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Abstract. In this study, we present the development of a new coupled weather and greenhouse gas (GHG) data assimilation

system based on Environment and Climate Change Canada’s (ECCC’s) operational Ensemble Kalman Filter (EnKF). The

estimated meteorological state is augmented to include three chemical constituents: CO2, CO and CH4. Variable localization

is used to prevent the direct update of meteorology by the observations of the constituents and vice versa. Physical localization

is used to damp spurious analysis increments far from a given observation. Perturbed flux fields are used to account for the5

uncertainty in CO due to error in the fluxes. The system is demonstrated for the estimation of 3-dimensional CO states using

simulated observations from a variety of networks. First, a hypothetically dense uniformly distributed observation network is

used to demonstrate that the system is working. More realistic observation networks based on surface hourly observations, and

space-based observations provide a demonstration of the complementarity of the different networks and further confirm the

reasonable behaviour of the coupled assimilation system. Having demonstrated the ability to estimate CO distributions, this10

system will be extended to estimate surface fluxes in the future.
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1 Introduction

Environment and Climate Change Canada (ECCC) operates a GHG measurement network which has seen rapid expansion

during the past decade. ECCC also possesses a GHG inventory reporting division. As required by United Nations Framework
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on Climate Change (UNFCCC) commitments, Canadian emissions are quantified and reported using bottom-up methods (NIR

2019, http://www.publications.gc.ca/site/eng/9.506002/publication.html). In order to assess the national impact of mitigation20

efforts, knowledge of the natural sources and sinks is also needed. The challenge is that there are huge uncertainties in the

natural carbon budget for Canada. For example, Crowell et al. (2019) find a range of uncertainty estimates of Boreal North

American (which is primarily Canada plus Alaska) fluxes from 480 to 700 TgC yr-1 for an ensemble of inversion results for

2015 or 2016. This uncertainty in the biospheric uptake is comparable to the NIR estimate of anthropogenic emissions (568

and 559 TgC yr-1 for 2015 and 2016 respectively) for Canada. In addition, there is much unknown about the fate of carbon25

stored in the permafrost under a warming climate (Voigt et al., 2019), and this will have implications for the global as well

as the Canadian carbon budget. Thus, ECCC has a need to better understand and quantify GHG sources and sinks on the

national scale. The ECCC Carbon Assimilation System (EC-CAS) was proposed to address these needs using the available

tools, namely, operational atmospheric modelling and assimilation systems. The goal of EC-CAS is to characterize CO2, CO

and CH4 distributions and fluxes both globally and over Canada with a focus on the natural carbon cycle. An important aspect30

of the impact of climate change on boreal forests is the influence of wildfires on the carbon balance in these regions. Over the

past several decades there has been an increase in the frequency of wildfires and this trend is expected to continue (Abatzoglou

and Williams, 2016; Flannigan et al., 2009), which will have a significant impact on the Canadian carbon budget and on the

Canadian economy. It is for this reason that EC-CAS also includes CO alongside the greenhouse gases CO2 and CH4.

Carbon Monoxide (CO) plays a role in both tropospheric chemistry and in climate. In terms of air quality, CO is an im-35

portant precursor of tropospheric ozone, but it is also a by-product of incomplete combustion and thus correlates well with

anthropogenic sources of greenhouse gases from fossil fuel and biofuel burning and from forest fires. CO has a lifetime of

1-2 months which is in-between the weather and climate timescales and thus data assimilation systems (DAS) that assimilate

CO can focus on either the air quality or the climate problem. Tropospheric pollution prediction concerns short time scales

(forecasts up to 5 days) whereas climate problems concern the estimation of surface fluxes over months to years. Those data40

assimilation systems whose primary objective is to better understand and predict tropospheric pollution typically use a coupled

weather and chemistry model with short assimilation windows (e.g. 12 h) to initiate short forecasts. The CO observations are

used to estimate CO initial states for the forecasts with either an Ensemble Kalman Filter (EnKF) (Barré et al., 2015; Miyazaki

et al., 2012) or a 4-d Variational (4D-Var) approach (Inness et al., 2019, 2015). The chemistry model typically includes the

numerous gas phase and aerosol reactions relevant for air quality. On the other hand, systems focused on CO’s influence on cli-45

mate are typically “inversion systems” wherein observations of CO concentrations are used to estimate CO surface fluxes. Here

again, both ensemble (Miyazaki et al., 2015, 2012) and variational (Jiang et al., 2017, 2015a, b, 2013, 2011; Fortems-Cheiney

et al., 2011) approaches have been used. Typically a chemistry transport model (CTM) driven by offline meteorological analy-

ses is used. Simplified chemistry models with monthly hydroxide (OH) fields (Yin et al., 2015; Fortems-Cheiney et al., 2011;

Jiang et al., 2017, 2015a, b, 2013, 2011) or full tropospheric chemistry models (Miyazaki et al., 2015, 2012) may be used.50

As noted above, the focus of EC-CAS is ultimately on flux estimation of GHGs thus inverse modelling approaches are appro-

priate. However, with this approach, the mismatch between model-predicted CO and observed CO is usually used to adjust

2

https://doi.org/10.5194/gmd-2020-219
Preprint. Discussion started: 18 August 2020
c© Author(s) 2020. CC BY 4.0 License.



fluxes only though some systems also adjust CO initial conditions (eg. Fortems-Cheiney et al. (2011)). In reality, the mis-

match between modelled and observed CO is due to errors in surface fluxes, meteorological analyses, initial conditions, model

formulation, representativeness and measurements. Proper attribution of the model-data mismatch requires accurate character-55

ization of all of these sources of errors. Also, flux estimates from inverse models are sensitive to the choice of meteorological

analyses (Jiang et al., 2011), errors in convective mass transfer (Jiang et al., 2013, 2011; Ott et al., 2011; Arellano and Hess,

2006), boundary layer mixing (Arellano and Hess, 2006), biogenic sources (Jiang et al., 2011), aggregation error (Jiang et al.,

2011) and OH climatology errors (Jiang et al., 2015a, b, 2011). The presence of these model and meteorological forcing errors

confounds the retrieved CO flux estimates. With a coupled weather and chemistry transport model, uncertainty in the meteoro-60

logical analyses can be accounted for (Barré et al., 2015), and with an ensemble Kalman filter approach, model errors can be

directly simulated (Miyazaki et al., 2012) . Flux estimation with an EnKF using a weather/GHG model was demonstrated for

CO2 by Liu et al. (2011) and Kang et al. (2012, 2011).

EC-CAS will adapt the operational Ensemble Kalman Filter (EnKF) (Houtekamer et al., 2014) to perform a coupled meteorol-

ogy, GHG state and GHG flux estimation using the approach of Liu et al. (2011); Kang et al. (2012, 2011). EC-CAS directly65

simulates and accounts for all components of transport error (i.e. errors arising from model formulation, meteorological state,

GHG initial conditions) as well as observation and flux errors. See Polavarapu et al. (2016) for a detailed discussion of transport

errors. EC-CAS will also be able to handle the vast quantities of observations that are anticipated since currently, roughly 106

observations are already assimilated every day for weather forecasts. The main drawback is that EC-CAS is computationally

expensive. In contrast, inverse modelling techniques are much more expedient especially for multi-year or decadal flux esti-70

mates. However, inverse model results are known to be strongly model dependent (Chevallier et al., 2014, 2010; Houweling et

al., 2010; Law et al., 1996) due to the inability to adequately characterize transport errors. Since the EC-CAS flux estimation

approach has not yet been demonstated with operational weather forecast models, the development of EC-CAS is proceed-

ing in stages. The first stage is to assess the state estimation component since if it works it will give confidence about the

ensemble-based CO flux estimation. The second stage is to estimate the fluxes with this ensemble. Since each of the three EC-75

CAS species has its own assimilation challenges, the testing of the assimilation scheme began with CO because of its shorter

lifetime of about 2 months. Thus the computational cost to test the new system could be minimized. The system of Barré et al.

(2015) and Gaubert et al. (2016) is similar to EC-CAS in utilizing an EnKF with a coupled atmospheric and chemistry-transport

model for flux estimation. Those articles demonstrate only CO state estimation (as in this work), as they too are proceeding in

stages.80

In the present paper we introduce the first version of EC-CAS to demonstrate the extension of the ensemble Kalman filter

(Houtekamer et al., 2014) to estimate GHGs. This new coupled meteorological and GHG assimilation system is called EC-

CAS v1.0. To demonstrate that the system is working, 3-dimensional CO fields are estimated by assimilating observations

from four different networks. The outline of the paper is as follows. Section 2 describes the various components of EC-CAS

system. Section 3 presents the experimental design while section 4 describes the data assimilation (DA) experiments and their85

results. Section 5 presents the conclusions of this work and delineates planned future developments of EC-CAS.
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2 System description and development

Any data assimilation system consists of a model which produces the trial fields and a statistical technique which blends these

trial fields with the observations. The first stage is referred to as the “forecast step” while the second one is called the “analysis

step”. This section describes these components for EC-CAS starting with an overview of the whole system in section 2.1. The90

forecast model, the EnKF and extensions for GHG and flux estimation are presented in sections 2.2, 2.3 and 2.4 respectively.

2.1 EC-CAS

The EC-CAS system consists of a coupled weather and GHG transport model as the forecast model and an Ensemble Kalman

filter (EnKF) as the data assimilation technique. Figure 1 shows a schematic overview of EC-CAS. The model is initialized

with N realizations of meteorological variables at every grid point. The 6 h ensemble forecasts are used as the trial fields at each95

data assimilation (DA) cycle and the spread of the ensemble about their mean defines the forecast error covariances. The EnKF

is used to blend the trial fields with the observations to produce the analysis ensemble at each DA cycle. This blending uses

the error in observations, the uncertainty in trial fields along with the correlations within the trial fields. These correlations are

estimated by the sample correlations of the trial ensemble. The next section 2.2 describes the coupled meteorological and GHG

transport model used in the forecast step while section 2.3 delineates the meteorological component of the EnKF. Section 2.4100

describes the extension of the EnKF to include estimation of CO and other GHGs.

2.2 The forecast model

The forecast model used in EC-CAS is called GEM-MACH-GHG (Polavarapu et al., 2016; Neish et al., 2019). This model

is a variant of GEM (Global Environmental Multiscale), ECCC’s operational weather forecast model (Côté et al., 1998a, b;

Girard et al., 2014) that was developed for the simulation of greenhouse gases. A detailed description of the GEM-MACH-105

GHG model is found in Polavarapu et al. (2016), so only a few salient points are mentioned here along with recent model

updates. Compared to the operational global weather forecast model, GEM-MACH-GHG uses a lower resolution with 0.9◦

grid spacing in both latitude and longitude and 80 vertical levels and the same lid of 0.1◦ hPa. The vertical coordinate is a

type of hybrid terrain-following coordinate (Girard et al., 2014). The advection scheme uses a semi-Lagrangian approach for

both meteorology and tracers. Modifications were implemented to conserve tracer mass on the global scale (see Polavarapu110

et al. (2016)). This included defining tracer variables as dry mole fractions. In addition, tracers are transported through the

Kain-Fritsch deep convection scheme (Kain and Fritsch, 1990; Kain, 2004) but not through a shallow convection scheme. The

boundary layer scheme uses a prognostic turbulent kinetic energy (TKE) equation to specify the thermal eddy diffusivity (see

McTaggart-Cowan and Zadra (2015)). In Polavarapu et al. (2016, 2018), it was necessary to impose a minimum value of 10

m2s−1 in the boundary layer. However, recent model improvements enabled the minimum value to be lowered to 1 m2s−1 as115
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in Kim et al. (2020). An operational air quality forecast model based on GEM is used to produce 48 h forecasts of air quality

health index on a limited area domain covering most of North America. This model is called GEM-MACH (Anselmo et al.,

2010; Gong et al., 2015; Pavlovic et al., 2016) and it employs moderately detailed parameterizations of tropospheric chemistry

using 42 gas-phase species, 20 aqueous-phase species, and nine aerosol chemical components. In contrast, GEM-MACH-GHG

removes the tropospheric chemistry module entirely for CO2 and replaces it with simple parameterized chemistry for CH4120

and CO. This is because GEM-MACH-GHG is used for multi-year simulations and flux estimations of long-lived constituents

with an EnKF so the computational expense of complete chemistry is prohibitive and difficult to justify for a system focused

on GHG fluxes. However, other model processes from GEM-MACH are used in GEM-MACH-GHG, namely, the vertical

diffusion and emissions injection. In GEM-MACH-GHG, the methane (CH4) parameterization involves a single loss rate with

a monthly [OH] climatology. The rate constant is specified following the JPL (2011) formulation for bimolecular reaction125

for methane (see their page 1-12). The parameterized chemistry model used for CO is identical to that used in GEOS-Chem

(http://geos-chem.org) in that CO destruction is parameterized following JPL (2011). The same [OH] climatology is used for

CH4 and CO. Specifically, the [OH] monthly climatology is from Spivakovsky et al. (2000) regridded to GEM-MACH-GHG’s

grid. The production of CO from CH4 is computed assuming each methane molecule destroyed becomes a CO molecule.

For the CH4 simulation, the fluxes were obtained from CT-CH4 (Bruhwiler et al., 2014). Since CT-CH4 fluxes are available130

from 2000-2010, the last 5-year mean (2006-2010) fluxes were used as the fluxes for the 2015 EC-CAS simulation. The initial

condition (IC) for CH4 for 1 January 2015 was approximated with the CH4 atmospheric mole fractions from CT-CH4 at the

end of 2010 plus a globally uniform offset to account for the increase in CH4 from 2010 to 2015 (30 ppb, estimated based on

the difference from observations at the South Pole). Even though the initial condition is not correct, the impact of the errors

in the CH4 initial condition (the synoptic spatial patterns) dissipates within weeks. These prescribed CH4 fluxes and initial135

conditions appear reasonable as the model simulated CH4 compares well with surface observations. To define the CO initial

state, an inversion constrained by space based observations from MOPITT (Measurement of Pollution in the Troposphere)

instrument v7J (Drummond, 1992) was performed with GEOS-Chem on a 4◦× 5◦ grid. The CO combustion emissions are

from Hemispheric Transport of Air Pollutants (http://www.htap.org) (Janssens-Maenhout et al., 2015). Biogenic emissions of

isoprene, methanol, acetone, and monoterpenes are from a GEM-MACH simulation, with an assumed yield of CO from the140

oxidation of these hydrocarbons that is based on the GEOS-Chem CO-only simulation employed in Kopacz et al. (2010) and

Jiang et al. (2011, 2015a, 2017). The monthly CO posterior fluxes obtained for December 2014 and throughout 2015 were

used in EC-CAS EnKF cycles. Since GEOS-Chem is widely used for assimilation of MOPITT CO data, we use a posterior CO

distribution from GEOS-Chem for 1 December 2014 18:00:00 UTC as the initial state on 27 December 2014 18:00:00 UTC.

2.3 EnKF equations for meteorology145

The Kalman Filter equation (Ghil et al., 1981; Cohn and Parrish, 1991) at a particular DA cycle at time t is given by,

xa(t) = xf (t) + Pf (t)HT (t) [H(t)Pf (t)HT (t) +R(t)]−1 (yo(t)−H(t)xf (t)) (1)
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In this equation xf and xa are state vectors of dimension d= 400×200×(80×4 +2). The dimensionality of the model grid

is 400×200. The number of vertical levels is 80. There are four 3-dimensional meteorological variables, namely temperature,

two components of winds and humidity. In addition, the state vector includes the 2-dimensional fields of surface pressure and150

radiative temperature at the surface. xf is the trial field produced by a 6 hour forecast of GEM-MACH. xa is the analysis

produced by combining the information content in the trial fields and the observations. Pf is the forecast error covariance

matrix calculated using the spread of the forecast ensemble about its mean. yo is the observation vector of dimension m

and matrix R of dimension m×m represents the error in yo. H is the forward operator which maps the model state to the

observation space.155

The quantity,

K(t) = PfHT [HPfHT +R]−1 (2)

in equation 1 is known as the Kalman gain, where the t in the parenthesis for quantities on the right side are dropped for

readability.

(HPfHT +R) is a huge matrix (order≈106) (Houtekamer et al., 2019) and its inversion is computationally onerous. This160

problem is circumvented by solving this equation sequentially (Cohn and Parrish, 1991; Anderson, 2001; Houtekamer and

Mitchell, 2001). In sequential processing, the total number of observationsm are subdivided intoNb subsets, known as batches

containing at most p observations each.

Then, the assimilation proceeds as follows :

xa
1(t) = xf (t) +PfHT

1 [H1PfHT
1 +R1]−1(yo

1−H1xf ) Pass 1165

xa
2(t) = xa

1(t) +PfHT
2 [H2PfHT

2 +R2]−1(yo
2−H2xa

1) Pass 2

...
xa

Nb
(t) = xa

Nb−1(t) +PfHT
Nb

[HNb
PfHT

Nb
+RNb

]−1(yo
Nb
−HNb

xa
Nb−1) Pass Nb

The subscripts 1,2, ...,Nb represent the pass numbers. xa
Nb

(t) is the updated state (as if all the observations were processed

simultaneously). The analysis from a given pass is used as the trial field in the next pass. At each pass at most 600 observations170

are assimilated.
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Though the covariance estimate Pf obtained from the ensemble is state dependent, owing to the small size of the ensemble

this estimate is noisy. This is remedied by the use of physical localization. The Kalman gain in equation 2 is modified as,

K(t) = (ρm◦(PfHT )) [ρo ◦ (HPfHT ) +R]−1 (3)

where ρm and ρo constitute the localization in the model space and observation space, respectively and ◦ denotes the Hadamard175

product. These matrices contain weights that smoothly decrease towards zero as the distance from the observation increases.

The localization in the model space (ρm) requires the distance between observations and model coordinates while the local-

ization in the observation space (ρo) requires the distance between observations (Houtekamer et al., 2016). The covariances in

PfHT are multiplied elementwise by ρm. Similarly the covariances in HPfHT are multiplied elementwise by ρo. The en-

semble size is typically much smaller than the dimensionality of the model. For example, in this work the ensemble size is 64180

while the model dimensionality is≈107. Consequently, the correlation estimate calculated from the ensemble can be spurious.

Localization is designed to ameliorate this problem of spurious correlations (Hamill et al., 2001). The rate of decrease of the

weight is dictated by the Gaspari-Cohn function (Gaspari and Cohn, 1999; Houtekamer and Mitchell, 2001).

2.4 EnKF extensions for GHG and fluxes

The state vector discussed in section 2.3 is augmented to include the CO, CO2, CH4 fields and their fluxes. This state is185

referred to as the augmented state. Variable localization (Kang et al., 2011) is implemented in the EnKF code by modifying

equation 3 as follows.

K(t) = (ρvm ◦ ρm ◦ (PfHT )) [ρvo ◦ ρo ◦ (HPfHT ) +R]−1 (4)

Each element of ρvm and ρvo is either 1 or 0. Unlike the physical localization matrices the elements of variable localization

matrices are not distant dependent; they are rather variable type dependent. A given element is 1 when the row and column190

variable is of the same type and 0 otherwise. The (i, j) th element of ρvm and ρvo is set to one if one desires an observation

of the jth variable to impact the update of ith variable. Setting the (i, j) th element to zero ensures that the observation of

the jth variable does not contribute to the update of the ith variable. For example when the both the row and column of

HPfHT correspond to a CO observation, that element of ρvo is set to 1. In our initial implementation of EC-CAS, presented

in this work, variable localization is implemented such that meteorological observations do not directly update CO state and195

CO observations do not update the meteorological state as in Inness et al. (2015). Since Miyazaki et al. (2011) and Kang et

al. (2012) show that CO2 updates through wind observations are beneficial, this issue will be considered in future EC-CAS

developments. It is worth noting that it is still possible for the CO state to indirectly improve due to the assimilation of wind

observations. This can occur because improvement in winds due to meteorological observations leads to an improvement in the
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spatial distribution of CO. The spatial correlation between the CO at the location of an observation and that at an unobserved200

location plays a key role in the update.

While the operational EnKF (Houtekamer et al., 2019) currently uses an ensemble size of 256, EC-CAS uses 64 ensemble

members. The main reason for the reduction in ensemble size is to reduce computational cost during the development of EC-

CAS. Increases in ensemble size are envisioned in the future. Other EnKF systems used for CO state or flux estimation have

used 30 ensemble members (Gaubert et al., 2016; Barré et al., 2015; Miyazaki et al., 2015). In EC-CAS radiosondes, surface205

stations, ships, aircraft and cloud-drift wind observations are used to constrain the meteorological variables.

The operational EnKF uses an Incremental Analysis Updating (IAU) scheme (Bloom et al., 1996) to control high frequency

waves generated by analysis insertion during the ensemble forecasts. This scheme is also applied in EC-CAS to meteorological

and GHG analysis increments. To simulate model errors, the operational EnKF uses different model parameters for different

ensemble members. These parameters are associated with the most uncertain parameterized physical processes such as bound-210

ary layer turbulence and deep convection. Each ensemble member is assigned a unique combination of optional values for ten

such parameters. Since the same sources of meteorological forecast error also impact CO2 transport error (i.e. synoptical scale

signals (Parazoo et al., 2008; Chan et al., 2004)), the same set of parameters are perturbed in EC-CAS. In the case of CO ,

the flux estimation results are also sensitive to model errors in convective mass transfer (Jiang et al., 2013, 2011; Ott et al.,

2011; Arellano and Hess, 2006) and boundary layer mixing (Arellano and Hess, 2006). The operational EnKF also uses an215

additive homogeneous, isotropic climatological error produced using the so-called NMC method (Bannister, 2008; Parrish and

Derber, 1992) for additional model error simulation. In EC-CAS, for the meteorological assimilation, the same scheme is used,

but for GHGs, no such additive error is present. It is not needed for the tests with simulated observations which only seek to

characterize system behaviour. However, for the flux estimation extensions (currently under development) an inflation scheme

will be implemented. The form of the inflation scheme is yet to be determined. The EnKF code with the extensions developed220

here is available in Khade et al. (2020).

3 Experimental Design

The current paper describes the experiments run for the development and testing of state estimation of CO using simulated

observations. The ultimate goal is to develop a system that ingests real GHG observations. However, testing of the system

using simulated observations is an important milestone. It not only demonstrates that the system is working properly but also225

illustrates and defines errors achievable in the best case scenario (under idealized conditions). In this work we use simulated

CO observations which are unbiased and have uncorrelated errors.

The experiments in this work are run from 27 December 2014 18:00:00 UTC to 28 February 2015 00:00:00 UTC. At cold

start 65 perturbations of meteorological variables are drawn from the same climatological (static) covariance matrix that was
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used to generate additive model error. These 65 perturbations are added to the meteorological base state valid at 27 December230

2014 18:00:00 UTC. This produces 65 ensemble members for the meteorological variables. Out of the 65 ensemble members

the 65th ensemble member is designated as the truth. The remaining 64 ensemble members are used for the EnKF estimation

experiment. With this approach, the truth member is a plausible member of the ensemble having been generated from the same

probability density function. The meteorological observations are drawn from the trajectory of the truth at 00, 06, 12 and 18Z

every day at which time DA is carried out. The observation networks used in this work are described in section 3.2.235

An important facet of this work is accounting for flux error in the CO estimate. This is accomplished through the use of a flux

ensemble. The following section 3.1 describes the construction of the flux ensemble while the observations used are discussed

in section 3.2.

3.1 Flux perturbation

The error in flux is an important source of error in the CO estimate. This is especially true close to the surface. For example,240

biases in CO analyses near the surface in polluted urban areas were attributed to emissions errors (Inness et al., 2013). Here

flux error is simulated using perturbed flux fields. The posterior of the 4D-Var based GEOS-Chem inversion constrained by

MOPITT observations is used in this work as the truth. These posterior flux fields are constant over a period of one month (see

Figure 2).

The flux ensemble, of size 64, is generated by using a spectral algorithm (See Appendix A of Mitchell and Houtekamer (2000)).245

The flux perturbations are generated such that they are spatially correlated over a distance (half width) of 1000 km. The standard

deviation of the spread is set to 40% of the value of the true flux as in Barré et al. (2015). The true flux field is used by the

65th ensemble member which generates the truth trajectory. Two sets of 64 flux ensemble members are generated, one each

for January and February 2015. Each member of the flux ensemble is used with each (distinct) member of the meteorology

ensemble.250

3.2 Observation networks

The families of meteorological observations used in this work are summarized in Table 1. The location and times of these

observations are real though the observation values are simulated. These meteorological observations are assimilated in all the

experiments presented in this work.

The EnKF is tested with five different CO observational networks. These are summarized in Table 2. The first network,255

HYPNET is a hypothetical network. It has spatially dense coverage of in situ observations. In this network the observations

are located every 1000 km on three planes - 1 km, 5 km and 9 km. These heights are with respect to the local topography. The

9
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Type 0000 UTC 0006 UTC 0012 UTC 0018 UTC

Upper air 54765 3471 51508 2057

Aircraft 78780 54065 56708 78829

Satellite winds 29749 32813 33597 31719

Surface 9927 10314 10271 9984

Scatterometer 18221 17484 19462 16782

GPS-RO 7064 5564 6390 6527

Table 1. Columns shows the typical number of meteorological observations assimilated in each 6 h DA cycle.

Network Spatial coverage Temporal coverage

HYPNET every 1000 km at levels near 1,5,9 km every 6 hours

ECCC surface 17 stations (Canada only) hourly

GAW surface 44 stations hourly

NOAA surface 69 stations ∼ weekly

MOPITT 1 retrieval per 100 km Global coverage every 3 days.

Table 2. CO observation networks used in this work.

globally averaged topography is 376 m. Therefore, the heights of these planes with respect to mean sea level are roughly 1.376

km, 5.376 km and 9.376 km. The locations of observations are shown in Figure 3a.

The ECCC surface network (Worthy et al., 2005) consists of 17 observing stations in Canada (see Figure 3c, 3d and Table A1).260

These stations provide measurements at an hourly frequency. Although the ECCC network has expanded rapidly in the past

decade to 25 sites in 2020, only the 17 sites providing hourly measurements in 2015 are simulated here. GAW is an acronym

of Global Atmospheric Watch (https://gaw.kishou.go.jp). The 44 stations from the GAW network used in the current work are

shown in Figure 3c and listed in Table A2. These stations observe at an hourly frequency. The NOAA surface observation net-

work consists of 69 flasks (see Figure 3b). The observations from these flasks are temporally sparse, averaging approximately265

one per week.

MOPITT (Measurement of pollution in the Troposphere) (Drummond, 1992) is an instrument onboard NASA’s Earth Obser-

vation Satellite (EOS) Terra that was launched in December 1999. MOPITT is an important component of the global CO

observing system because it measures spectra both in the Near InfraRed (NIR) and Thermal InfraRed (TIR) so that its retrieved

profiles are sensitive to CO in the lower troposphere where the flux signal from emissions is most readily detected. That is why270

it is assimilated in almost all CO data assimilation systems whether their focus is on air quality or flux estimation. It has a nadir

footprint of 22×22 km and a 612 km cross-track scanning swath. Its orbit repeats every 3 days. We used V7J MOPITT data
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with locations thinned to one observation per grid box. The coverage on a particular day is shown in Figure 4. The MOPITT

averaging kernel is used to construct the MOPITT observation operator. The MOPITT prior denoted by ypr and the MOPITT

CO retrieval denoted by yobs, are both vectors of dimension 10. Both yobs and ypr are defined on 10 levels namely, 1000 hPa,275

900 hPa, 800 hPa, ... 100 hPa. In case the surface is not at 1000 hPa, the observations below the surface are ignored.

The averaging kernel, denoted by A, is a matrix of dimension 10×10. The averaging kernel is the sensitivity of retrieval at

each level to all the levels. The observation operator, also known as the forward operator for MOPITT is given by,

Hx = ypr +A(xgem−ypr) (5)

xgem is the model profile interpolated to the same levels on which the ypr is defined. The assimilation of MOPITT NIR/TIR280

retrievals is performed as described in Jiang et al. (2015a).

In the HYPNET, GAW, ECCC and NOAA networks the observation operator is an interpolation operator. The HYPNET,

GAW, ECCC and NOAA network are temporally static whereas the MOPITT observations change locations depending on

the particular DA cycle. The observation errors are set to 10% of the observation values for all networks in our work. The

validation of the MOPITT V7J data found that the standard deviation of the retrieved profiles varied between 10-16 % relative285

to independent data (Deeter et al., 2017).

In summary, five different observation networks are simulated out of which four have a significant impact on the CO es-

timation error. The HYPNET is a hypothetically dense network with uniform spatial coverage and some vertical coverage.

This network is useful for identifying coding or other issues with the data assimilation algorithm, since with plentiful, ac-

curate observations and a perfect model a well tuned assimilation scheme should work. The other networks exist in reality290

and are used to test the assimilation code in a more realistic, but still controlled settings (since no observation biases exist

and uncertainty levels are known). Degradation of results relative to the hypothetical network is expected. Our focus is on

obtaining a qualitative understanding of the behaviour of the assimilation system in less idealistic settings. It should be noted

that although the observations are simulated here, we are not performing Observing System Simulation Experiments (OSSEs)

(See wmo.int/pages/prog/arep/wwrp/new/documents/Final_WWRP_2018_8.pdf for a discussion of designing OSSEs). OSSEs295

(Prive et al., 2018) are used to compare the results obtained with different observing systems and require careful configuration

and tuning of assimilation system parameters so that conclusions might be quantitatively reasonable. Such tuning is difficult

with a system that is just being developed. Thus, to reiterate, our results from using different simulated observation networks

serve only as a testbed for understanding the new assimilation system.
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4 Results300

This section discusses the improvement in the CO state due to the assimilation of HYPNET, surface observations and MOPITT

retrievals, in four seperate experiments. The four CO data assimilation experiments are denoted by EXP_HYP, EXP_GAW,

EXP_NOAA and EXP_MOP. This improvement is defined with respect to a control experiment which is referred to as EXP_CNTRL.

EXP_GAW assimilates the GAW and ECCC surface observations while EXP_NOAA assimilates the NOAA and ECCC surface

observations. This control experiment assimilates simulated meteorological observations (see Table 1) but does not assimi-305

late simulated CO observations. The CO data assimilation experiments assimilate the same meteorological observations as

assimilated by EXP_CNTRL in addition to their CO observations. The results of the EXP_CNTRL are discussed in section 4.1.

Section 4.2 illustrates the role of dynamically changing spatial correlations in an EnKF update. An ensemble forecast contains

state-dependent correlation information, which to a large extent is dictated by the wind field. In an EnKF this state-dependent

correlation is used to spread observational information to unobserved locations. The results of the four CO data assimilation310

experiments are described in section 4.3. All experiments are run from 27 December 2014 18:00:00 UTC to 28 February 2015

00:00:00 UTC.

4.1 Control experiment

Before delving into the results of the CO data assimilation it is important to examine the results of the meteorological variables.

CO is advected by the winds and hence it is critical to ensure that assimilation of meterological observations is working315

well. Figure 5 shows the timeseries of area-weighted temperature trial and analysis root mean square error (RMSE) from 27

December 2014 18:00:00 UTC to 28 February 2015 00:00:00 UTC in EXP_CNTRL experiment. The RMSE is calculated based

on the error between the ensemble mean and the truth which is available at every grid point. As observations are assimilated the

RMSE decreases and stabilizes to 0.5◦C in about 7 days. This timescale is expected since the predictability of weather is about

7-10 days (Pires et al., 1996). After day 7, the errors in synoptic scale motions have saturated at their climatological values.320

The results for other meteorological variables (not shown) were also examined and it is ascertained that the meteorological

data assimilation is working as expected.

The column mean of the ensemble mean of CO averaged over the 7 week assimilation period is shown in Figure 6a. The

values of CO are clearly higher in regions of high flux (see Figure 2). The CO from central Africa is advected to equatorial

Atlantic by the easterly winds. Figure 6b shows the ensemble spread of the CO analysis which is estimated by the standard325

deviation about the analysis mean. This quantifies the EnKF expected error in the CO mean. The spread in the CO ensemble

at any grid point is due to perturbations in the flux, spread in the winds and spread obtained by using different realizations of

the physics parametrizations within the ensemble and the additive model error term. Figure 6c shows the CO analysis RMSE

which quantifies the actual error between the ensemble mean and truth. Clearly, comparing Figure 6a and 6c the RMSE is

higher in regions of higher values of CO. As noted earlier, the regions with high CO correspond to regions of large flux.330
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The similarity of the spatial pattern of CO ensemble spread (Figure 6b) and the RMSE (Figure 6c) is encouraging because it

indicates that the DA system is simulating the actual error well with 64 ensemble members.

The trial and analysis RMSE are identical because CO observations are not assimilated in EXP_CNTRL. The time series of

RMSE over the period of experimentation is shown by the blue curve in Figure 7a. The RMSE in January 2015 stabilizes to

about 16 ppb. The flux field changes in February 2015 and hence the RMSE enters a different regime starting on ∼ 1 February335

2015.

The RMSE of the control experiment establishes a baseline against which the RMSEs from CO data assimilations are com-

pared. These comparisons are presented in the section 4.3. The sample error correlations estimated by the ensemble play an

important role in ensemble-based data assimilation. This is explained in the next section (4.2).

4.2 Role of estimated correlations340

The correlations estimated using the trial ensemble plays a key role in spreading the information from a given CO observation

to other grid points for any observational network. The correlation estimate changes dynamically depending on the flux per-

turbations and winds. This state dependence of sample correlation is an important characteristic of ensemble-based filters. The

role of the sample correlation and physical localization is illustrated for an observation located at the University of Toronto.

Figure 8 shows the spatial correlation structure for the University of Toronto location at two different times from EXP_CNTRL.345

In equation 1 the term (yo(t)−H(t)xf (t)) is the innovation. This quantity is in the observational space and is thus a scalar

for the case of a single observation located at Toronto. Similarly, the matrix inverse in equation 1 is also a scalar. The sample

correlation Pf (t)HT (t) is used to map the innovation into model space. This is the correlation between the ensemble of

xf (t) and H(t)xf (t). For simplicity, we take the nearest gridpoint to Toronto as its actual location so that H(t) becomes

a column vector of the identity matrix with the column index corresponding to the location of the Toronto gridpoint. This350

renders Pf (t)HT (t) to be the column of Pf (t) corresponding to the Toronto gridpoint. The scaling factor of the innovation

and its uncertainty is neglected since magnitudes are of no concern. The innovation in CO at the University of Toronto location

updates the CO at all the other grid points in proportion to the correlation as estimated by the trial ensemble. The regions of

high correlation change significantly from 15 January 2015 06:00:00 UTC to 22 January 2015 12:00:00 UTC. Consequently,

the impact of the CO observation at University of Toronto on other grid points is different on 15 January 2015 06:00:00 UTC355

and 22 January 2015 12:00:00 UTC. In theory a given CO observation should update the CO estimate at all other grid points

globally. However, due to the physical localization function a given CO observation updates the CO state only within a limited

region defined by the horizontal (hlr) and vertical localization radius (vlr). Localization is necessary for EnKF because the

small ensemble size (64) will generate sampling noise in correlations. In other words, small correlations cannot be trusted.

Correlations at large physical distance must be filtered because they are most likely spurious and would harm the analysis if360

retained. The values employed in this work are hlr = 2000 km and vlr = 4 km. Different values of hlr and vlr were tested and
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it was found that the best results were obtained for hlr = 2000 km and vlr = 4 km. Note that these values of hlr and vlr are

used for CO data assimilation only. The assimilation of meteorological observations uses different values for hlr and vlr. The

red circle in Figure 8 has radius of hlr = 2000 km. The Gaspari-Cohn function (Houtekamer and Mitchell, 1998) (not shown in

the Figure) used for physical localization has a peak at University of Toronto and decays moving away from the observation’s365

location. This function is used as a weight to modulate the correlation values. As a result, the impact of the observation decays

with distance from the observation. Distance-dependent localization assumes that the sample correlation given by the ensemble

is less trustworthy (that is more spurious) as one moves away from the observation. As noted in section 2.4 variable localization

ensures that CO observations do not update meteorological variables. Therefore, the estimates of meteorological variables are

the same in all the experiments.370

4.3 CO DA experiments

EXP_HYP assimilates HYPNET observations (see section 3.2) in addition to the same meteorological observations assimilated

in EXP_CNTRL . The HYPNET observations are assimilated starting on 10 January 2015 18:00:00 UTC after a spin up from

27 December 2014 18:00:00 UTC to 10 January 2015 18:00:00 UTC. This spin up period allows time for the meteorolog-

ical assimilation to stabilize (Figure 5) before the CO data assimilation begins. This spin up also helps the development of375

correlations within the CO field.

Figure 6d shows the column averaged CO RMSE for the EXP_HYP experiment. Compared to the RMSE for the EXP_CNTRL

experiment the RMSE decreases substantially because HYPNET observations effectively constrain the CO state. The time

series of RMSE for the EXP_HYP is shown by the red curve in Figure 7a. The blue and red curves overlap from 27 December

2014 18:00:00 UTC to 10 January 2015 18:00:00 UTC during the spin up period. As soon as CO observations are assimilated380

starting on 10 January 2015 18:00:00 UTC, the RMSE decreases. The reduction in RMSE due to assimilation of HYPNET

observations is ∼ 7 ppb. This reduction is defined as the benefit,

benefit = RMSE(control)−RMSE(DA) (6)

The relative benefit is defined as,

relative_benefit = 100× benefit

RMSE(control)
(7)385

The second term in equation 6 is the RMSE of the experiment which assimilates CO observations. Since the EXP_CNTRL

does not assimilate CO observations, benefit measures the value of assimilating CO observations from a particular network.

This metric quantifies the extent to which CO observations constrain the CO state. Figure 9a shows the spatial structure of
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benefit in the EXP_HYP experiment. This figure is basically the difference between Figures 6c and 6d. The benefit is positive

in most parts of the globe except in parts of Tibet and eastern China. A negative value of benefit means that assimilation of CO390

observations increased the RMSE compared to the EXP_CNTRL. Negative values can occur because of the statistical nature of

data assimilation. However, if the data assimilation system is well tuned, such regions of negative benefits should be few and

small, as seen here. By comparing the spatial structure of RMSE in Figure 6c and benefit in Figure 9a it is clear that the benefit

is proportional to the RMSE. This makes sense because where the RMSE is large, the observations have a larger scope for

improving the CO state estimate. The relative benefit (equation 7) in this experiment is 41%. This means that the assimilation395

of HYPNET observations decreases the control RMSE by 41%.

The time series of RMSE in EXP_MOP is shown by the red curve in Figure 7b. The similarity of the amplitudes of the

red curves in Figures 7a and 7b indicates, surprisingly, that the global benefit of MOPITT data is only a little worse than

that due to the hypotetically dense in situ network (HYPNET). The spatial structure of the benefit due to the assimilation of

MOPITT retrievals (EXP_MOP) is shown in Figure 9b. Comparing Figure 9a and Figure 9b, it is evident that the benefit due to400

assimilation of HYPNET observations and MOPITT retrievals, is also quite similar in the column mean, in spite of the different

spatio-temporal distribution of observations. The relative benefit due to assimilation of MOPITT retrievals is 38%.

Figure 10a shows the benefit in EXP_GAW. Both the GAW and ECCC networks are assimilated in this experiment. The

combined network is temporally dense with observations every hour but is spatially sparse except in Canada and western

Europe (Figure 3c and 3d). The relative benefit in this experiment is 8%. Figure 10b shows the benefit over North America.405

The bulk of the benefit is in the eastern part of this domain though the ECCC stations are located both in eastern and western

Canada. The blob of highest benefit of about 10-20 ppb is centered on ECCC stations located in Ontario. Though USA does

not have any stations in this experiment, the benefit of observations in Ontario reaches as far as Florida spreading throughout

eastern USA. This is because of the spatial correlation between locations of observations in Ontario and the eastern part of

USA which is evident in Figure 8. The western part of Canada has a weak benefit inspite of having several observation sites in410

this region. This is because the RMSE in the western region is substantially lower than that in the eastern region (see Figure 6c).

Thus there is little scope for the observations to improve upon the control RMSE. The relative benefit over North America is

38%.

Figure 10a shows that assimilation results in significant benefit over Europe and parts of central Africa. The benefit in Europe

is due to high spatial density of GAW stations there. However, with only 5 stations in Africa, a benefit of 5-20 ppb in central415

Africa is produced. Some benefit is seen over north eastern China and Malaysia due to GAW stations located in these regions.

The last experiment, EXP_NOAA assimilates the NOAA flask stations in addition to the ECCC surface stations. It is seen

(figure not shown) that benefit over Canada is same as that seen in EXP_GAW. However, globally the NOAA flask stations do

not result in any significant benefit over any other region. This is because the flask observations are available, on an average,

only once a week. This experiment is not discussed further in this work.420
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In the case of the assimilation of HYPNET and MOPITT observations (Figures 9a and 9b) many parts of Atlantic, Pacific,

Indian and other oceans show significant benefit. The CO flux over oceans is practically zero compared to that on land. The

HYPNET and MOPITT observations over oceans contribute to the benefit on oceans. However, the improvement of the CO

state over land also contributes to be benefit over oceans. For example any improvement in CO state over central Africa

improves the state over tropical Atlantic ocean due to the downwind transport.425

In the discussion so far the horizontal and temporal structure of benefit was explored. Figure 11 examines the vertical structure

of benefit. Figure 11a shows the globally averaged profile of the control RMSE and benefits from the three CO DA experiments.

The average RMSE of the control experiment (EXP_CNTRL) peaks close to the surface with a value of 21 ppb. The average

benefit in the bottom 4 km is ∼ 7 ppb in the EXP_HYP and EXP_MOP experiments, but is only ∼ 1 ppb for the EXP_GAW

experiment. Comparing the shapes of the blue and red curve to the black curve, the benefit is proportional to the control RMSE430

except in the bottom ∼ 1 km. The shape of the benefit profile is dictated both by the shape of the control RMSE and the

location of observations in the particular network. The EXP_HYP profile shows a local peak at 1 km. This is because HYPNET

observations are located at 1 km. HYPNET observations are also located at 5 km. However the control RMSE decreases by

a factor of 2 from 1 km to 5 km. Consequently the benefit also decreases. The peak in the blue profile at ∼ 3 km is due to a

combination of value of RMSE and information content in the MOPITT retrievals.435

The profiles averaged over Africa (Figure 11b) have similar shapes to those in Figure 11a. This is because both the RMSE and

benefit in Africa are high compared to other parts of the globe (see Figures 6c and 9). Hence the global average is dominated

by values over Africa. The planes of HYPNET observations are located at roughly 1.3, 5.3 and 9.3 km. The average height

of the GAW observations is 2.2 km. The benefit in the EXP_GAW experiment has a peak value of ∼ 4 ppb at 3.5 km. This is

because the GAW station located at Mount Kenya (0.06◦ S,37.29◦ E) has an altitude of 3678 meters. Additionally the site at440

Assekrem, Algeria located at 23.26◦ N,5.63◦ E is situated at an altitude of 2715 meters. The EnKF spreads the information

content from these observations to the surrounding regions.

The profiles for North America are shown in Figure 11c. The planes of HYPNET observations are located at approximately

1.3, 5.3 and 9.3 km. The average height of the ECCC observations is 0.38 km. The benefit due to the ECCC observations close

to the surface is∼ 4.1 ppb. The benefit in both HYPNET and MOPITT experiments is∼ 2 ppb. The benefit due to assimilation445

of ECCC observations decreases monotonically with height because the RMSE decreases monotonically and also because

the ECCC observations cannot constrain the CO state beyond the vertical localization radius. The average height of stations

in eastern Canada is 212 meters. These stations make a major contribution to the benefit over North America. Temporally

HYPNET observes every 6 hours while ECCC stations observe every hour. Both, the higher temporal frequency and the lower

altitude contribute to the higher benefit close to the surface in case of the ECCC observations compared to HYPNET which is450

located at 1 km.

16

https://doi.org/10.5194/gmd-2020-219
Preprint. Discussion started: 18 August 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 11d shows the profiles for Europe. The planes of HYPNET observations are located approximately at 1.19, 5.19 and

9.19 km. The average height of the GAW observations is 1.13 km. In the case of GAW network, the benefit is 5.9 ppb close

to the surface, The HYPNET benefit is much smaller (1.7 ppb). As in the case of North America the better performance of

GAW stations in the bottom 500 meters is a due to both the lower altitude of the stations and higher temporal frequency of455

observations compared to the HYPNET.

Figure 11e shows the profiles for South America. The planes of HYPNET observations are located at 1.18, 5.18 and 9.18

km. GAW stations are not present in South America and hence the benefit is practically zero. The HYPNET and MOPITT

benefits are approximately proportional to the control RMSE which peaks at 3 km. The South American domain also contains

a large part of the Pacific ocean and some part of Atlantic ocean. The average benefit profiles for the EXP_HYP and EXP_MOP460

represent the improvement in the oceanic CO state due to the assimilation of observations over the oceans and also the benefit

due to downwind transport from land regions.

Figures 11f and 11g show an improvement of about 6 ppb close to the surface for EXP_HYP and EXP_MOP in South and east

Asia. The planes of HYPNET observations, in east Asia are located approximately at 1.34, 5.34 and 9.34 km while those in

south Asia are located at 1.45, 5.45 and 9.45 km. The average height of the GAW observations is approximately 0.55 km.465

It is evident that the spatio-temporal structure of benefit is similar between HYPNET and MOPITT, both horizontally and

vertically. This suggests that, in the idealistic setting of unbiased observations and precisely known observation and model

error covariances, the performance of MOPITT retrievals is similar to insitu observations. It is should be noted that MOPITT

observations are spatially more dense than our HYPNET observation network. In addition, HYPNET has information at three

vertical levels while MOPITT has an information content with one to two degrees of freedom (Deeter et al., 2012) so that470

vertical information is similar in the two networks.

5 Conclusions and further work

A new greenhouse gas data assimilation system based on an operational weather forecast model (EC-CAS v1.0) was developed

and validated for the estimation of the 3-dimensional state of CO using simulated observations from HYPNET, ECCC, GAW

and MOPITT networks. The spread in CO is obtained by perturbing the winds, flux fields and physics parametrizations. The475

CO spread approximately matches the RMSE suggesting that an ensemble size of 64 is acceptable for CO estimation. However,

these conclusions are based on the assimilation of simulated observations which are unbiased.

These experiments lead to a qualitative understanding of the decrease in RMSE due to the assimilation of CO observations

from realistic networks. With all networks it is seen that the benefit due to assimilation of observations is proportional to the CO

RMSE. Another factor which controls the pattern of benefit is the locations of observations. For example, the GAW network480

has only one station in central Africa. The observations from this station are able to effectively constrain the CO state within
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2000 km. The benefit is the highest in the plane at which this observation is located. The CO state close to the surface is better

constrained by observations in the lowermost 500 m than the observations at 1 km. This is suggested by the results in North

America and Europe. The CO state over the ocean is constrained partly due to the improvement of the CO state over flux-rich

land regions. In the case of MOPITT assimilation, the benefit in central Africa (which is the region with strongest flux) ranges485

from 10 to over 40 ppb. The downwind transport results in a benefit of 5 to 40 ppb over the tropical Pacific. The benefits

over south and east Asia range from 2 to 20 ppb. These quantitative findings are expected to change when real observations

are assimilated. Biases in observations and correlations in the observational errors along with unaccounted model errors make

assimilation of real observations more challenging so that the error reductions are expected to be smaller.

In the current state of our EnKF, CO prediction (transport) errors due to uncertain meteorological analyses and model formu-490

lation errors (e.g. boundary layer transport, convective transport) are encompassed in our forecast ensemble. However, errors

in the simplified chemistry model are not addressed. Since we use simulated observations generated by the same model which

later performs the CO data assimilation, this type of error is not simulated. However, CO flux estimates are impacted by the

choice of OH field (Yin et al., 2015; Jiang et al., 2017, 2015a, b, 2011). On the other hand, Miyazaki et al. (2012) found that

in their forecast ensemble, CO flux errors were correlated only with CO fields (in the lower troposphere) and not with other495

species. In addition, Miyazaki et al. (2015) note that in their multi-species assimilation system, the assimilation of other species

had little impact on CO through OH adjustments. This suggests that for flux estimation, simplified CO reactions with OH cli-

matologies may be sufficient, particularly, if the uncertainty in the chemistry can be accounted for. Thus we plan to allow for

the uncertainty in the chemistry module through either using an ensemble of OH climatologies or by directly perturbing the

reaction rates for CO loss and for the production of CO by methane oxidation.500

This work has presented only the very first step in the development of EC-CAS. There are many further stages of development

because the goal of EC-CAS is to estimate the 3-dimensional fields of CO, CO2 and CH4 and their fluxes along with meteo-

rological fields by assimilating all available observations of meteorological variables and chemical species using an ensemble

smoother. These include both in situ and remotely sensed measurements. The immediate next step is to modify EC-CAS 1.0

to allow the update of the CO flux by CO observations since we demonstrated here that the CO state estimation is working505

well. Preliminary work suggests that HYPNET observational network is able to estimate the CO flux field after about a week

of data assimilation. After the ability to estimate fluxes is demonstrated EC-CAS will be tested for estimation of CO and CO2

3-dimensional field and their fluxes using real observations. The estimates of flux can be improved by using a smoother rather

than a filter since a smoother assimilates future observations too. Ultimately, an ensemble Kalman smoother will be developed.
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Figure 1. EC-CAS v1.0. There are 64 prescribed CO flux ensemble members. In EC-CAS v1.0 flux fields are not estimated. Instead, the

perturbed flux field is used to account for uncertainty in CO due to error in the flux. The 64-member forecast ensemble is used along with the

observations and the statistics of observation errors as inputs to the EnKF. The 64 analyses of meteorology and CO generated by the EnKF

are used as initial conditions for the next 6 hour forecast. This cycle repeats every 6 h.

Figure 2. The true CO flux field for January 2015.
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Figure 3. In each panel, topography is shown by the color. (a) HYPNET exists at 1 km, 5 km and 9 km. At each of these levels the

observations are located 1000 km apart in the horizontal. There are 622 observations locations at each height and total of 622× 3 = 1866

observations every 6 hours. (b) The locations of flask observations from the NOAA network. (c) The GAW and ECCC station locations. (d)

The ECCC station locations also shown in panel (c).
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Figure 4. An example of the distribution of MOPITT satellite observations. Thinned MOPITT orbits on 11 January 2015 00:00:00 UTC are

shown.

Figure 5. Evolution of the root mean squared error of the temperature analyses (red curve) and trial fields (blue curve) from the control

experiment which assimilated meteorological observations only.
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Figure 6. In each panel, column means (0-5 km) averaged from 10 January 2015 18:00:00 UTC to 28 February 2015 00:00:00 UTC are

shown. (a) CO ensemble mean of the control experiment. (b) CO ensemble spread of the control experiment. (c) RMSE of the control

experiment. (d) RMSE of the HYPNET DA experiment.
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Figure 7. Column (0-10 km) mean RMSE of CO analyses from various experiments : (a) The control, EXP_CNTRL (blue curve) and the DA

experiment assimilating HYPNET observations, EXP_HYP (red curve). (b) The control, EXP_CNTRL (blue curve) and the DA experiment

assimilating MOPITT observations, EXP_MOP (red curve). The blue curves in panel(a) and (b) are identical. The 24 h oscillations in the

curves are meteorology induced.

Figure 8. The spatial correlation of CO field between University of Toronto (shown by the white cross) and other locations in the horizontal

plane defined by the lowest model level. The red circle of radius 2000 km shows the horizontal localization. The correlation is estimated by

using the 64 trial ensemble members.
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Figure 9. Column (0-5 km) mean benefit averaged from 10 January 2015 18:00:00 UTC to 28 February 2015 00:00:00 UTC. In panel (a),

the marked boxes show the domains of North America, South America, Europe, Africa, South Asia and East Asia. These domains are used

in Figure 11. Note that all the domains contain both ocean and land. The South American domain includes a large part of the Pacific ocean.

Figure 10. (a) Column (0-5 km) mean benefit averaged from 10 January 2015 18:00:00 UTC to 28 February 2015 00:00:00 UTC for the

experiment which assimilates near surface measurements from ECCC and GAW networks (EXP_GAW). (b) The North American domain

from panel (a).
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Figure 11. Profiles of benefit and control RMSE averaged over different domains. In each panel the black curve shows the control RMSE

scaled down by a factor of 3. The colored curves show the benefits due to the assimilation of three different observational networks

(EXP_HYP, EXP_MOP and EXP_GAW). Panel (a) shows the globally averaged profiles. The other panels show profiles averaged over

domains shown in figure 9a. The limits on the x-axis are different in each panel.
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Appendix510

Code Station name Latitude Longitude Altitude

1 ABT Abbotsford 49.01 −122.34 60.3

2 ALT Alert 82.45 −62.52 200.0

3 BLK Baker Lake 64.33 −96.01 94.8

4 BRA Bratts Lake 50.20 −104.71 595.0

5 CBY Cambridge Bay 69.13 −105.06 35.0

6 CHL Churchill 58.74 −93.82 29.0

7 DWS Downsview 43.78 −79.47 198.0

8 EGB Egbert 44.23 −79.78 251.0

9 ESP Estevan Point 49.38 −126.54 7.0

10 EST Esther Alberta 51.67 −110.21 707.0

11 ETL East Trout Lake 54.35 −104.99 493.0

12 FMS Fort McKay 57.15 −111.64 250.0

13 FNE Fort Nelson 58.84 −122.57 361.0

14 FSD Fraserdale 49.88 −81.57 210.0

15 LLB Lac LaBiche 54.95 −112.47 540.0

16 TPD Turkey Point 42.64 −80.55 231.0

17 WSA Sable Island 43.93 −60.01 5.0

Table A1. Information about ECCC surface sites used in this study. The altitude is in meters above sea level.
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Code Station name Latitude Longitude Altitude Code Station name Latitude Longitude Altitude

1 AMY Anmyeon-do 36.5383 126.3300 71.0 23 IZO Izaña 28.3090 −16.4993 2403.0

2 ASK Assekrem 23.2667 5.6333 2715.0 24 JFJ Jungfraujoch 46.5475 7.9851 3580.0

3 BEO Moussala 42.1792 23.5856 2931.0 25 KMW Kollumerwaard 53.3333 6.2667 3.5

4 BKT Bukit Kototabang −0.2019 100.3180 874.0 26 KOS Kosetice 49.5833 15.0833 535.0

5 CGR Capo Granitola 37.6667 12.6500 9.0 27 KTB Kloosterburen 53.4000 6.4200 0.0

6 CMN Monte Cimone 44.1667 10.6833 2172.0 28 KVV Krvavec 46.2973 14.5333 1750.0

7 CPT Cape Point −34.3534 18.4897 260.0 29 LMT Lamezia Terme 38.8763 16.2322 14.0

8 CUR Monte Curcio 39.3160 16.4232 1800.9 30 MKN Mt. Kenya −0.0622 37.2972 3682.5

9 CVO Cape Verde 16.8640 −24.8675 20.0 31 MNM Minamitorishima 24.2883 153.9833 27.1

10 ECO Lecce 40.3358 18.1245 86.0 32 NGL Neuglobsow 53.1428 13.0333 62.0

11 GAT Gartow 53.0657 11.4429 99.0 33 PAY Payerne 46.8129 6.9435 494.5

12 GAT Gartow 53.0657 11.4429 129.0 34 PDI Pha Din 21.5731 103.5157 1478.0

13 GAT Gartow 53.0657 11.4429 201.0 35 PDM Pic du Midi 42.9372 0.1411 2881.0

14 GAT Gartow 53.0657 11.4429 285.0 36 PUY Puy de Dome 45.7723 2.9658 1467.0

15 GAT Gartow 53.0657 11.4429 410.0 37 RIG Rigi 47.0674 8.4633 1036.0

16 GLH Giordan 36.0700 14.2200 167.0 38 RYO Ryori 39.0319 141.8222 280.0

17 HBA Halley −75.3500 −26.3900 38.0 39 SNB Sonnblick 12.9578 47.0542 3111.0

18 HKG Hok Tsui 22.2095 114.2578 60.0 40 SSL Schauinsland 47.9000 7.9167 1205.0

19 HPB Hohenpeissenberg 47.8000 11.0200 1003.0 41 TLL El Tololo −30.1683 −70.8036 2159.0

20 HPB Hohenpeissenberg 47.8011 11.0246 1035.0 42 YON Yonagunijima 24.4667 123.0106 50.0

21 HPB Hohenpeissenberg 47.8011 11.0246 1078.0 43 ZSF Zugspitz 47.4165 10.9796 2670.0

22 HPB Hohenpeissenberg 47.8011 11.0246 1116.0 44 ZUG Zugspitz-Gipfel 47.4211 10.9859 2965.5

Table A2. Information about GAW surface sites used in this study. The altitude is in meters above sea level.
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Code and data availability. The source code is publicly available at https://doi.org/10.5281/zenodo.3908545 under the GNU Lesser General

Public License version 2.1 (LGPL v2.1) or ECCC’s Atmospheric Sciences and Technology licence version 3. The model data output are

available at http://crd-data-donnees-rdc.ec.gc.ca/CCMR/pub/2020_Khade_ECCAS_all_data/.
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