
Reviewer 1 
This paper mentions a methodology that was applied to a commonly used ocean model ROMS 
for running it offline in order to save computational time. The results of the study are somewhat 
intuitive i.e. a frequency of output that corresponds with a time step that can resolve advection 
time scales, forcing realistically and using double precision would help in the most accurate 
solution. It is unclear that it would add significant scientific value to the existing literature 
although it could be a good case study for folks trying to model similarly. It would then require 
that the authors discuss another example, perhaps something more application oriented besides 
the test case mentioned in the paper. 
 
Another experiment has been added to the manuscript that is more application oriented, as 
suggested.  
 
That would also prove the repeatability of some of the key conclusions. It would be also good to 
add the equations that are solved via a schematic or a written description when the model is 
simulated in an offline manner. That would help modelers using other type of models get ideas 
from the paper to broaden its appeal to a wider audience.  
 
No equations were modified for this offline tracer advection scheme. The changes made to 
ROMS were all to be able to force additional variables as climatology. The tracer advection is 
forced exactly as normal in ROMS, but the velocity fields advected the tracer are input as 
climatology (previously saved from an online run) instead of calculated at the time by ROMS. 
 
Some minor corrections  

1. page 1 Line 15-> change time savings to improved computational efficiency  
Done. 
 

2. page 2 line 22-> "showed good accuracy by hill et al." Is there a specific result that Hill 
showed that can be summarized here.  
This sentence has been added: “For a set output frequency, an offline time step of8 times 
the online time step gave a skill score of over 98%.” 
 

3. Besides the 84 proc to 28 proc change, not sure the rest of the paragraph is needed. 
The goal with this is to be open about analysis tools used and also to give appropriate 
credit.  
  

4. Figure 4 is hard to interpret. what is the significance of y axis representing storage . the 
x axis should be computational time. good job with the appendices 
The x-axis is computational time per simulation day. The label and caption have been 
modified to say this more explicitly. The y axis is storage required to run on the online 
simulation which is then forced in the offline simulation (per simulation day), and it is 
one of the tradeoffs required when deciding how to run an offline simulation, along with 
computational time. This figure has been modified to try to be easier to see what is 
important. 

 
 



Reviewer 2 
General Comments: This paper provides an excellent description of a new method for running 
ROMS, a open-source, commonly used hydrodynamic ocean model, offline. The paper does not, 
to the best of my understanding, represent a huge advance the field of numerical modeling itself, 
but it does provide documentation of a new tool available to the scientific community. This is 
consistent with the goals of the GMD journal. Overall, I consider the paper to be excellent in 
scientific quality and presentation quality, and moderate on scientific significance. The archiving 
of all relevant files to reproduce the results implies it has excellent reproducibility. The paper 
could be improved by considering non-spatially averaged skill scores. In most coastal systems, 
the dynamics, as well as the representative length scales and temporal scales, vary in space (and 
time). The extent to which this affects the skill scores in different areas of the grid would be of 
much interest to readers and possible users of this software.  
A qualitative feel for the spatial structure of the offline simulation errors has been added through 
both the next response and though comment #2 below. 
 
It would also be useful to demonstrate that this method works for more than one model 
configuration. Different pre-processing choices, grid configurations, open boundary conditions, 
etc. may all impact the ability for this software to be implemented by other ROMS users.  
We present a new simulation using the same numerical model to try to address this point. The 
simulation is meant to emulate a “real world case” by being at depth and more localized. Skill 
scores (averaged over space) and percent errors (shown for a snapshot in time and in both 
planview and a vertical cross section) are presented for the new experiment. 
 
Specific Comments & Technical Corrections:  

1. Lines 63-5: This sentence is confusing as written. I suggest deleting “as opposed to” and 
breaking the sentence into two sentences.  
Thank you, this now reads: “This timescale is specific to the location of the dye patch, 
which is off the continental shelf and responding to mesoscale processes. If the dye patch 
was on the shelf, one would expect a shorter timescale.” 
 

2. Can you include a map showing the difference in tracer concentration among different 
model runs so that users can visually see the magnitude and spatial variability of the 
error of the offline simulations, compared to the online simulations?  
Yes, good idea. This is now shown in Figure 2 for a variety of offline simulations. 

 
3. Figure 4 contains a lot of important information, but was difficult to understand. I 

suggest considering removing the ‘dt’ from the figure. If needed, this could be included in 
a subplot. Also, including nhis as a 2nd y-axis instead of numbers on the plot, would be 
useful for orienting the reader. Finally, drawing a box around the legend would help 
readers more readily separate it from the rest of the text in the figure. If the dt’s are kept 
in the figure, please include them in the legend. 
We did not remove the “dt” labels because we thought it would be more confusing to try 
to explain which is which simulation in words. However, we followed the spirit of your 
suggestions by altering much of the text in the figure to be lighter in color, and the 
marker edges to be lighter, so that the plot is hopefully easier to look at now, with the 



markers themselves standing out more. Also added a box around the legend. A note about 
dt was added to the legend. 
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Abstract. Offline advection schemes allow for low computational cost simulations using existing model output. This study

presents the approach and assessment for passive offline tracer advection within the Regional Ocean Modeling System (ROMS).

An advantage of running the code within ROMS itself is consistency in the numerics on and offline. We find that the offline

tracer model is robust: after about 14 days of simulation (almost 60 advection timescales
::::
units

:::
of

::::
time

::::::::::
normalized

:::
by

:::
the

::::::::
advection

::::::::
timescale), the skill score comparing offline output to the online simulation using the TS_U3HADVECTION and5

TS_C4VADVECTION (3rd-order upstream horizontal advection and 4th-order centered vertical advection) tracer advection

schemes is 99.6% accurate for an offline time step 20 times larger than online, and online output saved with a period below the

advection timescale. For tracer advection scheme MPDATA, accuracy is more variable with offline time step and forcing input

frequency choices, but is still over 99% for many reasonable choices. Both schemes are conservative. Important factors for

maintaining high offline accuracy are: outputting from the online simulation often enough to resolve the advection timescale,10

forcing offline using realistic vertical salinity diffusivity values from the online simulation, and using double precision to save

results.

Copyright statement. TEXT

1 Introduction

The ability to integrate Eulerian tracer fields offline, or separate from the online, original full simulation is attractive because of15

the time savings
:::::::
improved

::::::::::::
computational

:::::::::
efficiency. Once an online simulation has been run, any number of offline simulations

can be run, forced by the stored online model output, using a larger time step, and only needing to integrate the transport field

itself. This allows for many simulations when with the online simulation fewer would have been possible. This study presents

the development and assessment of an offline passive tracer advection model that is part of the Regional Ocean Modeling

System (ROMS), version 904, in COAWST (Shchepetkin and McWilliams, 2005; Warner et al., 2010). While the ultimate goal20
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of this work is to run ROMS with both offline floats representing oil and tracers representing biological processes, along with

sediment–oil interactions, the present focus is on the offline tracer model with a passive tracer.

Previous work has been done in this area with other models. An offline tracer model for the MIT general circulation model

(MITgcm) was developed and showed good accuracy (Hill et al., 2004).
:::
For

:
a
:::
set

::::::
output

:::::::::
frequency,

::
an

::::::
offline

::::
time

::::
step

:::
of

:
8
:::::
times

:::
the

::::::
online

::::
time

::::
step

:::::
gave

:
a
:::::

skill
::::
score

:::
of

::::
over

:::::
98%.

:
An offline tracer model based on MITgcm has been used in25

several studies (Dutkiewicz et al., 2001; McKinley et al., 2004). Another offline tracer model, OFFTRAC, is based on the

Hallberg Isopycnal Model (HIM) and has been used for long-term biogeochemical integration (Zhang et al., 2014). Other

tracer models have been developed separately from a full numerical ocean simulator. Gillibrand and Herzfeld (2016) have

developed a separate tracer advection model that is not numerically limited by the Courant number as is expected in the present

case. Another such model developed by Khatiwala et al. (2005) has a different approach entirely to offline tracer advection,30

using a mathematical approach that is distinct from more commonly used numerical tracer integration. Interestingly, Lévy et al.

(2012) found that for particular dynamical scenarios, degrading online model output spatially can result in offline computational

savings with little accuracy degradation.

The offline tracer model described in this paper is integrated into and derived from the ROMS model: preprocessor flag

choices allow access to the offline capability. While not being derived from a specific ocean model allows for wider potential35

use, as in some of the previously-described models, there may be an advantage in using the offline model that is derivative of the

offline model to ensure consistency, using the exact same numerics and setup. The expected user for this software is someone

who uses ROMS for their ocean modeling needs and wants to have the ability to run more tracer simulations, decoupled from

their more expensive online simulations. Another type of user may simply have some ROMS output available, and this code

will allow them to leverage it beyond its originally intended use.40

The experimental setup is described in Section 2; this includes the description of the model setup (Section 2.1), the offline

experiments (Section 2.2), and the metrics used for evaluation (Section 2.3). Results are shown in Section 3, and a discussion

of results is in Section 4. Specific code descriptions are in the Appendix: code changes made for robust offline tracer advection

(Section B) and a description of how to set up both online and offline simulations for best results is given in Section C.

2 Experimental setup45

2.1 Online model setup

The online model is set up for the northern Gulf of Mexico (25.6�N–30.6�N, 94�W–84�W). The domain was chosen because

the final goal of this work is to simulate the fate of oil spilled in this region in 2010. The horizontal resolution is 0.04 degree

to fully resolve mesoscale processes, and there are fifty vertical layers with refinement at the seabed and sea surface (transfor-

mation equation parameter Vstretching is 5 and stretching function parameter Vtransform is 2) (Azevedo Correia de50

Souza et al., 2015). The time step is 20 seconds. HYCOM Global Reanalysis data (experiment “GLBu0.08/expt_19.1”) is used

to initialize the model and provide boundary conditions (Fox et al., 2002; Cummings, 2005; Chassignet et al., 2007; Cummings

and Smedstad, 2013). The surface forcing is provided by hourly Climate Forecast System Reanalysis (CFSR) data (Saha et al.,
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Figure 1. Model domain and initial blob of passive dye at the surface
::
for

:::
the

:::
first

:::
set

::
of

:::::::
numerical

::::::::::
experiments.

2010) and air-sea turbulent fluxes are calculated using bulk formula COARE 3.0 (Fairall et al., 2003). In order to realistically

simulate the water properties and dynamics in the coastal area, 21 daily river discharges with specified water transport flux55

and temperature (from USGS) are implemented as boundary fluxes along the coast. To stabilize the open boundaries, lateral

nudging layers are set at the open ocean boundaries. The nudging time scale is 0.04 days at the boundary and gradually tuned

to 10 days at the 18th interior grid. The climatology used for the nudging process is also provided by the HYCOM output. This

online model ran for 90 days, from April 20 to July 19, 2010, but a subset of 14 days are used for the present experiments.

2.2
:::::
Offline

:::::::::::
experiments60

2.2.1
:::
Full

::::::
water

:::::::
column

::::::::
Gaussian

A series of online and offline simulations were run to evaluate comparative performance of offline tracer advection. All
:::
The

:::
first

:::
set

::
of numerical experiments presented in this paper were initialized with a discrete Gaussian blob of dye southwest of the

Mississippi river delta in a regional model of the north Gulf of Mexico (see Figure 1). The blob of dye extended fully through

the water column. Online simulations were run with two tracer advection schemes: MPDATA (both horizontal and vertical)

and TS_U3HADVECTION (3rd-order upstream horizontal advection) and TS_C4VADVECTION (4th-order centered vertical

advection) (shortened to U3C4 for the remainder of the paper). Additionally, the online simulations were output at different

frequencies, as multiples of the time step (the nhis and navg parameters for ROMS):

nhis= 1,2,5,10,20,50,100,200,500,1000,2000,5000.

Given that the time step of the online simulation was 20s, these correspond to output frequencies of about 20s, 40s, 100s,

3.3min, 6.7min, 16.7min, 0.56h, 1.1h, 2.8h, 5.6h, 11h, and 28h. Online simulations were saved as both instantaneous snapshots

(his files from ROMS) and as averages across time steps (avg files from ROMS).
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The relevant controlling timescale for this simulation is the advection timescale. Results from online simulations of the dye65

advection show a representative length scale of about L= 10km and speed of about U = 0.5m/s, giving an advection timescale

of T = L/U = 20000s, or about 5.6hr. This timescale is specific to the location of the dye patch, which is off the continental

shelf and responding to mesoscale processes, as opposed to if the dye patch was on the shelf in which case one would expect a

shorter timescale. The timescale will be used to normalize times given in results and to interpret accuracy in relation to offline

time choices.70

2.3 Offline experiments

Offline
:::::
These

::::::
offline simulations were run using one of the two tracer advection schemes, with either his or avg files as cli-

matology at the output frequency from the online simulations (controlled by nhis/navg). Additionally, they were optionally

forced by the vertical salinity diffusion variable, Aks, as calculated by the online simulation or by just the background value.

Finally, for an input climatology file from an online simulation of a given output frequency (nhis/navg), offline simulations75

were run with a time step from the list of nhis values of up to the same output frequency as the online simulation. A time step

of 50 times the online time step was found to lead to unstable solutions, so in effect, the offline time step could be 1, 2, 5, 10,

or 20 times the online time step, but never larger than the nhis value for the given simulation. Also note that the offline time

step needs to divide evenly into the output frequency in the climatology file so that only two time steps are being accessed at a

time. So, for a climatology forcing file of nhis=50, the offline simulation could not be forced with dt=20.80

:::
The

:::::::
relevant

:::::::::
controlling

::::::::
timescale

:::
for

::::
this

:::::::::
simulation

:
is
:::
the

:::::::::
advection

::::::::
timescale.

:::::::
Results

::::
from

:::::
online

::::::::::
simulations

::
of

:::
the

::::
dye

::::::::
advection

::::
show

::
a
:::::::::::
representative

::::::
length

::::
scale

::
of

:::::
about

:::::::::
L= 10km

:::
and

:::::
speed

::
of

:::::
about

:::::::::::
U = 0.5m/s,

:::::
giving

:::
an

::::::::
advection

::::::::
timescale

::
of

:::::::::::::::::
T = L/U = 20000s,

::
or

:::::
about

:::::
5.6hr.

::::
This

::::::::
timescale

::
is
:::::::
specific

::
to

:::
the

:::::::
location

::
of

:::
the

::::
dye

:::::
patch,

::::::
which

:
is
:::
off

:::
the

::::::::::
continental

::::
shelf

:::
and

::::::::::
responding

::
to

:::::::::
mesoscale

:::::::::
processes.

::
If

:::
the

::::
dye

:::::
patch

:::
was

:::
on

:::
the

:::::
shelf,

::::
one

::::::
would

:::::
expect

::
a
::::::
shorter

:::::::::
timescale.

::::
The

::::::::
timescale

:::
will

:::
be

::::
used

::
to

::::::::
normalize

:::::
times

:::::
given

::
in

::::::
results

:::
and

::
to

:::::::
interpret

::::::::
accuracy

::
in

:::::::
relation

::
to

:::::
offline

::::
time

:::::::
choices.

:
85

2.2.1
::::::::
At-depth

:::::::
realistic

::::::::
Gaussian

:::::::
Another

::
set

::
of
::::::::::
simulations

::::
was

:::
run

::
to

:::::
apply

:::
the

::::::
lessons

:::::::
learned

::
in

:::
the

:::
first

:::
set

::
to

::
a

::::
more

:::::::
realistic

:::
test

::::
case

:::::::
(Figure

::
2).

::::
This

::::
test

:::
case

::
is
::::::
meant

::
to

::::::::
represent

::
an

::::::::
infusion

::
of

:::::
some

:::::::
material

::
to

:::
the

:::::
ocean

::
at
::::::
depth,

:::
for

:::::::
example

::::::::
dissolved

::::::::
methane

:::
gas.

:::::::::
However,

::::
since

::
in

:::
the

:::::::
present

:::::
study

:::
we

:::
are

::::::
testing

::::
only

::::
the

::::::
passive

::::::
offline

:::::
tracer

:::::::::
advection

:::::::
scheme,

:::
the

:::::
tracer

::
is

:::::::
passive,

::::
and

:::
has

:::
no

::::::::
particular

:::::::
behavior

:::::::
specific

::
to

::
a
:::::::
material.

::::
The

::::
dye

::
is

::::::::
initialized

:::
in

:
a
:::::::
discrete

::::::::
Gaussian

::::
blob

::
at
::::
800

::
m

:::::
depth

::::::::
between

::
28

::::
and90

::::
29�N

:::::::
latitude.

::::::::
Building

:::
off

::::::::::
information

::::
from

:::
the

:::::::
previous

:::::::::::
simulations,

::::
only

:::
two

::::::
offline

::::::::::
simulations

::::
were

::::
run:

:::
one

::::
with

::::::
online

:::::
output

:::::::::
frequency

:::::
forced

::
of

:::::
nhis

:::::
=100

:::::
(about

:::
30

:::::::
minutes)

::
to

::
be

::
a
:::::
“good

:::::::::
resolution”

::::
test

::::
case,

:::
and

::::
one

::::
with

:::::
nhis

:::::
=1000

::::::
(about

:::
5.5

:::
hrs)

::
to

:::
be

:
a
::::
“low

::::::::::
resolution”

:::
test

::::
case;

::::
both

:::::
were

:::
run

::::
with

:::
the

:::::
U3C4

:::::
tracer

::::::::
advection

:::::::
scheme

:::
and

:::
an

:::::
offline

::::
time

::::
step

::
of

:::
20

::::
times

:::
the

::::::
online

::::
time

::::
step,

::
or

::::
400

:::::::
seconds.

:
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Figure 2.
::::::
Second

:::::::::
experiment:

::::::
discrete

:::::::
Gaussian

:::
blob

::
of

:::
dye

::
at

:::
800

::
m

:::::
depth.

::::::
Subplots

:::::
show

:::::
domain

:::
and

:::::::::
bathymetry

::::
(top),

:::
dye

::::
slice

::
at

:::
800

::
m

::::
depth

:::::::
(middle),

:::
and

::::::
vertical

::::
cross

:::::
section

::
of

:::
dye

::::
field

::::::
(bottom)

:::::
across

:::
the

:::
red

:::::
dashed

:::
line

::
in

::
the

:::
top

::::::
subplot.

:::
Red

:::::
circle

::
in

::
top

::::::
subplot

:::::::
indicates

::
the

:::::
center

::
of

:::
the

:::
dye

::::
blob.
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2.3 Metrics: skill score95

2.3.1
::::
Skill

:::::
score

The main metric used to evaluate the performance of this model is a skill score, SS (Bogden et al., 1996; Hill et al., 2004;

Hetland, 2006). This is calculated as:

SS = 1�
p

h(Doff �Don)2ip
hD2

oni

p
h(Don �Doff)2ip

hD2
oni

:::::::::::::::

, (1)

where Doff and Don are the volume of dye on the 3D grid and in time for the off and online simulations, and the brackets h.i100

indicate averaging over horizontal and vertical dimensions, returning a time series.

Often skill scores are calculated with respect to a reference. For example, for numerical model performance, the difference

between model and data in the numerator may be compared with the difference between climatology and data in the denom-

inator in order to assess how much better the model is performing than simple climatology (Hetland, 2006). An analogous

comparison may be made here versus persistence of the initial condition of the dye patch, so that this skill score shows how105

well the offline model performs compared to simply persisting the initial condition:

SSp = 1�
p
h(Doff �Don)2ip
h(Dinitial �Don)2i

, (2)

Skill scores are a comparison between an offline simulation and the online simulation from which it is forced, unless other-

wise noted, so that the skill score represents accuracy of the offline simulation to the online simulation, or the skill in faithfully

reproducing the online simulation. This is different from a measure of the accuracy of the online simulation itself to simulate110

the dynamics.

2.3.2
::::::
Percent

:::::
error

::::::
Percent

:::::
error

::
is

::::
used

::
to

:::::::::::
demonstrate

:::
the

:::::::
accuracy

:::
of

:::
the

::::::
second

:::
set

::
of

::::::::::
simulations

:::
in

:::::
space

:::::::
because

:
it
::

is
::::

not
::::::::
averaged

::::
over

:::::
spatial

::::::::::
dimensions

:::
like

:::
the

::::
skill

:::::
score.

::::
The

::::::
percent

:::::
error

::
at

::::
time

::
t0::

is
::::::::
calculated

:::
as:

:

E(t)
:::

=
|Don(t0, z,y,x)�Doff(t0, z,y,x)|

Von(t0, z,y,x)dmax(t0)
,

::::::::::::::::::::::::::::::

(3)115

:::::
where

::::::::::::
D*(t0, z,y,x) :

is
:::
the

:::
on

::
or

::::::
offline

:::
dye

:::::::
volume

::
at

::::
time

::
t0 ::

in
:::::
space

::::
(kg),

::::::::::::
Von(t0, z,y,x)::

is
:::
the

:::::
online

:::::::
volume

::
of

:::
the

::::
grid

::::
cells

:::::
(m3),

:::
and

::::::::
dmax(t0)::

is
:::
the

:::::::::
maximum

:::
dye

::::::::::::
concentration

::
at

::
t0:::::::

(kg/m3).
::::

The
:::::::
percent

::::
error

:::::::::
represents

:::
the

:::::::::
difference

::
in

:::
the

:::::
offline

:::::
from

:::
the

:::::
online

:::::::::
simulation

::::::::
compared

::
to
:::
the

:::::::::
maximum

:::::::
possible

:::
dye

:::::
mass

::
at

:::
that

::::
time

:::::
step.

6



2.4 Simulations and software

Simulations were performed on a Linux cluster with 84 processors for online simulations and 28 for offline. The number used120

was not optimized.

Analysis was performed in a Jupyter notebook (Kluyver et al., 2016) using pandas (Wes McKinney, 2010), xarray (Hoyer

and Hamman, 2017), and scipy (Virtanen et al., 2020) for analysis, and Matplotlib (Hunter, 2007) for figures with cmocean

(Thyng et al., 2016) for colormaps.

3 Results125

3.1
:::

Full
:::::
water

:::::::
column

:::::::::
Gaussian

The accuracy of selected offline simulations are presented here. Since there were over 300 offline simulations, only selected

results are shown to best illustrate specific points and show the overall performance of the model under a range of parameter

choices. Offline simulations are forced by snapshots of online output (his, not avg files) in all cases unless specified. These

results are specific to this model setup and the dynamics that are being captured in the region, but should give specific results130

for other geographically-interested users with similar model setups and general guiding results for others.

:::::::::::
Instantaneous

:::::::::
differences

:::
in

:::
dye

:::::::::::
concentration

:::::::::::
demonstrate

:::
the

::::::
spatial

:::::::
structure

::
of
:::

the
::::::

offline
:::::::::
simulation

::::::
errors

::::::
(Figure

:::
3).

:::
The

::::::::
structure

:::::::
changes

:::
not

::::
just

::::
with

:::::::
changes

:::
in

:::
the

:::::::::
frequency

::
of

::::::
forcing

:::
in

:::
the

::::::
offline

:::::::::
simulation

:
(
:::::
nhis

:
)
::::
and

:::::
offline

:::::
time

:::
step

:
(
:::
dt

:
),

:::
but

::::
also

::::
with

:::
the

:::::
tracer

::::::::
advection

:::::::
scheme

::::
used.

::::::::::
Comparing

:::
the

:::
top

:::
two

:::::
rows

::
in

:::::
Figure

::
3
:::
we

:::
see

:::
that

:::
the

:::::
error

::
in

:::
the

::::::::
MPDATA

::::::::::
simulations

::::
tends

::
to

:::
be

::::
more

::::::::
localized

:::::
when

::::::::
compared

::::
with

:::
the

:::::
U3C4

::::::::::
simulations.

::::
The

:::::::::
magnitude

::
of

::::
error

::::::::
increases135

::::
with

::::
both

:::::::
decrease

::
in

:::::::
forcing

::::::::
frequency

::::
and

:::::::
increase

::
in

::::
time

::::
step

:::
for

:::
the

::::::
offline

:::::::::
simulations

::::::::
(moving

::::
from

:::::::
subplots

::
A
:::

to
:::
C);

::
in

::::::::
particular,

:::
the

:::::::::
MPDATA

:::::::::
simulation

:::::
shows

:::::
much

:::::
more

::::::::::
widespread

::::::
spatial

:::::::
structure

::
in

:::
the

:::::
errors

:::::
with

:::
dt

:::
=20

::::::::
(subplots

:::
C).

:::::::
Subplots

::
E

:::
and

::
F

::::
show

:::::
fairly

::::::
similar

:::::::
structure

::::::
across

:::
the

::::::::::
simulations,

::::::
though

::::
with

:::::
larger

:::::
errors

:::
for

:::::::::
MPDATA.

:::::::
Subplots

::
D

:::::
show

::
the

:::::
much

::::::
larger

:::::
errors

:::
that

:::::
result

:::::
when

:::
the

::::::
vertical

:::::::
salinity

:::::::
diffusion

:::::::::
coefficient

::::
Aks

:
is
:::
not

::::::
forced

::
in

:::
the

::::::
offline

:::::::::
simulation.

:

Skill scores (Equation 1) over time, demonstrating offline model accuracy, are shown in Figure 4, and a summary is shown140

in Table A1. Both tracer advection schemes (U3C4 and MPDATA) give highly accurate results (top), though U3C4 performs a

bit better than MPDATA. When vertical salinity diffusivity, Aks, which controls the impact of sub-grid scale vertical mixing on

the tracer field, is not forced (Aksoff), offline accuracy is reduced, though just two percentage points over 14 days compared

to when it is forced. The impact of how often online model output is saved and input into the offline simulation, controlled

by the nhis parameter, is almost negligible below 200 or 500 times the online time step (nhis 200, about 1.1 hours, and145

nhis 500, about 2.8 hours), but has increasing impact for less frequent online model output (higher values of nhis, middle

subplot). This means that for the present model setup and region, frequency of online output higher than about 1–3 hours is

not important. Results are relatively similar with nhis 1000 (about 5 hours), but accuracy decreases significantly as nhis

increases beyond that. Context for the nhis values is given in Section 4.
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Figure 3.
::::::::::
Instantaneous

::::::::
difference

::
in

:::
dye

::::::::::
concentration

::::::
(online

:::::
minus

::::::
offline

::::::::
simulation)

::::
after

:::::
about

::::
13.2

::::
days.

:::::::::
Alternating

::::
rows

:::::
show

:::::
results

::::
from

:::
the

:::
two

:::::
tracer

:::::::
advection

:::::::
schemes

:::::
tested

:::
with

:::
the

:::::::
columns

:::::::
showing

::::::
different

::::::::::
experiments.

:::
All

::::
pairs

::
of

::::::::::
experiments

:::::
except

::
D

:::::
forced

::
the

::::::
vertical

::::::
salinity

:::::::
diffusion

::::::::
coefficient

::::
Aks

:
.
:::::::::
Experiments

::
A
:::
vs.

::
B

::::
show

:::::::
changing

:::
the

::::::
forcing

:::::::
frequency

::
of
:::::

online
::::::

output
:::
into

:::
the

:::::
offline

::::::::
simulation,

:::::
nhis,

::::
from

:
1
:::::
(every

:::::
online

::::
time

:::
step)

::
to
:::::
every

:::
100

::::
online

::::
time

::::
steps

:::
the

::::
online

::::
time

::::
step.

::::::::
Experiment

::
C

:::::
shows

:::::::::
additionally

:::::::
changing

::
the

:::::
offline

::::
time

::::
step

:
to
:::
be

::
20

::::
times

:::
the

:::::
online

::::
time

:::
step.

::::::::::
Experiments

::
E

:::
and

:
F
::::
show

::::::
offline

:::::::::
experiments

:::::
forced

::::
with

:::::
online

:::::
output

::::
every

::::
1000

:::::
online

:::
time

:::::
steps

:::
with

:::
the

:::::
offline

::::::
timestep

::
of

:::
the

:::::
online

:
(
::
dt

:::
=1)

:
or
:::
20

::::
times

:::
the

:::::
online

:
(
::
dt

:::
=20)

::::
time

::::
step.

:::
Note

::::
that

:::
each

:::::::
colorbar

::
has

::
a
::::::
different

:::::
range

::
of

:::::
values.
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Figure 4. Skill scores for several subsets of offline simulations. (Top) Performance between tracer advection schemes MPDATA and U3C4

and whether the vertical salinity diffusion coefficient Aks is forced with the online simulation (“on”) or a constant background number

(“off”). These cases also have nhis=1 (online output was saved each time step) and dt=1 (offline time step matched online time step).

(Middle) Performance between MPDATA and U3C4 advection schemes with nhis values varying. These cases also have Aks forced from

online and dt=1. (Bottom) Performance for varying nhis and dt parameters, where MPDATA is used and Aks is forced from the online

case. All offline simulations here forced by his files.
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The importance of nhis and the offline time step together for tracer advection scheme MPDATA is shown in Figure 4 (bot-150

tom). The largest control on the skill score is from nhis — the values shown demonstrate the spread from the highest accuracy

to several levels down (nhis 200, 500, and 1000 times the online time step, or about 1, 3, and 5.5 hours, respectively). For

each nhis value, three different offline time steps, dt, are shown (dt of 1, 10, 20 times the online time step). Accuracy

decreases with increasing offline time step, but in different relative amounts that depend on the nhis value. For nhis of 200

and 500, there is more impact from the change in offline time step dt than from the nhis value. However, for nhis 1000,155

the dt values do not strongly impact the results. Offline time step results for U3C4 simulations are not shown because the time

step does not strongly impact results for any nhis values.

Several issues are demonstrated in Figure 5. First is an example of model performance for skill score based on persistence

(Equation 2). Model performance is similar, though a little lower, when assessed using the persistence skill score as compared

with the regular skill score, so it is only shown here. This tells us that the offline model does indeed provide more benefit than160

simply persisting the initial condition. Next is a demonstration of offline accuracy compared to online output when different

tracer advection schemes are used (middle). For reference, simulations forced with the same tracer advection schemes both on

and offline are shown as well (U3C4, black solid, and MPDATA, black dashed). We find a significant decrease in offline model

accuracy when the offline advection scheme does not match the online scheme, because different numerical schemes have

different numerical dispersion and diffusion properties leading to differences in tracer advection. For comparison, the “skill165

score” comparing online U3C4 and online MPDATA output (gray dashed) is shown. The online-online comparison for the two

schemes has comparable performance, though lower; it is not clear there is a reason that the on and offline combinations should

be better or worse than this, but the issue was not further explored. The best fidelity to an online simulation will be found by

forcing offline with the same tracer advection scheme as online. Also, forcing offline with a different tracer advection scheme

from online will give results that are different from the online results on the order of the difference between the results of the170

different tracer advection schemes themselves. Finally, the significant impact of using single precision output is demonstrated

(bottom); it is best to save online model output for forcing offline simulations with double precision.

Several other issues were investigated but not plotted (they can be seen in the paper GitHub repository). Passive tracers are

conserved in online ROMS simulations (Shchepetkin and McWilliams, 2005); offline simulations also conserve tracers. Only

small differences were found between forcing offline simulations with snapshots (his files) or averages between time steps175

(avg files) from online simulations. Finally, for simulations in which a realistic Aks field was not forced, the background

value used for Aks was varied; we found this did not impact results.

An overview of results is shown in Figure 6. The objective of this figure is to display the competing factors – computation

time (x-axis) and storage required (y-axis) – that will ultimately determine offline accuracy (colored markers). Skill scores are

shown for four subsets of simulations: tracer advection scheme U3C4 with (diamonds) and without (downward-pointing trian-180

gles) Aks realistically forced, and tracer advection scheme MPDATA with (squares) and without (upward-pointing triangles)

Aks realistically forced. The best compromise of storage, computational time, and skill score is where the skill score is still

high – in one of the top classes, but with the lowest storage and time requirements. For the present set of simulations, this

occurs for U3C4 with realistic Aks for nhis of 200 (more conservative) or 500 and dt of 20, and for MPDATA with realistic

10



Figure 5. (Top) Skill score compared with persistence is shown for combinations of tracer advection scheme and whether online Aks

is forced. The simulations shown are the same as in Figure 4 (top). (Middle) Comparison of skill score simulations forced by several

combinations of tracer advection schemes. Combinations are: online simulation using U3C4 with offline simulation using U3C4 (black solid

line), online simulation using U3C4 with offline simulation using MPDATA (gray solid), online MPDATA with offline U3C4 (gray dashed)

and with offline MPDATA (black dashed), and comparison between results from online U3C4 and online MPDATA (gray dotted). (Bottom)

Skill score for double compared with single precision online output.

11



Figure 6. Summary of skill score results. Shown are the offline computational time per
::::::::
simulation day (x-axis), storage required for the

online simulation per
:::::::
simulation

:
day (y-axis), and the skill score after about 13.5 days of simulation when forcing with snapshots (his files)

for a range of nhis and dt values (colored markers, with one set for forcing Aks or not, and which tracer advection scheme is used). nhis

values for rows are indicated on the right hand side of the plot and dt values are above each pair of markers. Values below 97.2% are colored

gray. Computational time required for the online simulation is shown separately with black markers.

Aks for nhis 200 and dt of 5. Simulations in which Aks is not forced always have lower accuracy and the small storage185

saving is probably not worth the loss, however, there may be circumstances in which online Aks is not available.
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3.2
:::::::

At-depth
:::::::
realistic

:::::::::
Gaussian

:::
The

::::::
biggest

:::::::::
difference

::
in

:::
the

::::::
second

::
set

::
of
::::::::::
simulations

:::::::::::
(initialization

::::::
shown

::
in

::::::
Figure

::
2)

::::::::
compared

::::
with

:::
the

::::
first

:
is
:::
the

::::::::
variation

::
in

:::
the

::::::
vertical

::::::::
direction:

::
a
:::
dye

::::
blob

::::
was

::::::::
initialized

::
at
::

a
::::::::
particular

:::::
depth

::::::
instead

:::
of

:::::::::
throughout

:::
the

:::::
water

:::::::
column.

::
A

::::
skill

:::::
score

:::::::::
comparison

::::::::
between

::
13

:::
and

:::
14

::::
days

::::::::
indicates

:::
that

:::
the

:::::
good

::::::::
resolution

::::::::::
experiment

:
(
:::::
nhis

:::::
=100,

::
or

:::::
online

::::::
output

::::::
forced

::
in

:::
the190

:::::
offline

:::::::::
simulation

:::::
every

::::
⇠30

::::
min)

::::
had

:::::
about

:::
the

:::::
same

::::
skill

::::
score

:::
of

:::::
99.6%

::
as

:::
the

::::::::::
comparable

::::::::
previous

::::::::
numerical

::::::::::
experiment

:::
skill

::::::
score.

::::::::
However,

:::
the

::::
low

:::::::::
resolution

:::
test

::::
case

::
(
::::
nhis

::::::
=1000,

::
or

::::::
online

::::::
output

::::::
forced

:::::
every

::::
⇠5.5

::::
hrs)

::::
had

:
a
::::::

much
:::::
lower

:::
skill

:::::
score

:::
of

::::
70%

:::::::::
compared

::::
with

:::
the

::::
first

:::
test

:::::
case

::
of

::::::
98.5%,

::::::::
possibly

::::::::
indicating

::
a
::::::::::::
compensatory

:::::
effect

::
in
::::

the
:::
first

:::
set

:::
of

::::::::::
experiments

::
in

:::
the

:::::::
vertical

::::::::
direction.

::::
That

:::
is,

:::
dye

::::
may

:::::
have

::::
been

::::::::::
transported

::::::::
vertically

::::::::::
inaccurately

:::
in

:::
the

:::
first

:::
set

:::
of

:::::
lower

::::::::
resolution

::::::::::
experiments

:::
but

:::::
since

:::
the

:::::
whole

:::::
water

::::::
column

::::
had

:::
dye

::
in

::
it,

::
it
::::
may

::::
have

::::
still

::::
given

:::::
better

::::
skill

::::::
scores

::::
than

:
if
:::
the

::::
dye195

::::
patch

::::
was

::::::
instead

:::::::
discrete.

:

::::::
Spatial

:::::::::
differences

::
in

:::
the

:::::::
accuracy

::
of

:::
the

::::::::::
experiments

:::
are

::::::
shown

::
for

:::::
depth

:::::
slices

::::::
(Figure

::
7)

::::
and

:::::::::::
cross-sections

:::::::
(Figure

::
8).

::::
The

:::
dye

::
in

:::
the

::::
good

:::::::::
resolution

:::::
cases

::::
stays

:::::
close

::
to

:::
the

:::::
online

::::::::::
simulation,

::::
with

::::
small

::::::::::
differences

::
in

:::
the

::::::
percent

::::
error

::::
near

::::::
where

:::
the

:::
dye

:::::::::
encounters

:::
the

::::::::::
bathymetry

::
on

:::
the

::::
west

::::
end

::
of

:::
the

::::
blob

::::::
(Figure

:::
7D

::::
and

::
F,

:::::
noting

::::
that

:::
the

:::::
values

::
in
::

D
:::::
have

::::
been

:::::::::
multiplied

::
by

::::
100

::
to

::
be

:::::::
visible).

::::
The

:::
low

:::::::::
resolution

::::
case

::
is

::::::::::
qualitatively

::::::
similar

:::
to

:::
the

:::::
online

:::::
case,

:::
but

:::
the

::::::::
difference

:::::::
(Figure

:::
7E)

::::::
shows200

::::::
patches

::
of

:::::
large

:::::::::::
disagreement.

::::
The

:::::::::::
disagreement

::
is
::::::
further

::::::::::::
demonstrated

::
in

:::
the

:::
low

:::::::::
resolution

::::
case

::::::
percent

:::::
error

::::::
(Figure

::::
7G)

::::
with

:
a
:::::
swath

::
of

::::::
1–10%

:::::
error

:::::
across

:::
the

::::
full

:::
dye

::::::
feature.

:

::::::
Results

:::
are

::::::
similar

:::
for

:::
the

::::::
vertical

:::::
cross

::::::
section

::::::
(Figure

:::
8).

::::
The

:::::::::
differences

::
in

:::
the

::::::
offline

:::
and

:::::
online

::::
dye

::::
field

:::
are

::::
very

:::::
small

::
in

:::
the

::::
good

:::::::::
resolution

::::
case

:
–
::

it
:::
has

:::::
been

:::::::::
multiplied

::
by

::::
500

::
to

::::::
appear

::
on

:::
the

:::::
same

:::::::
colorbar

:::
as

:::
the

:::
low

:::::::::
resolution

::::
case.

:::
In

:::
the

:::
low

::::::::
resolution

:::::
case,

:::
the

::::::
offline

:::
dye

:::
has

::::
been

::::::::::
transported

::::
both

::
up

::::
and

:::::
down

::::
more

::::
than

::
in

:::
the

::::::
online

::::
case.

:
205

4 Discussion

The context of the performance difference found as a function of nhis values (Figure 4 (middle, bottom)) can be considered

as the impact of loss of energy represented in the system (an approach also used by Qu and Hetland (2019)). For example,

Figure 9 shows the power spectral density of the online simulation speed from near the middle of the dye patch. The output

frequency, nhis, from the online simulation controls how much energy of this spectrum the offline simulations receive, and210

therefore how much of the system’s energy is represented offline. The amount of energy missing can be seen visually by the

overlaid lines representing different output frequencies, nhis. Skill score results (Figure 4) show that accuracy decreases as

nhis values increase starting at nhis of 200 or 500 (about 1 to 3 hours), which correspond to between 1 and 5% of the total

energy being lost to subsampling the output.

Comparing a relevant dynamical timescale to nhis is another way to provide context for its impact on offline accuracy.215

A previous study evaluating an offline tracer from MITgcm model output found that for their global-scale model, the inertial

period controlled the output rate necessary for robust results (Hill et al., 2004). We find an analogous result here, though

the relevant timescale is the advection timescale (see Section 2.1). The advection timescale for this regional model is about

13



Figure 7.
::::::::
Snapshots

::
of

::
the

:::
dye

::
at
:::::
13.75

::::
days

::
for

:::
the

:::::
online

:::
(A),

::::
good

::::::::
resolution

:::::
offline

:::
(B)

:::
and

:::
low

::::::::
resolution

:::::
offline

:::
(C)

:::::::::
simulations.

::::
The

:::::::
difference

::
in

:::
dye

::::::::::
concentration

:::
for

::
the

:::::
online

:::
and

:::::
offline

:::::
cases

:
at
:::
the

::::
same

::::
time

::
for

:::
the

::::
good

:::
(D)

:::
and

:::
low

:::
(E)

:::::::
resolution

::::::::::
experiments.

::::::
Percent

:::
error

:::
for

:::
the

::::
good

::
(F)

:::
and

:::
low

:::
(G)

::::::::
resolution

:::::
offline

::::
cases

::
is

:::
also

::::::
shown.

::::::
Subplot

::
(A)

::::
also

:::::::
indicates

::
the

::::
slice

::::::
location

:::::
shown

::
in

:::::
Figure

::
8.

::::
Note

:::
that

:::::
values

::
in

:::
(D)

:::
have

::::
been

::::::::
multiplied

::
by

:::
100

::
to
::
be

::::::
visible

::
on

:::
the

::::
same

::::::
colorbar

::
as

:::
(E)

::::
since

:::
the

::::::::
differences

:::
are

::
so

:::::
small.14



Figure 8.
:::::
Vertical

:::::
cross

:::::
section

::::::::::
comparisons

::
of

:::
the

:::::
online

:::
and

:::::
offline

::::::::::
simulations;

:::
the

::::
cross

::::::
section

::::::
location

::
is

:::::::
indicated

::
in

:::::
Figure

:::::
7(A).

:::::::
Snapshots

::
at
:::::
13.75

::::
days

::
are

::::::
shown

::
for

:::
the

:::::
online

:::
(A)

:::
and

:::::
offline

:::::
good

:::
(B)

:::
and

:::
low

:::
(C)

::::::::
resolution

::::
cases.

:::::::::
Differences

::
at
:::
the

::::
same

::::
time

:::
are

:::::
shown

::
in

:::
(D)

:::
and

:::
(E).

::::::
Percent

::::
error

::
is

:::::
shown

::
in

::
(F)

:::
and

::::
(G).

::::
Note

:::
that

:::::
values

::
in

:::
(D)

::::
have

::::
been

::::::::
multiplied

::
by

:::
500

::
to

::
be

::::::
visible

::
on

:::
the

::::
same

::::::
colorbar

::
as

:::
(E)

::::
since

::
the

:::::::::
differences

:::
are

::
so

::::
small.

15



Figure 9. Power spectral density for speed at a single location near the center of the dye patch. Overlaid (gray dashed) are lines marking

frequencies at which online model output was saved for forcing offline simulations; these are marked with their corresponding nhis value.

20,000s, which corresponds to an output rate from the online model of nhis=1000 times the online time step, which is indeed

the turning point for clear degradation in offline model accuracy we find (Figure 6).220

We should expect that the offline time step is controlled by the horizontal Courant number and that our results destabilize as

the number increases toward 1. An estimate of the horizontal Courant number, with largest horizontal velocity of 1 and smallest

horizontal cell width as about 3800 m, for the offline time steps gives a range from 0.005 for offline time step matching the

online time step up to about 0.1 and 0.25 for offline time step dt of 20 and 50, respectively. Simulations gave reasonable results

for dt of 20, but not 50.225

5 Conclusions

This paper presents a description and evaluation of an offline tracer advection model developed within ROMS. The advantage

of this is the ease and consistency with which ROMS users can use existing model output to force offline tracer simulations

at low computational cost. The main approach of the offline model is to force variables zeta, u/v, and ubar/vbar from an

online simulation as climatology; normally climatology would be used in a ROMS simulation to nudge boundary conditions230

toward mean values, but in this case all grid cells are fully forced. Additionally forcing the vertical salinity diffusivity, Aks,

improves model accuracy. It is also important that the online simulation output used to force the offline simulation have double

precision.

We tested two tracer advection schemes, MPDATA and TS_U3HADVECTION with TS_C4VADVECTION (3rd-order up-

stream horizontal advection and 4th-order centered vertical advection, called U3C4 here) in a regional simulation of the north235

Gulf of Mexico, and found that the offline simulations are able to reproduce online simulations to high accuracy. The most

important control differentiating offline accuracy was the nhis parameter describing how often online simulation output was
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saved, as a multiple of the online time step, to be input into the offline simulation. For both tracer advection schemes and with

Aks forced, the offline simulations showed high accuracy up to nhis=200 or 500, about 1.1 and 2.8 hours. This is consistent

with requiring temporal information at a rate higher than the relevant dynamic timescale, in this case an advection timescale240

approximated here as approximately equivalent to an nhis value of 1000. The offline time step dt was not an important

choice for offline simulations run with U3C4, as long as it was under about 50 (all had skill scores of 99.6% after 14 days).

However, for MPDATA offline simulations were highly accurate with a time step 5 times the online time step up to nhis=200,

with some dependence on the offline time step.

:
A
:::::::
second

::
set

::
of

::::::::::
simulations

:::::
were

:::
run

::
to

::::::::::
demonstrate

:::::::::::
performance

::
in

:
a
:::::
more

:::::::
realistic,

:::::::::::::::
application-driven

::::::::::
experiment,

::
in

::::
this245

:::
case

:::::
with

:
a
:::::::
discrete

::::
blob

::
of
::::

dye
::
at

::::::
depth.

:::
The

:::::
good

:::::::::
resolution

::::
case

::::
with

::::::
online

::::::
forcing

::
at

::
a

::::::::
frequency

::
of

::::::
nhis

::::
=100

::::::
(about

::
30

::::
min)

::::
was

::::
very

::::::::
accurate,

::::
with

::
a

::::::
similar

::::
skill

:::::
score

::
to

:::
the

:::::::
original

::::::::::
comparable

:::::
offline

::::::
U3C4

:::::::::
experiment

:::
run

:::
of

::::::
99.6%.

::::
The

:::
low

::::::::
resolution

::::::::::
experiment

::
of

:::::
nhis

:::::
=1000

::::::
(about

:::
5.5

:::
hr)

::::
gave

:::::
worse

::::::
results

::::
than

:::
the

:::::::::
comparable

::::::::
previous

:::::::::
simulation,

::::::::
implying

:::
that

:::
the

::::::
vertical

::::::::
direction

::::::
indeed

::
is

::::::::
important

:::
and

::::
can

::::::
behave

::::::::
distinctly

::::
from

:::
the

:::::::::
horizontal.

:
Overall, the results show that it is

possible to get high fidelity results in offline tracer simulation with this code.250

Code and data availability. The current versions of the related code and data are available online, all under the MIT license: the offline

tracer model https://github.com/kthyng/COAWST-ROMS-OIL, the analysis for this manuscript https://github.com/kthyng/offline_analysis,

run files for online simulations https://github.com/kthyng/oil_03, run files for offline simulations https://github.com/kthyng/oil_off. The exact

version of the model used to produce the results used in this paper is archived on Zenodo (doi: 10.5281/zenodo.3991810), as are scripts to run

analysis and produce the plots for all the simulations presented in this paper (doi: 10.5281/zenodo.4278115), run files for online simulations255

(doi: 10.5281/zenodo.3991823), and run files for offline simulations (doi: 10.5281/zenodo.3991826). Input data to run the model are available

on figshare (doi: 10.6084/m9.figshare.c.5097350.v1).
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Appendix A: Table of skill scores

Table A1. Final skill score (percent) of offline simulations after 14 days, sorted by nhis and dt values, tracer advection scheme, and if Aks

is forced.

advect MPDATA U3C4

Aks off on off on

nhis dt

1 1 97.5 99.3 97.6 99.6

2 1 97.5 99.3 97.6 99.6

2 97.5 99.3 97.6 99.6

5 1 97.5 99.3 97.6 99.6

5 97.6 99.3 97.6 99.6

10 1 97.5 99.3 97.6 99.6

2 97.5 99.3 97.6 99.6

5 97.6 99.3 97.6 99.6

10 97.5 99.2 97.6 99.6

20 1 97.5 99.3 97.6 99.6

2 97.5 99.3 97.6 99.6

5 97.6 99.3 97.6 99.6

10 97.5 99.2 97.6 99.6

20 97.5 99.0 97.6 99.6

50 1 97.5 99.3 97.6 99.6

2 97.5 99.3 97.6 99.6

5 97.6 99.3 97.6 99.6

10 97.5 99.2 97.6 99.6

100 1 97.5 99.3 97.6 99.6

2 97.5 99.3 97.6 99.6

5 97.6 99.3 97.6 99.6

10 97.5 99.2 97.6 99.6

20 97.5 99.0 97.6 99.6

200 1 97.5 99.3 97.6 99.6

2 97.5 99.3 97.6 99.6

5 97.6 99.3 97.6 99.6

10 97.5 99.2 97.6 99.6

20 97.5 99.0 97.6 99.6

advect MPDATA U3C4

Aks off on off on

nhis dt

500 1 97.5 99.2 97.6 99.6

2 97.5 99.2 97.6 99.6

5 97.5 99.2 97.6 99.6

10 97.5 99.2 97.6 99.6

20 97.5 98.9 97.6 99.6

1000 1 96.9 98.0 97.2 98.5

2 96.9 98.0 97.2 98.5

5 96.9 98.0 97.2 98.5

10 96.9 98.0 97.2 98.5

20 96.9 97.9 97.2 98.5

2000 1 92.2 92.5 93.4 93.7

2 92.2 92.5 93.4 93.7

5 92.2 92.5 93.4 93.7

10 92.2 92.5 93.4 93.7

20 92.3 92.6 93.4 93.7

5000 1 78.2 78.3 79.4 79.6

2 78.2 78.3 79.4 79.6

5 78.2 78.4 79.4 79.6

10 78.2 78.4 79.4 79.6

20 78.3 78.4 79.4 79.6
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Appendix B: Explanation of code changes260

While preprocessor flags for offline simulations already existed in the ROMS/COAWST codebase, we found that the offline

simulations did not work as desired. In this section, we describe changes made to the code base so that offline passive tracer

advection works properly by receiving the necessary forced variables. Generally, the offline code works by forcing previously-

simulated online model output input as climatological forcing. Typically, climatology would be used in a ROMS simulation to

nudge boundary conditions toward mean values, but in this case all grid cells are fully forced.265

Code changes were made to avoid repeating processes offline that were already included online. Initialization is now minimal

for offline simulations (ini_fields.F), and initial values are replaced by the first time step read in from climatology.

Updates to sea surface height zeta (calls to ini_zeta and set_zeta in main3d_offline.F) have been removed

since the variable is directly forced in the offline simulation. Boundaries are not forced in the offline case (except for the

passive dye field): horizontal indices now start 1 earlier and end 1 later in each tile so that climatology is read into ghost270

cells in place of boundary conditions (set_data.F). The remaining processes are controlled through the user input file and

pre-processor flags (Section C).

The offline simulation is missing much of the complex time stepping in an online ROMS simulation due to the missing

numerics, leading to necessary code adjustments (set_data.F). Climatology for 3D variables (u/v, salt/temp, tke/gls)

are read into earlier time indices (nrhs instead of nnew) to account for this, eliminating a time shift that otherwise occurs.275

Model output for the subsequent time step are read in from climatology and saved in available time indices for several variables

(zeta, Aks, Akt) to be used later in the time loop. In the online simulation, zeta is normally updated mid-time loop with the

fast time stepping value. To approximate this behavior, the two time steps of zeta are averaged into variable Zt_avg1 (new

function set_avg_zeta). Calculations of vertical layer thickness Hz and mass fluxes Huon/Hvom for the subsequent time

step are made mid-time loop in set_depth.F. New functions set_massflux_avg and set_massflux_avg_tile280

were added to set_massflux.F to average Huon/Hvom values to be used subsequently in step3d_t.F where the tracer

is advected. This change matches the online case to floating point round-off error.

The OFFLINE preprocessor flag with OFFLINE_TPASSIVE compiles the necessary code to run offline tracer advection

(more details in Section C). These flags already existed, but changes to the code for the present project were made under these

flags. Other available offline preprocessor flags include:285

– omega (OCLIMATOLOGY): already existed, does not impact offline tracer advection. Reads in climatology for S-

coordinate vertical momentum component.

– Aks (AKSCLIMATOLOGY), Akt (AKTCLIMATOLOGY), Akv (AKVCLIMATOLOGY), or all three Aks, Akt, Akv

(AKXCLIMATOLOGY): new flags. Aks, the vertical salinity diffusion, impacts accuracy of the offline tracer (Section 3).

While Akt, the vertical temperature diffusion, does not impact offline tracer advection, it is used for offline floats290

(OFFLINE_FLOATS) if vertical walk (FLOATS_VWALK) is activated. Akv, the vertical viscosity, does not impact of-

fline passive tracer advection.
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– TKE (TKECLIMATOLOGY, turbulent kinetic energy), GLS (GLSCLIMATOLOGY, generic length scale), or both

(MIXCLIMATOLOGY): new flags. These do not impact offline passive tracer advection.

– salt and temp (ATCLIMATOLOGY): new flag. Also impacted by LtracerCLM in the input file. While these do not295

impact offline tracer advection, they may be used for other modules such as oil modeling with offline floats.

To fix a problem with reading in the climatology at the correct time step, a condition was added (get_2dfld.F and

get_3dfld.F) that compares the differences in times to being less than half a time step, avoiding any problems with numer-

ical precision.

omega, the mass flux perpendicular to the local s-coordinate, was already setup to be read in through climatology with the300

OCLIMATOLOGY flag, but results did not match on and offline. The lower vertical index in the call for omega in get_data.F

was 1, which is used for rho grids instead of the w-grid omega is actually on, which starts at index 0.

Appendix C: How to set up simulations

Requirements and considerations for setting up online and offline simulations in ROMS or COAWST with the offline passive

tracer advection code are provided below.305

C1 Online

C1.1 Input file

In the project input file (the *.in file, for example, https://github.com/kthyng/oil_03/blob/master/External/ocean_oil_03.in),

the items below should be considered in addition to the typical input parameter selections:

– Choose whether to save output as snapshots at a single time or averages across time intervals (ROMS his vs avg files).310

Your choice will be used to force the offline simulation. Present results show this choice does not significantly change

results. We recommend using his files in the absence of any other preference since otherwise it is necessary to include

the initial file prepended to the input avg file in CLMNAME.

– Output necessary variables for forcing the offline simulation. Variables zeta, ubar, vbar, u, v are required for forcing

the offline simulation, and Aks is optional for improved accuracy in the offline simulation (though it increases amount315

of storage required).

– Choose output frequency (parameter NHIS for his files or NAVG for avg files). This is how often ROMS will save

output to a his or avg file, as a multiple of the time step, and in turn this is what will be used to force the offline

simulation. Important considerations for this selection include acceptable simulation runtime and storage requirements.

Figure 6 gives a paradigm from which to decide this for simulations in general. In the present study, for U3C4 there320

was a drop in performance below an output frequency of 500 times the online time step, and below 200 or 500 times for

MPDATA. These choices will vary for a given model setup and accuracy needs.
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– For this online simulation, point to file varinfo-online.dat for VARNAME, which is a typical, unchanged file.

This has been provided in the code repository: https://github.com/kthyng/COAWST-ROMS-OIL/blob/master/ROMS/

External/varinfo-online.dat.325

C1.2 Header file

In the project header file (the *.h file, for example, https://github.com/kthyng/oil_03/blob/master/Include/oil_03.h), the addi-

tional flags below should be considered:

– Choose a tracer advection scheme. We tested two schemes and found both accurately reproduced the online results

offline, though U3C4 performed slightly better. Note, however, that online tracer advection performance itself depends330

on the dynamics involved; more information is available in Kalra et al. (2019). Also note that MPDATA requires more

runtime than U3C4 (Figure 6).

– Use OUT_DOUBLE to output results with double precision to significantly improve your accuracy, though increase

storage required (Figure 5).

C2 Offline335

C2.1 Input file

In the project input file (the *.in file, for example, https://github.com/kthyng/oil_off/blob/master/External/ocean_oil_offline.

in), the items below should be considered in addition to the typical input parameter selections:

– The output frequency (NHIS or NAVG) will not impact your offline simulation performance, but should be chosen to

well-represent the dynamics in your model.340

– A reasonable choice for the offline simulation time step DT is a multiple of the online time step. Some testing for

your model setup is warranted. The present study found that time step was not important for the U3C4 tracer scheme

combination — a DT of 20 times the online time step gave as good of accuracy as the online time step itself. However,

for MPDATA, only using the online time step gave the highest accuracy; for the next level down of accuracy a time step

of 10 times the online time step was adequate (Figure 6). Note also that the offline time step needs to factor evenly into345

the online output frequency, and the offline time step cannot be larger than the online output frequency.

– All physics should be off in the offline case, except for anything directly impacting the offline tracer field (dye_01)

itself, because it is included in the online output. This implies:

– Boundaries should all be closed except for offline tracer fields (e.g., parameter LBC(isFsur)).

– Turn off river forcing and other sources or sinks that were forced in the online simulation.350

– Do not force winds, bulk fluxes, etc, from the online simulation.
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– Do not nudge to climatology, even if used in the online simulation (climatology, the output from the online simu-

lation, will be entirely enforced).

– Turn on flags for climatology forcing for sea surface height (LsshCLM), and 2D (Lm2CLM) and 3D momentum

(Lm3CLM). Turn on salt and temperature flags (LtracerCLM) if you want to read them in (see header section355

next).

– Only need to output sea surface height (zeta) and the offline dye(s) (dye_01) – other fields are best used directly from

the online simulation (the vertical velocity w for example is not calculated properly in the offline simulation). The sea

surface height is necessary to properly calculate tracer advection fluxes.

– Input as the climatology forcing (CLMNAME) the online model output. If forcing with an avg file from the online360

simulation, it is necessary to place a file containing the initial conditions first; this is possible by inputting a list of file

names.

– For this offline simulation, point to file varinfo-offline.dat for VARNAME, which has been edited to include the

new variables that can be input as climatology and so that all climatology time variables are named ocean_time. The

latter change allows for the online output to be input directly offline as climatology without processing the file to rename365

variable attributes. The file has been provided in the code repository: https://github.com/kthyng/COAWST-ROMS-OIL/

blob/master/ROMS/External/varinfo-offline.dat.

C2.2 Header file

In the project header file (the *.h file, for example, https://github.com/kthyng/oil_off/blob/master/Include/oil_offline.h), the

additional flags below should be considered:370

– Use the OFFLINE flag for any offline simulation, and additionally the OFFLINE_TPASSIVE flag for offline tracer

advection.

– For best results, use the same tracer advection scheme as the online run. The schemes do not have to match but the skill

score between the simulations will diminish substantially (Figure 5) since they do not use the same numerics. We did

not test other tracer advection schemes but we have no reason to think they will not work offline.375

– Forcing the vertical salinity diffusivity Aks as predicted by the online simulation gives better offline accuracy than not,

though requires storing it from the online case. This can be forced with the AKSCLIMATOLOGY flag. More information

on the offline flags is available in Section B.

Author contributions. KMT edited the code, performed final simulations and analysis, and wrote the text. DK, VRX, and LQ edited the

ROMS code and ran simulations. XC created the regional model setup in ROMS. RDH participated in discussions with ideas.380
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