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Abstract 20 

The two-way coupled Weather Research and Forecasting and Community Multiscale Air 21 

Quality (WRF-CMAQ) model has been developed to more realistically represent the atmosphere 22 

by accounting for complex chemistry-meteorology feedbacks. In this study, we present a 23 

comparative analysis of two-way (with consideration of both aerosol direct and indirect effects) 24 

and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous U.S. Long-term (five-year 25 

of 2008-2012) simulations using WRF-CMAQ with both offline and two-way coupling modes 26 

are carried out with anthropogenic emissions based on multiple years of the U.S. National 27 

Emission Inventory and chemical initial and boundary conditions derived from an advanced 28 

Earth system model (i.e., a modified version of the Community Earth System Model/Community 29 

Atmospheric Model). The comprehensive model evaluations show that both two-way WRF-30 

CMAQ and WRF-only simulations perform well for major meteorological variables such as 31 

temperature at 2 m, relative humidity at 2 m, wind speed at 10 m, and precipitation (except for 32 

against the National Climatic Data Center data) as well as shortwave/longwave radiation. Both 33 

two-way and offline CMAQ also show good performance for ozone (O3) and fine particulate 34 

matter (PM2.5). Due to the consideration of aerosol direct and indirect effects, two-way WRF-35 

CMAQ shows improved performance over offline-coupled WRF and CMAQ in terms of 36 

spatiotemporal distributions and statistics, especially for radiation, cloud forcing, O3, sulfate, 37 

nitrate, ammonium, and elemental carbon as well as tropospheric O3 residual and column 38 

nitrogen dioxide (NO2). For example, the mean biases have been reduced by more than 10 W m-2 39 

for shortwave radiation and cloud radiative forcing and by more than 2 ppb for max 8-h O3. 40 

However, relatively large biases still exist for cloud predictions, some PM2.5 species, and PM10, 41 

which warrant follow-up studies to better understand those issues. The impacts of chemistry-42 
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meteorological feedbacks are found to play important roles in affecting regional air quality in the 43 

U.S. by reducing domain-average concentrations of carbon monoxide (CO), O3, nitrogen oxide 44 

(NOx), volatile organic compounds (VOCs), and PM2.5 by 3.1% (up to 27.8%), 4.2% (up to 45 

16.2%), 6.6% (up to 50.9%), 5.8% (up to 46.6%), and 8.6% (up to 49.1%), respectively, mainly 46 

due to reduced radiation, temperature, and wind speed. The overall performance of the two-way 47 

coupled WRF-CMAQ model achieved in this work is generally good or satisfactory and the 48 

improved performance for two-way coupled WRF-CMAQ should be considered along with other 49 

factors in developing future model applications to inform policy making. 50 

Keywords: CMAQ, Two-way coupling, Evaluation, Chemistry-meteorology feedback  51 

1. Introduction 52 

The Community Multiscale Air Quality (CMAQ) modeling system developed by the U.S. 53 

Environmental Protection Agency (EPA) (Byun and Schere, 2006; Scheffe et al., 2016; San 54 

Joaquin Valley APCD, 2018; Pye et al., 2020; U.S. EPA, 2020) has been extensively used by 55 

both scientific community and governmental agencies over various geographical regions and 56 

under different meteorological and air pollution conditions to address major key air quality 57 

issues such as atmospheric ozone (O3), acid rain, regional haze, and trans-boundary or long-58 

range transport of air pollutants during the past decades over North America (Zhang et al., 59 

2009a,b; Wang and Zhang, 2012; Hogrefe et al., 2015), Asia (Wang et al., 2009, 2012; Liu et al., 60 

2010; Zheng et al., 2015; Li et al., 2017; Xing et al., 2017; Yu et al., 2018; Mehmood et al., 61 

2020), and Europe (Kukkonen et al., 2012; Mathur et al., 2017; Solazzo et al., 2017). The 62 

CMAQ model is traditionally driven offline by the three-dimensional meteorology fields 63 

generated separately from other meteorological models such as the Weather Research and 64 

Forecasting (WRF) model, and the dynamic feedbacks of chemistry predictions on meteorology 65 
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are neglected. However, more recently (IPCC, 2018), chemistry-meteorology feedbacks have 66 

been found to play important roles in affecting the both global and regional climate change and 67 

air quality (Jacobson et al., 1996; Mathur et al., 1998; Ghan et al., 2001; Zhang, 2008; Zhang et 68 

al., 2010, 2015a,b, 2017; Grell and Baklanov, 2011; Wong et al., 2012; Baklanov et al., 2014; Yu 69 

et al., 2014; Gan et al., 2015a; Wang et al., 2015a; Xing et al., 2015a,b; Yahya et al., 2015a,b; 70 

Hong et al., 2017; Jung et al., 2019). Feedbacks of aerosols on radiative transfer through aerosol-71 

radiation interactions (i.e., aerosol direct forcing) and aerosol-cloud interactions (i.e., aerosol 72 

indirect forcing) are especially important (Zhang, 2008; Zhang et al,, 2015a,b; Baklanov et al., 73 

2014; Wang et al., 2015a; Yahya et al., 2015a,b). Recognizing this importance, as well as the 74 

recent advances in knowledge on chemistry-meteorology interactions and computational 75 

resources, the U.S. EPA developed a two-way coupled WRF-CMAQ model that accounts for the 76 

aerosol direct effect alone (Wong et al., 2012). This version of CMAQ has been applied for both 77 

regional and hemispheric studies (Wang et al., 2014; Hogrefe et al., 2015; Xing et al., 2016, 78 

2017; Hong et al., 2017, 2020; Sekiguchi et al., 2018; Yoo et al., 2019). For example, Xing et al. 79 

(2016) showed that aerosol direct feedbacks may further improve air quality resulting from 80 

emission controls in the U.S. and also indicated that coupled models are key tools for quantifying 81 

such feedbacks. Reduction in atmospheric ventilation resulting from aerosol induced surface 82 

cooling can exacerbate ground level air pollution. Hong et al. (2017) estimated an increase by 83 

4.8%-9.5% in concentrations of major air pollutants over China in winter due to incorporation of 84 

such effects. Xing et al. (2017) reported that the aerosol direct effects could reduce daily max 1h 85 

O3 by up to 39 g m-3 over China in January through reducing solar radiation and photolysis 86 

rates. Hong et al. (2020) found that the benefits of reduced pollutant emissions through 87 

weakening aerosol direct effects can largely offset the additional deaths caused by the warming 88 
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effect of greenhouse gases over China. Some of those studies have also found that the missing 89 

aerosol indirect effects in WRF-CMAQ may introduce large model biases on their simulations of 90 

radiation and thus air quality (Wang et al., 2014; Sekiguchi et al., 2018; Yoo et al., 2019). There 91 

has been a growing awareness that both aerosol effects should be considered together to provide 92 

greater fidelity in coupling complex atmospheric processes among chemistry, aerosols, cloud, 93 

radiation, and precipitation (Grell and Baklanov, 2011). To address this issue and better represent 94 

the one-atmosphere modeling capability of CMAQ, Yu et al. (2014) further extended the two-95 

way coupled WRF-CMAQ model by including aerosol indirect effects and improved WRF-96 

CMAQ’s capability for predicting cloud and radiation variables.    97 

Different from the traditional online integrated air quality models such as the Gas, 98 

Aerosol, Transport, Radiation, General Circulation, and Mesoscale Meteorological (GATOR-99 

GCMM) model (Jacobson, 2001), the WRF model coupled with chemistry (WRF/Chem; Grell et 100 

al., 2005) and the WRF model coupled with the Community Atmosphere Model version 5 101 

(WRF-CAM5; Ma et al., 2013; Zhang et al., 2015a,b; 2017), in which atmospheric dynamics and 102 

chemistry are integrated and simulated altogether without an interface between meteorology and 103 

atmospheric chemistry (Zhang et al., 2013), two-way WRF-CMAQ (also referred to as the online 104 

access model) is created by combining existing meteorology (i.e., WRF) and atmospheric 105 

chemistry (i.e., CMAQ) models with an interactive interface (Yu et al., 2014). As pointed out by 106 

Yu et al. (2014), the main advantage of two-way CMAQ is to allow the existing numerical 107 

techniques to be used in both WRF and CMAQ to facilitate future independent development of 108 

both models while also maintaining CMAQ as a stand-alone model (the offline capability). In the 109 

past, a number of studies have compared and evaluated online vs. offline-coupled model 110 

performance (Pleim et al, 2008; Matsui et al., 2009; Wilczak et al., 2009; Lin et al., 2010; 111 
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Herwehe et al., 2011; Yu et al., 2011; Wong et al., 2012; Zhang et al., 2013, 2016a; Choi et al., 112 

2019). However due to the missing offline-coupled mode or component for most online-coupled 113 

models, many of those intercomparison studies are subject to some key limitations such as 114 

inconsistent model treatments in chemical options (Matsui et al., 2009; Lin et al., 2010; Zhang et 115 

al., 2013; Choi et al., 2019) or in both physical and chemical options (Wilczak et al., 2009; 116 

Herwehe et al., 2011; Zhang et al., 2016a), different domain projection methods or resolutions 117 

(Wilczak et al., 2009; Lin et al., 2010; Zhang et al., 2013), or disunified model inputs (Wilczak et 118 

al., 2009; Lin et al., 2010; Zhang et al., 2013). Due to the unique coupling approach, two-way 119 

WRF-CMAQ can be used to overcome those limitations and set up ideal intercomparisons 120 

between online and offline simulations using consistent model treatments (Pleim et al, 2008; Yu 121 

et al., 2011; Wong et al., 2012).  122 

In this study, we provide a robust examination of model improvements by considering 123 

chemistry-meteorology feedbacks and their impacts on the U.S. air quality using the two-way 124 

WRF-CMAQ model (same version as in Yu et al., 2014) with both aerosol direct and indirect 125 

effects. Long-term (five-year of 2008-2012) simulations using both two-way and offline coupled 126 

WRF and CMAQ models are carried out and compared to the best of our knowledge for the first 127 

time over the contiguous U.S. (CONUS) with anthropogenic emissions based on multiple years 128 

of the U.S. National Emission Inventory (NEI) and chemical initial and boundary conditions 129 

(ICONs/BCONs) downscaled from the advanced Earth system model, i.e., an updated version of 130 

the Community Earth System Model/CAM5 (CESM/CAM5; He and Zhang, 2014; Glotfelty et 131 

al., 2017). Our objectives include 1) perform a comprehensive model evaluation for major 132 

meteorological variables and chemical species from this long-term application of the two-way 133 
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coupled WRF-CMAQ; and 2) conduct a comparative study of two-way and offline coupled WRF 134 

and CMAQ to examine the impacts of chemistry-meteorology interactions on U.S. air quality.  135 

Compared to previous studies in the literature, there are a few key features of this work. 136 

First, the intercomparisons between two-way (or online) and offline WRF-CMAQ are performed 137 

here using consistent model configurations including both physical/chemical options and inputs. 138 

Second, unlike a few previous intercomparison studies (Pleim et al, 2008; Yu et al., 2011; Wong 139 

et al., 2012) using two-way WRF-CMAQ with only aerosol direct effects for relatively short 140 

episodes, the model version in this work includes both aerosol direct and indirect effects and 141 

simulations are conducted for multiple years to provide more robust assessments. Third, 142 

compared to other studies (e.g., Yahya et al., 2015a,b; Choi et al., 2019) focusing on the impacts 143 

of chemistry-meteorology feedbacks on meteorology only or limited chemical species, this study 144 

performs comprehensive and extensive evaluation and comparison to demonstrate importance of 145 

chemistry-meteorology feedbacks on regional meteorology and air quality.  146 

2. Model description, simulation setup, and evaluation protocols 147 

Two sets of five-year (i.e., 2008-2012) long-term simulations are conducted using the two-148 

way coupled WRF v3.4-CMAQ v5.0.2 model with both aerosol direct and indirect effects and 149 

the sequentially offline-coupled WRF v3.4 and CMAQ v5.0.2 model, respectively, over the 150 

CONUS with 36-km horizontal grid spacing. The vertical resolution for these simulations 151 

consists of 34 layers from the surface (~38 m) to 100 hPa (~15 km). The two-way coupled WRF-152 

CMAQ includes estimations of aerosol optical properties based on prognostic aerosol size 153 

distributions and composition. These aerosol optical properties are then used to modulate the 154 

shortwave radiation budget estimated using the Rapid and accurate Radiative Transfer Model for 155 
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General circulation (RRTMG) radiation scheme (Iacono et al., 2008) in WRF. Additionally, 156 

aerosol indirect effects, including the first (cloud albedo) and second (cloud lifetime) indirect 157 

aerosol forcing and the glaciation (ice and mixed-phase cloud lifetime) indirect aerosol forcing 158 

are also modeled. More details on the model development of this version of WRF-CMAQ can be 159 

found in Yu et al. (2014). On the other hand, the WRF only model calculates the radiation 160 

budgets by using prescribed aerosol optical properties such as aerosol optical depth, single 161 

scattering albedo and asymmetry parameters and cloud formation by assuming default droplet 162 

number concentration and fixed cloud effective radius, which may not be representative for the 163 

large regions with complex air pollution conditions. Both the two-way and offline coupled WRF-164 

CMAQ use the same model configurations as shown in Table S1 in the supplementary material, 165 

except that prognostic aerosol impacts on radiation and clouds are fully treated in two-way 166 

WRF-CMAQ. The physics options include the RRTMG shortwave and longwave radiation 167 

schemes, the Asymmetric Convective Model (ACM2) planetary boundary layer (PBL) scheme 168 

(Pleim, 2007), the Pleim-Xiu (PX) land-surface scheme (Xiu and Pleim, 2001), the Morrison 169 

two-moment microphysics scheme (Morrison et al., 2009), and version 2 of the Kain–Fritsch 170 

(KF2) cumulus scheme (Kain, 2004). The chemical options include the Carbon Bond 2005 171 

(CB05) chemical mechanism (Yarwood et al., 2005) with additional chloride chemistry (Sarwar 172 

et al., 2008), the sixth generation CMAQ aerosol module (AERO6) (Appel et al., 2013), and 173 

CMAQ’s aqueous phase chemistry (AQCHEM). In addition, the time steps of dynamics and 174 

radiation for two-way WRF-CMAQ are set as 1 min and 15 mins, respectively, and the call 175 

frequency for CMAQ in the two-way coupled model is set to be 5 mins.  176 

The meteorological ICONs/BCONs are generated from the National Centers for 177 

Environmental Prediction Final Analysis (NCEP-FNL) datasets and the chemical 178 
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ICONs/BCONs are downscaled from a modified version of CESMv1.2.2/CAM5 (He and Zhang, 179 

2014; Glotfelty et al., 2017). The chemical ICONs/BCONs generated from CESM simulations 180 

consider the year-to-year variation. The CESM simulations have been comprehensively 181 

evaluated against surface, remoting sensing including satellite data, and reanalysis data for major 182 

meteorological and chemical variables over Europe, Asia, North America, and the globe. The 183 

results are also compared with other existing global model results and show generally 184 

satisfactory/superior performance. The anthropogenic emissions are based on two versions of 185 

NEI. NEI 2008 and NEI 2011 are used to cover the 5-year period, i.e., NEI 2008 for 2008-2010 186 

and NEI 2011 for 2011-2012, respectively. Biogenic emissions are calculated online using the 187 

Biogenic Emissions Inventory System (BEIS) v3 (Schwede et al., 2005). The sea-salt and dust 188 

emissions are also generated online by CMAQ’s inline modules (Zender et al., 2003; Zhang et 189 

al., 2005). Two-way coupled WRF-CMAQ simulations are reinitialized every 5 days for 190 

meteorology fields only. We have conducted sensitivity simulations in the past (Wang et al., 191 

2021) and found that a 5-day reinitialization frequency is more suitable to improve the overall 192 

simulation quality while preserving chemistry-meteorology feedbacks. The WRF-only 193 

simulations apply the same reinitialization method to make sure any deviation between two 194 

simulations are more determined by the feedback processes. 195 

The model evaluation in this work mainly focuses on the long-term climatological type of 196 

performance in representative seasons (i.e., winter and summer) by comparing 5-year average 197 

spatially and temporally matched model predictions of major surface meteorological/radiation-198 

cloud variables and surface/column chemical species against various surface/satellite 199 

observations and reanalysis data (The 5-year annual results can be found in the supplemental 200 

materials). A brief inter-annual comparison between observations and two-way CMAQ 201 
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simulations are also performed for selected major meteorological and chemical variables to 202 

examine the model’s capability in reproducing the year-to-year variations of those variables. The 203 

surface meteorological data include temperature at 2 m (T2), relative humidity at 2 m (RH2), 204 

wind speed at 10 m (WS10), and wind direction at 10 m (WD10) from the National Climatic 205 

Data Center (NCDC), and precipitation from the NCDC, the National Acid Deposition Program 206 

(NADP), the Global Precipitation Climatology Project (GPCP), the Parameter-elevation 207 

Regressions on Independent Slopes Model (PRISM), and the Tropical Rainfall Measuring 208 

Mission Multisatellite Precipitation Analysis (TMPA). The radiation and cloud data include 209 

downward shortwave radiation at the ground surface (SWDOWN), net shortwave radiation at the 210 

ground surface (GSW), downward longwave radiation at the ground surface (GLW), outgoing 211 

longwave radiation at the top of the atmosphere (OLR), and shortwave and longwave cloud 212 

forcing (SWCF and LWCF) from the Clouds and the Earth’s Radiant Energy System (CERES); 213 

aerosol optical depth (AOD), cloud fraction (CF), cloud water path (CWP), and cloud optical 214 

thickness (COT) from the MODerate resolution Imaging Spectroradiometer (MODIS); and cloud 215 

droplet number concentration (CDNC) derived based on MODIS data by Bennartz (2007). The 216 

chemical data include surface O3 from the Aerometric Information Retrieval System-Air Quality 217 

Subsystem (AIRS-AQS) and the Clean Air Status and Trends Network (CASTNET); surface 218 

particulate matter with 2.5 m or less (PM2.5) and its constituents including sulfate (SO4
2-), 219 

nitrate (NO3
-), ammonium (NH4

+), elemental carbon (EC), organic carbon (OC), and total carbon 220 

(TC = EC + OC) from the Interagency Monitoring of Protected Visual Environments 221 

(IMPROVE) and the Chemical Speciation Network (CSN); surface particulate matter with 222 

diameters of 10 m or less (PM10) from the AQS; and column abundance variables such as 223 

column carbon monoxide (CO) from the Measurements of Pollution in the Troposphere 224 
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(MOPITT), tropospheric ozone residual (TOR) from the Ozone Monitoring Instrument (OMI), 225 

and column nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Scanning Imaging 226 

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY).  227 

The satellite datasets used in this study are all level-3 gridded monthly-averaged data 228 

with various resolutions (i.e., 0.25° for OMI and PRISM, 0.5° for SCIAMACHY, 1° for CERES, 229 

GPCP, MODIS, and MOPITT). For the calculation of model performance statistics, the satellite 230 

data with different resolutions are mapped to CMAQ’s Lambert conformal conic projection 231 

using bi-linear interpolation in the NCAR command language. CMAQ model outputs at 232 

approximate time of the satellite overpass are paired with the satellite retrievals to facilitate a 233 

consistent comparison. Note that only those grid points with valid satellite observations are 234 

considered when paring model results with observations, and the averaging kernels are not 235 

considered when analyzing the column CO and NO2 results, which may introduce some 236 

uncertainties (Wang et al., 2015b). Modeled CDNC is calculated as the average value of the 237 

layer of low-level warm clouds between 950 and 850 hPa as suggested by Bennartz (2007). 238 

Following the approach of Wielicki et al. (1996), the SWCF and LWCF are calculated as the 239 

difference between the clear-sky and the all-sky reflected radiation at the top of atmosphere for 240 

both simulations and observations. 241 

The statistical performance evaluation follows a protocol similar to that of Zhang et al. 242 

(2006, 2009a) and Yahya et al. (2016) and uses well-accepted statistical measures such as 243 

correlation coefficient (R), mean bias (MB), root mean square error (RMSE), normalized mean 244 

biases (NMB), and normalized mean error (NME) (S. Yu et al., 2006). Because of different 245 

sampling protocols among monitoring networks, the evaluation is conducted separately for 246 

individual networks for the same simulated variables/species. 247 
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3. Comprehensive model evaluation of two-way WRF-CMAQ 248 

3.1 Meteorological evaluation 249 

3.1.1 Surface meteorological variables 250 

Figures 1 shows the spatial distribution of 5-year average MBs for T2, RH2, WS10, and 251 

hourly precipitation from two-way WRF-CMAQ against the NCDC data in winter and summer, 252 

2008-2012 and Tables 1 and 2 summarize the statistics for the same variables. Most variables 253 

except for precipitation show overall moderate to good spatial performance with many sites 254 

showing MBs within ±1.0 C for T2, ±10 % for RH2, ±1 m s-1 for WS10, and ±0.2 mm hr-1 for 255 

precipitation, respectively in both seasons. WRF-CMAQ tends to overpredict T2 (i.e., warm 256 

bias) over widespread areas of domain especially along the Atlantic coast, the 257 

eastern/southeastern U.S., the Central U.S., and Pacific coast in winter and underpredict T2 (i.e., 258 

cold bias) over the eastern U.S., the Central U.S., and mountainous U.S. in summer, which leads 259 

to an overall small warm bias in the whole year (see Figure S1). Similar warm biases of T2 in 260 

winter have been previously reported by Cohen et al. (2015) and are found to be associated with 261 

the relatively deeper PBL depth using the non-local ACM2 PBL scheme. The relatively larger 262 

warm/cold biases over coastal and mountainous areas are likely due to the coarse grid spacing of 263 

36-km that cannot well resolve the complex topography (Yahya et al., 2016). Compared to many 264 

previous WRF studies (Wang et al., 2012; Brunner et al., 2015; Yahya et al., 2016), which 265 

typically show cold T2 biases, the overall small warm biases in this study can be attributed to the 266 

soil moisture nudging technique used in the PX land surface scheme (Pleim and Gilliam, 2009). 267 

The spatial patterns of MBs for RH2 show a general anti-correlation compared to T2 (i.e., RH2 268 

is overpredicted where T2 is underpredicted and vice versa) due to the way how RH2 is 269 
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calculated based on T2. The spatial distribution of MBs for WS10 also shows dominant 270 

overpredictions in both winter and summer especially along coastlines, indicating the prescribed 271 

sea-surface temperature might not be sufficient to resolve the air-sea interactions. Systematic 272 

overpredictions of hourly precipitation against NCDC data in both seasons are found to be 273 

mainly caused by low non-convective precipitation events and can be attributed to the Morrison 274 

microphysics scheme (Yahya et al., 2016).   275 

The precipitation performance is further examined by comparing WRF-CMAQ with 276 

TMPA and PRISM as shown in Figures 2. The spatial distribution of precipitation is well 277 

simulated by WRF-CMAQ especially over the CONUS against observations by capturing the hot 278 

spots along the Pacific Northwest coast in winter and some areas over the Central U.S. and FL in 279 

summer. Moderate overpredictions of precipitation against TMPA over the Atlantic Ocean and 280 

Gulf of Mexico in summer are also evident, possibly caused by overprediction of convective 281 

precipitation by the Kain-Fritsch scheme (Hong et al., 2017) over ocean. As shown in Tables 1 282 

and 2, the domain-average seasonal statistics demonstrate good performance for all variables 283 

except for precipitation against NCDC in terms of MBs, NMBs, RMSE, and Rs. For example, 284 

the MBs for T2, RH2, WS10, and precipitation are 1.1 °C, 2.2%, 0.57 m s-1, and 0.05-0.23 mm 285 

day-1 (except for 0.71 mm day-1 for NCDC) in winter and -1.1 °C, 3.7%, 0.38 m s-1, and 0.13-286 

0.23 mm day-1 (except for 0.75 mm day-1 for NCDC) in summer, respectively, and Rs for those 287 

variables are typically between 0.5-0.97, which are well within the performance benchmark 288 

values recommended by Zhang et al. (2013) and Emery et al. (2017). 289 

Figure 3 shows the bar charts of annual trends for T2, RH2, WS10, and precipitation in 290 

2008-2012. Two-way WRF-CMAQ predicts the annual average T2 very well with MBs < 291 

0.25 °C in all years. The simulation can also capture the increasing trend of T2 from 2008 to 292 
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2012 observed by NCDC.  RH2 is consistently overpredicted by the two-way WRF-CMAQ in all 293 

years despite relatively low biases (MBs < 3%). Both observations and simulations show the 294 

lowest RH2 in 2012 and the highest in 2009.  As also shown in Figure 1, the model tends to 295 

systematically overpredict both WS10 and precipitation throughout all years as well. There are 296 

no clear trends (i.e., increasing or decreasing) for WS10 and precipitation between 2008 to 2012 297 

from either observations or simulations. However two-way WRF-CMAQ is able to capture both 298 

the lowest wind speed and precipitation in 2012 and the highest wind speed in 2008 from 299 

observations. In general, the model performs very well in reproducing the year-to-year variation 300 

for the major meteorological variables between 2008 to 2012. 301 

3.1.2 Radiation and cloud variables 302 

Figures 4 and 5 compare the 5-year average spatial distribution of major radiation 303 

variables (i.e., SWDOWN, GSW, GLW, OLR, and AOD) based on the satellite retrievals and 304 

two-way WRF-CMAQ simulations in winter and summer, 2008-2012 and Tables 1 and 2 305 

summarize the domain-average model performance statistics. WRF-CMAQ predicts the 306 

longwave radiation variables GLW and OLR very well with domain-average of NMBs of -0.3% 307 

and 1.8% in winter and -3.6% and 0.9% in summer, respectively, and Rs of 0.96 to 0.99 for both. 308 

The shortwave radiation variables SWDOWN and GSW are slightly overpredicted on average 309 

with NMBs of 11.3% and 7.5% in winter and 17.1% and 15.1% in summer, respectively, and Rs 310 

ranging from 0.75 to 0.99 for both. The simulations also reliably reproduce the spatial 311 

distribution of both longwave and shortwave radiation compared to observations in both seasons. 312 

The relatively large overpredictions for shortwave radiation especially in summer are very likely 313 

caused by the large underpredictions of aerosol direct radiative forcing reflected from the 314 

underpredictions of AOD (Figure 5) as well as underprediction of indirect cloud radiative forcing 315 
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(see Figure 8). It has been reported that WRF v3.4 does not treat the subgrid cloud feedback to 316 

radiation, which could also contribute to the overpredictions in shortwave radiation especially in 317 

summer (Alapaty et al., 2012; Hong et al., 2017). The model largely underpredicts the magnitude 318 

of AOD in both seasons (NMBs of -59.8% in winter and -67.8% in summer), while providing a 319 

reasonable representation of the spatial distribution of AOD over the U.S., with generally higher 320 

values over the Midwest in winter and over the eastern U.S. in summer. The model also 321 

underpredicts the elevated AODs over oceans and the northern part of domain in both seasons. 322 

Similar AOD underpredictions have been reported in previous studies over the U.S. using two-323 

way coupled WRF-CMAQ (Gan et al., 2015a; Hogrefe et al., 2015; Xing et al., 2015a). The 324 

relatively large underpredictions of AOD may be caused by several factors. First, 325 

underprediction of PM2.5 concentrations, particularly SO4
2- in both seasons and OC in summer 326 

(Tables 3 and 4), can contribute significantly to the underprediction of AOD, especially over the 327 

eastern U.S.  Second, the underestimation of dust emissions may contribute to missing hot spots 328 

from the model over arid areas in CA and AZ (Zender et al., 2003) and underestimates of sea-salt 329 

emissions may lead to missing elevated AODs over oceans (Gan et al., 2015b). Third, challenges 330 

in adequately representing prescribed and wildfire emissions in the NEI (Kelly et al., 2019) may 331 

cause many missing hot spots over large areas of the Pacific Northwest, CA, Canada, and the 332 

eastern U.S. especially in summer. Fourth, uncertainties in BCONs of PM2.5 concentrations may 333 

further contribute to underpredictions of AOD over oceans and the northern part of the domain. 334 

For example, Kaufman et al. (2001) found that the background AOD could reach 0.1 over the 335 

Pacific Northwest using Aerosol Robotic Network (AERONET) data. The AODs in the current 336 

simulation seem to be biased low (between 0.02-0.06 in both seasons over the Pacific Ocean) 337 

and indicate potential underpredictions of PM2.5 BCONs, especially in the free troposphere. 338 
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Finally, there are uncertainties associated with MODIS retrievals. Remer et al. (2005) found that 339 

the uncertainty of level 3 MODIS monthly AODs can be up to ±0.05±0.15AOD over the land 340 

due to clouds and surface reflectance. More AOD data from other satellites or AERONET might 341 

be considered in the future work to provide more robust ensemble type of evaluation for AOD. 342 

Figures 6-8 compare the 5-year average spatial distribution of major cloud and cloud 343 

radiative variables for the satellite retrievals and two-way WRF-CMAQ simulations in winter 344 

and summer, 2008-2012 and Tables 1 and 2 summarize the corresponding statistics. As shown in 345 

Figures 6 and 7, WRF-CMAQ tends to largely underpredict CDNC, COT, and CWP in both 346 

seasons over most of the domain with the domain-average NMBs of -82.4%, -80.8%, and -45.3% 347 

in winter and -79.2%, -83.6%, and -66.3% in summer, respectively. Despite the large 348 

underprediction of those cloud variables, the spatial correlations are generally predicted well, 349 

especially for COT and CWP with Rs ranging from 0.63 to 0.74. Compared to the other cloud 350 

variables, CF is much better predicted with an NMB of -10.4% and an R of 0.87 in winter and an 351 

NMB of -23.0% and an R of 0.81 in summer, respectively, which is consistent with the 352 

performance reported in Yu et al. (2014). The model can reproduce the high CFs over northern 353 

and northeastern part of domain as well as over oceans while capturing the low CFs over the 354 

mountainous and plateau regions in the U.S. and Mexico especially in winter. In addition to the 355 

underprediction of PM2.5 (thus underestimating CCN), the large underpredictions of cloud 356 

variables (especially CDNC and COT) can be attributed to uncertainties in aerosol microphysics 357 

schemes (Yahya et al., 2016) as well as missing aerosol indirect effects on subgrid convective 358 

clouds (Yu et al., 2014). Gantt et al. (2014) and Zhang et al. (2015b) also showed the aerosol 359 

activation scheme (i.e., Abdul-Razzak and Ghan, 2000) used in the current version of WRF-360 

CMAQ may have underestimated CDNC and thus CWP and COT due to some missing processes 361 
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such as insoluble aerosol adsorption and giant cloud condensation nuclei. Overall, the relatively 362 

poor model performance for cloud variables reflects current limitations in representing aerosol 363 

indirect effects and aerosol-cloud interactions in state-of-science online coupled models. Further 364 

model improvements that incorporate new knowledge from emerging studies should be 365 

conducted in the future. 366 

As shown in Figure 8, WRF-CMAQ predictions of SWCF and LWCF generally agree 367 

well with the satellite observations in both seasons. The model can capture the elevated SWCF 368 

and LWCF over the Atlantic Ocean and widespread areas over the eastern U.S. in winter and 369 

those over the Pacific Northwest, northern part of the domain, and Atlantic Ocean in summer. 370 

The domain-average NMBs are -11.1% for SWCF and -15.1% for LWCF in winter and -41.3% 371 

for SWCF and -33.3% for LWCF in summer, respectively. The relatively larger biases in 372 

summer compared to winter are correlated with larger biases associated with radiation and cloud 373 

predictions potentially caused by larger underpredictions of aerosol predictions. As discussed 374 

earlier, the underpredictions of SWCF may partially contribute the overprediction of SWDOWN 375 

(more shortwave radiation reaching the ground) and those of LWCF may further lead to the 376 

overpredictions in OLR (more longwave radiation emitted into the space). The performance of 377 

SWCF and LWCF is consistent with the 12-km simulation reported in Yu et al. (2014) and even 378 

slightly better in terms of NMBs, which might be associated with the long-term vs. short-term 379 

simulations. It is also worth noting that SWCF (LWCF) is calculated as the difference between 380 

the clear-sky and all-sky shortwave (longwave) radiation at the top of atmosphere, and so 381 

performance for SWCF and LWCF depends on performance for both radiation and cloud 382 

properties. The generally better performance in terms of model bias for SWCF and LWCF 383 
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compared to the cloud variables seems to be driven by the relatively good performance of 384 

shortwave/longwave radiation in the model. 385 

3.2 Chemical evaluation 386 

3.2.1 O3  387 

Figure 9a shows the spatial distribution of simulated average daily maximum 8-h O3 in 388 

summer, 2008-2012 from two-way WRF-CMAQ overlaid with observations from both the 389 

AIRS-AQS and CASTNET networks. WRF-CMAQ shows good performance by capturing the 390 

spatial distribution of max 8-h O3 over widespread areas of the domain. The model tends to 391 

overpredict O3 along coastlines in the southeastern U.S., Gulf of Mexico, and Pacific coast, 392 

which can be attributed to a poor representation of coastal boundary layers (Yu et al., 2007) and 393 

lack of O3 sink via halogen chemistry (Sarwar et al., 2015) and deposition to water (Gantt et al., 394 

2017). The simulation also underpredicts O3 in widespread areas in the Midwest, Central, and 395 

mountainous regions of the U.S., which is consistent with the results of 36-km simulations from 396 

Wang and Zhang (2012) that used an earlier version of CMAQ v4.6 with the same CB05 gas-397 

phase mechanism. In addition to cold T2 biases over those areas (Figure 1), the underpredictions 398 

are also believed to be associated with inaccurate representations of precursor emissions and 399 

elevated/complex terrain due to the coarse grid spacing of 36-km over those regions. Wang and 400 

Zhang (2012) found that their 12-km simulation showed improved performance over similar 401 

regions especially in summer. 402 

Figure 9c shows the monthly variation of domain-average 5-year average O3 mixing 403 

ratios between observations from AIRS-AQS and simulations from two-way WRF-CMAQ, and 404 

Figure 9d shows the diurnal variation of domain-average 5-year average hourly O3 mixing ratios 405 
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between observations from CASTNET and simulations from two-way WRF-CMAQ for winter 406 

and summer. As shown in Figure 9c, the O3 mixing ratios are overpredicted throughout the year, 407 

which is consistent with overprediction of T2 (figure not shown). The largest overprediction 408 

occurs in the relatively cold months such as September to December. It is interesting that the 409 

observations show the largest monthly O3 mixing ratios in spring and early summer while the 410 

simulation shows the peak during the summer. The difference in timing of peak O3 between 411 

observations and simulations during the year might be associated with uncertainties in the 412 

BCONs of O3 that reflect impacts of the long-range transport and associated stratosphere-413 

troposphere exchange of O3. As shown in Figure 9d, WRF-CMAQ tends to overpredict O3 414 

during most hours (i.e., 2:00-18:00) in summer and throughout the whole day in winter partially 415 

due to the overprediction of T2, especially in winter (Figure 1). The diurnal pattern of O3 is 416 

captured much better during summer with much less prediction bias, especially during the 417 

nighttime, indicating that the model does a better job in predicting the evolution of nocturnal 418 

boundary layer and atmospheric chemistry in the warm season than the cold season. The overall 419 

overpredictions in this work are also consistent with previous studies (Eder and Yu, 2006; Appel 420 

et al., 2007; Wang et al., 2012), although our results show much better nighttime performance 421 

owing to the application of the ACM2 scheme that treats both local and non-local closure (Pleim, 422 

2007). As also shown in Table 4, the domain-average NMBs and NMEs for max 8-h O3 in 423 

summer are 10.6% and 13.2% against AIRS-AQS and -3.0% and 11.5% against CASTNET, 424 

respectively. The statistics are also consistent with previous studies using the CMAQ model 425 

(Zhang et al., 2009a; Appel et al., 2013, 2017; Penrod et al., 2014) and can be considered as 426 

good performance according to the criteria suggested by Zhang et al. (2013) and Emery et al. 427 

(2017).  428 
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Figure 3 also shows the bar charts of annual trends for max 8-h O3 from two-way WRF-429 

CMAQ against AQS and CASTNET observations in 2008-2012.  Two-way WRF-CMAQ 430 

systematically overpredicts O3 especially against AQS data with MBs typically > 4.0 ppb. The 431 

potential reasons for model biases have been discussed earlier in this section. There are no 432 

obvious decreasing or increasing trends for max 8-h O3 from AQS or CASTNET observations. 433 

However, the model can generally capture the high O3 mixing ratios in 2008 and 2010 and the 434 

low O3 mixing rations in 2009 from both AQS and CASTNET. The similar down and up trends 435 

between 2008 to 2010 for O3 (i.e., decreasing from 2008 to 2009 and increasing from 2009 to 436 

2010) from AQS observations were also found by Yahya et al. (2016), but not captured by their 437 

simulations. Zhang and Wang (2016) was able to reproduce the similar trend over the 438 

southeastern U.S. between 2008 to 2010 using their models and attributed the abnormal high 439 

2010 O3 mixing ratios to the extreme dry and warm weather conditions during fall 2010. 440 

3.2.2 Aerosols 441 

Figures 10a and 10c shows the spatial distribution of simulated 5-year average PM2.5 442 

from two-way WRF-CMAQ overlaid with observations from both the CSN and IMPROVE 443 

networks in winter and summer, 2008-2012. As shown, WRF-CMAQ performs well for PM2.5 444 

over widespread areas of the Midwest and northeastern U.S. in both seasons, while PM2.5 is 445 

underpredicted over the southeastern and western U.S. especially in winter. The model also 446 

misses some hot spots of observed concentrations in the western U.S., which are mainly caused 447 

by TC underpredictions (Figure S6) that are likely linked to poorly allocated and underestimated 448 

wildfire emissions in the NEI (Wiedinmyer et al., 2006; Roy et al., 2007; Kelly et al., 2019). The 449 

relatively large underpredictions over the eastern U.S. are mainly caused by the combined effects 450 

from SO4
2-, NH4

+, and TC. As shown in Figure S6, WRF-CMAQ largely underpredicts SO4
2- in 451 
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the Midwest and southeastern U.S. mainly due to the underprediction of oxidants such as O3 (see 452 

Figure 9a) (which leads to less production from the gaseous oxidation), overprediction of 453 

precipitation (see Figure 2) (which leads to more wet deposition and removal), and large 454 

underprediction of cloud fields (see Figures 6-7) (which leads to less aqueous phase formation), 455 

over the same area. On the other hand, NH4
+ and NO3

- are either underpredicted or 456 

overpredicted, respectively, over the similar areas mainly due to underprediction of SO4
2-. 457 

According to the aerosol thermodynamics, when SO4
2- is underpredicted, NH4

+ tends to be 458 

underpredicted due to its major role as cation. More gaseous NH3 will be available to neutralize 459 

NO3
-, thus leading to overprediction of NO3

- especially over the sulfate poor regions (West et al., 460 

1999). Other potential reasons include the inaccurate assumptions in the thermodynamic module 461 

(for example, the internally mixed aerosol state and equilibrium assumption may not be 462 

representative over some regions and different time periods, S. Yu et al., 2006), uncertainties in 463 

emissions of key species such as NH3 and non-volatile cations that affect particle acidity (Mebust 464 

et al., 2003; Wang and Zhang, 2014; Vasilakos et al., 2018; Pye et al., 2020), and measurement 465 

errors especially for NO3
- and NH4

+ (X.-Y. Yu et al., 2006; Karydis et al., 2007; Wang and 466 

Zhang, 2012). TC underpredictions over most sites of the domain can be attributed to the 467 

underprediction of emissions (e.g., wildfire and primary OC) and underestimation of secondary 468 

organic aerosol (SOA) formation (Appel et al., 2017; Pye et al., 2017) since EC (a chemically 469 

inert species) is overpredicted, which suggest that atmospheric mixing did not drive the TC 470 

underpredictions.  471 

Figures 10e and 10f show the monthly variation of 5-year average PM2.5 between 472 

observations from CSN and IMPROVE, respectively, and simulations from two-way WRF-473 

CMAQ. Both observations and WRF-CMAQ show higher PM2.5 concentrations at CSN than 474 
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IMPROVE for the whole year because most of CSN sites are in more polluted urban areas while 475 

majority of IMPROVE sites are in rural areas and national parks. The model tends to 476 

underpredict PM2.5 over both CSN and IMPROVE sites in the warm months (i.e., April to 477 

September) mainly due to the underpredictions of SO4
2- and OC while it overpredicts PM2.5 in 478 

cold months mainly due to NO3
-. The model also captures the seasonality of PM2.5 better over 479 

CSN sites than IMPROVE sites, especially in the summer months. The large underpredictions 480 

over IMPROVE sites during summer months are likely due to the underestimation of precursor 481 

emissions (such as wildfire emissions).  482 

Figure 11 shows the scatter plots of major PM2.5 components such as SO4
2-, NH4

+, and 483 

NO3
-, and TC in winter and summer, 2008-2012. The WRF-CMAQ predicts PM2.5 constituents 484 

well with majority of data within the 1:2 ratio lines in both seasons. Systematic underpredictions 485 

of SO4
2- and NH4

+ in winter and overpredictions of NO3
- in summer are shown, which are 486 

consistent with their spatial distributions. Relatively large under- and overpredictions of TC 487 

especially in winter compensate each other and lead to relatively low overall model biases. As 488 

also shown in Figure S6, the model fails to reproduce high concentrations of PM10 (those > 20 489 

g m-3) over widespread areas of the domain, especially over dust source areas in CA, AZ, and 490 

NM. Hong et al. (2017) found the similar large underprediction of dust using CMAQ v5.0.2 over 491 

China and attributed it to a too-high threshold for friction velocity in the current dust module 492 

(Dong et al., 2016). Sea-salt also seems to be underpredicted by WRF-CMAQ, although sea-salt 493 

predictions are better than dust as shown along the coastlines.  494 

Figure 3 shows the bar charts of annual averaged observations and simulations for PM2.5 495 

over the CSN and IMPROVE sites. Overall, the model performs well for PM2.5 for most of years 496 

and better over CSN than IMPROVE sites with general underpredictions in most years. The 497 
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observations for both CSN and IMPROVE show a general decreasing trend,  (except for 20109 498 

over CSN with a strong drop of PM2.5 concentrations.) especially over IMPROVE sites. 499 

According to EPA (2012), the strong drop of PM2.5 in 2009 is due to a few reasons including 500 

many national and local regulations that are imposed, the contribution of economic slowdown to 501 

cleaner air conditions and also favorable meteorological conditions to lower air pollution levels 502 

in 2009. The impacts are more apparent over CSN sites mainly composed of urban/suburban 503 

areas than IMPROVE sites mainly composed of remote areas and national parks. Two-way 504 

WRF-CMAQ is able to reproduce the declining trend well particularly over IMPROVE sites and 505 

again demonstrate its capability in accurately simulating the year-to-year variations of not only 506 

meteorology but air quality.  507 

As recommended by some previous studies (Zhang et al., 2006; Wang and Zhang, 2012; 508 

Emery et al., 2017), generally ±15% and ±30% for model biases and 30% and 50% for model 509 

errors can be considered as good and acceptable performance. As shown in Tables 3 and 4, 510 

WRF-CMAQ in this work demonstrates an overall good or acceptable performance in predicting 511 

aerosols in terms of statistics especially for PM2.5 in both seasons, NO3
- OC, and TC in winter, 512 

and SO4
2- and NH4

+ in summer. It shows the domain-average NMBs of -7.2% and 8.6% in winter 513 

and -13.2% and -26.9% in summer for PM2.5 against CSN and IMPROVE, respectively; NMBs 514 

of -10.2% and -20.9% in summer for SO4
2- against CSN and IMPROVE, respectively; NMBs of 515 

-0.3% and 13.3% in winter for NO3
- against CSN and IMPROVE, respectively; an NMB of 3.3% 516 

for NH4
+ in summer against CSN; an NMB of 13.0% in winter for OC against IMPROVE; and 517 

NMBs of 7.2% and 17.5% in winter for TC against CSN and IMPROVE, respectively. The 518 

relatively large underpredictions of PM10 in both seasons, i.e., NMBs of -36.3% in winter and -519 

45.8% in summer against AQS, indicate further improvements of dust emissions are warranted. 520 
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Overall, the aerosol performance is also comparable or better than previous CMAQ or WRF-521 

CMAQ applications (Wang and Zhang, 2012; Penrod et al., 2014; Yu et al., 2014). For example, 522 

Penrod et al. (2014) showed 5-year (2001-2005) average NMBs of -23.3% and 4.0% in winter 523 

and -19.1% to -17.6% in summer for PM2.5 against CSN and IMPROVE data over the CONUS 524 

using the CMAQ v5.0 and Yu et al. (2014) reported the monthly mean NMBs of -6.2% and -525 

16.8% for PM2.5 against CSN and IMPROVE over the eastern U.S. using the same version of 526 

WRF-CMAQ as that used in this study. 527 

3.2.3 Column abundance 528 

Figures 12 and 13 show the spatial distribution of 5-year average column abundances 529 

between various satellite products and two-way WRF-CMAQ for column CO, TOR, column 530 

NO2, and column HCHO in winter and summer, 2012 and Tables 3 and 4 summarize the 531 

statistics. As shown, WRF-CMAQ can reproduce the spatial distribution of the column 532 

abundances of gases quite well in both seasons except for column HCHO in winter with Rs 533 

ranging from 0.70 to 0.87. TOR in both seasons, column NO2 in winter and column HCHO in 534 

summer are also generally well predicted in terms of magnitudes with NMBs of 4.7% for TOR 535 

and 0.3 for NO2%, respectively, in winter and -8.0% for TOR and 15.0% for HCHO, 536 

respectively, in summer. Systematic underpredictions for column CO occur in both seasons over 537 

the whole domain with NMBs of -20.5% in winter and -27.8% in summer for a few reasons. 538 

First, the BCONs of CO may be significantly underestimated from the CESM model. Using 539 

WRF/Chem or its variant, Zhang et al. (2016b, 2019) found that the column CO performance 540 

could be greatly improved by adjusting the BCON using the satellite observation. A similar 541 

approach could be applied in future WRF-CMAQ simulations as well. Second, as pointed by 542 

Heald et al. (2003), the regional emissions, especially biomass burning, could be a significant 543 
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source for elevated CO concentrations and thus underestimation of these emissions could 544 

contribute to the CO underprediction. A more robust set of fire emissions from FINN generated 545 

by NCAR based on satellite retrievals has been applied to the similar time period recently but 546 

using the WRF-Chem model (Zhang and Wang, 2019) and were found to improve the column 547 

CO performance. Last, Emmons et al. (2009) showed positive biases (i.e., 19%) of MOPITT 548 

retrievals over the land when compared to in-situ measurements and the biases may have been 549 

increasing over time due to the MOPITT bias drift (e.g., 0.5% yr-1 for version 7 retrieval). The 550 

predicted TOR can capture the observed high values over the eastern U.S. and oceans and the 551 

low values in elevated terrain especially in summer and it shows the best performance among all 552 

gas species. Both satellite observations and simulations can capture the elevated column NO2 553 

over the industrial and metropolitan areas in the domain where large nitrogen oxide (NOx) 554 

emission sources are located especially in winter. The model shows moderate underprediction 555 

with an NMB of -27.8% in summer which can be attributed to both uncertainties in the emissions 556 

and satellite retrievals. For example, the lightning emissions of NOx are missing from this study, 557 

which have been found by previous studies (Allen et al., 2012) to contribute up to 2.0 × 1015 558 

molecules cm-2 over the southern U.S., the Gulf of Mexico, and northern Atlantic Ocean during 559 

the summer. Boersma et al. (2004) also found that different column NO2 retrieval approaches 560 

may lead to large errors (> 25%) over polluted areas. Column HCHO over the CONUS 561 

especially the southeastern U.S. is well predicted in summer in terms of both magnitude and 562 

spatial distribution and correlates well with the biogenic emission source regions. The 563 

underprediction of column HCHO in winter may indicate potential underestimation of 564 

anthropogenic emissions. Other reasons including potential low yield of HCHO from isoprene 565 

and terpene in the CB05 mechanism and uncertainties in satellite retrievals (Stavrakou et al., 566 



26 
 

2009; Lorente et al., 2017). For example, According to Stavrakou et al. (2009), the air mass 567 

factors used for HCHO column calculation may bear ~18% error under clear sky conditions to 568 

~50% error for very cloudy conditions. The winter typically has higher cloud cover than summer 569 

(See Figs. 6 and 7) and thus higher uncertainties for HCHO column. 570 

3.2.4 Simulated O3 and PM2.5 exceedances of NAAQS levels 571 

National Ambient Air Quality Standards (NAAQS) are set for criteria pollutants, 572 

including O3 and PM2.5, to provide protection against adverse health and welfare effects 573 

(www.epa.gov/criteria-air-pollutants/naaqs-table). In this section, the average number of days 574 

per year where the 24-hr PM2.5 NAAQS level (35 g m-3) and the max 8-h O3 NAAQS level (70 575 

ppb) are exceeded from the WRF-CMAQ predictions is compared with the number of 576 

exceedances in the monitoring data (i.e., O3 from AQS and CASTNET and PM2.5 from 577 

IMPROVE and CSN). This comparison is intended to better characterize the ability of the model 578 

to simulate the high-concentration days that could be especially relevant in regulatory 579 

assessments. In Figure 14, the five-year average of the annual number of exceedance days is 580 

shown for WRF-CMAQ and the monitoring data at monitor locations. As shown, the 581 

observations indicate a large number of annual exceedance days for max 8-h O3 over major 582 

cities, especially in CA, TX, the Midwest, and northeastern U.S. The spatial distribution of the 583 

observed number of exceedance days from the AQS and CASTNET networks aligns well with 584 

the nonattainment map reported by the Green Book of U.S. EPA (https://www.epa.gov/green-585 

book). The WRF-CMAQ model also captures the distribution of the number of exceedance days 586 

very well, especially in CA and northeastern U.S. The domain-average values of NMB, NME, 587 

and R are -3.4%, 14.0%, and 0.98, respectively, also indicating a good performance. For PM2.5, 588 

the largest number of exceedance days based on the IMPROVE and CSN observations mainly 589 
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occurs in the northwestern U.S., Midwest, and major cities in the northeastern U.S. The number 590 

of exceedance days is generally much lower for PM2.5 than O3. The spatial distribution of the 591 

number of exceedance days for observed PM2.5 aligns well with nonattainment areas reported by 592 

the Green Book from U.S. EPA in CA. However, the number of simulated PM2.5 exceedance 593 

days underpredicts the observation-based values in the western U.S. mainly due to large 594 

underpredictions of PM2.5 concentrations in the same areas as shown in Figure 10.  The 595 

simulation better predicts the distribution of the number of exceedance days in the eastern U.S. 596 

where terrain is relatively flat and wildfire less prevalent.  The domain-average values of NMB, 597 

NME, and R are -29.0%, 80.8%, and 0.21, respectively. 598 

4. Impacts of chemistry-meteorology feedbacks 599 

In this section, the impacts of chemistry-meteorology feedbacks including aerosol direct 600 

and indirect effects on regional meteorology and air quality over the U.S. are further examined 601 

by comparing results from two-way WRF-CMAQ and offline coupled WRF and CMAQ. Model 602 

performance from the two sets of simulations is first compared to demonstrate the potential 603 

performance improvements of the two-way model, and the impacts on regional meteorology and 604 

air quality are further investigated via the spatial difference plots for selected variables and 605 

species. 606 

4.1 Meteorology 607 

Figures 2 and 8 compare observations and simulations from the two-way WRF-CMAQ 608 

and WRF-only models for precipitation and SWCF/LWCF, respectively. Tables 1 and 2 also 609 

summarize the model performance statistics for all major meteorological variables for the two 610 

simulations. The statistics of some cloud variables from the WRF-only simulation are not 611 
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available due to missing model outputs.  Overall, good performance is evident for both 612 

simulations for surface meteorological variables with slightly better performance for most of 613 

variables (except for RH2 in both seasons and T2 in summer) for the two-way WRF-CMAQ 614 

simulation than the WRF-only simulation. The MBs for the two-way WRF-CMAQ vs. WRF-615 

only simulation are 1.1 °C vs 1.2 °C for T2, 2.2% vs 2.1% for RH2, 0.57 m s-1 vs 0.58 m s-1 for 616 

WS10, 16.7 degree vs 16.9 degree for WD10, and 0.05-0.71 mm day-1 vs 0.04-0.72 mm day-1 for 617 

precipitation in winter and -1.1 °C vs -0.9 °C for T2, 3.7% vs 3.2% for RH2, 0.38 m s-1 vs 0.42 618 

m s-1 for WS10, 49.1 degree vs 49.8 degree for WD10, and 0.13-0.75 mm day-1 vs 0.19-0.9 mm 619 

day-1 for precipitation in summer. The spatial distributions for SWCF and LWCF are better 620 

captured in both seasons especially over the eastern U.S., Atlantic Ocean, and Gulf of Mexico in 621 

winter and over the Midwest and Pacific Northwest in summer. Compared to WRF-only, two-622 

way WRF-CMAQ shows noticeably better performance in terms of both MB and RMSE for 623 

radiation and cloud forcing, with MBs of 11.3 vs. 19.5 W m-2 for SWDOWN, 7.5 vs 14.1 W m-2 624 

for GSW, -0.9 vs. -6.3 W m-2 for GLW, 4.0 vs. 4.7 W m-2 for OLR, -3.0 vs. -7.4 W m-2 for 625 

SWCF, and -3.3 vs. -4.1 W m-2 for LWCF in winter and with MBs of 43.6 vs. 59.4 W m-2 for 626 

SWDOWN, 33.6 vs 47.2 W m-2 for GSW, -13.4 vs. -16.8 W m-2 for GLW, 2.3 vs. 3.0 W m-2 for 627 

OLR, -22.8 vs. -31.1 W m-2 for SWCF, and -8.6 vs. -9.0 W m-2 for LWCF in summer. These 628 

results are consistent with those reported by Yahya et al. (2015a,b) that showed similar 629 

improvements in meteorological and radiative variables when comparing predictions from WRF-630 

Chem with those from WRF only.  Since identical inputs and physics options are used in both 631 

simulations, the differences in performance for meteorological variables is due to the 632 

consideration of feedback processes among chemistry, aerosol, cloud, and radiation in the two-633 

way coupled WRF-CMAQ simulation.  634 
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Figure 15 shows the 5-year average difference plots of selected major meteorological 635 

variables including SWDOWN, T2, RH2, WS10, PBL height, and precipitation between two-636 

way WRF-CMAQ and WRF-only in 2008-2012. As shown, the incoming shortwave radiation is 637 

reduced by up to 24.8 W m-2 (13.6%) with a domain-average of 13.0 W m-2 (6%) due to the 638 

combined aerosol direct and indirect radiative effects over the domain. The reduction is 639 

predominant over the eastern U.S. where both aerosol loading and cloud cover are high and over 640 

the oceans where cloud cover is high. The magnitude of shortwave radiation reduction in this 641 

work is consistent with other studies. For example, Wang et al. (2015a) found that the combined 642 

aerosol direct and indirect effects using the WRF/Chem model, which includes the sub-scale 643 

cloud forcing not treated in the current WRF-CMAQ model, may decrease the incoming 644 

shortwave radiation by 16.0 W m-2 in the summer over the U.S. Hogrefe et al. (2015) reported 645 

the reduction of shortwave radiation may reach up to 20 W m-2 over the eastern U.S. by only 646 

considering the aerosol direct effect using an older version of WRF-CMAQ v5.0.1. Xing et al. 647 

(2015b) showed that the aerosol direct forcing may cause the surface shortwave radiation to 648 

decrease by up to 10 W m-2 over the eastern U.S. over a decadal time period using WRF-CMAQ 649 

v5.0. The reduction of shortwave radiation further reduces the surface temperature by up to 650 

0.25 °C over the eastern U.S., which is much larger than the reduction of 0.1 °C reported by 651 

Hogrefe et al. (2015), mainly due to the inclusion of aerosol indirect effects. However there are 652 

smaller reductions of T2 over the Pacific Ocean and even increases (by up to 0.1 °C) over large 653 

areas of Atlantic Ocean and Gulf of Mexico where much larger reductions of shortwave radiation 654 

occur. As pointed by Wang et al. (2015a), due to the much larger heat capacity of ocean, the 655 

response of sea surface temperature is less sensitive to the change of shortwave radiation for 656 

ocean compared to the land. The large increase of incoming longwave radiation and latent heat 657 
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(figures not shown) caused by the aerosol indirect effects and other complex feedback processes 658 

over the ocean compensates for the reduction of shortwave radiation, especially over the Atlantic 659 

Ocean and Gulf of Mexico, and thus leads to less reduction or even increases of T2. RH2 is 660 

found to mostly increase by 3.4% over the land caused by the decrease of temperature while 661 

decrease by 2.6% over the ocean caused by either the increase of temperature or large decrease 662 

of water vapor. Over the land, the decreases in shortwave radiation and temperature along with 663 

the latent heat (figure not shown) lead to a more stable PBL and thus suppress the wind (by 664 

reducing the wind speed as shown). Over the ocean, the changes lead to a more unstable PBL 665 

and thus enhance the wind over the ocean. The wind speed and PBL height are reduced by up to 666 

0.05 m s-1 and 25 m, respectively, over the U.S. The aerosol feedbacks on precipitation are also 667 

mixed with relatively large decreases by up to 0.4 mm day-1 over the U.S. and increases by up to 668 

0.4 mm day-1 over oceans. The suppression of precipitation over the land is mainly due to the 669 

formation of more small sized CCNs caused by aerosol indirect effects and align well with areas 670 

with high aerosol loadings while the enhancement of precipitation, especially along coastlines 671 

and over oceans, might be associated with the larger CCN formation via more activated sea-salt 672 

particles as indicated by Zhang et al. (2010) and Wang et al. (2015a). 673 

4.2 Air Quality 674 

Figures 9-11 compare observations and simulations from two-way WRF-CMAQ and 675 

offline CMAQ for O3, PM2.5, and PM2.5 constituents. Tables 3 and 4 summarize the statistics for 676 

all major chemical variables for the two simulations. As shown in Figure 9, two-way WRF-677 

CMAQ shows better performance for both the monthly variation of O3 (throughout the whole 678 

year) over AQS sites and the diurnal pattern of O3 (especially during winter) over CASTNET 679 

sites due to better performance of T2 and radiation compared to offline WRF and CMAQ. As 680 
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shown in Figure 10, two-way WRF-CMAQ shows better spatial distribution of PM2.5 in winter 681 

and similar one in summer and better performance for PM2.5 for most of months over CSN sites 682 

and for cold seasons across IMPROVE sites compared to offline CMAQ. Figure 11 shows 683 

systematically better performance for SO4
2-, NO3

-, NH4
+, and TC with more data within 1:2 or 684 

closer to 1:1 ratio lines of scatter plots in both seasons. Overall, as shown in Tables 3 and 4, both 685 

simulations show generally good performance for all major chemical species except for PM10. 686 

For example., the domain-average NMBs are 10.6% (AQS) and -3.0% (CASTNET) vs. 14.2% 687 

(AQS) and 0.2% (CASTNET) for O3 in summer,  -7.2% (CSN) and 8.6% (IMPROVE) vs. 1.8% 688 

(CSN) and 23.7% (IMPROVE) for PM2.5 in winter and -13.2% (CSN) and -26.9% (IMPROVE) 689 

vs. -14.0% (CSN) and -22.8% (IMPROVE) for PM2.5 in summer for two-way WRF-CMAQ and 690 

offline-coupled CMAQ, respectively. The two-way WRF-CMAQ shows better domain-wide 691 

statistics in terms of both correlation and biases for many variables including O3, SO4
2-, NO3

-, 692 

and EC as well as TOR and column NO2 in both seasons, apparently due to the treatment of 693 

chemistry-meteorology feedbacks. Offline CMAQ performs better for total PM2.5 especially in 694 

the western U.S. due to higher dust emissions from higher wind speed and higher SOA due to 695 

stronger radiation and higher temperature. However more robust comparisons are needed in the 696 

future with improved dust emissions and the use of FINN wildfire emissions. 697 

Figure 16 shows the 5-year average difference plots of selected chemical variables 698 

including CO, O3, NOx, volatile organic compounds (VOCs), SO4
2-, SOA, PM2.5, and PM10 699 

between two-way WRF-CMAQ and offline-coupled CMAQ. As shown, the CO mixing ratios 700 

decrease by up to 79.2 ppb (27.8%) especially over the western U.S. with a domain-average 701 

reduction of 3.0 ppb (3.1%) due to reduced formation of CO from the oxidation of VOCs caused 702 

by reduced solar radiation as indicated by Zhang et al. (2017). Such reductions seem to dominate 703 
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over the increases caused by reduced PBL height, especially in the western U.S. where PBL 704 

height reductions are minimum. The O3 mixing ratios decrease by up to 5.2 ppb (16.2%) with 705 

domain-average of 1.7 ppb (4.2%) mainly due to the reduced solar radiation and T2. The change 706 

of O3 is consistent with other studies such as Makar et al. (2015) and Wang et al. (2015a) that 707 

also reported lower O3 mixing ratios caused by aerosol direct and indirect effects. On the other 708 

hand, both NOx and VOC mixing ratios increase over the eastern U.S. while they decrease over 709 

the western U.S. The increase should be caused by the combination of the large reduction of PBL 710 

mixing and reduced solar radiation which reduces NO2 photolysis and VOC oxidation to SOA. 711 

For aerosol species, SO4
2- concentrations increase by up to 0.38 g m-3 (26.6%) especially over 712 

the eastern U.S.  In fact, the decrease of O3 mixing ratios caused by feedbacks is expecting to 713 

reduce SO4
2- production via the gas-phase oxidation pathway due to the influence of O3 on OH, 714 

but increase SO4
2- production via the aqueous-phase chemistry pathway due to more clouds in 715 

the two-way WRF-CMAQ simulation. Thus, the net increase of SO4
2- is more dominate by the 716 

aqueous-phase chemistry instead of the gas-phase oxidation. This net increase of SO4
2-, in turn, 717 

leads to an increase of NH4
+ and decrease of NO3

- (figures not shown) through aerosol 718 

thermodynamic equilibrium. SOA concentrations decrease by up to 0.34 g m-3 (41.6%) 719 

especially over the eastern U.S. due to the large reduction of oxidants. PM2.5 concentrations also 720 

decrease by up to 5.2 g m-3 (49.1%) with a domain-average of 0.34 g m-3 (8.6%), and PM10 721 

concentrations decrease by up to 19.3 g m-3 (64.8%) with a domain-average of 1.1 g m-3 722 

(11.1%). The reductions are more apparent over the western U.S. than the eastern U.S. partially 723 

due to the compensation of the increase of SO4
2- and NH4

+ and decrease of other secondary 724 

aerosols over the eastern U.S., as well as the relatively large reduction of dust concentrations 725 

over the western U.S. caused by reduced wind speed.  726 



33 
 

5. Summary and conclusion 727 

In this study, two sets of long-term simulations for 2008-2012 using the two-way coupled 728 

WRF-CMAQ and offline coupled WRF and CMAQ, respectively, are conducted, evaluated, and 729 

compared to investigate the performance improvements due to chemistry-meteorology feedbacks 730 

and impacts of those feedbacks on the reginal air quality in the U.S. First, the two-way coupled 731 

WRF-CMAQ simulation with both aerosol direct and indirect radiative forcing is 732 

comprehensively evaluated in both winter and summer seasons and the annual trend is examined 733 

between observations and simulations for selected major variables. The results show that WRF-734 

CMAQ performs well for major surface meteorological variables such as temperature at 2 m, 735 

relative humidity at 2 m, wind speed at 10 m, and precipitation with domain-average MBs of -736 

1.1-1.1 °C, 2.2-3.7%, 0.38-0.57 m s-1, and 0.13-0.23 mm day-1
 (except for 0.71-0.75 mm day-1 737 

against NCDC), respectively, in winter and summer. The relatively large positive biases for 738 

precipitation are found to be more apparent when observed precipitation is low (dominated more 739 

by the non-convective precipitation) and are thus believed to be more associated with 740 

uncertainties in the Morrison microphysics scheme. The long-term simulation also shows 741 

generally good performance for major radiation and cloud radiative variables. Relatively large 742 

model biases still exist for cloud variables such as CDNC, COT, and CWP, indicating that the 743 

processes associated with aerosol indirect effects are still not well understood and an accurate 744 

simulation of those effects is still challenging using state-of-the-science models. WRF-CMAQ 745 

can also capture the observed year-to-year variations well for almost all the major meteorological 746 

and chemical variables.  747 

Two-way WRF-CMAQ also shows generally good or acceptable performance for max 8-748 

h O3, PM2.5 and PM2.5 constituents, with NMBs generally within ±15% for O3 and ±30% for 749 
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PM2.5 species. For example, the domain-average NMBs are 10.6 % and -3.0 % for max 8-h O3 750 

against AQS and CASTNET in summer and -13.2 to -7.2 % and -26.9 to 8.6 % for PM2.5 against 751 

CSN and IMPROVE in both seasons. O3 mixing ratios are overpredicted for most months, 752 

especially in the winter, in part due to the larger overprediction of T2 during the cold season. The 753 

overall model biases are small for PM2.5 due to the compensation of relatively large 754 

underpredictions of SO4
2- and OC, especially in the warm season, and overprediction of NO3

- in 755 

the cold season. In addition to biases inherited from the meteorology, the model performance for 756 

chemistry also suffers from uncertainties associated with emissions, the use of a coarse spatial 757 

resolution, and representation of aerosol formation pathways in the model. For example, the 758 

relatively large biases for EC might be associated with poorly allocated anthropogenic/wildfire 759 

emissions and those for OC might be due to underestimation of SOA formation in version 5.0.2 760 

of CMAQ. WRF-CMAQ also predicts the column abundances of chemical species well and the 761 

relatively large model biases for CO are found to be associated with an underestimation of 762 

BCONs. The model better reproduces the observed number of exceedance days for O3 than 763 

PM2.5 mainly due to better performance for O3 than PM2.5 concentrations. 764 

The performance comparison between two-way WRF-CMAQ and WRF-only simulations 765 

shows that two-way WRF-CMAQ model performs better for major surface meteorological, 766 

radiation, and cloud radiative variables due to the consideration of chemistry-meteorology 767 

feedbacks associated with aerosol direct and indirect forcing. The feedbacks are found to reduce 768 

the 5-year average SWDOWN by up to 24.8 W m-2, T2 by up to 0.25 °C, PBL height by up to 25 769 

m, wind speed by up to 0.05 m s-1, and precipitation by up to 0.4 mm day-1 over the CONUS, 770 

which in turn affect the air quality significantly. As a result of feedbacks, two-way WRF-CMAQ 771 

outperforms offline CMAQ for O3, SO4
2-, NO3

-, NH4
+, and EC as well as TOR and column NO2 772 
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in terms of both spatiotemporal variations and domain-average statistics due to better 773 

meteorology performance for variables such as T2, WS10, radiation, and precipitation. Despite 774 

these improvements, the offline CMAQ performs better for total PM2.5 in terms of domain-775 

average statistics, which could be partially caused by the compensation of larger under- and 776 

over-predictions of PM2.5 constituents. More robust comparison for PM2.5 should be performed 777 

with improved dust and wildfire emissions in future work. Chemistry-meteorology feedbacks are 778 

found to play important roles in affecting U.S. air quality by reducing domain-wide 5-year 779 

average surface CO by 3.0 ppb (3.1%) and up to 79.2 ppb (27.8%), O3 by 1.7 ppb (4.1%) and up 780 

to 5.2 ppb (16.2%), PM2.5 by 0.34 g m-3 (8.6%) and up to 5.2g m-3 (49.1%), and PM10 by 1.1 781 

g m-3 (11.1%) and up to 19.3 g m-3 (64.8%) mainly due to reduction of radiation, temperature, 782 

and wind speed. 783 

In summary, the two-way coupled WRF-CMAQ modeling in this study shows generally 784 

satisfactory and consistent performance for the long-term prediction of regional meteorology and 785 

air quality when compared to other studies in the literature. Possible causes for the 786 

meteorological and chemical biases that were identified through this work can provide valuable 787 

information for future model development to improve the two-way coupled WRF-CMAQ model 788 

and those biases should also be considered when making future climate/air quality projections. 789 

Non-negligible model improvements for many major meteorological and chemical variables 790 

compared to the traditional application of offline coupled WRF and CMAQ suggest the 791 

importance of chemistry-meteorology feedbacks, especially aerosol direct and indirect effects.  792 

The feedbacks should be considered along with other factors in developing future model 793 

applications to inform policy making.  794 
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Table 1. The 5-year average performance statistics for meteorological variables between two-way WRF-CMAQ and WRF-only 
simulations in winter, 2008-2012. 

Variables Datasets 
Mean 
Obs 

Two-way WRF-CMAQ WRF-only 

Mean 
Sim 

R MB 
NMB 
(%) 

RMSE 
Mean 
Sim 

R MB 
NMB 
(%) 

RMSE 

T2 (oC) 

NCDC 

7.5 8.6 0.97 1.1 14.9 1.6 8.6 0.97 1.2 15.8 1.6 

RH2 (%) 72.9 75.1 0.79 2.2 3.0 6.3 75.0 0.79 2.1 2.8 6.3 

WS10 (m s-1) 3.93 4.50 0.4 0.57 14.6 1.17 4.50 0.4 0.58 14.6 1.17 

WD10 (deg) 166.4 183.1 0.0 16.7 10.0 44.2 183.3 0.0 16.9 10.2 44.4 

Precipitation 
(mm day-1

) 

NCDC 1.54 2.25 0.46 0.71 46.3 1.94 2.26 0.47 0.72 47.0 1.94 

NADP 2.48 2.68 0.77 0.2 8.0 1.14 2.69 0.77 0.21 8.6 1.14 

GPCP 1.81 2.04 0.80 0.23 12.8 1.03 2.04 0.80 0.23 12.8 1.02 

PRISM 1.91 2.08 0.89 0.17 9.0 0.79 2.09 0.89 0.18 9.4 0.79 

TMPA 2.02 2.07 0.81 0.05 2.4 1.01 2.06 0.81 0.04 2.0 1.02 

SWDOWN (W m-2) 

CERES 

108.5 119.8 0.99 11.3 10.4 13.7 128.0 0.98 19.5 17.9 22.2 

GSW (W m-2) 87.1 94.6 0.99 7.5 8.6 10.1 101.3 0.98 14.1 16.2 17.1 

GLW (W m-2) 278.9 278.0 0.99 -0.9 -0.3 5.9 272.7 0.99 -6.3 -2.2 8.6 

OLR (W m-2) 222.3 226.2 0.99 4.0 1.8 5.1 227.0 0.99 4.7 2.1 5.8 

SWCF (W m-2) -26.6 -23.6 0.91 -3.0 -11.1 6.3 -19.2 0.85 -7.4 -27.8 10.6 

LWCF (W m-2) 22.0 18.7 0.76 -3.3 -15.1 6.0 18.0 0.72 -4.1 -18.4 6.7 

AOD 

MODIS 

0.11 0.04 0.44 -0.06 -59.8 0.08 N/A N/A N/A N/A N/A 

CF 0.66 0.59 0.87 -0.07 -10.4 0.1 N/A N/A N/A N/A N/A 

CDNC (cm-3) 172.3 30.4 0.21 -141.9 -82.4 157.5 N/A N/A N/A N/A N/A 

CWP (g m-2) 177.4 97.0 0.63 -80.4 -45.3 93.2 N/A N/A N/A N/A N/A 

COT 16.9 3.3 0.74 -13.6 -80.8 14.2 N/A N/A N/A N/A N/A 
*outputs of AOD, CF, CDNC, CWP, and COT are not available from WRF-only simulations 
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Table 2. The 5-year average performance statistics for meteorological variables between two-way WRF-CMAQ and WRF-only 
simulations in summer, 2008-2012. 

Variables Datasets 
Mean 
Obs 

Two-way WRF-CMAQ WRF-only 

Mean 
Sim 

R MB 
NMB 
(%) 

RMSE 
Mean 
Sim 

R MB 
NMB 
(%) 

RMSE 

T2 (oC) 

NCDC 

22.3 22.2 0.95 -1.1 -4.6 1.7 22.4 0.95 -0.9 -3.7 1.6 

RH2 (%) 67.0 70.7 0.91 3.7 5.5 6.6 70.1 0.91 3.2 4.7 6.3 

WS10 (m s-1) 3.19 3.57 0.36 0.38 11.8 0.99 3.61 0.35 0.42 13.1 1.01 

WD10 (deg) 146.4 195.4 0.0 49.1 33.5 67.3 196.1 0.0 49.8 34.0 67.9 

Precipitation 
(mm day-1

) 

NCDC 2.11 2.86 0.5 0.75 35.6 1.93 3.01 0.5 0.9 42.6 2.01 

NADP 2.82 2.99 0.83 0.17 5.9 0.87 3.14 0.83 0.32 11.2 0.93 

GPCP 2.55 2.78 0.80 0.23 9.0 1.19 2.86 0.80 0.30 11.9 1.21 

PRISM 2.35 2.55 0.89 0.20 8.4 0.69 2.65 0.89 0.30 12.9 0.73 

TMPA 2.70 2.83 0.80 0.13 4.8 1.27 2.89 0.81 0.19 6.8 1.27 

SWDOWN (W m-2) 

CERES 

254.7 298.3 0.84 43.6 17.1 46.6 314.1 0.73 59.4 23.3 62.8 

GSW (W m-2) 222.5 256.1 0.75 33.6 15.1 37.6 269.7 0.57 47.2 21.2 51.7 

GLW (W m-2) 372.2 358.8 0.98 -13.4 -3.6 15.3 355.4 0.98 -16.8 -4.5 18.7 

OLR (W m-2) 257.2 259.6 0.96 2.3 0.9 4.8 260.2 0.96 3.0 1.2 5.2 

SWCF (W m-2) -55.1 -32.3 0.69 -22.8 -41.3 27.6 -24.0 0.50 -31.1 -56.4 36.2 

LWCF (W m-2) 26.1 17.5 0.85 -8.6 -33.0 9.8 17.1 0.87 -9.0 -34.6 10.0 

AOD 

MODIS 

0.20 0.07 0.67 -0.13 -67.8 0.14 N/A N/A N/A N/A N/A 

CF 0.53 0.41 0.81 -0.12 -23.0 0.16 N/A N/A N/A N/A N/A 

CDNC (cm-3) 138.9 28.9 0.11 -110.0 -79.2 124.1 N/A N/A N/A N/A N/A 

CWP (g m-2) 162.2 54.6 0.65 -107.6 -66.3 113.8 N/A N/A N/A N/A N/A 

COT 14.2 2.3 0.73 -11.9 -83.6 12.2 N/A N/A N/A N/A N/A 
*outputs of AOD, CF, CDNC, CWP, and COT are not available from WRF-only simulations 
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Table 3. The 5-year average performance statistics for chemical variables between two-way WRF-CMAQ and offline CMAQ 
simulations in winter, 2008-2012. 

Variables Datasets 
Mean 
Obs 

Two-way WRF-CMAQ Offline CMAQ 

Mean 
Sim 

R MB 
NMB 
(%) 

NME 
(%) 

Mean 
Sim 

R MB 
NMB 
(%) 

NME 
(%) 

Max 8-hr O3 
(ppb) 

AQS 32.4 39.6 0.61 7.2 22.5 23.0 42.3 0.65 9.9 30.7 30.9 

CASTNET 34.9 36.6 0.76 1.7 4.9 9.4 39.7 0.75 4.7 13.5 14.3 

PM2.5 (g m-3) 
CSN 11.4 10.6 0.21 -0.8 -7.2 29.3 11.7 0.2 0.21 1.8 31.0 

IMPROVE 3.59 3.90 0.83 0.31 8.6 30.3 4.44 0.86 0.85 23.7 32.1 

PM10 (g m-3) AQS 19.9 12.7 0.04 -7.2 -36.3 46.9 15.7 0.17 -4.2 -21.3 42.8 

SO4
2- (g m-3) 

CSN 2.06 1.06 0.78 -1.0 -48.3 48.4 1.02 0.78 -1.04 -50.7 50.8 

IMPROVE 0.79 0.49 0.95 -0.3 -37.4 38.9 0.49 0.95 -0.3 -38.5 39.9 

NO3
- (g m-3) 

CSN 2.37 2.36 0.79 -0.01 -0.3 25.8 2.89 0.81 0.52 21.7 37.8 

IMPROVE 0.73 0.83 0.87 0.1 13.3 40.9 1.06 0.90 0.33 44.6 54.4 

NH4
+ (g m-3) CSN 1.30 0.92 0.80 -0.38 -29.4 30.5 1.03 0.81 -0.27 -21.0 24.1 

EC (g m-3) 
CSN 0.69 0.75 0.18 0.06 8.7 58.5 0.79 0.24 0.1 14.2 58.0 

IMPROVE 0.17 0.23 0.80 0.06 40.8 59.2 0.25 0.84 0.09 53.4 65.6 

OC (g m-3) IMPROVE 0.65 0.74 0.65 0.09 13.0 55.7 0.8 0.67 0.15 23.1 56.4 

TC (g m-3) 
CSN 3.05 3.27 0.01 0.22 7.2 53.2 3.49 0.0 0.44 14.4 55.8 

IMPROVE 0.53 0.62 0.75 0.09 17.5 51.3 0.68 0.78 0.15 28.1 52.6 
Col. CO (1018 

mole. cm-3) 
MOPITT 1.96 1.56 0.70 -0.4 -20.5 21.6 1.57 0.69 -0.39 -19.8 21.1 

TOR (DU) OMI 26.4 27.6 0.78 1.2 4.7 14.0 28.0 0.19 1.6 5.9 14.3 
Col. NO2 (1015 

mole. cm-3) 
SCIAMACHY 1.55 1.55 0.86 0.04 0.3 33.5 1.53 0.87 -0.02 -1.2 33.1 

Col. HCHO (1015 
mole. cm-3) 

SCIAMACHY 4.87 2.48 0.29 -2.39 -49.0 50.1 2.53 0.28 -2.34 -48.0 49.2 
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Table 4. The 5-year average performance statistics for chemical variables between two-way WRF-CMAQ and offline CMAQ 
simulations in summer, 2008-2012. 

Variables Datasets 
Mean 
Obs 

Two-way WRF-CMAQ Offline CMAQ 

Mean 
Sim 

R MB 
NMB 
(%) 

NME 
(%) 

Mean 
Sim 

R MB 
NMB 
(%) 

NME 
(%) 

Max 8-hr O3 
(ppb) 

AQS 47.9 53.0 0.66 5.1 10.6 13.2 54.8 0.66 6.8 14.2 15.6 

CASTNET 47.2 45.8 0.66 -1.4 -3.0 11.5 47.3 0.68 0.1 0.2 10.5 

PM2.5 (g m-3) 
CSN 11.4 9.9 0.74 -1.5 -13.2 20.5 9.8 0.71 -1.6 -14.0 20.8 

IMPROVE 6.19 4.52 0.88 -1.66 -26.9 31.2 4.78 0.86 -1.41 -22.8 28.9 

PM10 (g m-3) AQS 26.7 14.5 0.03 -12.2 -45.8 50.7 16.2 0.07 -10.5 -39.4 48.6 

SO4
2- (g m-3) 

CSN 2.86 2.57 0.91 -0.29 -10.2 15.1 2.34 0.91 -0.52 -18.1 19.5 

IMPROVE 1.40 1.11 0.98 -0.29 -20.9 21.3 1.08 0.98 -0.31 -22.5 22.6 

NO3
- (g m-3) 

CSN 0.49 0.71 0.54 0.22 45.2 70.6 0.77 0.59 0.28 57.2 76.8 

IMPROVE 0.20 0.19 0.6 -0.01 -4.7 71.4 0.22 0.63 0.02 10.3 72.2 

NH4
+ (g m-3) CSN 0.91 0.94 0.86 0.03 3.3 22.4 0.88 0.85 -0.03 -3.6 20.1 

EC (g m-3) 
CSN 0.56 0.79 0.56 0.23 41.0 56.3 0.79 0.55 0.23 41.9 55.5 

IMPROVE 0.20 0.24 0.56 0.04 20.4 58.8 0.26 0.52 0.06 27.9 63.0 

OC (g m-3) IMPROVE 1.37 0.70 0.31 -0.67 -49.2 54.0 0.75 0.28 -0.62 -45.4 52.4 

TC (g m-3) 
CSN 2.85 2.17 0.54 -0.67 -23.6 29.3 2.19 0.5 -0.65 -22.9 29.7 

IMPROVE 0.88 0.61 0.56 -0.27 -30.5 47.6 0.66 0.53 -0.23 -25.6 47.6 
Col. CO (1018 

mole. cm-3) 
MOPITT 1.82 1.32 0.75 -0.5 -27.8 27.8 1.32 0.54 -0.5 -27.3 27.3 

TOR (DU) OMI 35.0 32.2 0.87 -2.8 -8.0 9.0 32.4 0.85 -2.6 -7.3 8.6 
Col. NO2 (1015 

mole. cm-3) 
SCIAMACHY 1.08 0.78 0.81 -0.3 -27.8 38.0 0.78 0.80 -0.3 -27.5 38.1 

Col. HCHO (1015 
mole. cm-3) 

SCIAMACHY 5.81 6.71 0.82 0.9 15.0 22.5 6.82 0.82 1.01 17.4 23.5 
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Figure 1. Spatial distributions of 5-year average MBs for 2-m temperature (T2), 2-m relative 
humidity (RH2), 10-m wind speed (WS10), and hourly precipitation from NCDC for two-way 
WRF-CMAQ in winter (left panel) and summer (right panel), 2008-2012. 
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Figure 2. Spatial distributions of 5-year average of daily precipitation from TMPA, PRISM, two-
way WRF-CMAQ, and WRF-only (from top to bottom) in winter (left panel) and summer (right 
panel), 2008-2012.  
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Figure 3. Bar charts for annual average observations and simulations (standard deviations are 
displayed as the error bars)) from two-way WRF-CMAQ for major meteorological variables (left 
panel) and chemical species (right panel) in 2008-2012.  
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Figure 4. Spatial distribution of 5-year average major radiation variables (from top to bottom: 
SWDOWN, GSW, GLW, OLR, and AOD) between CERES observations (left panel) vs. two-
way WRF-CMAQ (right panel) in winter, 2008-2012.   
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CERES Two-way WRF-CMAQ 

 

 

   

   

 

 

   
Figure 5. Spatial distribution of 5-year average major radiation variables (from top to bottom: 
SWDOWN, GSW, GLW, OLR, and AOD) between CERES observations (left panel) vs. two-
way WRF-CMAQ (right panel) in summer, 2008-2012. 
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Figure 6. Spatial distribution of 5-year average major cloud variables (from top to bottom: 
CDNC, CF, COT, and CWP) between MODIS observations (left panel) vs. two-way WRF-
CMAQ (right panel) in winter, 2008-2012.  
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MODIS Two-way WRF-CMAQ 

 

 

   

 

 



64 
 

 

 

Figure 7. Spatial distribution of 5-year average major cloud variables (from top to bottom: 
CDNC, CF, COT, and CWP) between MODIS observations (left panel) vs. two-way WRF-
CMAQ (right panel) in summer, 2008-2012. 
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CERES Two-way WRF-CMAQ WRF-only 

 
 

 

 
 

           

           
Figure 8. Spatial distribution of 5-year average SWCF in winter, LWCF in winter, SWCF in summer, and LWCF in summer (from top 
to bottom) between CERES observations (left panel) vs. two-way WRF-CMAQ (center panel) and WRF-only (right panel) in 2008-
2012.
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a)

 

b)

 
c)  d) 

Figure 9. Spatial distributions of 5-year averaged max 8-h O3 in summer overlaid with 
observations from AIRS-AQS and CASTNET for a) two-way WRF-CMAQ and b) offline 
CMAQ; c) bar chart for 5-year average monthly O3 between observations (black bar), two-way 
WRF-CMAQ (red bar), and offline CMAQ (blue bar); and d) diurnal plots of observed (dots) vs. 
simulated (lines) hourly O3 concentrations against CASTNET for winter (cold colors) and 
summer (warm colors) in 2008-2012. 
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a) 

 

b) 

 
c) d) 

e) 

 

f) 

 
Figure 10. Spatial distributions of 5-year averaged daily PM2.5 overlaid with observations from 
CSN and IMPROVE for two-way WRF-CMAQ in a) winter and c) summer and offline CMAQ 
in b) winter and d) summer; bar charts for 5-year average monthly PM2.5 between observations 
(black bar), two-way WRF-CMAQ (red bar), and offline CMAQ (blue bar) over e) CSN and f) 
IMPROVE in 2008-2012. 
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Figure 11. Scatter plots of 5-year averaged PM2.5 constituents for SO4

2-, NO3
-, NH4

+, and TC 
(from top to bottom) between observations and simulations of two-way WRF-CMAQ (red color) 
and offline CMAQ (blue) in winter (left panel) and summer (right panel), 2008-2012. 
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Figure 12. Spatial distribution of 5-year average column abundances (from top to bottom: 
column CO, TOR, column NO2, and column HCHO) between various satellite observations (left 
panel) vs. two-way WRF-CMAQ (right panel) in winter, 2008-2012. 
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Figure 13. Spatial distribution of 5-year average column abundances (from top to bottom: 
column CO, TOR, column NO2, and column HCHO) between various satellite observations (left 
panel) vs. two-way WRF-CMAQ (right panel) in summer, 2008-2012. 
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Figure 14. The spatial distribution of 5-year average annual exceedance days of max 8-h O3 and 
daily PM2.5 between observations (O3 over the AIRS-AQS/CASTNET network and PM2.5 over 
the IMPROVE/CSN network) and two-way WRF-CMAQ in 2008-2012.   
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Figure 15. Spatial difference plots (two-way WRF-CMAQ - WRF-only) for major 
meteorological variables between two-way WRF-CMAQ and WRF-only in 2008-2012. 
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Figure 16. Spatial difference plots (two-way WRF-CMAQ - offline CMAQ) for major chemical 
species between two-way WRF-CMAQ and offline CMAQ in 2008-2012. 

 


