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Abstract. This study investigates the prediction skill of sub-seasonal prediction models that vary based on the choice of two 

dynamical cores: the finite volume (FV) dynamical core on a latitude-longitude grid system and the spectral element (SE) 10 

dynamical core on a cubed-sphere grid system. Recent research showed that the SE dynamical core on a uniform grid system 

increases parallel scalability and removes the need for polar filters for mitigating uncertainty in climate prediction, particularly 

for the Arctic region. However, it still remains questionable whether the choice of dynamical cores can actually yield 

significant changes in prediction skill. To tackle this issue, we implemented a sub-seasonal prediction model based on the 

Community Atmospheric Model version 5 by incorporating the above two dynamical cores with virtually the same physics 15 

schemes. Sub-seasonal prediction skills of the SE dynamical core and FV dynamical core are verified with ERA-Interim 

reanalysis during the early winter (November–December) and the late winter (January–February) from 2001/2002 to 

2017/2018. The prediction skills of two different dynamical cores were significantly different regardless of the similar physics 

scheme. In the ocean, the predictability of the SE dynamical core is similar to that of the FV dynamical core, mostly because 

our simulation configuration imposes the same boundary and initial conditions at the surface. Notable differences in the one-20 

month predictability between the two cores are observed for the wintertime Arctic and mid-latitudes, particularly over North 

America and Eurasia continents. With a one-month lead, the SE dynamical core exhibited higher predictability over North 

America in late winter (r ≈ 0.45 in SE, r ≈ 0.10 in FV) whereas the FV dynamical core showed relatively higher predictability 

in East Asia and Eurasia in early winter  (r ≈ 0.15 in SE, r ≈ 0.43 in FV). Therefore, we conclude that caution is needed when 

selecting the dynamical cores of sub-seasonal prediction models. Partially, these differences can be ascribed to the different 25 

manifestations of Arctic-mid-latitude linkage in the two dynamical cores; the SE dynamical core captures warmer Arctic and 

colder mid-latitudes relatively better than the FV dynamical core. 
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1 Introduction 

Over the past decade, there has been a significant effort to predict the state of the atmosphere at the sub-seasonal 

timescales (2–4 weeks to 2 months) (Brunet et al. 2010; Kirtman et al. 2014; Vitart et al. 2017). This timescale fills the gap 

between medium-range weather and seasonal forecasts at both global and regional scales (Doblas-Reyes et al. 2013; Tian et 

al. 2017; Robertson and Vitart 2018; Bushuk et al. 2019). It also provides a valuable opportunity to inform decision-makers 5 

of, for example, any changes in the risks of extreme events, which can help optimize resource management decisions (Kim et 

al. 2012; Mariotti et al. 2018; Smith et al. 2019). Recently, many climate prediction model communities developed and 

provided significant improvements in the predictability of sub-seasonal time scales. Many international climate model 

institutes were started to compare coupled climate projections, providing numerous applications for modeling communities 

including the sub-seasonal to seasonal (S2S) project from the European Center for Medium-Range Forecast (ECMWF) 10 

(https://www.ecmwf.int/en/research/projects/s2s); the North American Multi-Model Ensemble (NMME) from the 

International Research Institute for Climate and Society (IRI) (https://www.cpc.ncep.noaa.gov/products/NMME/); and the 

Earth System Grid (ESG) at the National Center for Atmospheric Research (NCAR) (https://www.earthsystemgrid.org/). The 

Sub-Seasonal Experiment (SubX) data sets are accessible through a public archive at Columbia University’s IRI Data Library 

(http://cola.gmu.edu/kpegion/subx/).  15 

A top priority in forecasting is estimating and possibly reducing uncertainty (Leutbecher and Palmer 2008; Berner 

et al. 2011; Knutti 2018). Uncertainty is inevitable since all climate prediction models are based on physical principles and are 

generated with various assumptions (Sun et al. 2018). Notably, uncertainty is introduced in the construction of current state-

of-the-art modeling systems from the lack of observations in the polar regions, leading to a limited understanding of the 

physical processes and their inevitably incorrect parameterization. Furthermore, recent studies show that both internal and 20 

forced atmospheric variabilities of Arctic weather are tightly linked to those of mid-latitudes, invoking large fluctuations in 

the jet-stream (Inoue et al. 2012; Kim et al. 2014; Mori et al. 2014; Sato et al. 2017; Jung et al. 2017). Several ongoing debates 

on the linkage issue, such as ‘warm Arctic-cold continents (WACC)’, is a good example of the considerable uncertainty that 

persists among models relevant to the Arctic climate system (Honda et al. 2009; Liu et al. 2012; Sun et al. 2015; Chen et al. 

2018). 25 

Among the issues of uncertainty in the Arctic climate system, recent studies suggest the choice of a dynamical core 

to improve the forecasting quality in the Arctic regions (Jun et al. 2018). The dynamical core resolves the fluid motion 

governing atmospheric dynamics on numerical equations based on the features of a grid structure (Harris and Lin 2013). Thus, 

there is increasing attention in highly scaling performance of dynamical cores with less structured or unstructured grids based 

on the uniform resolutions (Lin and Rood 1997; Lin 2004; Donner et al. 2011). For example, the use of the cubed-sphere grid 30 

in the dynamical core considerably enhances the computational efficiency, resolving pole singularity issues, compared to the 

latitude-longitude grid formation. 
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Jun et al. (2018) raised the issue of assessing the influence of existing dynamical cores underlying the grid formation 

of the Arctic region in a global simulation compared to the various global climate simulations. The use of different dynamical 

cores significantly affects the simulations of Arctic winter climate and linked teleconnection in the mid-latitudes. Notably, the 

spectral element core on a cubed-sphere grid simulates a warmer Arctic winter surface and a robust cooling response over 

North America, unseen with a finite volume core on a latitude-longitude grid formation. These modeling results for the Arctic 5 

and mid-latitudes advise the need for more precise climate modeling and forecasting for the Arctic region. 

This earlier suggestion has motivated the choice to model sub-seasonal predictions using different dynamical cores. 

We are interested in quantifying the possible changes in sub-seasonal predictability arising from the use of different dynamical 

cores of an atmospheric model. In this study, we contrasted results from two different dynamical cores with different grid 

formations: a spectral element dynamical core on a cubed-sphere grid system and a finite volume core on a latitude-longitude 10 

grid system for feasible analysis. 

This paper is structured as follows. We begin with describing the sub-seasonal prediction model design and analyses 

in Section 2. Section 3 presents the various results, focusing on comparing the predictability of the prediction model 

performance using the two dynamical cores. In Section 4, we discuss our findings and summarize this study. We also provide 

questions for future work. 15 
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2 Model Description and Data 

2.1 Model: Experimental Setup 

2.1.1 Dynamical cores 

We strategically prepared two near-identical sub-seasonal prediction models. The only difference between them is 

the choice of the dynamical core with the grid formation in the atmospheric model. The first uses the spectral element (SE) 5 

dynamical core on a cubed-sphere grid system with a horizontal resolution of 16 by 16 elements on one face and four 

collocation points on one element edge (e.g., named ‘ne16np4’, approximately 2º at the equator). The other uses the finite 

volume (FV) dynamical core on a latitude-longitude grid system with 91-latitudinal and 144-longitudinal grid points (e.g., 

named ‘fv19’) (Jun et al. 2018). The FV dynamical core is the present defaulting dynamical core in the Community Earth 

System Model (CESM) and is being used for the CESM’s contributions to the Intergovernmental Panel on Climate Change 10 

(IPCC) 5th assessment report (Collins et al., 2004; Denis et al., 2012). The SE dynamical core provides several profits 

compared to the FV one. As with all methods on cubed-sphere grid formation (quasi-uniform), preventing the fundamentally 

load-imbalanced polar filter permits for fixed and efficient two-dimensional formation disintegration, significantly improving 

a parallel scalability performance on calculations (Kay et al. 2016; Lauritzen et al. 2018). We implemented a sub-seasonal 

prediction model by incorporating the two aforementioned dynamical cores with the same physics. The Community 15 

Atmosphere Model version 5 (CAM5) with CAM4 physics, which is an atmospheric model component of the CESM version 

1.2.1, was used to perform sub-seasonal predictions. 

 

2.1.2. Topography 

As for mapping the topography on different dynamical cores, technically, different dynamical cores need a different 20 

level of smoothing for the elevation data. In the FV dynamical core, the highest wavenumbers are removed by mapping to a 

latitude-longitude grid, whereas, in the SE dynamical core, the surface geopotential is smoothed by multiple applications (e.g., 

Laplace operator combined with a bound-preserving limiter, optimization-based mesh-improvement methods). Specifically, 

the mapping method applied to a SE dynamical core uses a strong high-order interpolation technique, which improves the 

quality of the topography while retaining the integrity of the original surface approximation, thus, making a smoother 25 

topography than the FV dynamical core (Dennis et al. 2012; Choi and Hong. 2016; Mittal et al. 2018). 

Figure 1 shows the topography for the SE dynamical core ((a), Topography-I) and, for comparison, the FV dynamical 

core ((b), Topography-II). It can be clearly seen that there are considerable differences between the height of the mountains 

with different smoothing operators and smoothing strengths (shown in Fig. 1(c)).  

Therefore, manipulating the topography in each core can be a source of uncertainty, which introduces an additional 30 

source of error in the interpretation. To deal with this issue carefully, we devised sensitivity experiments using different 

topography sets on top of the dynamical core differences. The first is the ‘SE(Topo-I) model’, which uses the SE dynamical 

core on a cubed-sphere grid system with a generic topography (Topo-I) from the SE dynamical core distribution. Second is 
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the ‘FV(Topo-I) model’, based on the FV dynamical core on a longitude-latitude grid system with Topo-I. The third is the 

‘FV(Topo-II) model’, which differs from the FV(Topo-I) model in only the generic topography used for the default FV 

dynamical core distribution (Topography-II). Details concerning the different prediction models with their dynamical core 

options are contained in here, while brief descriptions of the specific settings of each model are provided in Table 1 and 2. 

 5 

2.1.3. Initial and Boundary Conditions 

The initial conditions for the integration were prepared by using the Japanese 55-year reanalysis data (JRA-55) (Ebita 

et al. 2011). We interpolated the reanalysis variables, including the surface temperature at 2m, winds, radiation, specific 

humidity, precipitation, evaporation, and other climate parameters, to the model horizontal and vertical grids for the 

initialization of the corresponding model variables. A 15-member ensemble was prepared with lagged initial conditions at 6-10 

hour intervals up to the starting date (i.e., 1st, October, and 1st, December). The sea surface temperature (SST) and sea ice 

concentration (SIC) forecasts were used as global boundary conditions from the reforecast of the National Centers for 

Environmental Prediction (NCEP) Climate Forecast System (CFS; available from 1979 to 2010) (Saha et al. 2010) and CFS 

version 2 (CFSv2; available from 2011 to present) (Saha et al. 2014). The use of NCEP CFS/CFSv2 as a boundary condition 

is based on the study of Lindsay et al. (2014), which reported that CFS/CFSv2 has less bias than the NCEP/National Center 15 

for Atmospheric Research (NCAR) reanalysis. 

 

2.1.4 Model Hindcast Experiment 

 The SE(Topo-I), FV(Topo-I), and FV(Topo-II) models performed sub-seasonal predictions for boreal winter surface 

air temperature. To evaluate the prediction performance, we conducted hindcast experiments for 17 winters from 2001/2002 20 

to 2017/2018. For each year, the three months from October 1st are predicted, and the last two months (i.e., November to 

December) are averaged to define early winter predictions. For late winter predictions, ideally, we started from December 1st 

and used the last two months (i.e., January and February) for the calculation. These hindcasts provided us 15-ensemble 

members (1-day time-lagged), from which we used the ensemble mean when analyzing the model output. 

 25 

2.2 Validation Data and Method 

2.2.1 Validation Data 

 We used monthly mean European Centre for Medium-Range Weather Forecast (ECMWF) interim reanalysis (ERA-

Interim) products for the prediction model validation (Dee et al. 2011). Data that were used to validate the predicted 

temperature, winds, other climate parameters were provided on a 2.5º by 2.5 º latitude-longitude grid. We used the above data 30 

from November 2001 to February 2018, when the performance of the sub-seasonal prediction model was available. The 

validation and prediction data were constructed under the same sub-seasonal timescales, the early winter and late winter, from 

2001/2002 to 2017/2018. Moreover, the anomalies were calculated by removing each season’s climatological mean (from the 
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period between 2001/2002 to 2017/2018). The prediction data was interpolated at the same resolution as the ERA-Interim 

reanalysis products. 

 

2.2.2 Validation Method 

 The skill score test for predictability is calculated using the ensemble mean instead of averaging individual ensemble 5 

members in all predictions. In this study, the prediction skill score is mainly calculated for boreal winter surface air temperature 

in climatological mean, followed by two important statistical skill score tests.  

We used two statistical skill score techniques applied to verify deterministic prediction skills, first is the simple 

anomaly correlation coefficient (ACC) and second is the mean-square skill score (MSSS) (Goddard et al. 2013; Choi et al. 

2016). To calculate the ACC and MSSS, we use the following equations: 10 

𝐴𝐶𝐶(𝜏) =
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The ACC calculated the correlation coefficients between a set of forecast runs 𝐹 and observation 𝑂, where 𝑂 corresponds to 

reanalysis products in this study. Forecast ensembles can be characterized by 𝐹)*, where 𝐹 is ensemble mean prediction in each 

model’s, 𝑗 is the initialization year, 𝑛 is the total number of experiments, and 𝜏 is the forecast lead time. The climatological 15 

averages of reanalysis products (observations) and forecast runs are calculated by the following formula: 

 

𝑂-* =
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)-+ ,                                                                                                                                              (2) 

 

The MSSS is based on the mean-squared error (MSE) (Murphy. 1988), which is calculated by  20 
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The ACC calculates the linear association between an observation and forecast runs in models, while the MSSS calculates the 

bias of prediction model as the relative magnitude. The MSSS is no statistically significant compared to the ACC, one may 25 

determine that the direction of anomalies is predicted well, but its magnitude is uncertain. Throughout the literature, subjective 

threshold values are conventionally used for evaluating statistical skill score results (i.e., ACC greater than about 0.5 and 

MSSS greater than 0). 

To evaluate the teleconnection linkage in boreal winter in the sub-seasonal prediction models, we used the Arctic 

temperature (ART) indices proposed by Kug et al. (2015), which has an important interpretation for the linkage between Arctic 30 

and mid-latitudes, extending to the implication of the WACC patterns. The calculation method is quantified by the correlation 
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coefficients between ART1 index (T2M area-averaged over the Kara-Barents Seas; 70–80ºN, 30–70ºE) with the spatial T2M 

of East Asia (35-50ºN, 80-130ºE), and ART2 index (T2M area-averaged over the Chukchi-East Siberian Seas; 65–90ºN, 160–

200ºE) and the spatial T2M of North America (35–50ºN, 230–280ºE). According to previous research, in recent decades, the 

ART indices show a trend towards a warmer the Arctic and colder mid-latitudes. 

 5 
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3. Results 

3.1 Mean Surface Air Temperature at 2m (T2M) 

We first examine the spatial patterns in seasonal climatology for different dynamical cores. In this study, the model 

climatology is evaluated using each seasonal prediction’s ensemble mean and target observation (reanalysis products) for a 

hindcast period (2001-2018). We show the bias of the prediction model for the T2M mean state (Fig. 2). The 17-year 5 

climatology predictions for boreal winter T2M in each prediction model are compared with the ERA-Interim reanalysis product. 

 Overall, the mean T2M among prediction models generally reproduce the observed climatology over the oceans well. 

However, over the land surface, obvious bias patterns are observed among prediction models in both seasons, which are shown 

in Fig. 2(b)–(d) (early winter), and 2(h)–(j) (late winter). Prediction models showed similar bias patterns over the northern 

hemisphere in both seasons. Particularly, a cold bias is found in the Arctic and part of North America and East Asia, whereas 10 

a warm bias is found in broad areas over Greenland and Europe compared to the ERA-Interim. The SE(Topo-I) model predicts 

a warmer temperature over the Northern Hemisphere than FV models (shown in Fig. 2(e)–(f) and (k)–(l)). This implies that 

the SE dynamical core tends to predict warmer temperatures than the FV dynamical cores during both seasons.  

Figure 2 (e) and (k) show the difference in mean T2M bias between the SE(Topo-I) and FV(Topo-I) in the early and 

late winter, respectively. With the same topography, the SE(Topo-I) model predicts warmer temperatures (about 1–2 ℃ in 15 

mean T2M) than FV(Topo-I) in early winter. Similarly, the late winter shows the same warm bias pattern between the two 

models, but not in the Arctic. With only the topographic differences in the grid formation, the warmer bias is found in the 

SE(Topo-I) and FV(Topo-II) during both seasons (about 3–4 ℃ in mean T2M) (shown in Fig. 2(f) and (l)). It shows a 

significant difference compared to the differences in FV(Topo-I) models, especially the obvious differences found in Eurasia 

that are related to elevation from the topography (e.g., mountain area). In the mean T2M state, the SE dynamical core 20 

consistently shows a warm T2M bias pattern, particularly in North America and Greenland. Even without the effect of the 

topography from the grid formation, the SE dynamical core can show a tendency to predict warmer temperatures than the FV 

dynamical core. However, if differences in dynamical cores are not given at the same topography effect, the bias is even more 

significant. 

 25 

3.2 Forecast Skill 

 To examine the prediction skills in sub-seasonal time scale, the ACC between prediction’s anomalies and reanalysis 

products are calculated for the ensemble mean determined from 17 winter seasons, and Figure 3 shows the ACC of the T2M 

anomaly for the prediction models in both seasons. The black dots show statistically significant ACC regions (at the 95% 

confidence level). Since the forecast skill from both dynamical cores in both seasons over the ocean is almost identical (shown 30 

in Supplementary Fig. 1), we masked out the ocean for clarity and analyzed the differences over the land area before describing 

the changes in forecast skill ascribed to dynamical core differences. 

In the early winter, prediction models show a positive ACC broadly over Eurasia, although there exists little 

significant signal over the area. The FV(Topo-II) model shows a negative signal over Eurasia, but a significantly positive ACC 
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in East Asia. Overall, present models commonly show low prediction skills in North America. In the Arctic region, on the 

other hand, these models show high prediction skills, particularly in the Kara-Barents Sea and the Chukchi Sea, where the 

variability in sea ice is greatest (shown in Supplementary Fig. 1). The SE(Topo-I) model, in particular, shows a significantly 

higher ACC in a broad area around the Arctic compared to the FV(Topo-I) model, due to differences in the dynamical cores 

despite having the same topography. In late winter, the ACC decreased over the Arctic region relative to early winter. Overall, 5 

the prediction skills of North America increased relative to early winter; mainly, the SE(Topo-I) model shows a highly positive 

ACC over North America. The FV models also show an improved prediction skill over East Asia and Eurasia.  

Similar to Fig. 3, Fig. 4 shows the spatial distribution of the mean-squared skill score (MSSS) for winter T2M (also 

the MSSS masked out the ocean for the same reasons as Fig. 3, shown in Supplementary Fig. 2). MSSS score is meaningful 

only when greater than 0. If the MSSS skills increase (red color), it means that the prediction would yield the best performance 10 

with a certain prediction model. In both seasons, the MSSS score is consistent with the ACC patterns among prediction models. 

The blue colored area has low predictive skills in sub-seasonal timescales. In early winter, same as the ACC, the SE(Topo-I) 

model has a higher predictive ability around the Arctic region than the FV models. Moreover, the FV(Topo-II) model has a 

positive MSSS score in East Asia. In late winter, the SE(Topo-I), FV(Topo-I), and FV(Topo-II) models show improved 

predictive skill scores over North America, East Asia, and Eurasia, respectively, relative to early winter, which is consistent 15 

with Fig. 4. Subsequently, the SE(Topo-I) model has better prediction skills in North America in late winter, and FV models 

have higher predictive performances in East Asia and Eurasia in late winter. It implies that prediction models show different 

predictive skills depending on the dynamical cores on the grid formation, particularly over the Arctic region and the land 

surface of the mid-latitudes. 

 20 

3.3 Zonal Mean Vertical Distribution   

Figure 5 shows the zonal mean vertical distribution using climate parameters, comparing between the SE(Topo-I) and 

FV(Topo-I) models during the early winter and late winter. The contour line denotes the FV(Topo-I), and shading represents 

changes produced when using SE(Topo-I) (SE minus FV). We show the seasonal climate parameters in the averaged zonal 

mean fields using the temperature, transient eddy momentum flux, transient eddy heat flux, and vertical velocity because these 25 

seasonal climate parameters control many significant features of global climate, including the distribution of pressure and 

temperature, and the meridional transport of heat flux.  

Compared to the FV(Topo-I) model, the SE(Topo-I) predicted a warmer vertical temperature distribution into the 

stratosphere near the 60ºN region in early winter (Fig. 5 (a)) and a colder stratosphere over the subtropics in the late winter 

(Fig. 5 (e)). Not shown in Fig. 5, the SE(Topo-I) compared to the FV(Topo-II) also showed a similar zonal mean vertical 30 

distribution as the FV(Topo-I); but the differences are much higher than compared to the FV(Topo-I). Notably, in early winter, 

warmer temperatures (> ~1 ºC) are observed in the Arctic region when using the SE(Topo-I) model, compared to the FV(Topo-

II), the values are about 1.4 ºC. The characteristics of these zonal mean temperature differences are consistent with the 

preliminary result from using the SE dynamical core in the Arctic region. Further, we examine the possible contribution of 
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differences between the SE(Topo-I) and FV(Topo-I) in the transient eddy momentum and heat fluxes, and the vertical 

velocities during both seasons. Fig. 5 (b) and (f) display the difference in the transient eddy momentum flux, wherein the 

weakest momentum flux is 30ºN near 300 hPa in early winter, and the increased momentum flux is in the tropics above 

tropopause in late winter. It is associated with a colder temperature signal in late winter (shown in Fig. 5 (e)) due to increasing 

weaker momentum flux, decreasing momentum flux convergence, and weakening in the mean meridional circulations over 5 

the subtropics. The SE(Topo-I) model also predicted a strengthen transient eddy heat flux at the surface to the center of 60ºN 

in the tropopause. Also, it shows that a weakening in the transient eddy heat flux during early winter over the Arctic region, 

relative to the FV(Topo-I) model. It means that the SE(Topo-I) model tends to shift to the southward in the maximum transient 

eddy heat flux. Fig. 5 (g) shows that the SE(Topo-I) model tends to heat flux weakens over the subtropics in the late winter, 

with the transient eddy momentum flux. It indicates that the SE(Topo-I) model simulated to changing fluctuations in mean 10 

circulation patterns, making a rising and sinking motion over the subtropics, and the Arctic region’s tropopause, respectively. 

It caused by the indirect effects from the forcing circulation patterns in both seasons (shown in Fig. 5 (d) and (h)).  

As a result, the SE-Model predicted a strengthening sinking motion in the Arctic region at the tropopause through 

adiabatic warming, enforcing a warmer vertical temperature distribution. These warming patterns in the Arctic region also 

manipulated by increasing the transport of poleward eddy heat flux over the mid-latitudes. As the predictive skills, the warmer 15 

Arctic vertical temperature in the SE(Topo-I) compared to the FV(Topo-I) is associated with the prediction of mid-latitudes 

due to the differences in mean circulation patterns despite using the same physics. It showed that, despite using the same 

topography, depending on the characteristics of the dynamical cores, the SE(Topo-I) model showed warmer vertical 

temperature distributions over the Arctic region compared to the FV(Topo-I) and FV(Topo-II) also. It showed similar results 

for both FV(Topo-I) and FV(Topo-II), but the difference is greater when compared to the FV(Topo-II). Ultimately, the 20 

distribution of the vertical temperatures in the SE(Topo-I) model has enhanced sinking motion effects, resulting in a difference 

in mean circulation patterns. 

 

3.4 Model Representation of the Arctic-Midlatitude Linkage 

 Recent studies have demonstrated that a warmer Arctic is contributing to colder winters across the Northern 25 

Hemisphere continents (Overland and Wang 2010; Serreze and Barry 2011). A warmer Arctic climate is predicted for the 

future in many studies (Pithan and Mauritsen. 2014; Screen 2017; Jang et al. 2019). However, the prediction skills of a warm 

Arctic-mid-latitude linkage that can have the potential to amplify extreme mid-latitude weather events are still undergoing. 

Particularly, the Kara-Barents Sea to East Asia and the Chukchi-East Siberian Sea to North America are of significant interest 

for Arctic-mid-latitude linkage impacting the predictive skill of extended-range weather forecasts (Jung et al. 2015).  30 

We examine how well prediction models with different dynamical cores predict the winter Arctic-mid-latitude 

linkage using the Arctic temperature (ART) indices with a spatial distribution around the Northern Hemisphere. We used two 

ART indices defined by Kug et al. (2015) (detailed calculation methods in Chapter 2). Figure 6 shows a correlation between 

ART indices and T2M for the early winter and late winter. Figure 6 (c)–(f) show the correlation patterns with the ART1 (Kara-
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Barents Seas) and Figure 6 (g)–(l) show the correlation with the ART2 (Chukchi-East Siberian Seas), with the SE(Topo-I) and 

FV(Topo-I) models in both seasons. The time-series of ART indices in the SE(Topo-I) and FV(Topo-I) models capture the 

year-to-year Arctic temperature variability during the wintertime (shown in Fig. 6 (a)–(b)). Both indices exhibit strong positive 

correlations over their region (green box) for both models (correlation coefficients ≈ 0.85) but show different correlation 

patterns in much of the mid-latitudes.  5 

For ART1 (shown in Fig. 6 (c)–(f)), SE(Topo-I) and FV(Topo-I) show a negative correlation prevailing over Eurasia 

in early winter. The FV(Topo-I) model found more negative correlations in this area than SE(Topo-I). Although both models 

show no relationships over Eurasia in late winter, both models show a strong negative correlation in East Asia (including South 

Korea and Japan) in late winter. For ART2 (shown in Fig. 6 (g)–(j)), the SE(Topo-I) and FV(Topo-I) models show the weakest 

relationship between ART2 and North America in early winter, despite both models capturing the ART2 areas well. In late 10 

winter, the SE(Topo-I) shows a negative correlation in North America, while the FV(Topo-I) has a positive correlation in this 

area. This is consistent with the T2M prediction skills for the SE(Topo-I) and FV(Topo-I) models during both seasons. These 

results imply that the SE(Topo-I) captures warmer Arctic and colder North American temperatures relatively well, while 

FV(Topo-I) model captures warmer Arctic and colder Eurasian temperatures, alternatively.  
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4. Discussion and Summary 

This study has examined the sub-seasonal prediction skills for boreal winter temperatures using two different 

dynamical cores. The predictive skill differences between the two dynamical cores are evaluated using hindcast runs for the 

period 2001/2002 to 2017/2018 and compared with the reanalysis product (ERA-Interim). Compared to the FV dynamical 

core, in general, the SE dynamical core predicts a warmer Northern Hemisphere in both winter seasons. For ACC/MSSS skill 5 

score tests, the FV dynamical core has a significant correlation coefficient over East Asia in early winter. In contrast, the SE 

dynamical core has improved the correlation coefficient over North America in the late winter. We summarize the differences 

in prediction skill for T2M for SE(Topo-I) (red box), FV(Topo-I) (blue box), and FV(Topo-II) (black box) in the area-averaged 

Northern Hemisphere, Arctic region, East Asia, and North America, respectively (Fig. 7). In Fig. 7, the domain definition for 

the box averaging for each region follows Kug et al. (2015). From the dynamical analysis of zonal mean differences between 10 

SE(Topo-I) and FV(Topo-I), we suggest that the warmer Arctic temperatures in the SE(Topo-I) model compared to the 

FV(Topo-I) is due to the difference in mean circulation patterns. Differences in circulation patterns are further related to the 

enhanced adiabatic warming effect caused by the distribution of vertical temperatures in the Arctic region, which are 

characteristics of the dynamical core (not figured, but the differences in FV(Topo-II) showed similar results). Moreover, the 

temperature teleconnection patterns between the Arctic and mid-latitudes in both prediction systems show a significant 15 

relationship with the ART Index. For ART1, the FV(Topo-I) has great predictive skills in East Asia in early winter, and the 

SE(Topo-I) has a great predictive skill in North America with the ART2 index in late winter.  

Thus, this study investigates the effect that choosing a particular dynamical core has on the predictability of sub-

seasonal atmospheric prediction models. We find that the predictive skills of these two dynamical cores are significantly 

different despite the almost identical physical parameterization used in models. By this, we raise concerns about the choice of 20 

dynamical cores in the sub-seasonal and seasonal predictability studies, especially for the simulation of Arctic climate and 

related teleconnection patterns in those time-scales. We believe our study provides an initial motivation for more studies 

regarding the optimal choice of dynamical cores in the future development of the climate prediction models. 
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The source code in this study is based on the National Center for Atmospheric Research/University Corporation for 

Atmospheric Research (NCAR/UCAR) Community Earth System Model (CESM) version 1.2.1 at revision 74732 whose code 

can be acquired from the CESM1 SVN repository (https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tag/cesm1_2_1). We 

set up two dynamical cores (finite volume core and spectral element core) with the same CAM4 physics by using configuring 

script of the atmospheric model CAM5 included in this CESM version. Flag sets we used in the standard configuration scripts 20 

for each dynamical core as summarized in the table below. 

 

Summary of flag sets for the two dynamical cores used in this study: 

 FV (finite volume) 

dynamical core 

SE (spectral element) 

dynamical core 

Dynamical core, horizontal resolution, and 

physics settings in CAM5 configuration  

(when using configure script) 

-dyn fv -hgrid 1.9x2.5 -phys 

cam4 -ocn docn 

-dyn se -hgrid ne16np4 -phys  

cam4 -ocn docn 

Related case and resolution settings in the 

CESM1 configuration  

(when using create_newcase script) 

-case F -res f19_g16 -case F -res ne16_g16 
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55/index_en.html#download), NCEP CFS/CFSv2 (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets), 
ECMWF ERA-Interim Reanalysis (https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=pl/). 
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Table List 

 

Table 1. Reference for information of sub-seasonal prediction models referred to within the text. 

Model name Dynamical 
core Resolution Topography Physics 

package 
Prediction 

years 

SE(Topo-I) Spectral 
element 

Cubed-sphere, 
approx. 2.0º 
(named as 
ne16np4) Topography-I 

(topography was 
set to match the 
SE dynamical 

core) 

* CAM5 
(with CAM4 

physics 
including 

coefficients 
from the 

dynamical 
core’s default 

setting) 

2001/2002 – 
2017/2018 

FV(Topo-I) Finite 
volume 

1.9º Lat x 2.5º 
Lon (named 

as fv19) 

FV(Topo-II) Finite 
volume 

1.9º Lat x 2.5º 
Lon (named 

as fv19) 

Topography-II 
(topography from 
the default finite 

volume 
dynamical core) 

* Listing includes the dynamical core, horizontal spatial resolution, and version of CAM physics used. CAM5 with CAM4 

physics setting refers to the CAM4 physics package using the parameter settings that provided coefficients for the default 5 

dynamical core (see section on the code availability).  

 

Table 2. Reference for information of detailed physics schemes in the sub-seasonal prediction models  

Model Physics Package 

Model 

Descriptions 

Model System CAM5 Atmospheric model system 

Ensemble Generation Method 1-day time lagged 

Ensembles 15 

Resolutions 1.9º Latitude x 2.5º Longitude 

Levels 30 

Initial 

Conditions 

Atmosphere (ATM) JRA-55 Reanalysis 

Land (LND) Long-term spin-up run (30-years using the climatology) 

Boundary 

Conditions 

Sea Surface Temperature (SST) 
NCEP-CFS/CFSv2 Forecast SST and SIC 

Sea Ice Concentration (SIC) 

 

https://doi.org/10.5194/gmd-2020-22
Preprint. Discussion started: 6 April 2020
c© Author(s) 2020. CC BY 4.0 License.



19 
 

Figure Lists 
 

 
 
Figure 1: Spatial distribution of topography for spectral elements (SE) dynamical core and finite volume (FV) dynamical core. 5 
(a) Topography I (Topo-I) from the SE dynamical core, (b) Topography II (Topo-II) from the FV dynamical core, and (c) 
difference between (a) and (b). 
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Figure 2: Spatial distribution for mean 2m-air temperature (T2M) for the early winter and late winter (2001/2002 – 2017/2018) 
in two sub-seasonal prediction model; (a) mean T2M from ERA-Interim reanalysis (ERAI), (b) mean T2M model bias of 
SE(Topo-I), (c) mean T2M model bias of FV(Topo-I) (d) mean T2M model bias of FV(Topo-II), and (e) – (f)  mean T2M 
difference between SE(Topo-I) and FV models. Same with (g)-(l) except for late winter.  5 
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Figure 3: Spatial distribution of anomaly correlation coefficients (ACC) for 2m-air temperature (T2M) between models and 
ERA-Interim reanalysis (ERAI) during the early winter and late winter (2001/2002 – 2017/2018); (a) ACC between SE(Topo-
I) and ERAI, (b) ACC between FV(Topo-I) and ERAI, (c) ACC between FV(Topo-II) and ERAI. Same with (d)-(f) except for 
late winter. The black dots indicate statistical significance at the 95% confidence level. A mask has been applied such that only 5 
ocean grid points for a clear distinction of ACC with the land area. 
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Figure 4: Spatial distribution of mean-squared skill score (MSSS) for 2m-air temperature (T2M) between models and ERA-
Interim reanalysis (ERAI) during the early winter and late winter (2001/2002 – 2017/2018); (a) MSSS between SE(Topo-I) 
and ERAI, (b) MSSS between FV(Topo-I) and ERAI, (c) MSSS between FV(Topo-II) and ERAI. Same with (d)-(f) except 
for late winter. (MSSS showing greater than -1.0). A mask has been applied such that only ocean grid points for a clear 5 
distinction of ACC with the land area. 
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Figure 5: Zonally averaged climate parameters during the early winter and late winter (2001/2002 – 2017/2018) produced by 
SE(Topo-I) and FV(Topo-I); the contour indicates the FV(Topo-I), and shading indicates a difference between SE(Topo-I) 
and FV(Topo-I); (a) temperature, (b) transient eddy momentum flux, (c) transient eddy flux, and (d) vertical velocity. Same 
with (e)-(h) except for late winter.  5 
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Figure 6: Correlation coefficients of 2m-air temperature (T2M) anomalies for SE(Topo-I) and FV(Topo-I) with respect to 
ART1 and ART2 (ART: Arctic temperature) indices during the early winter and late winter (2001/2002 – 2017/2018); the 
green box indicates the each Arctic region of ART indices (ART1: Barents-Kara Seas, ART2: Chukchi-East Siberian Seas); 5 
(a) – (b) T2M time-series of the ART1 and ART2 for the SE(Topo-I) and FV(Topo-I) in ealy winter and late winter, 
respectively. (c)-(d) correlation relationship for T2M with ART1 in early winter, and (g)-(h) for late winter; (e)-(f) correlation 
relationship for T2M with ART2 in early winter, and (i) –(j) for late winter. The black dots indicate statistical significance at 
the 95% confidence level. 
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Figure 7: Box plots of the correlation coefficients between models and ERA-Interim reanalysis (ERAI) for each mean ensemble 
(ensemble number is 1 to 15) of SE (Topo-I) (red box), FV(Topo-I) (blue box), and FV(Topo-II) during the (a) early winter 
and (b) late winter; median lines indicates the mean values from each mean ensemble of models; x-axis denotes the area-
averaged region (Northern Hemisphere, Arctic, East Asia, and North America). 5 
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