spatial resolution, thus, surface PM data measured at a few584

time points contained the main aerosol distribution information for the whole585

region.586

Compared to the DA_PM experiment, the DA_Ext experiment (purple587

lines) reflected the advantages of adjusting the vertical aerosol distribution.588

The overestimations for Beijing above 300 m (Figure 6a), Taiyuan above 600589

m (Figure 6c), and Wuhu below 400 m (Figure 6d) in the control experiment590

were effectively corrected. The rapid decrease in the AEC from the surface to591

a height of 1,000 m over Beijing (Figure 6a) and the maximum-AEC layer at a592

height of 1,300 m over Wuhu (Figure 6d) were accurately reproduced by the593

DA_Ext experiment. However, the near-surface overestimation for Taiyuan594

(Figure 6c) increased. Moreover, the direct DA increments generated in the595

DA_Ext experiment at this time point remained notable. This suggests that the596

background field errors at each lidar station at 1200 UTC remained relatively597

large, even after the continuous DA period. To improve the effects of the DA,598

it was necessary to increase the length of the continuous DA period. This may599

have been due to the limited number of lidars and the fact that the lidars were600

relatively far apart from one another. Thus, the simulation error for the region601

upstream of a lidar was difficult to correct through DA and affected the lidar602

location due to the effects of advection at the next time point. In addition,603

because the 1200UTC (2000LST) was only 2-3 h after sunset, so large604

changes of PM concentration profile may occur due to large changes in the605

PBLH after sunset.606

Figure 7 shows the surface PM2.5 MC measurements, the surface607

PM2.5MCs of the initial field of the control experiment and their biases, and608

the inverse DA increments of PM2.5MCs from the DA experiments, that is, the609
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PM2.5MCs obtained from the control experiment minus those from the DA610

experiments at 1200UTC, November 13, 2018. The measurements (Figure 7a)611

showed that the PM2.5MCs were relatively high in North China, with a heavily612

polluted zone in the Beijing–Shijiazhuang–Zhengzhou region, while the613

PM2.5MCs were relatively low surrounding North China. The control614

experiment (Figure 7b) successfully simulated regions with relatively high and615

low PM2.5MCs. However, the PM2.5MCs were overestimated for most stations616

in D02 (Figure 7c), especially in the Beijing–Shijiazhuang–Zhengzhou region,617

and underestimated for stations near Chaoyang.618

The inverse DA increments of the PM2.5MCs of the DA_PM experiment619

(Figure 7d) were relatively consistent with the bias of the control experiment620

(Figure 7c), indicating that the overestimation for most regions and the621

underestimation for some regions in the initial field of the control experiment622

were corrected by the PM DA. The inverse DA increments of the PM2.5MCs623

of DA_Ext (Figure 7e) were significant in the regions surrounding and624

downstream of the five lidar stations. In addition, certain DA increments were625

also present in regions far away from the lidar stations. This indicates that626

long-term continuous lidar AEC DA can affect a relatively large area. Overall,627

the DA_Ext corrects the overestimation for most stations and underestimation628

for a few stations in the control experiment. However, the DA_Ext increments629

were smaller than the DA_PM increments in terms of horizontal spatial range630

and absolute values. This is mainly because there are relatively few lidars, and631

these lidars cover a limited spatial area. It is worth noting that DA_Ext yields632

a negative effect for northern Beijing and the region around Taiyuan, a result633

which will be discussed later in Chapter 4. The inverse DA increments of634

PM2.5MCs of DA_PM_Ext (Figure 7f) were relatively consistent with those635

of the DA_PM (Figure 7c). This is mainly because the quantity and spatial636

coverage of the PM data were larger and more complete than those of the lidar637
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data. As a result, the DA increments of the surface PM2.5MCs originated638

primarily from the observation information contained in the PM data. Because639

the AEC profiles of the DA_PM_Ext almost coincided with those of the640

DA_Ext above 400 m (Figure 5), the DA_PM_Ext reflected the 3D spatial641

distribution pattern of the aerosols most accurately.642

3.4. Effects of DA on the forecast performance for surface PM2.5MCs643

In this section, the forecast performances of the DAs for surface PM2.5644

are evaluated based on measurements that cover most of the D02 region.645

Figure 8 shows the variation of the regional mean of the PM2.5MC over646

time from the four experiments. The regional mean of the PM2.5MC (black647

line) exhibited a notable diurnal pattern. Two notable minimum PM2.5MC648

values (69.1 and 77.9μg/m3) appeared at 0800 UTC (1600 local time) on649

November 13 and November 14, 2018, respectively. High PM2.5MCs appeared650

between 1300 UTC, November 13, 2018 and 0200 UTC, November 14, 2018651

(from night to morning), with a maximum PM2.5MC of 96.0μg/m3. Meanwhile,652

there was a relative minimum PM2.5MC (87.0μg/m3) appearing at 2200 UTC653

on November 13, 2018 (around dawn local time) during the high-PM2.5-MC654

period.655

The control experiment (blue line) simulated the periodic variation656

pattern of the mean PM2.5MC but significantly overestimated the value of this657

parameter during the entire forecast period. The mean PM2.5MC of the control658

experiment at the initial time for the forecast period (1200 UTC, November 13,659

2018) was 128.6μg/m3, which is 36.3μg/m3 (39.3%) larger than that of the660

measurements (92.3μg/m3). The DA_PM (green line, which almost coincides661

with the red line) significantly reduced the overestimation of the control662

experiment, with a mean PM2.5MC of 91.4μg/m3 that is 0.9μg/m3 (1.0%) lower663

than the measurement. As a result of the decrease in the MC levels in the664
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initial field, the PM2.5MC forecasts of the DA_PM were significantly lower665

than those of the control experiment during the entire forecast period. This666

suggests that the overestimation of the initial field is the primary cause of the667

overestimated forecasts of the control experiment. The overestimation of the668

control experiment at the initial time point was reduced by the DA_Ext669

(purple line) from 36.3μg/m3 (39.3%) to 20.5μg/m3 (22.2%), which improved670

the forecast performance significantly (even though there were only five lidars671

within the region). There was no significant difference between the results of672

the DA_PM_Ext (red line) and DA_PM (green line) at the surface. This673

suggests that in these experiments, after DA of surface PM data, the DA of674

lidar data did not significantly affect the surface PM2.5MC levels. There are675

two reasons for this. The PM data set was far larger than the lidar data set in676

terms of quantity and spatial coverage. In addition, after surface PM DA, lidar677

DA mainly directly adjusted the AMC values not at surface but in-air and678

hence affected the surface AMC forecasts only indirectly, via processes such679

as settling. However, in this simulation process, the surface AMC levels680

remained relatively high, while the vertical air movement was weak due to the681

relatively stable meteorological conditions, particularly in the heavily polluted682

zone. Therefore, the effects of the lidar DA on the surface PM2.5MCs are far683

smaller after the surface PM DA.684

Figure 9 shows the variation in the RMSE of surface PM2.5MC forecasts685

over time. The RMSEs for simulations and forecasts were relatively large686

(small) when the mean PM2.5MCs were relatively high (low) (Figure 8). The687

RMSE in the control experiment was 59.6μg/m3 at the initial time for the688

forecast period (1200 UTC, November 13, 2018) and fluctuated between 44.5689

and 67.1μg/m3 instead of linearly increasing or decreasing throughout the690

forecast period. The RMSEs in the DA_PM (green line), DA_Ext (purple line),691

and DA_PM_Ext (red line) experiments at the initial time point were 21.0,692
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49.1, and 21.2μg/m3, respectively, which were 38.6μg/m3 (64.8%), 10.5μg/m3693

(17.6%), and 38.4μg/m3 (64.4%) lower than that of the control experiment.694

Owing to the optimized initial field, the RMSE of the forecasts of each of the695

DA experiments was lower than that of the control experiment during the696

forecast period. For the 24th forecast hour, the RMSEs of the forecasts of the697

Da_PM, Da_Ext, and DA_PM_Ext were 6.1μg/m3 (11.8%), 1.5μg/m3 (2.9%),698

and 6.5μg/m3 (12.6%) smaller than that of the control experiment, respectively.699

This suggests that the optimization of the initial field has a lasting (more than700

24 h in all cases) positive effect on model forecasts. It is worth noting that701

while there are very few lidar stations, the results of the DA_Ext experiment702

were still better than those of the control experiment, and the results of the703

DA_PM_Ext experiment were also slightly better than those of the DA_PM704

experiment. This indicates that even in relatively low quantities, lidar data still705

improve the forecast performance of the model. As lidar data become706

increasingly rich and provide more vertical and horizontal aerosol distribution707

information in the future, lidar DA will further improve PM2.5MC forecasts.708

4. Discussion709

DA_Ext had a negative effect on the surface PM2.5 MC distributions for710

regions around Taiyuan and northern Beijing (Figure 7e). For Taiyuan, the711

cause of the negative effect was similar to that responsible for the results712

shown in Figure 5, that is, the information contained in the in-air AEC was713

spread to the surface by DA_Ext. However, the AEC showed an714

underestimation bias of the control experiment at a height of 100 m, while the715

PM MC measurements showed an overestimation bias at the surface. There716

are two reasons for the differences between the bias of the control experiment717

in-air and at surface, as reflected by the AEC and PM MC measurements. First,718

it is not abnormal for the simulation error of the model to differ in the vertical719
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direction due to the complex evolution mechanism of aerosols, which we do720

not discuss here. Second, the PM2.5MCs measured at 1200 UTC, November 13,721

2018 at three ground environmental monitoring stations within 6 km of the722

Taiyuan lidar station were 80.0 μg/m3, 137.0 μg/m3, and 146.0 μg/m3,723

respectively, indicating a large horizontal gradient of AMC and PM MC724

around the Taiyuan lidar station. Therefore, the observation information725

contained in the lidar profile did not represent the spatial distribution well and726

differed significantly from that contained in the PM data nearby. This suggests727

that the spatial representation of lidar data could significantly affect the impact728

of the lidar AEC DA. In addition, the vertical resolution of the lidar data729

(smaller than 15 m) is far smaller than the spacing between adjacent height730

layers of the model. As a result, the representative spatial scale of the original731

lidar data does not match the resolution of the model. To improve the accuracy732

of the horizontal spatial representativeness of the lidar data, at each time point,733

the lidar AEC profile was based on hourly averaged lidar data (from the734

previous hour). The vertical spatial representativeness of the data was735

improved by smoothing over 30 m in the vertical direction. However, the736

time-averaged lidar data represented observation information for a certain area737

downstream of the wind field. These errors need to be addressed in subsequent738

studies. Moreover, the selection of a time-averaging period and vertical739

smoothing length also requires further investigation.740

For northern Beijing, the underestimation resulted primarily from the741

notable Beijing lidar overestimation, whereas the overestimation was742

relatively small in northern Beijing, the downstream region of the Beijing lidar.743

In addition, there was even underestimation in some of the PM measurement744

stations north of Beijing (Figure 7c). Therefore, the downstream transference745

of lidar DA information from Beijing lidar location to northern Beijing caused746

the underestimation in the continuous DA results. The most direct and747
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effective measure for addressing this problem is to increase the number of748

lidars and the coverage of the lidar network. This measure will ensure that the749

simulation bias for the simulation region will be more comprehensively750

captured. However, lidar detection requires large amounts of labor and751

financial resources. Therefore, it is difficult to arrange lidar stations as densely752

as ground environmental monitoring stations. A relatively feasible method is753

to set a relatively small number of lidars in regions with a relatively uniform754

simulation bias and set dense lidars in regions where the simulation bias755

changes significantly. This will make it possible to use a limited number of756

lidars to capture more useful information. Thus, studying the temporal and757

spatial distribution of model simulation bias can provide a useful reference for758

the future arrangement and planning of the lidar stations. This merits further759

investigation.760

The AEC observation operator used in this study was designed based on761

the IMPROVE equation, with parameters such as the hygroscopicity762

coefficient set to values reported in previous studies. On the one hand, datasets763

from which the IMPROVE parameters were determined in previous studies764

were measured in specific regions and near the ground. The verification of the765

IMPROVE parameters had not been thoroughly conducted for the locations766

where lidar data were provided. Therefore, there may have been different767

biases between the Mie algorithm and the IMPROVE algorithm in different768

regions, inducing inconsistent assimilation performance. Additionally, the769

values of the coefficients in the IMPROVE equation were determined by770

statistical analysis of extensive data. This dictated that these coefficients771

represented average levels under certain pollution and humidity conditions.772

There may be certain biases in these coefficients when applied to a specific773

observation event. These biases will accumulate and amplify during the774

calculation of the forward and adjoint processes of the observation operator,775
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resulting in a negative effect DA effect. Hence, another issue needing to be776

addressed is how to effectively evaluate the applicability of the IMPROVE777

equation and more accurately adjust its coefficients.778

5. Conclusions779

In this study, an observation operator and its adjoint for the AEC DA780

were designed based on the IMPROVE equation, and a 3-DVAR DA system781

was developed for lidar AEC data and surface AMC data for the782

MOSAIC-4bin chemical scheme in the WRF–Chem model. Three DA783

experiments (i.e., a PM2.5(PM10) DA experiment, a lidar AEC DA experiment,784

and a simultaneous PM2.5(PM10) and lidar AEC DA experiment) were785

conducted based on AEC profiles captured by five lidars (located in Beijing,786

Shijiazhuang, Taiyuan, Xuzhou, and Wuhu) as well as PM2.5 and PM10787

measurements taken at over 1,500 ground environmental monitoring stations788

across China in the period from 0000 to 1200 UTC, November 13, 2018. A789

comparison with the control experiment involving no DA found that the790

3-DVAR DA system was effective at assimilating lidar AEC data. While there791

were only five lidars within the simulation region (approximately 2.33 million792

km2 in size), assimilating AEC data alone was still found to effectively793

improve the accuracy of the initial field, hence improving the forecast794

performance for PM2.5 for more than 24 h. The lidar AEC DA can reduce the795

RMSE of the surface PM2.5MC in the initial field of the model by 10.5μg/m3796

(17.6%). In addition, a 38.4μg/m3 (64.4%) reduction occurred when the797

PM2.5(PM10) and lidar AEC data were assimilated simultaneously. The RMSEs798

of the forecasted surface PM2.5MC 24 h after the DA period in the three DA799

experiments were reduced by 6.1μg/m3 (11.8%), 1.5μg/m3 (2.9%), and800

6.5μg/m3 (12.6%), respectively. Lidar AEC DA was advantageous for801

improving the accuracy of the vertical PM2.5MC profile. Surface PM2.5(PM10)802
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DA was advantageous for optimizing the near-surface PM2.5MC distribution.803

Simultaneous lidar AEC and surface PM2.5(PM10) DA effectively integrated804

their observation information to generate a more accurate 3D aerosol analysis805

field.806

807

Code and data availability: The WRF-Chem model source code can be808
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Experiment Assimilated data
Assimilation

region
DA period

Forecast

comparison

period

Control N/A N/A N/A
11.13 12:00

–11.14 12:00

DA_PM PM2.5+PM10 D01/D02
11.13 00:00

–11.13 12:00

11.13 12:00

–11.14 12:00

DA_Ext Ext D01/D02
11.13 00:00

–11.13 12:00

11.13 12:00

–11.14 12:00

DA_PM_Ext PM2.5+PM10+Ext D01/D02
11.13 00:00

–11.13 12:00

11.13 12:00

–11.14 12:00

1026

1027

1028

1029

1030

1031
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1032

Figure 1 The double-nested experimental domain. Red triangle and labeling indicate the1033

locations and names of 5 lidars, and blue circle the locations of 1500 ground environmental1034

monitoring stations.1035
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1040

Figure 2 Vertical BESD profiles of the 16 control variables1041
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1052

Figure 3 BEVCCs of six control variables1053
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1054

Figure 4 Surface PM2.5MC measurements in the D02 region and NCEP reanalysis wind1055

field for the period from 0000 UTC, November 13, 2018 to 1200 UTC, November 14, 20181056

(Bu-O: Buyant-Ovoo; Ba-O: Bayan-Ovoo; CY: Chaoyang; BJ: Beijing; SJZ: Shijiazhuang;1057

TY: Taiyuan; ZB: Zibo; X’A: Xi’an; ZZ: Zhengzhou; NJ: Nanjing)1058
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1059

Figure 5 AEC profiles measurements (black lines), the AEC profiles in the analysis fields1060

of the control (blue lines), DA_PM (green lines), DA_Ext (purple lines) and DA_PM_Ext1061

(red lines) experiments and the simulated RH profiles (orange lines) at four lidar stations at1062

0000 UTC, November 13, 2018. (BJ: Beijing; SJZ: Shijiazhuang; TY: Taiyuan; WH:1063

Wuhu)1064
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1065

Figure 6 AEC profiles measurements (solid black lines), the AEC profiles in the control1066

experiment (solid blue lines), in the background field of the DA_PM (dotted green lines),1067

DA_Ext (dotted purple lines) and DA_PM_Ext (dotted red lines) experiments, and in the1068

analysis fields of the DA_PM (solid green lines), DA_Ext (solid purple lines) and1069

DA_PM_Ext (solid red lines) experiments at four lidar stations at 1200 UTC, November 13,1070

2018. (BJ: Beijing; SJZ: Shijiazhuang; TY: Taiyuan; WH: Wuhu)1071
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1072

Figure 7 Surface PM2.5MC measurements (a), surface PM2.5MCs in the initial field of1073

control experiment (b) and its bias (c), the inverse DA increments of PM2.5MC of DA1074

experiments, that is, the PM2.5MCs obtained from the control experiment minus that from1075

the DA experiments (d, e, and f) at 1200UTC, November 13, 2018 (black triangles signify1076

the locations of the lidar stations, and green triangles mark the locations of the two cities1077

without lidar) (CY: Chaoyang; BJ: Beijing; SJZ: Shijiazhuang; TY: Taiyuan; ZZ:1078

Zhengzhou; XZ: Xuzhou; WH: Wuhu)1079
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1088

Figure 8 Variation of the regional mean PM2.5MC over time measured and simulated by1089

the four experiments. (the vertical orange line separates the DA and forecast periods; the1090

black line signifies measurements; the blue line signifies that obtained from the control1091

experiment; the green, purple, and red lines signify that obtained from the DA_PM,1092

DA_Ext, and DA_PM_Ext experiments, respectively)1093
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1106

Figure 9 Variation in the RMSE of surface PM2.5MC forecasts over time (the vertical1107

orange line separates the DA and forecast periods; the blue line signifies that obtained from1108

the control experiment; the green, purple, and red lines signify that obtained from the1109

DA_PM, DA_Ext, and DA_PM_Ext experiments, respectively)1110
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