A Comparative Study of Two-way and

² Offline Coupled WRF v3.4 and CMAQ v5.0.2

over the Contiguous U.S.: Performance

4 Evaluation and Impacts of Chemistry-

5 Meteorology Feedbacks on Air Quality

6	Kai Wang ¹ , Yang Zhang ^{1*} , Shaocai Yu ^{2*} , David C. Wong ³ , Jonathan Pleim ³ , Rohit Mathur ³ ,
7	James T. Kelly ⁴ , and Michelle Bell ⁵

8	¹ Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
9	02115
10	² Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education;
11	Research Center for Air Pollution and Health, College of Environment and Resource Sciences,
12	Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
13	³ Center for Environmental
14	Measurement and Modeling, U.S. EPA, RTP, NC 27711
15	⁴ Office of Air Quality Planning and Standards, U.S. EPA, RTP, NC 27711
16	⁵ School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511

1

17

18 *Correspondence to: Yang Zhang (ya.zhang@northeastern.edu); Shaocai Yu (shaocaiyu@zju.edu.cn)

20 Abstract

21	The two-way coupled Weather Research and Forecasting and Community Multiscale Air
22	Quality (WRF-CMAQ) model has been developed to more realistically represent the atmosphere
23	by accounting for complex chemistry-meteorology feedbacks. In this study, we present a
24	comparative analysis of two-way (with consideration of both aerosol direct and indirect effects)
25	and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous U.S. Long-term (five-year
26	of 2008-2012) simulations using WRF-CMAQ with both offline and two-way coupling modes
27	are carried out with anthropogenic emissions based on multiple years of the U.S. National
28	Emission Inventory and chemical initial and boundary conditions derived from an advanced
29	Earth system model (i.e., a modified version of the Community Earth System Model/Community
30	Atmospheric Model). The comprehensive model evaluations show that both two-way WRF-
31	CMAQ and WRF-only simulations perform well for major meteorological variables such as
32	temperature at 2 m, relative humidity at 2 m, wind speed at 10 m, and precipitation (except for
33	against the National Climatic Data Center data) as well as shortwave/longwave radiation. Both
34	two-way and offline CMAQ also show good performance for ozone (O ₃) and fine particulate
35	matter (PM _{2.5}). Due to the consideration of aerosol direct and indirect effects, two-way WRF-
36	CMAQ shows improved performance over offline-coupled WRF and CMAQ in terms of
37	spatiotemporal distributions and statistics, especially for radiation, cloud forcing, O ₃ , sulfate,
38	nitrate, ammonium, and elemental carbon as well as tropospheric O_3 residual and column
39	nitrogen dioxide (NO ₂). For example, the mean biases have been reduced by more than 10 W \textrm{m}^{-2}
40	for shortwave radiation and cloud radiative forcing and by more than 2 ppb for max 8-h O_3 .
41	However, relatively large biases still exist for cloud predictions, some $PM_{2.5}$ species, and PM_{10} ,
42	which warrant follow-up studies to better understand those issues. The impacts of chemistry-

43	meteorological feedbacks are found to play important roles in affecting regional air quality in the	
44	U.S. by reducing domain-average concentrations of carbon monoxide (CO), O ₃ , nitrogen oxide	
45	(NO _x), volatile organic compounds (VOCs), and PM _{2.5} by 3.1% (up to 27.8%), 4.2% (up to	
46	16.2%), 6.6% (up to 50.9%), 5.8% (up to 46.6%), and 8.6% (up to 49.1%), respectively, mainly	
47	due to reduced radiation, temperature, and wind speed. The overall performance of the two-way	
48	coupled WRF-CMAQ model achieved in this work is generally good or satisfactory and the	
49	improved performance for two-way coupled WRF-CMAQ should be considered along with other	
50	factors in developing future model applications to inform policy making.	
51	Keywords: CMAQ, Two-way coupling, Evaluation, Chemistry-meteorology feedback	
52	1. Introduction	
53	The Community Multiscale Air Quality (CMAQ) modeling system developed by the U.S.	
54	Environmental Protection Agency (EPA) (Byun and Schere, 2006; Scheffe et al., 2016; San	
55	Joaquin Valley APCD, 2018; Pye et al., 2020; U.S. EPA, 2020) has been extensively used by	
56	both scientific community and governmental agencies over various geographical regions and	
57	under different meteorological and air pollution conditions to address major key air quality	
58	issues such as atmospheric ozone (O ₃), acid rain, regional haze, and trans-boundary or long-	
59	range transport of air pollutants during the past decades over North America (Zhang et al.,	
60	2009a,b; Wang and Zhang, 2012; Hogrefe et al., 2015), Asia (Wang et al., 2009, 2012; Liu et al.,	
61	2010; Zheng et al., 2015; Li et al., 2017; Xing et al., 2017; Yu et al., 2018; Mehmood et al.,	
62	2020), and Europe (Kukkonen et al., 2012; Mathur et al., 2017; Solazzo et al., 2017). The	
63	CMAQ model is traditionally driven offline by the three-dimensional meteorology fields	
64	generated separately from other meteorological models such as the Weather Research and	
65	Forecasting (WRF) model, and the dynamic feedbacks of chemistry predictions on meteorology	

66	are neglected. However, more recently (IPCC, 2018), chemistry-meteorology feedbacks have
67	been found to play important roles in affecting the both global and regional climate change and
68	air quality (Jacobson et al., 1996; Mathur et al., 1998; Ghan et al., 2001; Zhang, 2008; Zhang et
69	al., 2010, 2015a,b, 2017; Grell and Baklanov, 2011; Wong et al., 2012; Baklanov et al., 2014; Yu
70	et al., 2014; Gan et al., 2015a; Wang et al., 2015 <u>a</u> ; Xing et al., 2015a,b; Yahya et al., 2015a,b;
71	Hong et al., 2017; Jung et al., 2019). Feedbacks of aerosols on radiative transfer through aerosol-
72	radiation interactions (i.e., aerosol direct forcing) and aerosol-cloud interactions (i.e., aerosol
73	indirect forcing) are especially important (Zhang, 2008; Zhang et al., 2015a,b; Baklanov et al.,
74	2014; Wang et al., 2015a; Yahya et al., 2015a,b). Recognizing this importance, as well as the
75	recent advances in knowledge on chemistry-meteorology interactions and computational
76	resources, the U.S. EPA developed a two-way coupled WRF-CMAQ model that accounts for the
77	aerosol direct effect alone (Wong et al., 2012). This version of CMAQ has been applied for both
78	regional and hemispheric studies (Wang et al., 2014; Hogrefe et al., 2015; Xing et al., 2016,
79	2017; Hong et al., 2017, 2020; Sekiguchi et al., 2018; Yoo et al., 2019). For example, Xing et al.
80	(2016) showed that aerosol direct feedbacks may further improve air quality resulting from
81	emission controls in the U.S. and also indicated that coupled models are key tools for quantifying
82	such feedbacks. Reduction in atmospheric ventilation resulting from aerosol induced surface
83	cooling can exacerbate ground level air pollution. Hong et al. (2017) estimated an increase by
84	4.8%-9.5% in concentrations of major air pollutants over China in winter due to incorporation of
85	such effects. Xing et al. (2017) reported that the aerosol direct effects could reduce daily max 1h
86	O_3 by up to 39 $\mu g\ m^{\text{-}3}$ over China in January through reducing solar radiation and photolysis
87	rates. Hong et al. (2020) found that the benefits of reduced pollutant emissions through
88	weakening aerosol direct effects can largely offset the additional deaths caused by the warming

89	effect of greenhouse gases over China. Some of those studies have also found that the missing
90	aerosol indirect effects in WRF-CMAQ may introduce large model biases on their simulations of
91	radiation and thus air quality (Wang et al., 2014; Sekiguchi et al., 2018; Yoo et al., 2019). There
92	has been a growing awareness that both aerosol effects should be considered together to provide
93	greater fidelity in coupling complex atmospheric processes among chemistry, aerosols, cloud,
94	radiation, and precipitation (Grell and Baklanov, 2011). To address this issue and better represent
95	the one-atmosphere modeling capability of CMAQ, Yu et al. (2014) further extended the two-
96	way coupled WRF-CMAQ model by including aerosol indirect effects and improved WRF-
97	CMAQ's capability for predicting cloud and radiation variables.
98	Different from the traditional online integrated air quality models such as the Gas,
99	Aerosol, Transport, Radiation, General Circulation, and Mesoscale Meteorological (GATOR-
100	GCMM) model (Jacobson, 2001), the WRF model coupled with chemistry (WRF/Chem; Grell et
101	al., 2005) and the WRF model coupled with the Community Atmosphere Model version 5
102	(WRF-CAM5; Ma et al., 2013; Zhang et al., 2015a,b; 2017), in which atmospheric dynamics and
103	chemistry are integrated and simulated altogether without an interface between meteorology and
104	atmospheric chemistry (Zhang et al., 2013), two-way WRF-CMAQ (also referred to as the online
105	access model) is created by combining existing meteorology (i.e., WRF) and atmospheric
106	chemistry (i.e., CMAQ) models with an interactive interface (Yu et al., 2014). As pointed out by
107	Yu et al. (2014), the main advantage of two-way CMAQ is to allow the existing numerical
108	techniques to be used in both WRF and CMAQ to facilitate future independent development of
109	both models while also maintaining CMAQ as a stand-alone model (the offline capability). In the
110	past, a number of studies have compared and evaluated online vs. offline-coupled model
111	performance (Pleim et al, 2008; Matsui et al., 2009; Wilczak et al., 2009; Lin et al., 2010;

112	Herwehe et al., 2011; Yu et al., 2011; Wong et al., 2012; Zhang et al., 2013, 2016a; Choi et al.,
113	2019). However due to the missing offline-coupled mode or component for most online-coupled
114	models, many of those intercomparison studies are subject to some key limitations such as
115	inconsistent model treatments in chemical options (Matsui et al., 2009; Lin et al., 2010; Zhang et
116	al., 2013; Choi et al., 2019) or in both physical and chemical options (Wilczak et al., 2009;
117	Herwehe et al., 2011; Zhang et al., 2016a), different domain projection methods or resolutions
118	(Wilczak et al., 2009; Lin et al., 2010; Zhang et al., 2013), or disunified model inputs (Wilczak et
119	al., 2009; Lin et al., 2010; Zhang et al., 2013). Due to the unique coupling approach, two-way
120	WRF-CMAQ can be used to overcome those limitations and set up ideal intercomparisons
121	between online and offline simulations using consistent model treatments (Pleim et al, 2008; Yu
122	et al., 2011; Wong et al., 2012).
123	In this study, we provide a robust examination of model improvements by considering
124	chemistry-meteorology feedbacks and their impacts on the U.S. air quality using the two-way
125	WRF-CMAQ model (same version as in Yu et al., 2014) with both aerosol direct and indirect

effects. Long-term (five-year of 2008-2012) simulations using both two-way and offline coupled 126 WRF and CMAQ models are carried out and compared to the best of our knowledge for the first 127 time over the contiguous U.S. (CONUS) with anthropogenic emissions based on multiple years 128 of the U.S. National Emission Inventory (NEI) and chemical initial and boundary conditions 129 (ICONs/BCONs) downscaled from the advanced Earth system model, i.e., an updated version of 130 the Community Earth System Model/CAM5 (CESM/CAM5; He and Zhang, 2014; Glotfelty et 131 al., 2017). Our objectives include 1) perform a comprehensive model evaluation for major 132 meteorological variables and chemical species from this long-term application of the two-way 133

134	coupled WRF-CMAQ; and 2) conduct a comparative study of two-way and offline coupled WRF
135	and CMAQ to examine the impacts of chemistry-meteorology interactions on U.S. air quality.
136	Compared to previous studies in the literature, there are a few key features of this work.
137	First, the intercomparisons between two-way (or online) and offline WRF-CMAQ are performed
138	here using consistent model configurations including both physical/chemical options and inputs.
139	Second, unlike a few previous intercomparison studies (Pleim et al, 2008; Yu et al., 2011; Wong
140	et al., 2012) using two-way WRF-CMAQ with only aerosol direct effects for relatively short
141	episodes, the model version in this work includes both aerosol direct and indirect effects and
142	simulations are conducted for multiple years to provide more robust assessments. Third,
143	compared to other studies (e.g., Yahya et al., 2015a,b; Choi et al., 2019) focusing on the impacts
144	of chemistry-meteorology feedbacks on meteorology only or limited chemical species, this study
145	performs comprehensive and extensive evaluation and comparison to demonstrate importance of
146	chemistry-meteorology feedbacks on regional meteorology and air quality.
147	2. Model description, simulation setup, and evaluation protocols
148	Two sets of five-year (i.e., 2008-2012) long-term simulations are conducted using the two-
149	way coupled WRF v3.4-CMAQ v5.0.2 model with both aerosol direct and indirect effects and
150	the sequentially offline-coupled WRF v3.4 and CMAQ v5.0.2 model, respectively, over the
151	CONUS with 36-km horizontal grid spacing. The vertical resolution for these simulations
152	consists of 34 layers from the surface (~38 m) to 100 hPa (~15 km). The two-way coupled WRF-
153	CMAQ includes estimations of aerosol optical properties based on prognostic aerosol size
154	distributions and composition These aerosol optical properties are then used to modulate the
155	shortwave radiation budget estimated using the Rapid and accurate Radiative Transfer Model for

156	General circulation (RRTMG) radiation scheme (Iacono et al., 2008) in WRF. Additionally,
157	aerosol indirect effects, including the first (cloud albedo) and second (cloud lifetime) indirect
158	aerosol forcing and the glaciation (ice and mixed-phase cloud lifetime) indirect aerosol forcing
159	are also modeled. More details on the model development of this version of WRF-CMAQ can be
160	found in Yu et al. (2014). On the other hand, the WRF only model calculates the radiation
161	budgets by using prescribed aerosol optical properties such as aerosol optical depth, single
162	scattering albedo and asymmetry parameters and cloud formation by assuming default droplet
163	number concentration and fixed cloud effective radius, which may not be representative for the
164	large regions with complex air pollution conditions. Both the two-way and offline coupled WRF-
165	CMAQ use the same model configurations as shown in Table S1 in the supplementary material,
166	except that prognostic aerosol impacts on radiation and clouds are fully treated in two-way
167	WRF-CMAQ. The physics options include the RRTMG shortwave and longwave radiation
168	schemes, the Asymmetric Convective Model (ACM2) planetary boundary layer (PBL) scheme
169	(Pleim, 2007), the Pleim-Xiu (PX) land-surface scheme (Xiu and Pleim, 2001), the Morrison
170	two-moment microphysics scheme (Morrison et al., 2009), and version 2 of the Kain-Fritsch
171	(KF2) cumulus scheme (Kain, 2004). The chemical options include the Carbon Bond 2005
172	(CB05) chemical mechanism (Yarwood et al., 2005) with additional chloride chemistry (Sarwar
173	et al., 2008), the sixth generation CMAQ aerosol module (AERO6) (Appel et al., 2013), and
174	CMAQ's aqueous phase chemistry (AQCHEM). In addition, the time steps of dynamics and
175	radiation for two-way WRF-CMAQ are set as 1 min and 15 mins, respectively, and the call
176	frequency for CMAQ in the two-way coupled model is set to be 5 mins.
177	The meteorological ICONs/BCONs are generated from the National Centers for

178 Environmental Prediction Final Analysis (NCEP-FNL) datasets and the chemical

179	ICONs/BCONs are downscaled from a modified version of CESMv1.2.2/CAM5 (He and Zhang,
180	2014; Glotfelty et al., 2017). The chemical ICONs/BCONs generated from CESM simulations
181	consider the year-to-year variation. The CESM simulations have been comprehensively
182	evaluated against surface, remoting sensing including satellite data, and reanalysis data for major
183	meteorological and chemical variables over Europe, Asia, North America, and the globe. The
184	results are also compared with other existing global model results and show generally
185	satisfactory/superior performance. The anthropogenic emissions are based on two versions of
186	NEI. NEI 2008 and NEI 2011 are used to cover the 5-year period, i.e., NEI 2008 for 2008-2010
187	and NEI 2011 for 2011-2012, respectively. Biogenic emissions are calculated online using the
188	Biogenic Emissions Inventory System (BEIS) v3 (Schwede et al., 2005). The sea-salt and dust
189	emissions are also generated online by CMAQ's inline modules (Zender et al., 2003; Zhang et
190	al., 2005; Foroutan et al., 2017). Two-way coupled WRF-CMAQ simulations are reinitialized
191	every 5 days for meteorology fields only. We have conducted sensitivity simulations in the past
192	(Wang et al., 2021) and found that a 5-day reinitialization frequency is more suitable to improve
193	the overall simulation quality to make meteorology simulations as accurate as possible while
194	preserving the two-way chemistry-meteorology feedbacks. The WRF-only simulations that are
195	used to drive the offline CMAQ simulations apply the same reinitialization method to make sure
196	any deviation between two simulations are more determined by the feedback processes be
197	consistent with the two-way coupled WRF-CMAQ simulations.
198	The model evaluation in this work mainly focuses on the long-term climatological type of
199	performance in representative seasons (i.e., winter and summer) by comparing 5-year average
200	spatially and temporally matched model predictions of major surface meteorological/radiation-

cloud variables and surface/column chemical species against various surface/satellite 201

202	observations and reanalysis data (The 5-year annual results can be found in the supplemental	
203	materials). A brief inter-annual comparison between observations and two-way CMAQ	
204	simulations are also performed for selected major meteorological and chemical variables to	
205	examine the model's capability in reproducing the year-to-year variations of those variables. The	
206	surface meteorological data include temperature at 2 m (T2), relative humidity at 2 m (RH2),	
207	wind speed at 10 m (WS10), and wind direction at 10 m (WD10) from the National Climatic	
208	Data Center (NCDC), and precipitation from the NCDC, the National Acid Deposition Program	
209	(NADP), the Global Precipitation Climatology Project (GPCP), the Parameter-elevation	
210	Regressions on Independent Slopes Model (PRISM), and the Tropical Rainfall Measuring	
211	Mission Multisatellite Precipitation Analysis (TMPA). The radiation and cloud data include	
212	downward shortwave radiation at the ground surface (SWDOWN), net shortwave radiation at the	
213	ground surface (GSW), downward longwave radiation at the ground surface (GLW), outgoing	
214	longwave radiation at the top of the atmosphere (OLR), and shortwave and longwave cloud	
215	forcing (SWCF and LWCF) from the Clouds and the Earth's Radiant Energy System (CERES);	
216	aerosol optical depth (AOD), cloud fraction (CF), cloud water path (CWP), and cloud optical	
217	thickness (COT) from the MODerate resolution Imaging Spectroradiometer (MODIS); and cloud	
218	droplet number concentration (CDNC) derived based on MODIS data by Bennartz (2007). The	
219	chemical data include surface O3 from the Aerometric Information Retrieval System-Air Quality	
220	Subsystem (AIRS-AQS) and the Clean Air Status and Trends Network (CASTNET); surface fine	
221	particulate matter with 2.5 μ m or less (PM _{2.5}) and its constituents including sulfate (SO ₄ ²⁻),	Formatted: Font: Symbol
222	nitrate (NO3 ⁻), ammonium (NH4 ⁺), elemental carbon (EC), organic carbon (OC), and total carbon	
223	(TC = EC + OC) from the Interagency Monitoring of Protected Visual Environments	
224	(IMPROVE) and the Chemical Speciation Network (CSN); surface coarse particulate matter	
I		

225	with diameters of 10 μ m or less (PM ₁₀) from the AQS; and column abundance variables such as	Formatted: Font: Symbol
226	column carbon monoxide (CO) from the Measurements of Pollution in the Troposphere	
227	(MOPITT), tropospheric ozone residual (TOR) from the Ozone Monitoring Instrument (OMI),	
228	and column nitrogen dioxide (NO ₂) and formaldehyde (HCHO) from the Scanning Imaging	
229	Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY).	
230	The satellite datasets used in this study are all level-3 gridded monthly-averaged data	
231	with various resolutions (i.e., 0.25° for OMI and PRISM, 0.5° for SCIAMACHY, 1° for CERES,	
232	GPCP, MODIS, and MOPITT). For the calculation of model performance statistics, the satellite	
233	data with different resolutions are mapped to CMAQ's Lambert conformal conic projection	
234	using bi-linear interpolation in the NCAR command language. CMAQ model outputs at	
235	approximate time of the satellite overpass are paired with the satellite retrievals to facilitate a	
236	consistent comparison. Note that only those grid points with valid satellite observations are	
237	considered when paring model results with observations, and the averaging kernels are not	
238	considered when analyzing the column CO and NO ₂ results, which may introduce some	Formatted: Subscript
239	uncertainties (Wang et al., 2015b). Modeled CDNC is calculated as the average value of the	
239 240	uncertainties (Wang et al., 2015b). Modeled CDNC is calculated as the average value of the layer of low-level warm clouds between 950 and 850 hPa as suggested by Bennartz (2007).	
240	layer of low-level warm clouds between 950 and 850 hPa as suggested by Bennartz (2007).	
240 241	layer of low-level warm clouds between 950 and 850 hPa as suggested by Bennartz (2007). Following the approach of Wielicki et al. (1996), the SWCF and LWCF are calculated as the	
240 241 242	layer of low-level warm clouds between 950 and 850 hPa as suggested by Bennartz (2007). Following the approach of Wielicki et al. (1996), the SWCF and LWCF are calculated as the difference between the clear-sky and the all-sky reflected radiation at the top of atmosphere for	
240 241 242 243	layer of low-level warm clouds between 950 and 850 hPa as suggested by Bennartz (2007). Following the approach of Wielicki et al. (1996), the SWCF and LWCF are calculated as the difference between the clear-sky and the all-sky reflected radiation at the top of atmosphere for both simulations and observations.	
240 241 242 243 244	layer of low-level warm clouds between 950 and 850 hPa as suggested by Bennartz (2007). Following the approach of Wielicki et al. (1996), the SWCF and LWCF are calculated as the difference between the clear-sky and the all-sky reflected radiation at the top of atmosphere for both simulations and observations. The statistical performance evaluation follows a protocol similar to that of Zhang et al.	
240 241 242 243 244 245	layer of low-level warm clouds between 950 and 850 hPa as suggested by Bennartz (2007). Following the approach of Wielicki et al. (1996), the SWCF and LWCF are calculated as the difference between the clear-sky and the all-sky reflected radiation at the top of atmosphere for both simulations and observations. The statistical performance evaluation follows a protocol similar to that of Zhang et al. (2006, 2009a) and Yahya et al. (2016) and uses well-accepted statistical measures such as	

sampling protocols among monitoring networks, the evaluation is conducted separately for

249 individual networks for the same simulated variables/species.

250 3. Comprehensive model evaluation of two-way WRF-CMAQ

251 3.1 Meteorological evaluation

252 3.1.1 Surface meteorological variables

253 Figures 1a-d shows the spatial distribution of 5-year average MBs for T2, RH2, WS10, 254 and hourly precipitation from two-way WRF-CMAQ against the NCDC data in winter and 255 summer, 2008-2012 and Tables 1 and 2 summarizes the statistics for the same variables. All 256 Most variables except for precipitation show overall moderate to good or moderate spatial 257 performance with many sites showing MBs within $\pm 1.00.6$ °C for T2, ± 105 % for RH2, ± 1 m s⁻¹ 258 for WS10, and ± 0.24 mm hr⁻¹ for precipitation, respectively in both seasons. WRF-CMAQ tends to overpredict T2 (i.e., warm bias) over widespread areas of domain especially along the Atlantic 259 260 coast, the eastern/southeastern U.S., the Central U.S., and Pacific coast in winter and 261 underpredict T2 (i.e., cold bias) over the eastern U.S., the Central U.S., and mountainous U.S. in 262 summer, which leads to an overall small warm bias in the whole year (see Figure S1). The model 263 also shows cold biases (i.e., underprediction in T2) over the mountainous regions and northeastern U.S. Similar warm biases of T2 in winter have been previously reported by Cohen 264 265 et al. (2015) and are found to be associated with the relatively deeper PBL depth using the nonlocal ACM2 PBL scheme. The relatively larger warm/cold biases over coastal and mountainous 266 267 areas are likely caused by due to the coarse spatial grid spacing of 36-km which that cannot well 268 resolve the complex topography (Yahya et al., 2016). Compared to many previous WRF studies (Wang et al., 2012; Brunner et al., 2015; Yahya et al., 2016), which typically show cold T2 269

270 biases, the overall small warm biases in this study can be attributed to the soil moisture nudging technique used in the PX land surface scheme (Pleim and Gilliam, 2009). The spatial patterns of 271 272 MBs for RH2 show a elear-general anti-correlation compared to T2 (i.e., RH2 is overpredicted 273 where T2 is underpredicted and vice versa) due to the way how RH2 is calculated based on T2-274 This is consistent with how RH2 is calculated based on T2. The spatial distribution of MBs for 275 WS10 also shows dominant overpredictions in both winter and summer especially along coastlines, indicating the prescribed sea-surface temperature might not be sufficient to resolve 276 277 the air-sea interactions. Systematic overpredictions of hourly precipitation against NCDC data in 278 both seasons are found to be mainly caused by low non-convective precipitation events and 279 should can be attributed to the uncertainties associated with the Morrison microphysics scheme 280 (Yahya et al., 2016).

281 The precipitation performance is further examined by comparing WRF-CMAQ with 282 GPCP-TMPA and PRISM as shown in Figures 1e g2. The spatial distribution of precipitation is well simulated by WRF-CMAQ especially over the land<u>CONUS</u> against both GPCP and 283 284 PRISMobservations by capturing the hot spots along the Pacific Northwest coast in winter and some areas over eastern the Central U.S. and FL in summer. Moderate overpredictions of 285 precipitation against GPCP TMPA over the Atlantic Ocean and Gulf of Mexico in summer are 286 also evident, possibly due to caused by overprediction of convective precipitation intensity by the 287 288 Kain_-Fritsch cumulus-scheme (Hong et al., 2017) over ocean. As shown in Tables 1 and 2, the domain-average seasonal statistics demonstrate good performance for all variables except for 289 290 precipitation against NCDC in terms of MBs, NMBs, RMSE, and Rs. For example, the MBs for T2, RH2, WS10, and precipitation are 10.1 °C, 2.2%, 0.5744 m s⁻¹, and 0.0514-0.2328 mm day⁻¹ 291 (except for 0.71 mm day-1 for NCDC) in winter and -1.1 °C, 3.7%, 0.38 m s⁻¹, and 0.13-0.23 mm 292

Formatted: Superscript

293	day ⁻¹ (except for 0.75 mm day ⁻¹ for NCDC) in summer, respectively, and Rs for those variables
294	are typically between 0.5-0.978, which are well within the performance benchmark values
295	recommended by Zhang et al. (2013) and Emery et al. (2017).
296	Figure 3 shows the bar charts of annual trends for T2, RH2, WS10, and precipitation in
297	2008-2012. Two-way WRF-CMAQ predicts the annual average T2 very well with MBs <
298	0.25 °C in all years. The simulation can also capture the increasing trend of T2 from 2008 to
299	2012 observed by NCDC. RH2 is consistently overpredicted by the two-way WRF-CMAQ in all
300	years despite relatively low biases (MBs < 3%). Both observations and simulations show the
301	lowest RH2 in 2012 and the highest in 2009. As also shown in Figure 1, the model tends to
302	systematically overpredict both WS10 and precipitation throughout all years as well. There are
303	no clear trends (i.e., increasing or decreasing) for WS10 and precipitation between 2008 to 2012
304	from either observations or simulations. However two-way WRF-CMAQ is able to capture both
305	the lowest wind speed and precipitation in 2012 and the highest wind speed in 2008 from
306	observations. In general, the model performs very well in reproducing the year-to-year variation
307	for the major meteorological variables between 2008 to 2012.
308	3.1.2 Radiation and cloud variables
309	Figures 4 and 52 compares the 5-year average spatial distribution of major radiation
310	variables (i.e., SWDOWN, GSW, GLW, OLR, and AOD) based on the satellite retrievals and
311	two-way WRF-CMAQ simulations in winter and summer, 2008-2012, and Tables 1 and 2
312	summarizes the domain-average model performance statistics. WRF-CMAQ predicts the
313	longwave radiation variables GLW and OLR very well with domain-average of NMBs of -
314	0.31.9% and 10.8% in winter and -3.6% and 0.9% in summer, respectively, and Rs of 0.96 to

315	0.99 for both. The shortwave radiation variables SWDOWN and GSW are <u>slightly</u> overpredicted
316	on average with NMBs of 113.30% and 7.511.1% in winter and 17.1% and 15.1% in summer,
317	respectively, and Rs of ranging from 0.75 to 0.997 for both. The simulations also reliably
318	reproduce the spatial distribution of both longwave and shortwave radiation compared to
319	observations in both seasons. The relatively large overpredictions for shortwave radiation
320	especially in summer are very likely caused by the large underpredictions of aerosol direct
321	radiative forcing reflected from the underpredictions of AOD (Figure 52) as well as
322	underprediction of indirect cloud radiative forcing (see Figure 83). It has been reported that WRF
323	v3.4 does not treat the subgrid cloud feedback to radiation, which could also contribute to the
324	overpredictions in shortwave radiation especially in summer (Alapaty et al., 2012; Hong et al.,
325	2017). The model largely underpredicts the magnitude of AOD in both seasons (NMBs of: 64.8
326	-59.8% in winter and -67.8% in summer), while providing a reasonable representation of the
327	spatial distribution of AOD over the U.S., with generally higher values overing the Midwest in
328	winter and over the eastern U.S. in summer and lower values in the west. The model also
329	underpredicts the elevated AODs over oceans and the northern part of domain in both seasons.
330	Similar AOD underpredictions have been reported in previous studies over the U.S. using two-
331	way coupled WRF-CMAQ (Gan et al., 2015a; Hogrefe et al., 2015; Xing et al., 2015a). The
332	relatively large underpredictions of AOD may be caused by several factors. First,
333	underprediction of $PM_{2.5}$ concentrations, particularly SO_4^{2-} in both seasons and OC in summer
334	(Tables 3 and 42), can contribute significantly to the underprediction of AOD, especially over
335	the eastern U.S. Second, the underestimation of dust emissions may contribute to missing hot
336	spots from the model over arid areas in CA and AZ (Foroutan et al., 2017Zender et al., 2003) and
337	underestimates of sea-salt emissions may lead to missing elevated AODs over oceans (Gan et al.,

338	2015b). Third, challenges in adequately representing prescribed and wildfire emissions in the
339	NEI (Kelly et al., 2019) may cause many missing hot spots over large areas of the Pacific
340	Northwest, CA, Canada, and the eastern U.S. especially in summer. Fourth, uncertainties in
341	BCONs of $PM_{2.5}$ concentrations may further contribute to underpredictions of AOD over oceans
342	and the northern part of the domain. For example, Kaufman et al. (2001) found that the
343	background AOD could reach 0.1 over the Pacific Northwest using Aerosol Robotic Network
344	(AERONET) data. The AODs in the current simulation seem to be biased low (between 0.026 -
345	0.068 in both seasons over the Pacific Ocean) and indicate potential underpredictions of PM _{2.5}
346	BCONs, especially in the free troposphere. Finally, there are uncertainties associated with
347	MODIS retrievals. Remer et al. (2005) found that the uncertainty of level 3 MODIS monthly
348	AODs can be up to $\pm 0.05\pm 0.15$ AOD over the land due to clouds and surface reflectance. More
349	AOD data from other satellites or AERONET might be considered in the future work to provide
350	more robust ensemble type of evaluation for AOD.
351	Figures 6-83 and 4 compare the 5-year average spatial distribution of major cloud and
352	cloud radiative variables for the satellite retrievals and two-way WRF-CMAQ simulations in
353	winter and summer, 2008-2012, and Tables 1 and 2 summarizes the domain average model
354	performancecorresponding statistics. As shown in Figures 6 and 73, WRF-CMAQ tends to
355	largely underpredict CDNC, COT, and CWP in both seasons over most of the whole domain
356	with the domain-average NMBs of -82.44% , -80.84% , and -4554.32% in winter and -79.2% , -
357	83.6%, and -66.3% in summer, respectively. Despite the large underprediction of those cloud
358	variables, the spatial correlations are generally predicted well, especially for COT and CWP with
359	Rs ranging from 0.63 to 0.74 of 0.84 and 0.79, respectively. Compared to the other cloud

variables, CF is much better predicted with an NMB of -10.42.2% and an R of 0.8792 in winter 360

361	and an NMB of -23.0% and an R of 0.81 in summer, respectively, which is consistent with the
362	performance reported in Yu et al. (2014). The model can reproduce the high CFs over northern
363	and northeastern part of domain as well as over oceans while capturing the low CFs over the
364	mountainous and plateau regions in the U.S. and Mexico especially in winter. In addition to the
365	underprediction of PM _{2.5} (thus underestimating CCN), the large underpredictions of cloud
366	variables (especially CDNC and COT) can be attributed to uncertainties in aerosol microphysics
367	schemes (Yahya et al., 2016) as well as missing aerosol indirect effects on subgrid convective
368	clouds (Yu et al., 2014). Gantt et al. (2014) and Zhang et al. (2015b) also showed the aerosol
369	activation scheme (i.e., Abdul-Razzak and Ghan, 2000) used in the current version of WRF-
370	CMAQ may have underestimated CDNC and thus CWP and COT due to some missing processes
371	such as insoluble aerosol adsorption and giant cloud condensation nuclei. Overall, the relatively
372	poor model performance for cloud variables reflects current limitations in representing aerosol
373	indirect effects and aerosol-cloud interactions in state-of-science online coupled models. Further
374	model improvements that incorporate new knowledge from emerging studies should be
375	conducted in the future.
376	As shown in Figure <u>84</u> , WRF-CMAQ predictions of SWCF and LWCF generally agree
377	well with the satellite observations in both seasons-based values. The model partially can
378	captures the elevated SWCF and LWCF over the Atlantic Ocean, Pacific Northwest, and
379	widespread areas over the eastern U.S. in winter and those over the Pacific Northwest, northern
380	part of the domain, and Atlantic Ocean in summer. The domain-average NMBs are -11.126.0%
381	for SWCF and - <u>15.1</u> 22.2% for LWCF in winter and -41.3% for SWCF and -33.3% for LWCF in
382	summer, respectively. The relatively larger biases in summer compared to winter are correlated

383 with larger biases associated with radiation and cloud predictions potentially caused by larger

384	underpredictions of aerosol predictions. As discussed earlier, the underpredictions of SWCF may
385	partially contribute the overprediction of SWDOWN (more shortwave radiation reaching the
386	ground) and those of LWCF may further lead to the overpredictions in OLR (more longwave
387	radiation emitted into the space). The performance of SWCF and LWCF is consistent with the
388	12-km simulation reported in Yu et al. (2014) and even slightly better in terms of NMBs, which
389	might be associated with the long-term vs. short-term simulations. It is also worth noting that
390	SWCF (LWCF) is calculated as the difference between the clear-sky and all-sky shortwave
391	(longwave) radiation at the top of atmosphere, and so performance for SWCF and LWCF
392	depends on performance for both radiation and cloud properties. The generally better
393	performance in terms of model bias for SWCF and LWCF compared to the cloud variables
394	seems to be driven by the relatively good performance of shortwave/longwave radiation in the
395	model.

396 **3.2 Chemical evaluation**

397 3.2.1 O₃

398 Figure 25a shows the spatial distribution of simulated average daily maximum 8-h O3 in 399 summer, 2008-2012 from two-way WRF-CMAQ overlaid with observations from both the AIRS-AQS and CASTNET networks. WRF-CMAQ shows good performance by capturing the 400 401 spatial distribution of max 8-h O3 over widespread areas of the domain. The model tends to 402 overpredict O3 along coastlines in the southeastern U.S., Gulf of Mexico, and Pacific coast, 403 which can be attributed to a poor representation of coastal boundary layers (Yu et al., 2007), the 404 warm T2 biases as shown in Figure 1, and lack of O3 sink via halogen chemistry (Sarwar et al., 2015) and deposition to water (Gantt et al., 2017). The simulation also underpredicts O3 in 405

406	widespread areas in the Midwest, eastern <u>Central</u> , and mountainous regions of the U.S., which is
407	consistent with the results of 36-km simulations from Wang and Zhang (2012) that used an
408	earlier version of CMAQ v4.6 with the same CB05 gas-phase mechanism. In addition to cold T2
409	biases over those areas (Figure 1), the underpredictions are also believed to be associated with
410	inaccurate representations of precursor emissions and elevated/complex terrain due to the coarse
411	grid spacing of 36-km over those regions. Wang and Zhang (2012) found that their 12-km
412	simulation showed improved performance over similar regions especially in summer.
413	Figure 25c shows the monthly variation of domain-average 5-year average O ₃ mixing

414 ratios between observations from AIRS-AQS and simulations from two-way WRF-CMAQ, and 415 Figure 25d shows the diurnal variation of domain-average 5-year average hourly O3 mixing 416 ratios between observations from CASTNET and simulations from two-way WRF-CMAQ for 417 representative-winter (DJF and blue color) and summer (JJA and red color) seasons. As shown in 418 Figure 95c, the O₃ mixing ratios are overpredicted throughout the year, which is consistent with 419 overprediction of T2 (figure not shown). The largest overprediction occurs in the relatively cold months such as September to December. It is interesting that the observations show the largest 420 monthly O3 mixing ratios in spring and early summer while the simulation shows the peak 421 during the summer. The difference in timing of peak O₃ between observations and simulations 422 during the year might be associated with uncertainties in the BCONs of O_3 that reflect impacts of 423 the long-range transport and associated stratosphere-troposphere exchange of O₃. As shown in 424 Figure 25d, WRF-CMAQ tends to overpredict O3 during most hours (i.e., 2:00-18:00) in summer 425 426 and throughout the whole day in winter partially due to the overprediction of T2, especially in winter (figure not shownFigure 1). The diurnal pattern of O₃ is captured much better during 427 summer with much less prediction bias, especially during the nighttime, indicating that the 428

430	chemistry in the warm season than the cold season. The overall overpredictions in this work are	
431	also consistent with previous studies (Eder and Yu, 2006; Appel et al., 2007; Wang et al., 2012),	
432	although our results show much better nighttime performance owing to the application of the	
433	ACM2 scheme that treats both local and non-local closure (Pleim, 2007). As also shown in Table	
434	42, the domain-average NMBs and NMEs for max 8-h O ₃ in summer are $10.62.6%$ and $13.2%$	
435	against AIRS-AQS and <u>-3.0</u> 1.5% and <u>11.5</u> 8.4% against CASTNET, respectively. The statistics	
436	are also consistent with previous studies using the CMAQ model (Zhang et al., 2009a; Appel et	
437	al., 2013, 2017; Penrod et al., 2014) and can be considered as good performance according to the	
438	criteria suggested by Zhang et al. (2013) and Emery et al. (2017).	
439	Figure 3 also shows the bar charts of annual trends for max 8-h O ₃ from two-way WRF-	Formatted: Subscript
440	CMAQ against AQS and CASTNET observations in 2008-2012. Two-way WRF-CMAQ	
441	systematically overpredicts O_3 especially against AQS data with MBs typically > 4.0 ppb. The	Formatted: Subscript
442	potential reasons for model biases have been discussed earlier in this section. There are no	
443	obvious decreasing or increasing trends for max 8-h O ₃ from AQS or CASTNET observations.	Formatted: Subscript
444	However, the model can generally capture the high Q_3 mixing ratios in 2008 and 2010 and the	Formatted: Subscript
445	low O3 mixing rations in 2009 from both AQS and CASTNET. The similar down and up trends	Formatted: Subscript
446	between 2008 to 2010 for O ₃ (i.e., decreasing from 2008 to 2009 and increasing from 2009 to	Formatted: Subscript
447	2010) from AQS observations were also found by Yahya et al. (2016), but not captured by their	
448	simulations. Zhang and Wang (2016) was able to reproduce the similar trend over the	
449	southeastern U.S. between 2008 to 2010 using their models and attributed the abnormal high	
450	2010 Q ₃ mixing ratios to the extreme dry and warm weather conditions during fall 2010.	Formatted: Subscript
451	3.2.2 Aerosols	

3.2.2 Aerosols

429

model does a better job in predicting the evolution of nocturnal boundary layer and atmospheric

452	Figures <u>106a and 10c</u> shows the spatial distribution of simulated 5-year average $PM_{2.5}$
453	from two-way WRF-CMAQ overlaid with observations from both the CSN and IMPROVE
454	networks in winter and summer, 2008-2012 and Figure S1 shows the spatial distribution of the
455	major PM2.5 constituents overlaid with observations from the CSN and IMPROVE network and
456	PM ₁₀ overlaid with observations from the AQS network. As shown, WRF-CMAQ performs well
457	for PM _{2.5} over widespread areas of the Midwest and northeastern U.S. in both seasons, while
458	PM _{2.5} is underpredicted over the southeastern and western U.S. especially in winter. The model
459	also misses some hot spots of observed concentrations in the western U.S., which are mainly
460	caused by TC underpredictions (Figure S_{64}) that are likely linked to poorly allocated and
461	underestimated wildfire emissions in the NEI (Wiedinmyer et al., 2006; Roy et al., 2007; Kelly
462	et al., 2019). The relatively large underpredictions over the eastern U.S. are mainly caused by the
463	combined effects from SO4 ²⁻ , NH4 ⁺ , and TC. As shown in Figure S6+, WRF-CMAQ largely
464	underpredicts SO_4^{2-} in the Midwest and southeastern U.S. mainly due to the underprediction of
465	oxidants such as O_3 (see Figure 25a) (which leads to less production from the gaseous oxidation),
466	overprediction of precipitation (see Figure $21d$) (which leads to more wet deposition and
467	removal), and large underprediction of cloud fields (see Figures 6-73) (which leads to less
468	aqueous phase formation), over the same area. On the other hand, NH_4^+ and NO_3^- are either
469	underpredicted or overpredicted, respectively, over the similar areas mainly due to
470	underprediction of SO_4^{2-} . According to the aerosol thermodynamics, when SO_4^{2-} is
471	underpredicted, $\mathrm{NH_{4}^{+}}$ tends to be underpredicted due to its major role as cation. More gaseous
472	$\rm NH_3$ will be available to neutralize $\rm NO_3^-$, thus leading to overprediction of $\rm NO_3^-$ especially over
473	the sulfate poor regions (West et al., 1999). Other potential reasons include the inaccurate
474	assumptions in the thermodynamic module (for example, the internally mixed aerosol state and

475	equilibrium assumption may not be representative over some regions and different time periods,
476	S. Yu et al., 2006), uncertainties in emissions of key species such as NH_3 and non-volatile
477	cations that affect particle acidity (Mebust et al., 2003; Wang and Zhang, 2014; Vasilakos et al.,
478	2018; Pye et al., 2020), and measurement errors especially for NO_3^- and NH_4^+ (XY. Yu et al.,
479	2006; Karydis et al., 2007; Wang and Zhang, 2012). TC underpredictions over most sites of the
480	domain can be attributed to the underprediction of emissions (e.g., wildfire and primary OC) and
481	underestimation of secondary organic aerosol (SOA) formation (Appel et al., 2017; Pye et al.,
482	2017) since EC (a chemically inert species) is overpredicted, which suggest that atmospheric
483	mixing did not drive the TC underpredictions.
484	Figures 6e-6h show the scatter plots of major PM _{2.5} components such as SO ₄ ² , NH_4^+ , and
485	NO_3 , and TC. The WRF-CMAQ predicts $PM_{2.5}$ constituents well with the majority of data
486	within the 1:2 ratio lines. Systematic underpredictions of SO42- and NH4+ and overpredictions of
487	NO3 ⁻ are shown, which are consistent with their spatial distributions. Relatively large under- and
488	overpredictions of TC compensate each other and lead to relatively low overall model biases. As
489	also shown in Figure S1, the model fails to reproduce high concentrations of PM_{10} (those > 20
490	μ g m ⁻³) over widespread areas of the domain, especially over dust source areas in CA, AZ, and
491	NM. Hong et al. (2017) found the similar large underprediction of dust using CMAQ v5.0.2 over
492	China and attributed it to a too high threshold for friction velocity in the current dust module
493	(Dong et al., 2016). Sea-salt also seems to be underpredicted by WRF-CMAQ, although sea salt
494	predictions are better than dust as shown along the coastlines.
495	Figures <u>106ee</u> and <u>10f6d</u> show the monthly variation of 5-year average PM _{2.5} between
496	observations from CSN and IMPROVE, respectively, and simulations from two-way WRF-

498	sites than IMPROVE sites throughout for the whole year because most of CSN sites are in more	
499	polluted urban areas while majority of IMPROVE sites are in rural areas and national parks. The	
500	model tends to underpredict $PM_{2.5}$ over both CSN and IMPROVE sites in the warm months (i.e.,	
501	April to September) mainly due to the underpredictions of SO_4^{2-} and OC while it overpredicts	
502	$PM_{2.5}$ in cold months mainly due to NO_3^- . The model also captures the seasonality of $PM_{2.5}$	
503	better over CSN sites than IMPROVE sites, especially in the summer months. The large	
504	underpredictions over IMPROVE sites during summer months are likely due to the	
505	underestimation of precursor emissions (such as wildfire emissions).	
506	Figure 11 shows the scatter plots of major $PM_{2.5}$ components such as SO_4^{2-} , NH_4^+ , and	
507	NO3 ⁻ , and TC in winter and summer, 2008-2012. The WRF-CMAQ predicts PM2.5 constituents	
508	well with majority of data within the 1:2 ratio lines in both seasons. Systematic underpredictions	
509	of SO_4^{2-} and NH_4^+ in winter and overpredictions of NO_3^- in summer are shown, which are	
510	consistent with their spatial distributions. Relatively large under- and overpredictions of TC	
511	especially in winter compensate each other and lead to relatively low overall model biases. As	
512	also shown in Figure S6, the model fails to reproduce high concentrations of PM_{10} (those > 20	
513	$\mu g m^{-3}$) over widespread areas of the domain, especially over dust source areas in CA, AZ, and	
514	NM. Hong et al. (2017) found the similar large underprediction of dust using CMAQ v5.0.2 over	
515	China and attributed it to a too-high threshold for friction velocity in the current dust module	
516	(Dong et al., 2016). Sea-salt also seems to be underpredicted by WRF-CMAQ, although sea-salt	
517	predictions are better than dust as shown along the coastlines.	
518	Figure 3 shows the bar charts of annual averaged observations and simulations for $PM_{2.5}$	
519	over the CSN and IMPROVE sites. Overall, the model performs well for PM2.5 for most of years	
520	and better over CSN than IMPROVE sites with general underpredictions in most years. The	
I	22	

Formatted: Subscript

Formatted: Subscript

521	observations for both CSN and IMPROVE show a general decreasing trend (except for 2010
522	over CSN) especially over IMPROVE sites. Two-way WRF-CMAQ is able to reproduce the
523	declining trend well particularly over IMPROVE sites and again demonstrate its capability in
524	accurately simulating the year-to-year variations of not only meteorology but air quality.
525	There are no universally accepted performance criteria for aerosols. As recommended by
526	some previous studies (Zhang et al., 2006; Wang and Zhang, 2012; Emery et al., 2017),
527	generally $\pm 15\%$ and $\pm 30\%$ for model biases and 30% and 50% for model errors can be
528	considered as good and acceptable performance. As shown in Tables 3 and 42, WRF-CMAQ in
529	this work demonstrates an overall good or acceptable performance in predicting aerosols in terms
530	of statistics especially for PM _{2.5} in both seasons, NO ₃ , $\overline{NH_4}$, OC, and TC in winter, and SO ₄ ²⁻
531	and NH ₄ ⁺ in summer. It shows the domain-average NMBs of -7.20% and 8.6-13.7% in winter
532	and -13.2% and -26.9% in summer for PM2.5 against CSN and IMPROVE, respectively; NMBs
533	of - $\frac{10.226.7}{\%}$ and - $\frac{20.927.2}{\%}$ in in summer for SO ₄ ²⁻ against CSN and IMPROVE,
534	respectively; NMBs of $-0.316.6\%$ and $13.34.6\%$ in winter for NO ₃ ⁻ against CSN and IMPROVE,
535	respectively; an NMB of <u>3-14.3%</u> for NH ₄ ⁺ in summer against CSN; NMBs of 20.6% and 29.4%
536	for EC against CSN and IMPROVE, respectively; an NMB of 13.0-28.9% in winter for OC
537	against IMPROVE; and NMBs of 7.2-9.4% and 17.5-9.2% in winter for TC against CSN and
538	IMPROVE, respectively. The relatively large underpredictions of PM_{10} in both seasons, i.e., an
539	NMBs of -36.345.9% in winter and -45.8% in summer against AQS, indicate further
540	improvements of dust emissions are warranted. Overall, the aerosol performance is also
541	comparable or better than previous CMAQ or WRF-CMAQ applications (Wang and Zhang,
542	2012; Penrod et al., 2014; Yu et al., 2014). For example, Penrod et al. (2014) showed 5-year
543	(2001-2005) averagesummer mean NMBs of -23.3% and 4.0% in winter and -19.1% to -17.6%

Formatted: Subscript Formatted: Superscript in summer for PM_{2.5} against CSN and IMPROVE data over the CONUS using the CMAQ v5.0
and Yu et al. (2014) reported the monthly mean NMBs of -6.2% and -16.8% for PM_{2.5} against
CSN and IMPROVE over the eastern U.S. using the same version of WRF-CMAQ as that used
in this study.

548 3.2.3 Column abundance

549 Figures 12 and 137 shows the spatial distribution of 5-year average column abundances between various satellite products and two-way WRF-CMAQ for column CO, TOR, column 550 551 NO2, and column HCHO in winter and summer, 2012, and Tables 3 and 42 summarizes the 552 statistics. As shown, WRF-CMAQ can reproduce the spatial distribution of the column 553 abundances of gases quite well in both seasons except for column HCHO in winter with Rs ranging from 0.7083 to 0.8791. TOR in both seasons, column NO2 in winter and column HCHO 554 in summer are also generally well predicted in terms of magnitudes with NMBs of 4.71.6% for 555 556 TOR and, 0.3 for NO₂-14.5%, and 18.0%, respectively, in winter and -8.0% for TOR and 15.0% 557 for HCHO, respectively, in summer. Systematic underpredictions for column CO occur in both 558 seasons over the whole domain with an-NMBs of -20.56.6% in winter and -27.8% in summer for a few reasons. First, the BCONs of CO may be significantly underestimated from the CESM 559 model. Using WRF/Chem or its variant, Zhang et al. (2016b, 2019) found that the column CO 560 performance could be greatly improved by adjusting the BCON using the satellite observation. A 561 similar approach could be applied in future WRF-CMAQ simulations as well. Second, as pointed 562 563 by Heald et al. (2003), the regional emissions, especially biomass burning, could be a significant source for elevated CO concentrations and thus underestimation of these emissions could 564 contribute to the CO underprediction. A more robust set of fire emissions from FINN generated 565 by NCAR based on satellite retrievals has been applied to the similar time period recently but 566

Formatted: Subscript

567	using the WRF-Chem model (Zhang and Wang, 2019) and were found to improve the column
568	CO performance. Last, Emmons et al. (2009) showed positive biases (i.e., 19%) of MOPITT
569	retrievals over the land when compared to in-situ measurements and the biases may have been
570	increasing over time due to the MOPITT bias drift (e.g., 0.5% yr ⁻¹ for version 7 retrieval). The
571	predicted TOR can capture the observed high values over the eastern U.S. and oceans and the
572	low values in elevated terrain especially in summer; and it shows the best performance among all
573	gas species. Both satellite observations and simulations can capture the elevated column NO2
574	over the industrial and metropolitan areas in the domain where large nitrogen oxide (NO_x)
575	emission sources are located especially in winter. The model shows moderate underprediction
576	with an NMB of -27.8% in summer which can be attributed to both uncertainties in the emissions
577	and satellite retrievals. For example, the lightning emissions of NO _x are missing from this study,
578	which have been found by previous studies (Allen et al., 2012) to contribute up to 2.0×10^{15}
579	molecules cm ⁻² over the southern U.S., the Gulf of Mexico, and northern Atlantic Ocean during
580	certain episodesthe summer. Boersma et al. (2004) also found that different column NO2
581	retrieval approaches may lead to large errors (> 25%) over polluted areas. Column HCHO over
582	the CONUS especially the southeastern U.S. is well predicted in summer in terms of both
583	magnitude and spatial distribution and correlates well with the biogenic emission source regions.
584	The underprediction of column HCHO in winter may thus-indicate potential underestimation of
585	biogenic emissions from the BEIS anthropogenic emissions. Other reasons including potential
586	low yield of HCHO from isoprene and terpene in the CB05 mechanism and uncertainties in
587	satellite retrievals (Stavrakou et al., 2009; Lorente et al., 2017)
500	2.2.4.Simulated O. and DM. anacodomous of NAAOS lands

3.2.4 Simulated O_3 and $PM_{2.5}$ exceedances of NAAQS levels 588

589	National Ambient Air Quality Standards (NAAQS) are set for criteria pollutants,
590	including O ₃ and PM _{2.5} , to provide protection against adverse health and welfare effects
591	(www.epa.gov/criteria-air-pollutants/naaqs-table). In this section, the average number of days
592	per year where the 24-hr PM_{2.5} NAAQS level (35 μg m $^{-3})$ and the max 8-h O_3 NAAQS level (70
593	ppb) are exceeded from the WRF-CMAQ predictions is compared with the number of
594	exceedances in the monitoring data (i.e., O_3 from AQS and CASTNET and $PM_{2.5}$ from
595	IMPROVE and CSN). This comparison is intended to better characterize the ability of the model
596	to simulate the high-concentration days that could be especially relevant in regulatory
597	assessments. In Figure 148 , the five-year average of the annual number of exceedance days is
598	shown for WRF-CMAQ and the monitoring data at monitor locations. The sizes of circles and
599	shades of color represent the magnitude of exceedances (i.e., larger circles and darker shades
600	indicate a greater number of exceedance days). As shown, the observations indicate a large
601	number of annual exceedance days for max 8-h O3 over major cities, especially in CA, TX, the
602	Midwest, and northeastern U.S. The spatial distribution of the observed number of exceedance
603	days from the AQS and CASTNET networks aligns well with the nonattainment map reported by
604	the Green Book of U.S. EPA (https://www.epa.gov/green-book). The WRF-CMAQ model also
605	generally captures the distribution of the number of exceedance days very well, especially in CA
606	and northeastern U.S. The domain-average values of NMB, NME, and R are -3.4%, 14.0%, and
607	0.98, respectively, also indicating a good performance. For $PM_{2.5}$, the largest number of
608	exceedance days based on the IMPROVE and CSN observations mainly occurs in the
609	northwestern U.S., Midwest, and major cities in the northeastern U.S. The number of exceedance
610	days is generally much lower for $PM_{2.5}$ than O_3 . The spatial distribution of the number of
611	exceedance days for observed $PM_{2.5}$ aligns well with nonattainment areas reported by the Green

612	Book from U.S. EPA in CA. However, the number of simulated PM _{2.5} exceedance days
613	underpredicts the observation-based values in the western U.S. mainly due to large
614	underpredictions of $PM_{2.5}$ concentrations in the same areas as shown in Figure <u>106a</u> . The
615	simulation better predicts the distribution of the number of exceedance days in the eastern U.S.
616	where terrain is relatively flat and wildfire less prevalent. The domain-average values of NMB,
617	NME, and R are -29.0%, 80.8%, and 0.21, respectively.

618 4. Impacts of chemistry-meteorology feedbacks

In this section, the impacts of chemistry-meteorology feedbacks including aerosol direct and indirect effects on regional meteorology and air quality over the U.S. are further examined by comparing results from two-way WRF-CMAQ and offline coupled WRF and CMAQ. Model performance from the two sets of simulations is first compared to demonstrate the potential performance improvements of the two-way model, and the impacts on regional meteorology and air quality are further investigated via the spatial difference plots for selected variables and species.

626 4.1 Meteorology

Figures <u>2</u>+ and <u>8</u>4 compare observations and simulations from the two-way WRF-CMAQ and WRF-only models for precipitation and SWCF/LWCF, respectively. Tables <u>1 and 2</u> also summarizes the model performance statistics for all major meteorological variables for the two simulations. The statistics of some cloud variables from the WRF-only simulation are not available due to missing model outputs. Overall, good performance is evident for both simulations for surface meteorological variables with slightly better performance <u>for most of</u> <u>variables</u> (except for RH2 in both seasons and T2 in summer) for the two-way WRF-CMAQ

634	simulation than the WRF-only simulation. The MBs for the two-way WRF-CMAQ vs. WRF-
635	only simulation are 10.1 °C vs 10.2 °C for T2, 2.2% vs $2.14.8$ % for RH2, 0.5744 m s ⁻¹ vs 0.5846
636	m s ⁻¹ for WS10, <u>16.7</u> 32.8 degree vs <u>16.9</u> 33.4 degree for WD10, and $0.0514-0.71$ mm day ⁻¹ vs
637	0.042-0.728 mm day-1 for precipitation in winter and -1.1 °C vs -0.9 °C for T2, 3.7% vs 3.2% for
638	RH2, 0.38 m s ⁻¹ vs 0.42 m s ⁻¹ for WS10, 49.1 degree vs 49.8 degree for WD10, and 0.13-0.75
639	mm day ⁻¹ vs 0.19-0.9 mm day ⁻¹ for precipitation in summer. The spatial distributions for SWCF
640	and LWCF are slightly better captured in both seasons especially over the eastern U.S., Atlantic
641	Ocean, and Gulf of Mexico in winter and over the Midwest, Atlantic Ocean, and Pacific
642	Northwest in summerregions. Compared to WRF-only, two-way WRF-CMAQ shows noticeably
643	better performance in terms of both MB and RMSE for radiation and cloud forcing, with MBs of
644	<u>11.3</u> 37.0 vs. <u>19.5</u> 24.2 W m ⁻² for SWDOWN, <u>728</u> .5 vs 1 <u>4.1</u> 7.6 W m ⁻² for GSW, - <u>0.9</u> 10.6 vs
645	6. <u>3</u> + W m ⁻² for GLW, <u>4.0</u> 2.8 vs. <u>4.7</u> 2.0 W m ⁻² for OLR, - <u>3.0</u> +7.6 vs <u>7.4</u> +0.7 W m ⁻² for SWCF,
646	and -3.35.9 vs4.15.3 W m ⁻² for LWCF in winter and with MBs of 43.6 vs. 59.4 W m ⁻² for
647	SWDOWN, 33.6 vs 47.2 W m ⁻² for GSW, -13.4 vs16.8 W m ⁻² for GLW, 2.3 vs. 3.0 W m ⁻² for
648	OLR, -22.8 vs31.1 W m ⁻² for SWCF, and -8.6 vs9.0 W m ⁻² for LWCF in summer. These
649	results are consistent with those reported by Yahaya et al. (2015a,b) that showed similar
650	improvements in meteorological and radiative variables when comparing predictions from WRF-
651	Chem with those from WRF only. Since identical inputs and physics options are used in both
652	simulations, the differences in performance for meteorological variables is due to the
653	consideration of feedback processes among chemistry, aerosol, cloud, and radiation in the two-
654	way coupled WRF-CMAQ simulation.
655	Figure <u>159</u> shows the <u>5-year average</u> difference plots of selected major meteorological
656	variables including SWDOWN, T2, RH2, WS10, PBL height, and precipitation between two-

variables including SWDOWN, T2, RH2, WS10, PBL height, and precipitation between two-

657	way WRF-CMAQ and WRF-only in 2008-2012. As shown, the incoming shortwave radiation is
658	reduced by up to 24.8 W $m^{\text{-}2}$ (13.6%) with a domain-average of 13.0 W $m^{\text{-}2}$ (6%) due to the
659	combined aerosol direct and indirect radiative effects over the domain. The reduction is
660	predominant over the eastern U.S. where both aerosol loading and cloud cover are high and over
661	the oceans where cloud cover is high. The magnitude of shortwave radiation reduction in this
662	work is consistent with other studies. For example, Wang et al. $(2015\underline{a})$ found that the combined
663	aerosol direct and indirect effects using the WRF/Chem model, which includes the sub-scale
664	cloud forcing not treated in the current WRF-CMAQ model, may decrease the incoming
665	shortwave radiation by 16.0 W m^{-2} in the summer over the U.S. Hogrefe et al. (2015) reported
666	the reduction of shortwave radiation may reach up to 20 W m^{-2} over the eastern U.S. by only
667	considering the aerosol direct effect using an older version of WRF-CMAQ v5.0.1. Xing et al.
668	(2015b) showed that the aerosol direct forcing may cause the surface shortwave radiation to
669	decrease by up to 10 W m^{-2} over the eastern U.S. over a decadal time period using WRF-CMAQ
670	v5.0. The reduction of shortwave radiation further reduces the surface temperature by up to
671	0.25 °C over the eastern U.S., which is much larger than the reduction of 0.1 °C reported by
672	Hogrefe et al. (2015), mainly due to the inclusion of aerosol indirect effects. However there are
673	smaller reductions of T2 over the Pacific Ocean and even increases (by up to 0.1 $^\circ$ C) over large
674	areas of Atlantic Ocean and Gulf of Mexico where much larger reductions of shortwave radiation
675	occur. As pointed by Wang et al. (2015a), due to the much larger heat capacity of ocean, the
676	response of sea surface temperature is less sensitive to the change of shortwave radiation for
677	ocean compared to the land. The large increase of incoming longwave radiation and latent heat
678	(figures not shown) caused by the aerosol indirect effects and other complex feedback processes
679	over the ocean compensates for the reduction of shortwave radiation, especially over the Atlantic

68	0 Ocean and Gulf of Mexico, and thus leads to less reduction or even increases of T2. RH2 is
68	found to mostly increase by 3.4% over the land caused by the decrease of temperature while
68	2 decrease by 2.6% over the ocean caused by either the increase of temperature or large decrease
68	3 of water vapor. Over the land, the decreases in $\frac{1}{10000000000000000000000000000000000$
68	along with the latent heat (figure not shown) lead to a more stable PBL and thus suppress the
68	5 wind (by reducing the wind speed as shown). Over the ocean, the changes lead to a more
68	6 unstable PBL and thus enhance the wind over the ocean. The wind speed and PBL height are
68	reduced by up to 0.05 m s ⁻¹ and 25 m, respectively, over the U.S. The aerosol feedbacks on
68	precipitation are also mixed with relatively large decreases by up to 0.4 mm day^{-1} over the U.S.
68	and increases by up to 0.4 mm day^{-1} over oceans. The suppression of precipitation over the land
69	0 is mainly due to the formation of more small sized CCNs caused by aerosol indirect effects and
69	align well with areas with high aerosol loadings while the enhancement of precipitation,
69	2 especially along coastlines and over oceans, might be associated with the larger CCN formation
69	via more activated sea-salt particles as indicated by Zhang et al. (2010) and Wang et al. (2015 <u>a</u>).

694 4.2 Air Quality

695 Figures 9-115 and 6 compare observations and simulations from two-way WRF-CMAQ and offline CMAQ for O₃, PM_{2.5}, and PM_{2.5} constituents. Tables <u>3 and 4</u>2 summarizes the 696 697 statistics for all major chemical variables for the two simulations. As shown in Figure 95, twoway WRF-CMAQ shows better performance for both the monthly variation of O_3 (throughout 698 the whole year) over AQS sites and the diurnal pattern of O3 (especially during winter) over 699 700 CASTNET sites due to better performance of T2 and radiation compared to offline WRF and 701 CMAQ. As shown in Figure <u>106</u>, two-way WRF-CMAQ shows <u>better similar</u>-spatial distribution 702 of PM2.5 in winter and similar one in summer and better performance for PM2.5 for most of

703	months over CSN sites and for cold seasons across IMPROVE sites compared to offline CMAQ.
704	It also Figure 11 shows systematically better performance for SO_4^{2-} , NO_3^{-} , NH_4^+ , and TC with
705	more data within 1:2 orand closer to 1:1 ratio lines of scatter plots in both seasons. Overall, as
706	shown in Tables 3 and 42, both simulations show generally good performance for all major
707	chemical species except for PM ₁₀ . For example., the domain-average NMBs are 1 $\underline{02}$.6% (AQS)
708	and $\underline{-3.01.5}$ % (CASTNET) vs. 1 $\underline{47.27}$ % (AQS) and $\underline{0.27.7}$ % (CASTNET) for O ₃ in summer, and
709	-7.20% (CSN) and 8.6-13.7% (IMPROVE) vs1.83.4% (CSN) and 23.7-5.7% (IMPROVE) for
710	PM _{2.5} in winter and -13.2% (CSN) and -26.9% (IMPROVE) vs14.0% (CSN) and -22.8%
711	(IMPROVE) for PM _{2.5} in summer for two-way WRF-CMAQ and offline-coupled CMAQ,
712	respectively. The two-way WRF-CMAQ shows better domain-wide statistics in terms of both
713	correlation and biases for many variables including O_3 , SO_4^{2-} , NO_3^{-} , NH_4^{+} , and EC as well as
714	TOR and column NO2 in both seasons, apparently due to the treatment of chemistry-meteorology
715	feedbacks. Offline CMAQ performs better for total $PM_{2.5}$ especially in the western U.S. due to
716	higher dust emissions from higher wind speed and higher SOA due to stronger radiation and
717	higher temperature. However more robust comparisons are needed in the future with improved
718	dust emissions and the use of FINN wildfire emissions.
719	Figure 169 shows the 5-year average difference plots of selected chemical variables

<u>-year average</u> difference p ots of selected igi lows the $\underline{5}$ including CO, O₃, NO_x, volatile organic compounds (VOCs), SO4²⁻, SOA, PM_{2.5}, and PM₁₀ 720 721 between two-way WRF-CMAQ and offline-coupled CMAQ. As shown, the CO mixing ratios decrease by up to 79.2 ppb (27.8%) especially over the western U.S. with a domain-average 722 reduction of 3.0 ppb (3.1%) due to reduced formation of CO from the oxidation of VOCs caused 723 by reduced solar radiation as indicated by Zhang et al. (2017). Such reductions seem to dominate 724 over the increases caused by reduced PBL height, especially in the western U.S. where PBL 725

726	height reductions are minimum. The O_3 mixing ratios decrease by up to 5.2 ppb (16.2%) with
727	domain-average of 1.7 ppb (4.2%) mainly due to the reduced solar radiation and T2. The change
728	of O_3 is consistent with other studies such as Makar et al. (2015) and Wang et al. (2015a) that
729	also reported lower O3 mixing ratios caused by aerosol direct and indirect effects. On the other
730	hand, both NO_x and VOC mixing ratios increase over the eastern U.S. while they decrease over
731	the western U.S. The increase should be caused by the combination of the large reduction of PBL
732	mixing and reduced solar radiation which reduces NO2 photolysis and VOC oxidation to SOA.
733	For aerosol species, SO_4^{2-} concentrations increase by up to 0.38 µg m ⁻³ (26.6%) especially over
734	the eastern U.S. In fact, the reduction decrease of O_3 mixing ratios due to aerosol effects caused
735	<u>by feedbacks</u> is expectinged to reduce SO_4^{2-} production via the gas-phase oxidation pathway due
736	to the influence of O_3 on OH, but increase SO_4^{2-} production via the aqueous-phase chemistry
737	pathway due to more clouds in the two-way WRF-CMAQ simulation. Thus, the net increase of
738	$\mathrm{SO}_4^{2\text{-}}$ is more dominate by the aqueous-phase chemistry instead of the gas-phase oxidation. This
739	net increase of SO_4^{2-} , in turn, leads to an increase of NH_4^+ and decrease of NO_3^- (figures not
740	shown) through aerosol thermodynamic equilibrium. SOA concentrations decrease by up to 0.34
741	μg m $^{\text{-3}}$ (41.6%) especially over the eastern U.S. due to the large reduction of oxidants. $PM_{2.5}$
742	concentrations also decrease by up to 5.2 μg m $^{-3}$ (49.1%) with a domain-average of 0.34 μg m $^{-3}$
743	(8.6%), and PM_{10} concentrations decrease by up to 19.3 $\mu g~m^{\text{-3}}$ (64.8%) with a domain-average
744	of 1.1 μ g m ⁻³ (11.1%). The reductions are more apparent over the western U.S. than the eastern
745	U.S. partially due to the compensation of the increase of SO_4^{2-} and NH_4^+ and decrease of other
746	secondary aerosols over the eastern U.S., as well as the relatively large reduction of dust

5. Summary and conclusion 748

749	In this study, two sets of long-term simulations for 2008-2012 using the two-way coupled
750	WRF-CMAQ and offline coupled WRF and CMAQ, respectively, are conducted, evaluated, and
751	compared to investigate the performance improvements due to chemistry-meteorology feedbacks
752	and impacts of those feedbacks on the reginal air quality in the U.S. First, the two-way coupled
753	WRF-CMAQ simulation with both aerosol direct and indirect radiative forcing is
754	comprehensively evaluated in both winter and summer seasons and the annual trend is examined
755	between observations and simulations for selected major variables. The results show that WRF-
756	CMAQ performs well for major surface meteorological variables such as temperature at 2 m,
757	relative humidity at 2 m, wind speed at 10 m, and precipitation with domain-average MBs of \pm
758	<u>1.1-1.10.1</u> °C, 2.2 <u>-3.7</u> -%, 0. <u>38-0.57</u> 44 m s ⁻¹ , and 0.1 <u>3</u> 4-0. <u>23</u> 28 mm day ⁻¹ (except for 0.71 <u>-0.75</u>
759	mm day ⁻¹ against NCDC), respectively, in winter and summer. The overall small warm bias
760	compared to other studies is most likely associated with the soil moisture nudging technique used
761	in the PX land surface scheme. The relatively large positive biases for precipitation are found to
762	be more apparent when observed precipitation is low (dominated more by the non-convective
763	precipitation) and are thus believed to be more associated with uncertainties in the Morrison
764	microphysics scheme. The long-term simulation also shows generally good performance for
765	major radiation and cloud radiative variables. Relatively large model biases still exist for cloud
766	variables such as CDNC, COT, and CWP, indicating that the processes associated with aerosol
767	indirect effects are still not well understood and an accurate simulation of those effects is still
768	challenging using state-of-the-science models. WRF-CMAQ can also capture the observed year-
769	to-year variations well for almost all the major meteorological and chemical variables.
770	Two-way WRF-CMAQ also shows generally good or acceptable performance for max 8-

h O₃, PM_{2.5} and PM_{2.5} constituents, with NMBs generally within $\pm 15\%$ for O₃ and $\pm 30\%$ for

772	PM _{2.5} species. For example, the domain-average NMBs are 102.6 % and $-3.01.5$ % for max 8-h
773	O_3 against AQS and CASTNET in summer and - <u>13.2 to -</u> 7. <u>20</u> % and - <u>26.9 to 8.6</u> <u>13.7</u> % for
774	PM _{2.5} against CSN and IMPROVE, respectively in both seasons. O ₃ mixing ratios are
775	overpredicted for most months, especially in the winter, in part due to the larger overprediction
776	of T2 during the cold season. The overall model biases are small for $PM_{2.5}$ due to the
777	compensation of relatively large underpredictions of SO_4^{2-} and OC, especially in the warm
778	season, and overprediction of NO3 ⁻ in the cold season. In addition to biases inherited from the
779	meteorology, the model performance for chemistry also suffers from uncertainties associated
780	with emissions, the use of a coarse spatial resolution, and representation of aerosol formation
781	pathways in the model. For example, the relatively large biases for EC might be associated with
782	poorly allocated anthropogenic/wildfire emissions and those for OC might be due to
783	underestimation of SOA formation in version 5.0.2 of CMAQ. WRF-CMAQ also predicts the
784	column abundances of chemical species well and the relatively large model biases for CO are
785	found to be associated with an underestimation of BCONs. The model better reproduces the
786	observed number of exceedance days for O_3 than $PM_{2.5}$ mainly due to better performance for O_3
787	than PM _{2.5} concentrations.
788	The performance comparison between two-way WRF-CMAQ and WRF-only simulations
789	shows that two-way WRF-CMAQ model performs better for major surface meteorological,
790	radiation, and cloud radiative variables due to the consideration of chemistry-meteorology
791	feedbacks associated with aerosol direct and indirect forcing. The feedbacks are found to reduce
792	the 5-year average SWDOWN by up to 24.8 W m ⁻² , T2 by up to 0.25 °C, PBL height by up to 25
793	m, wind speed by up to 0.05 m s ⁻¹ , and precipitation by up to 0.4 mm day ⁻¹ over the CONUS,
794	which in turn affect the air quality significantly. As a result of feedbacks, two-way WRF-CMAQ

795	outperforms offline CMAQ for O_3 , SO_4^{2-} , NO_3^{-} , NH_4^+ , and EC as well as TOR and column NO_2
796	in terms of both spatiotemporal variations and domain-average statistics due to better
797	meteorology performance for variables such as T2, WS10, radiation, and precipitation. Despite
798	these improvements, the offline CMAQ performs better for total $PM_{2.5}$ in terms of domain-
799	average statistics, which could be partially caused by the compensation of larger under- and
800	over-predictions of $PM_{2.5}$ constituents. More robust comparison for $PM_{2.5}$ should be performed
801	with improved dust and wildfire emissions in future work. Chemistry-meteorology feedbacks are
802	found to play important roles in affecting U.S. air quality by reducing domain-wide 5-year
803	average surface CO by 3.0 ppb (3.1%) and up to 79.2 ppb (27.8%), O_3 by 1.7 ppb (4.1%) and up
804	to 5.2 ppb (16.2%), $PM_{2.5}$ by 0.34 μg m $^{\text{-3}}$ (8.6%) and up to 5.2 μg m $^{\text{-3}}$ (49.1%), and PM_{10} by 1.1
805	$\mu g~m^{\text{-3}}$ (11.1%) and up to 19.3 $\mu g~m^{\text{-3}}$ (64.8%) mainly due to reduction of radiation, temperature,
806	and wind speed.

In summary, the two-way coupled WRF-CMAQ modeling in this study shows generally 807 808 satisfactory and consistent performance for the long-term prediction of regional meteorology and air quality when compared to other studies in the literature. Possible causes for the 809 meteorological and chemical biases that were identified through this work can provide valuable 810 information for future model development to improve the two-way coupled WRF-CMAQ model 811 and those biases should also be considered when making future climate/air quality projections. 812 Non-negligible model improvements for many major meteorological and chemical variables 813 compared to the traditional application of offline coupled WRF and CMAQ suggest the 814 815 importance of chemistry-meteorology feedbacks, especially aerosol direct and indirect effects. The feedbacks should be considered along with other factors in developing future model 816 817 applications to inform policy making.

818 Code Availability

- 819 The modeling system used in this study is based on the 2-way coupled WRF-CMAQ model
- 820 derived from WRF v3.4 and CMAQ v5.0.2. Relevant code for CMAQ v5.0.2, its coupling to
- 821 WRF and aerosol direct feedbacks are publicly available from: doi:10.5281/zenodo.1079898.
- 822 WRF v3.4 code can be downloaded from
- 823 http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The version of the coupled
- 824 WRF-CMAQ model with the additional indirect aerosol forcing approach of Yu et al. (2014) can
- 825 be downloaded from the following website: <u>https://person.zju.edu.cn/shaocaiyu#674502</u>.

826 Author contribution

- 827 <u>YZ and MB defined the scope of the manuscript.</u> YZ and KW designed the study and all the
- 828 simulations. SY and DW developed the two-way coupled WRF-CMAQ code. KW conducted all
- 829 the simulations and performed the analyses. KW prepared drafted the manuscript. YZ, SY, DW,
- 830 JP, RM, JK, and MB reviewed and edited the manuscript.
- 831 with contributions from all co-authors.

832 Competing interests

833 The authors declare that they have no conflict of interest.

834 Acknowledgements

- 835 This work was developed at North Carolina State University and Northeastern University under
- 836 Assistance Agreement No. RD835871 awarded by the U.S. Environmental Protection Agency to
- 837 Yale University. The views expressed in this manuscript are those of the authors alone and do
- 838 not necessarily reflect the views and policies of the U.S. Environmental Protection Agency. EPA

- 839 does not endorse any products or commercial services mentioned in this publication. High
- 840 performance computing was support from Yellowstone (ark:/85065/d7wd3xhc) provided by
- 841 NCAR's CISL, sponsored by the NSF and the Stampede XSEDE high-performance computing
- support under the NSF ACI-1053575. The work of S. Yu is supported by the Department of
- 843 Science and Technology of China (No. 2016YFC0202702, 2018YFC0213506 and
- 2018YFC0213503), National Research Program for Key Issues in Air Pollution Control in China
- 845 (No. DQGG0107) and National Natural Science Foundation of China (No. 21577126 and
- 41561144004). The authors gratefully acknowledge the availability of CERES, GPCP, MODIS,
- 847 MOPITT, NCDC, OMI, PRISM, SCHIAMACHY, and TMPA data. The authors thank Dr. Ralf
- 848 Bennartz from Vanderbilt University for providing the CDNC data. The authors also would like
- to thank Drs. Jerry Herwehe and Shannon Koplitz from the U.S. EPA for their constructive and
- 850 very helpful comments.

851 References

- Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 2. Multiple aerosol
 types, J. Geophys. Res., 105 (D3), 6837-6844, 2000.
- Alapaty, K., Herwehe, J. A., Otte, T. L., Nolte, C. G., Bullock, O. R., Mallard, M. S., Kain, J. S.,
- and Dudhia, J.: Introducing subgrid-scale cloud feedbacks to radiation for regional
- meteorological and climate modeling, Geophys. Res. Lett., 39, L24809,
- 857 https://doi.org/10.1029/2012GL054031, 2012.
- 858 Allen, D. J., Pickering, K. E., Pinder, R. W., Henderson, B. H., Appel, K. W., and Prados, A.:
- Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as
 determined using the CMAQ model, Atmos. Chem. Phys., 12, 1737-
- 861 1758, https://doi.org/10.5194/acp-12-1737-2012, 2012.
- 862 Appel, K. W., Gilliland, A. B., Sarwar, G., and Gilliam, R. C.: Evaluation of the Community
- Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities impacting model performance:
 Part I, Ozone, Atmos. Environ., 41, 9603-9615, 2007.
- Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F.,
 and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale

- 867 Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883-899,
- https://doi.org/10.5194/gmd-6-883-2013, 2013. 868
- Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, 869
- J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, 870
- K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. 871
- L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air 872
- Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703-1732, 873
- https://doi.org/10.5194/gmd-10-1703-2017, 2017. 874
- 875 Baklanov, A., Schlünzen, K. H., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S.,
- Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, 876
- M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganski, 877
- A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., 878
- Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., 879
- 880 Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology-
- chemistry models in Europe: Current status and prospects, Atmos. Chem. Phys., 14, 317-398, 881 doi:10.5194/acp-14-317-2014, 2014. 882
- Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration 883 from satellite, J. Geophys. Res., 112, D02201, http://dx.doi.org/10.1029/2006JD007547, 2007. 884
- 885 Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311, doi:10.1029/2003JD003962, 2004. 886
- Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Badia, A., Balzarini, A., Baro, R., 887
- Bianconi, R., Chemel, C., Curci, G., Forkel, R., Jimenez-Guerrero, P., Hirtl, M., Hodzic, A., 888
- Hozak, L., Im, U., Knote, C., Makar, P., Manders-Groot, A., van Meijgaard, E., Neal, L., Perez, 889
- J. L., Pirovano, G., San Jose, R., Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella, 890
- P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y., Hogrefe, C., and Galmarini, S.: 891
- 892 Comparative analysis of meteorological performance of coupled chemistry-meteorology models
- in the context of AQMEII phase 2, Atmos. Environ., 115, 470-498, 893
- 894 doi:10.1016/j.atmosenv.2014.12.032, 2015.
- Byun, D. W. and Schere K. L.: Review equations, computational algorithms, and other 895
- 896 components of the Models-3 Community Multi-Scale Air Quality (CMAQ) modeling system, Applied Mechanics Reviews, 59(2), 51-77, doi:10.1115/1.2128636, 2006. 897
- Choi, M.W., Lee, J. H., Woo, J. W., Kim, C. H., and Lee, S. H.: Comparison of PM2.5 chemical 898 899 components over East Asia simulated by the WRF-Chem and WRF/CMAQ models: On the
- 900 models' prediction inconsistency, Atmosphere, 10, 618, 2019.
- 901 Cohen, A. E., Cavallo, S. M., Coniglio, M. C., and Brooks, H. E.: A review of planetary
- boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. 902 cold season severe weather environments, Weather and Forecasting, 903
- 904 https://doi.org/10.1175/WAF-D-14-00105.1, 2015.
- Dong, X., Fu, J. S., Huang, K., Tong, D., and Zhuang, G.: Model development of dust emission 905 and heterogeneous chemistry within the Community Multiscale Air Quality modeling system 906

- and its application over East Asia, Atmos. Chem. Phys., 16, 8157–8180,
- 908 https://doi.org/10.5194/acp-16-8157-2016, 2016.
- Eder, B. and Yu, S.: A performance evaluation of the 2004 release of Models-3 CMAQ, Atmos.
 Environ., 40(26):4811-4824, 2006.
- 911 Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar, N.:
- Recommendations on statistics and benchmarks to assess photochemical model performance, J.
 Air Waste Manage. Assoc., 67:5, 582-598, doi:10.1080/10962247.2016.1265027, 2017.
- 914 Emmons, L. K., Edwards, D. P., Deeter, M. N., Gille, J. C., Campos, T., Nédélec, P., Novelli, P.,
- and Sachse, G.: Measurements of Pollution In The Troposphere (MOPITT) validation through
- 916 2006, Atmos. Chem. Phys., 9, 1795–1803, https://doi.org/10.5194/acp-9-1795-2009, 2009.
- 917 Foroutan, H., Young, J., Napelenok, S., Ran, L., Appel, K. W., Gilliam, R. C., and Pleim, J. E.:
- 918 Development and evaluation of a physics based windblown dust emission scheme implemented
- 919 in the CMAQ modeling system, J. Adv. Model. Earth Syst., 9,585–608,
- 920 doi:10.1002/2016MS000823, 2017.
- 921 Gan, C.-M., Pleim, J., Mathur, R., Hogrefe, C., Long, C. N., Xing, J., Wong, D., Gilliam, R., and
- 922 Wei, C.: Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol
- effects on radiation "brightening" in the United States, Atmos. Chem. Phys., 15, 12193–12209,
- 924 https://doi.org/10.5194/acp-15-12193-2015, 2015a.
- 925 Gan, C.-M., Binkowski, F., Pleim, J., Xing, J., Wong, D., Mathur, R., and Gilliam, R.:
- Assessment of the aerosol optics component of the coupled WRF–CMAQ model using CARES
 field campaign data and a single column model, Atmos. Environ., 115, 670-682, 2015b.
- 928 Gantt, B., He, J., Zhang, X., Zhang, Y., and Nenes, A.: Incorporation of advanced aerosol
- 929 activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect
- 930 effects, Atmos. Chem. Phys., 14, 7485–7497, https://doi.org/10.5194/acp-14-7485-2014, 2014.
- Gantt, B., Sarwar, G., Xing, J., Simon, H., Schwede, D., Hutzell, W. T., Mathur, R, and Saiz-
- Lopez, A.: The impact of iodide-mediated ozone deposition and halogen chemistry on surface
 ozone concentrations across the continental United States, Environ. Sci. Technol., 51 (3), 1458-
- 934 1466, 2017.
- Ghan, S. J., Laulainen, N. S., Easter, R. C., Wagener, R., Nemesure, S., Chapman, E. G., Zhang,
 Y., and Leung, L. R.: Evaluation of aerosol direct radiative forcing in MIRAGE, J. Geophys.
- 936 Y., and Leung, L. R.: Evaluation o937 Res., 106, 5295–5316, 2001.
- Glotfelty, T., He, J., and Zhang, Y.: Impact of future climate policy scenarios on air quality and
 aerosol-cloud interactions using an advanced version of CESM/CAM5: Part I. model evaluation
 for the current decadal simulations, Atmos. Environ., 152, 222-239, 2017.
- 941 Grell, G. A., Peckham, S. E., Schmitz, R., McKenn, S. A., Frost, G., Skamarock, W. C., and
- Eder, B.: Fully Coupled "Online" chemistry within the WRF Model, Atmos. Environ., 39, 6957–
 6975, 2005.

- Grell, G. A. and Baklanov, A.: Integrated modelling for forecasting weather and air quality: A
 call for fully coupled approaches, Atmos. Environ., 45, 38, 6845–6851, 2011.
- 946 He, J. and Zhang, Y.: Improvement and further development in CESM/CAM5: Gasphase
- 947 chemistry and inorganic aerosol treatments, Atmos. Chem. Phys., 14, 9171-9200,
- 948 <u>http://dx.doi.org/10.5194/acp-14-9171-2014</u>, 2014.
- 949 Heald, C. L., Jacob, D. J., Fiore, A. M., Emmons, L. K., Gille, J. C., Deeter, M. N., Warner, J.,
- 950 Edwards, D. P., Crawford, J. H., Hamlin, A. J., Sachse, G. W., Browell, E. V., Avery, M. A.,
- 951 Vay, S. A., Westberg, D. J., Blake, D. R., Singh, H. B., Sandholm, S. T., Talbot, R. W., and
- 952 Fuelberg, H. E.: Asian outflow and trans-Pacific transport of carbon monoxide and ozone
- pollution: An integrated satellite, aircraft, and model perspective, J. Geophys. Res., 108(D24),
- 954 4804, doi:10.1029/2003JD003507, 2003.
- 955 Herwehe, J. A., Otte, T. L., Mathur, R., and Rao, S. T.: Diagnostic analysis of ozone
- concentrations simulated by two regional-scale air quality models, Atmos. Environ., 45, 5957–
 5969, 2011.
- Hogrefe, C., Pouliot, G., Wong, D., Torian, A., Roselle, S., Pleim, J., and Mathur, R.: Annual
 application and evaluation of the online coupled WRF–CMAQ system over North America
 under AQMEII phase 2, Atmos. Environ., 115, 683-694, 2015.
- Hong, C., Zhang, Q., Zhang, Y., Tang, Y., Tong, D., and He, K.: Multi-year downscaling
 application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate
 and air quality modeling: model evaluation and aerosol direct effects, Geosci. Model Dev., 10,
 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, 2017.
- Hong, C.-P., Zhang, Q., Zhang, Y., Davis, S. J., Zhang, X., Tong, D., Guan, D., Liu, Z., and He,
 K.-B.: Weakened aerosol radiative effects may mitigate the climate penalty on Chinese air
- 967 quality, Nature Climate Change, in press, 2020.
- 968 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W.
- D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative
 transfer models, J. Geophys. Res. Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944,
 2008.
- 972 IPCC: Global warming of 1.5°C, An IPCC Special Report on the impacts of global warming of
- 973 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the
- 974 context of strengthening the global response to the threat of climate change, sustainable
- 975 development, and efforts to eradicate poverty edited by Masson-Delmotte, V., Zhai, P., Pörtner,
- 976 H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock,
- 977 R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T.,
- 978 Tignor, M., and Waterfield, T., 2018.
- Jacobson, M. Z., Lu, R., Turco, R. P., and Toon, O. B.: Development and application of a new
- air pollution modeling system. Part I: Gas-phase simulations, Atmos. Environ., 30B, 1939–1963,
- 981 1996.

- Jacobson, M. Z.: GATOR-GCMM: A global- through urban-scale air pollution and weather
 forecast model 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water,
- 984 sea, ice, and snow, J. Geophys. Res., 106, 5385–5401, 2001.
- Jung, J., Souri, A. H., Wong, D. C., Lee, S., Jeon, W., Kim, J., and Choi, Y.: The impact of the
- direct effect of aerosols on meteorology and air quality using aerosol optical depth assimilation
 during the KORUS AQ campaign, J. Geophys. Res. Atmos., 124, 8303–8319,

988 <u>https://doi.org/10.1029/2019JD030641</u>, 2019.

Kain, J. S.: The Kain-Fritsch convective parameterization: An update, J. Appl. Meteorol., 43,
 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.

Karydis, V. A., Tsimpidi, A. P., and Pandis, S. N.: Evaluation of a three-dimensional chemical
transport model (PMCAMx) in the eastern United States for all four seasons, J. Geophys. Res.,
112, D14211, doi:10.1029/2006JD007890, 2007.

- 994 Kaufman, Y. J., Smirnov, A., Holben, B., and Dubovik, O.: Baseline maritime aerosol
- methodology to derive the optical thickness and scattering properties, Geophys. Res. Lett., 28,
 3251, doi:10.1029/2001GL013312, 2001.
- 997 Kelly, J., Koplitz, S., Baker, K., Holder, A., Pye, H., Murphy, B., Bash, J., Henderson, B.,
- 998 Possiel, N., Simon, H., Eyth, A., Jang, C., Phillips, S., and Timin, B.: Assessing PM_{2.5} model
- performance for the conterminous U.S. with comparison to model performance statistics from
 2007-2015, Atmos. Environ., 214, <u>https://doi.org/10.1016/j.atmosenv.2019.116872</u>, 2019.
- 1001 Kukkonen, J., Olsson, T., Schultz, D. M., Baklanov, A., Klein, T., Miranda, A. I., Monteiro, A.,
- 1002 Hirtl, M., Tarvainen, V., Boy, M., Peuch, V.-H., Poupkou, A., Kioutsioukis, I., Finardi, S.,
- 1003 Sofiev, M., Sokhi, R., Lehtinen, K. E. J., Karatzas, K., San José, R., Astitha, M., Kallos, G.,
- 1004 Schaap, M., Reimer, E., Jakobs, H., and Eben, K.: A review of operational, regional-scale,
- 1005 chemical weather forecasting models in Europe, Atmos. Chem. Phys., 12, 1–87,
- 1006 doi:10.5194/acp-12-1-2012, 2012.

Li, P, Wang, L., Guo, P., Yu, S., Mehmood, K., Wang, S., Liu, W., Seinfeld, J. H., Zhang, Y.,
Wong, D., Alapaty, K., Pleim, J., and Mathur, R.: High reduction of ozone and particulate matter
during the 2016 G-20 summit in Hangzhou by forced emission controls of industry and traffic,
Environ. Chem. Lett., 15:709–715, doi:10.1007/s10311-017-0642-2, 2017.

- Lin, M., Holloway, T., Carmichael, G. R., and Fiore, A. M.: Quantifying pollution inflow and
 outflow over East Asia in spring with regional and global models, Atmos. Chem. Phys., 10,
 4221–4239, https://doi.org/10.5194/acp-10-4221-2010, 2010.
- Liu, X.-H., Zhang, Y., Xing, J., Zhang, Q., Wang, K., Streets, D. G., Jang, C. J., Wang, W.-X.,
 and Hao, J. M.: Understanding of regional air pollution over China using CMAQ:- Part II.
 Process analysis and ozone sensitivity to precursor emissions, Atmos. Environ., 44(20), 3719-
- 1017 3727, 2010.
- 1018 Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., Liu, M., Lamsal,
- 1019 L. N., Barkley, M., De Smedt, I., Van Roozendael, M., Wang, Y., Wagner, T., Beirle, S., Lin, J.-
- 1020 T., Krotkov, N., Stammes, P., Wang, P., Eskes, H. J., and Krol, M.: Structural uncertainty in air

- mass factor calculation for NO2 and HCHO satellite retrievals, Atmos. Meas. Tech., 10, 759–
 782, <u>https://doi.org/10.5194/amt-10-759-2017</u>, 2017.
- 1023 Ma, P.-L., Rasch, P. J., Fast, J. D., Easter, R. C., Gustafson Jr., W. I., Liu, X., Ghan, S. J., and
- 1024 Singh, B.: Assessing the CAM5 physics suite in the WRF-Chem model: implementation,
- 1025 resolution sensitivity, and a first evaluation for a regional case study, Geosci. Model Dev., 7,
- 1026 755–778, https://doi.org/10.5194/gmd-7-755-2014, 2014.
- 1027 Makar, P., A., Gonga, W., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R., Milbrandt, J., Im, U.,
- 1028 Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L.,
- 1029 Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M. B., Pabla, B., Pérez, J. L., Pirovano, G.,
- 1030 San José, R., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S.: Feedbacks between air
- 1031 pollution and weather, Part 2: Effects on chemistry, Atmos. Environ., 115, 499-526, 2015.
- 1032 Mathur, R., Xiu, A., Coats, C., Alapaty, K., Shankar, U., and Hanna, A.: Development of an air 1033 quality modeling system with integrated meteorology, chemistry, and emissions, Proc.
- Measurement of Toxic and Related Air Pollutants, AWMA, Cary, NC, September, 1998.
- 1035 Mathur, R., Xing, J., Gilliam, R., Sarwar, G., Hogrefe, C., Pleim, J., Pouliot, G., Roselle, S.,
- 1036 Spero, T. L., Wong, D. C., and Young, J.: Extending the Community Multiscale Air Quality
- (CMAQ) modeling system to hemispheric scales: overview of process considerations and initial
 applications, Atmos. Chem. Phys., 17, 12449-12474, 2017.
- 1039 Matsui, H., Koike, M., Kondo, Y., Takegawa, N., Kita, K., Miyazaki, Y., Hu, M., Chang, S.-Y.,
- 1040 Blake, D. R., Fast, J. D., Zaveri, R. A., Streets, D. G., Zhang, Q. and Zhu, T.: Spatial and
- 1041 temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source
- 1042 apportionment, J. Geophys. Res., 114, D00G13, doi:10.1029/2008JD010906, 2009.
- 1043 Mebust, M. R., Eder, B. K., Binkowski, F. S., and Roselle, S. J.: Models-3 Community
- Multiscale Air Quality (CMAQ) model aerosol component: 2. Model evaluation, J. Geophys.
 Res., 108(D6), 4184, doi:10.1029/2001JD001410, 2003.
- 1046 Mehmood, K., Wu, Y., Wang, L., Yu, S., Li, P., Chen, X., Li, Z., Zhang, Y., Li, M., Liu, W.,
- Wang, Y., Liu, Z., Zhu, Y., Rosenfeld, D., and Seinfeld, J. H.: Relative effects of open biomass
 burning and open crop straw burning on haze formation over central and eastern China:
 modeling study driven by constrained emissions, Atmos. Chem. Phys., 20, 2419–2443,
- 1050 https://doi.org/10.5194/acp-20-2419-2020, 2020.
- 1051 Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics on the
- 1052 development of trailing stratiform precipitation in a simulated squall line: Comparison of one-
- and two-moment schemes, Mon. Weather Rev., 137, 991–1007,
- 1054 https://doi.org/10.1175/2008MWR2556.1, 2009.
- 1055 Penrod, A., Zhang, Y., Wang, K., Wu, S.-Y., and Leung, R. L.: Impacts of future climate and
- 1056 emission changes on US air quality, Atmos. Environ., 89, 533-547,
- 1057 doi:10.1016/j.atmosenv.2014.01.001, 2014.

- 1058 Pleim, J. E.: A combined local and nonlocal closure model for the atmospheric boundary layer.
- 1059 Part I: Model description and testing, J. Appl. Meteorol. Clim.,
- 1060 <u>https://doi.org/10.1175/JAM2539.1</u>, 2007.
- 1061 Pleim, J., Young, J., Wong, D., Gilliam, R., Otte, T., and Mathur, R.: Two-way coupled
- meteorology and air quality modeling, in Air Pollution Modeling and its Application, edited by
 C. Borrego and A. I. Miranda, XIX, NATO Science for Peace and Security Series, Series C:
- 1063 C. Borrego and A. I. Miranda, XIX, NATO Science for I1064 Environmental Security, Springer, Dordrecht, 2008.
- Pleim, J. E. and Gilliam, R.: An indirect data assimilation scheme for deep soil temperature in
 the Pleim–Xiu land surface model, J. Appl. Meteorol. Clim., 48, 1362-1376, 2009.
- 1067 Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H., Weber, R., Vasilakos,
- 1068 P., Appel, K. W., Budisulistiorini, S. H., Surratt, J. D., Nenes, A., Hu, W., Jimenez, J. L.,
- 1069 Isaacman-VanWertz, G., Misztal, P. K., and Goldstein, A. H.: On the implications of aerosol
- liquid water and phase separation for organic aerosol mass, Atmos. Chem. Phys., 17, 343–369,
 doi:10.5194/acp-17-343-2017, 2017.
- 1072 Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L.,
- Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V.
 F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J.,
- 1075 Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem.
- 1076 Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020.
- 1077 Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R. R.,
- Ichoku, C., Levy, R. C., and Kleidman, R. G.: The MODIS aerosol algorithm, products, andvalidation, J. Atmos. Sci., 62, 947-973, 2005.
- Roy, B., Pouliot, G. A., Gilliland, A., Pierce, T., Howard, S., Bhave, P. V., and Benjey, W.:
 Refining fire emissions for air quality modeling with remotely sensed fire counts: A wildfire case
 study, Atmos. Environ., 41(3), 655-665, doi:10.1016/j.atmosenv.2006.08.037, 2007.
- San Joaquin Valley Air Pollution Control District: 2018 Plan for the 1997, 2006, and 2012 PM_{2.5}
 Standards, November 15, 2018, <u>https://www.valleyair.org/pmplans</u>, 2018.
- 1085 Sarwar, G., Luecken, D., Yarwood, G., Whitten, G. Z., and Carter, W. P. L.: Impact of an
- updated carbon bond mechanism on predictions from the CMAQ modeling system: Preliminary
 assessment, J. Appl. Meteor. Clim., 47, 3e14, 2008.
- 1088 Sarwar, G., Gantt, B., Schwede, D., Foley, K., Mathur, R., and Saiz-Lopez, A.: Impact of
- enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern
 Hemisphere, Environ. Sci. Technol., 49 (15), 9203-9211, 2015.
- 1091 Scheffe, R. D., Strum, M., Phillips, S. B., Thurman, J., Eyth, A., Fudge, S., Morris, M., Palma,
- 1092 T., and Cook, R.: Hybrid modeling approach to estimate exposures of hazardous air pollutants
- 1093 (HAPs) for the National Air Toxics Assessment (NATA), Environ. Sci. Technol., 2016, 50(22),
- 1094 12356–12364, doi:10.1021/acs.est.6b04752, 2016.

- Schwede, D., Pouliot, G. A., and Pierce, T.: Changes to the biogenic emissions inventory system
 version 3 (BEIS3), in: Proceedings of the 4th CMAS Models-3 Users' Conference, Chapel Hill,
 NC, 26–28 September, 2005.
- 1098 Sekiguchi, A., Shimadera, H., and Kondo, A.: Impact of aerosol direct effect on wintertime
- PM_{2.5} simulated by an online coupled meteorology-air quality model over East Asia, Aerosol.
 Air Qual. Res., 18, 1068–1079, 2018.
- 1101 Solazzo, E., Hogrefe, C., Colette, A., Garcia-Vivanco, M., and Galmarini, S.: Advanced error
- 1102 diagnostics of the CMAQ and Chimere modelling systems within the AQMEII3 model
- **1103** evaluation framework, Atmos. Chem. Phys., 17, 10435-10465, 2017.
- 1104 U.S. EPA: Policy assessment for the review of the National Ambient Air Quality Standards for 1105 particulate matter, EPA-452/R-20-002, January 2020,
- 1106 https://www.epa.gov/sites/production/files/2020-
- 1107 <u>01/documents/final_policy_assessment_for_the_review_of_the_pm_naaqs_01-2020.pdf</u>, 2020.
- Vasilakos, P., Russell, A., Weber, R., and Nenes, A.: Understanding nitrate formation in a world
 with less sulfate. Atmos. Chem. Phys. 18, 12765-12775, 2018.
- Wang, K. and Zhang, Y.: Application, evaluation, and process analysis of U.S. EPA's 2002
 multiple-pollutant air quality modeling platform, Atmospheric and Climate Sciences, 2, 254-289,
 2012.
- Wang, K. and Zhang, Y.: 3-D agricultural air quality modeling: Impacts of NH₃/H₂S gas-phase
 reactions and bi-directional exchange of NH₃, Atmos. Environ., 98, 554-570, doi:
- 1115 10.1016/j.atmosenv.2014.09.010, 2014.
- Wang, K., Zhang, Y., Jang, C., Phillips, S., and Wang, B.: Modeling intercontinental air
 pollution transport over the trans-Pacific region in 2001 using the Community Multiscale Air
 Quality modeling system, J. Geophys. Res., 114, D04307, doi:10.1029/2008JD010807, 2009.
- 1119 Wang, K., Zhang, Y., Nenes, A., and Fountoukis, C.: Implementation of dust emission and
- 1120 chemistry into the Community Multiscale Air Quality modeling system and initial application to 1121 an Asian dust storm episode, Atmos. Chem. Phys., 12, 10209–10237,
- 1122 https://doi.org/10.5194/acp-12-10209-2012, 2012.
- 1123 Wang, J., Wang, S., Jiang, J., Ding, A., Zheng, M., Zhao, B., Wong, C.-D., Zhou, W., Zheng, G.,
- 1124 Wang, L., Pleim, J., and Hao, J.: Impact of aerosol-meteorology interactions on fine particle
- 1125 pollution during China's severe haze episode in January 2013, Environ. Res. Lett., 9,
- doi:10.1088/1748-9326/9/9/094002, 2014.
- Wang, K., Zhang, Y., Yahya, K., Wu, S.-Y., and Grell, G.: Implementation and initial
 application of new chemistry-aerosol options in WRF/Chem for simulating secondary organic
 aerosols and aerosol indirect effects for regional air quality, Atmos. Environ., 115, 716-732,
- 1130 doi:10.1016/j.atmosenv.2014.12.007, 2015<u>a</u>.
- Wang, K., Yahya, K., Zhang, Y., Hogrefe, C., Pouliot, G., Knote, C., Hodzic, A., Jose, R. S.,
 Perez, J. L., Jiménez-Guerrero, P., Baro, R., Makar, P., and Bennartz, R.: A multi-model

- assessment for the 2006 and 2010 simulations under the Air Quality Model Evaluation
- 134 International Initiative (AQMEII) Phase 2 over North America: Part II. Evaluation of column
- 1135 <u>variable predictions using satellite data, Atmos. Environ., 115, 1–17,</u>
- **1**136 <u>10.1016/j.atmosenv.2014.07.044, 2015b.</u>
- 1137 Wang, K., Zhang, Y., and Yahya, K.: Decadal application of WRF/Chem over the continental
- U.S.: Simulation design, sensitivity simulations, and climatological model evaluation, Atmos.
 Environ., 118331, doi: 10.1016/j.atmosenv.2021.118331, 2021.
- 1140 West, J. J., Ansari, A. S., and Pandis, S. N.: Marginal PM_{2.5}: Nonlinear aerosol mass response to 1141 sulfate reductions in the Eastern United States, J. Air Waste Manage. Assoc., 49, 1415-1424,
- 1142 https://doi.org/10.1080/10473289.1999.10463973, 1999.
- 1143 Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X., O'Neill, S., and
- Wynne, K. K.: Estimating emissions from fires in North America for air quality modeling,
 Atmos. Environ., 40(19): 3419–32, doi:10.1016/j.atmosenv.2006.02.010, 2006.
- Autos. Environ., 40(19). 5419–52, doi:10.1010/j.autosenv.2000.02.010, 2000.
- 1146 Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee III, R. B., Smith, G. L., and Cooper, J. E.:
- 1147 Clouds and the Earth's Radiant Energy System (CERES): An earth observing system
- 1148 experiment, B. Am. Meteorol. Soc., 77, 853–868, 1996.
- 1149 Wilczak, J. M., Djalalova, I., McKeen, S., Bianco, L., Bao, J.-W., Grell, G., Peckham, S.,
- Mathur, R., McQueen, J., and Lee, P: Analysis of regional meteorology and surface ozone during
 the TexAQS II field program and an evaluation of the NMM-CMAQ and WRF-Chem air quality
 models, J. Geophys. Res., 114, D00F14, 2009.
- Wong, D. C., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., Pouliot, G., Xiu, A.,
 Young, J. O., and Kang, D.: WRFCMAQ two-way coupled system with aerosol feedback:
 Software development and preliminary results, Geosci. Model Dev., 5, 299–312,
 https://doi.org/10.5194/gmd-5-299-2012, 2012.
- Xing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C.-M., Wong, D. C., Wei, C., and Wang, J.: Air
 pollution and climate response to aerosol direct radiative effects: A modeling study of decadal
 trends across the northern hemisphere, J. Geophys. Res. Atmos., 120, 12,221–12,236,
 doi:10.1002/2015JD023933, 2015a.
- 1161 Xing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C.-M., Wong, D. C., and Wei, C.: Can a
- coupled meteorology-chemistry model reproduce the historical trend in aerosol direct radiative
 effects over the Northern Hemisphere?, Atmos. Chem. Phys., 15, 9997–10018,
- 1164 https://doi.org/10.5194/acp-15-9997-2015, 2015b.
- Xing, J., Wang, J., Mathur, R., Pleim, J., Wang, S., Hogrefe, C., Gan, C.-M., Wong, D., and Hao,
 J.: Unexpected benefits of reducing aerosol cooling effects, Environ. Sci. Technol., 50, 7527–
- 1167 7534, <u>https://doi.org/10.1021/acs.est.6b00767</u>, 2016.
- 1168 Xing, J., Wang, J., Mathur, R., Wang, S., Sarwar, G., Pleim, J., Hogrefe, C., Zhang, Y., Jiang, J.,
- 1169 Wong, D. C., and Hao, J.: Impacts of aerosol direct effects on tropospheric ozone through
- changes in atmospheric dynamics and photolysis rates, Atmos. Chem. Phys., 17, 9869–9883,
 https://doi.org/10.5194/acp-17-9869-2017, 2017.
 - **3 1 1 1**

Xiu, A. and Pleim, J. E.: Development of a land surface model. Part I: Application in a
 mesoscale meteorological model, J. Appl. Meteorol., 40, 192–209, https://doi.org/10.1175/1520-

1174 0450(2001)040<0192:doalsm>2.0.co;2, 2001.

- Yahya, K., Wang, K., Gudoshava, M., Glotfelty, T., and Zhang, Y.: Application of WRF/Chem
 over North America under the AQMEII Phase 2. Part I. Comprehensive evaluation of 2006
- 1177 simulation, Atmos. Environ., 115, 733-755, doi:10.1016/j.atmosenv.2014.08.063, 2015a.

Yahya, K., Wang, K., Zhang, Y., and Kleindienst, T. E.: Application of WRF/Chem over North
America under the AQMEII Phase 2 – Part 2: Evaluation of 2010 application and responses of
air quality and meteorology–chemistry interactions to changes in emissions and meteorology
from 2006 to 2010, Geosci. Model Dev., 8, 2095–2117, https://doi.org/10.5194/gmd-8-20952015, 2015b.

Yahya, K., Wang, K., Campbell, P., Glotfelty, T., He, J., and Zhang, Y.: Decadal evaluation of
regional climate, air quality, and their interactions over the continental US and their interactions
using WRF/Chem version 3.6.1, Geosci. Model Dev., 9, 671–695, https://doi.org/10.5194/gmd9-671-2016, 2016.

Yarwood, G., Rao, S., Yocke, M., and Whitten, G. Z.: Final Report–Updates to the Carbon Bond
 Chemical Mechanism: CB05, Rep.RT-04-00675, Yocke and Co., Novato, Calif., 246 pp., 2005.

Yoo, J.-W., Jeon, W., Park, S.-Y., Park, C., Jung, J., Lee, S.-H., and Lee, H. W.: Investigating
the regional difference of aerosol feedback effects over South Korea using the WRF-CMAQ
two-way coupled modeling system, Atmos. Environ., 218, 116968, 2019.

Yu, S., Eder, B., Dennis, R., Chu, S., and Schwartz, S.: New unbiased symmetric metrics for
evaluation of air quality models, Atmos. Sci. Lett., 7, 26-34, 2006.

Yu, S. C., Mathur, R., Schere, K., Kang, D., Pleim, J., and Otte, T. L.: A detailed evaluation of
the Eta-CMAQ forecast model performance for O₃, its related precursors, and meteorological
parameters during the 2004 ICARTT Study, J. Geophys. Res, 112, D12S14,

1197 doi:10.1029/2006JD007715, 2007.

1198 Yu, S. C., Mathur, R., Pleim, J., Wong, D., Carlton, A. G., Roselle, S., and Rao, S. T.:

- 1199 Simulation of the indirect radiative forcing of climate due to aerosols by the two-way coupled
- 1200 WRF-CMAQ over the eastern United States, in Air Pollution Modeling and its Applications,
- edited by D. G. Steyn and S. T. Castelli, XXI, Springer Netherlands, Netherlands, C(96), 579–
 583, 2011.
- 1203 Yu, S., Mathur, R., Pleim, J., Wong, D., Gilliam, R., Alapaty, K., Zhao, C., and Liu, X.: Aerosol
- indirect effect on the grid-scale clouds in the two-way coupled WRF–CMAQ: Model
- description, development, evaluation and regional analysis, Atmos. Chem. Phys., 14, 11247-
- 1206 11285, <u>https://doi.org/10.5194/acp-14-11247-2014</u>, 2014.
- 1207 Yu, S., Li, P., Wang, L., Wu, Y., Wang, S., Liu, W., Zhu, T., Zhang, Y., Hu, M., Alapaty, K.,
- Wong, D., Pleim, J., Mathur, R., Rosenfeld, D., and Seinfeld, J.: Mitigation of severe urban haze
 pollution by a precision air pollution control approach, Scientific Reports, 8:8151,
- 1210 doi:10.1038/s41598-018-26344-1, 2018.

- Yu, X.-Y., Lee, T., Ayres, B., Kreidenweis, S. M., Malm, W., and Collett, J. L.: Loss of fine 1211 1212 particle ammonium from denuded nylon filters, Atmos. Environ., 40, 4797-4807, 2006.
- 1213 Zender, C. S., H. Bian, and D. Newman: Mineral Dust Entrainment and Deposition (DEAD)
- model: Description and 1990s dust climatology, J. Geophys. Res., 108, 4416, 1214
- doi:10.1029/2002JD002775, 2003. 1215
- 1216 Zhang, Y.: Online coupled meteorology and chemistry models: History, current status, and outlook, Atmos. Chem. Phys., 8, 2895-2932, doi:10.5194/acp-8-2895-2008, 2008. 1217
- Zhang, Y. and Wang, Y .: Climate-driven ground-level ozone extreme in the fall over the 1218
- 1219 Southeast United States, P. Natl. Acad. Sci. USA, 113, 10025-10030,
- 1220 https://doi.org/10.1073/pnas.1602563113, 2016.
- Zhang, Y. and Wang, K.: Project 3 Air quality and climate modeling: Multi-model application, 1221 1222 evaluation, intercomparison, and ensemble over the U.S., poster presentation at the Air Climate
- 1223 Energy (ACE) Centers Meeting, Pittsburgh, PA, June 18-19, 2019.
- 1224 Zhang, K. M., Knipping, E. M., Wexler, A. S., Bhave, P. V., and Tonnesen, G. S.: Size
- 1225 distribution of sea-salt emissions as a function of relative humidity, Atmos. Environ., 39, 3373-1226 3379, 2005.
- Zhang, Y., Liu, P., Pun, B, and Seigneur, C.: A comprehensive performance evaluation of MM5-1227
- CMAQ for the summer 1999 Southern Oxidants Study episode, Part-I. Evaluation protocols, 1228 databases and meteorological predictions, Atmos. Environ., 40, 4825-4838, 1229
- doi:10.1016/j.atmosenv.2005.12.043, 2006. 1230
- Zhang, Y., Vijayaraghavan, K., Wen, X.-Y., Snell, H. E., and Jacobson, M. Z.: Probing into 1231 1232 regional ozone and particulate matter pollution in the United States: 1. A 1-year CMAQ
- simulation and evaluation using surface and satellite data, J. Geophys. Res., 114, D22304, 1233 1234 doi:10.1029/2009JD011898, 2009a.
- Zhang, Y., Wen, X.-Y., Wang, K., Vijayaraghavan, K., and Jacobson, M. Z.: Probing into 1235
- regional ozone and particulate matter pollution in the United States: 2. An examination of 1236
- formation mechanisms through a process analysis technique and sensitivity study, J. Geophys. 1237 Res., 114, D22305, doi:10.1029/2009JD011900, 2009b. 1238
- 1239 Zhang, Y., Wen, X.-Y., and Jang C. J.: Simulating chemistry-aerosol-cloud-radiation-climate
- 1240 feedbacks over the continental US using the online-coupled Weather Research Forecasting
- Model with chemistry (WRF/Chem), Atmos. Environ., 44(29), 3568-3582, doi: 1241
- 1242 10.1016/j.atmosenv.2010.05.056, 2010.
- 1243 Zhang, Y., Sartelet, K., Zhu, S., Wang, W., Wu, S.-Y., Zhang, X., Wang, K., Tran, P., Seigneur,
- C., and Wang, Z.-F.: Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe -1244
- Part 2: Evaluation of chemical concentrations and sensitivity simulations, Atmos. Chem. Phys., 1245
- 13, 6845-6875, https://doi.org/10.5194/acp-13-6845-2013, 2013. 1246
- Zhang, Y., Chen, Y., Fan, J., and Leung, L. R.: Application of an online-coupled regional 1247 climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part II. 1248

- Sensitivity to ice nucleation parameterizations and dust emissions, Climate, 3(3), 753-774,
 doi:10.3390/cli3030753, 2015a.
- 1251 Zhang, Y., Zhang, X., Wang, K., He, J., Leung, L. R., Fan, J.-W., and Nenes, A.: Incorporating
- an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and
- parameterization intercomparison, J. Geophys. Res., 120 (14), doi:10.1002/2014JD023051,
 2015b.
- 1255 Zhang, Y., Zhang, X., Wang, L., Zhang, Q., Duan, F., and He, K: Application of WRF/Chem
- over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ, Atmos.
 Environ., 124, 285–300, 2016a.
- 1258 Zhang, Y., Hong, C.-P., Yahya, K., Li, Q., Zhang, Q., and He, K.-B.: Comprehensive evaluation
- 1259 of multi-year real-time air quality forecasting using an online-coupled meteorology-chemistry
- 1260 model over southeastern United States, Atmos. Environ., 138, 162-182,
- 1261 doi:10.1016/j.atmosenv.2016.05.006, 2016b.
- Zhang, Y., Wang, K., and He J.: Multi-year application of WRF-CAM5 over East Asia-Part II:
 Interannual variability, trend analysis, and aerosol indirect effects, Atmos. Environ., 165, 222239, 2017.
- 1265 Zhang., Y., Jena, C., Wang, K., Paton-Walsh, C., Guérette, E.-A., Utembe, S., Silver, J. D., and
- 1266 Keywood, M.: Multiscale applications of two online-coupled meteorology-chemistry models
- 1267 during recent field campaigns in Australia, Part I: Model description and WRF/Chem-ROMS
- evaluation using surface and satellite data and sensitivity to spatial grid resolutions, Atmosphere,
 10(4), 189, doi:10.3390/atmos10040189, 2019.
- 1270 Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and
- 1271 Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain
- 1272 secondary inorganic aerosol formation during the January 2013 haze episode in North China,
- 1273 Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.

		Mean		Two-w	vay WRF-0	CMAQ	WRF-only					
Variables	Datasets	Obs	Mean Sim	R	MB	NMB (%)	RMSE	Mean Sim	R	MB	NMB (%)	RMSE
T2 (°C)		7.5	8.6	0.97	1.1	14.9	1.6	8.6	0.97	1.2	15.8	1.6
RH2 (%)	NCDC	72.9	75.1	0.79	2.2	3.0	6.3	75.0	0.79	2.1	2.8	6.3
WS10 (m s ⁻¹)		3.93	4.50	0.4	0.57	14.6	1.17	4.50	0.4	0.58	14.6	1.17
WD10 (deg)		166.4	183.1	0.0	16.7	10.0	44.2	183.3	0.0	16.9	10.2	44.4
	NCDC	1.54	2.25	0.46	0.71	46.3	1.94	2.26	0.47	0.72	47.0	1.94
	NADP	2.48	2.68	0.77	0.2	8.0	1.14	2.69	0.77	0.21	8.6	1.14
Precipitation (mm day ⁻¹)	GPCP	1.81	2.04	0.80	0.23	12.8	1.03	2.04	0.80	0.23	12.8	1.02
(min day)	PRISM	1.91	2.08	0.89	0.17	9.0	0.79	2.09	0.89	0.18	9.4	0.79
	TMPA	2.02	2.07	0.81	0.05	2.4	1.01	2.06	0.81	0.04	2.0	1.02
SWDOWN (W m ⁻²)		108.5	119.8	0.99	11.3	10.4	13.7	128.0	0.98	19.5	17.9	22.2
GSW (W m ⁻²)		87.1	94.6	0.99	7.5	8.6	10.1	101.3	0.98	14.1	16.2	17.1
GLW (W m ⁻²)	CEDEC	278.9	278.0	0.99	-0.9	-0.3	5.9	272.7	0.99	-6.3	-2.2	8.6
OLR (W m ⁻²)	CERES	222.3	226.2	0.99	4.0	1.8	5.1	227.0	0.99	4.7	2.1	5.8
SWCF (W m ⁻²)		-26.6	-23.6	0.91	-3.0	-11.1	6.3	-19.2	0.85	-7.4	-27.8	10.6
LWCF (W m ⁻²)		22.0	18.7	0.76	-3.3	-15.1	6.0	18.0	0.72	-4.1	-18.4	6.7
AOD		0.11	0.04	0.44	-0.06	-59.8	0.08	N/A	N/A	N/A	N/A	N/A
CF	MODIS	0.66	0.59	0.87	-0.07	-10.4	0.1	N/A	N/A	N/A	N/A	N/A
CDNC (cm ⁻³)		172.3	30.4	0.21	-141.9	-82.4	157.5	N/A	N/A	N/A	N/A	N/A
CWP (g m ⁻²)		177.4	97.0	0.63	-80.4	-45.3	93.2	N/A	N/A	N/A	N/A	N/A
СОТ		16.9	3.3	0.74	-13.6	-80.8	14.2	N/A	N/A	N/A	N/A	N/A

Table 1. The 5-year average performance statistics for meteorological variables between two-way WRF-CMAQ and WRF-only simulations in winter, 2008-2012.

*outputs of AOD, CF, CDNC, CWP, and COT are not available from WRF-only simulations

Variables		Mean	n Two-way WRF-CMAQ						WRF-only					
	Datasets	Obs	Mean Sim	R	MB	NMB (%)	RMSE	Mean Sim	R	MB	NMB (%)	RMSE		
T2 (°C)		22.3	22.2	0.95	-1.1	-4.6	1.7	22.4	0.95	-0.9	-3.7	1.6		
RH2 (%)	NCDC	67.0	70.7	0.91	3.7	5.5	6.6	70.1	0.91	3.2	4.7	6.3		
WS10 (m s ⁻¹)	NCDC	3.19	3.57	0.36	0.38	11.8	0.99	3.61	0.35	0.42	13.1	1.01		
WD10 (deg)		146.4	195.4	0.0	49.1	33.5	67.3	196.1	0.0	49.8	34.0	67.9		
	NCDC	2.11	2.86	0.5	0.75	35.6	1.93	3.01	0.5	0.9	42.6	2.01		
	NADP	2.82	2.99	0.83	0.17	5.9	0.87	3.14	0.83	0.32	11.2	0.93		
Precipitation (mm day ⁻¹)	GPCP	2.55	2.78	0.80	0.23	9.0	1.19	2.86	0.80	0.30	11.9	1.21		
(IIIII day)	PRISM	2.35	2.55	0.89	0.20	8.4	0.69	2.65	0.89	0.30	12.9	0.73		
	TMPA	2.70	2.83	0.80	0.13	4.8	1.27	2.89	0.81	0.19	6.8	1.27		
SWDOWN (W m ⁻²)		254.7	298.3	0.84	43.6	17.1	46.6	314.1	0.73	59.4	23.3	62.8		
GSW (W m ⁻²)		222.5	256.1	0.75	33.6	15.1	37.6	269.7	0.57	47.2	21.2	51.7		
GLW (W m ⁻²)	CERES	372.2	358.8	0.98	-13.4	-3.6	15.3	355.4	0.98	-16.8	-4.5	18.7		
OLR (W m ⁻²)	CERES	257.2	259.6	0.96	2.3	0.9	4.8	260.2	0.96	3.0	1.2	5.2		
SWCF (W m ⁻²)		-55.1	-32.3	0.69	-22.8	-41.3	27.6	-24.0	0.50	-31.1	-56.4	36.2		
LWCF (W m ⁻²)		26.1	17.5	0.85	-8.6	-33.0	9.8	17.1	0.87	-9.0	-34.6	10.0		
AOD		0.20	0.07	0.67	-0.13	-67.8	0.14	N/A	N/A	N/A	N/A	N/A		
CF		0.53	0.41	0.81	-0.12	-23.0	0.16	N/A	N/A	N/A	N/A	N/A		
CDNC (cm ⁻³)	MODIS	138.9	28.9	0.11	-110.0	-79.2	124.1	N/A	N/A	N/A	N/A	N/A		
CWP (g m ⁻²)		162.2	54.6	0.65	-107.6	-66.3	113.8	N/A	N/A	N/A	N/A	N/A		
СОТ		14.2	2.3	0.73	-11.9	-83.6	12.2	N/A	N/A	N/A	N/A	N/A		

Table 2. The 5-year average performance statistics for meteorological variables between two-way WRF-CMAQ and WRF-only simulations in summer, 2008-2012.

*outputs of AOD, CF, CDNC, CWP, and COT are not available from WRF-only simulations

Variables		Mean		Two-w	vay WRF-0	CMAQ			Of	ffline CMA		
	Datasets	Obs	Mean Sim	R	MB	NMB (%)	NME (%)	Mean Sim	R	MB	NMB (%)	NME (%)
Max 8-hr O ₃	AQS	32.4	39.6	0.61	7.2	22.5	23.0	42.3	0.65	9.9	30.7	30.9
(ppb)	CASTNET	34.9	36.6	0.76	1.7	4.9	9.4	39.7	0.75	4.7	13.5	14.3
DM (up m3)	CSN	11.4	10.6	0.21	-0.8	-7.2	29.3	11.7	0.2	0.21	1.8	31.0
$PM_{2.5} (\mu g \ m^{-3})$	IMPROVE	3.59	3.90	0.83	0.31	8.6	30.3	4.44	0.86	0.85	23.7	32.1
PM ₁₀ (µg m ⁻³)	AQS	19.9	12.7	0.04	-7.2	-36.3	46.9	15.7	0.17	-4.2	-21.3	42.8
CO^{2}	CSN	2.06	1.06	0.78	-1.0	-48.3	48.4	1.02	0.78	-1.04	-50.7	50.8
SO_4^{2-} (µg m ⁻³)	IMPROVE	0.79	0.49	0.95	-0.3	-37.4	38.9	0.49	0.95	-0.3	-38.5	39.9
	CSN	2.37	2.36	0.79	-0.01	-0.3	25.8	2.89	0.81	0.52	21.7	37.8
NO ₃ ⁻ (μg m ⁻³)	IMPROVE	0.73	0.83	0.87	0.1	13.3	40.9	1.06	0.90	0.33	44.6	54.4
NH4 ⁺ (µg m ⁻³)	CSN	1.30	0.92	0.80	-0.38	-29.4	30.5	1.03	0.81	-0.27	-21.0	24.1
EC (mass)	CSN	0.69	0.75	0.18	0.06	8.7	58.5	0.79	0.24	0.1	14.2	58.0
EC (µg m ⁻³)	IMPROVE	0.17	0.23	0.80	0.06	40.8	59.2	0.25	0.84	0.09	53.4	65.6
OC (µg m ⁻³)	IMPROVE	0.65	0.74	0.65	0.09	13.0	55.7	0.8	0.67	0.15	23.1	56.4
TC (CSN	3.05	3.27	0.01	0.22	7.2	53.2	3.49	0.0	0.44	14.4	55.8
TC (µg m ⁻³)	IMPROVE	0.53	0.62	0.75	0.09	17.5	51.3	0.68	0.78	0.15	28.1	52.6
Col. CO (10 ¹⁸ mole. cm ⁻³)	MOPITT	1.96	1.56	0.70	-0.4	-20.5	21.6	1.57	0.69	-0.39	-19.8	21.1
TOR (DU)	OMI	26.4	27.6	0.78	1.2	4.7	14.0	28.0	0.19	1.6	5.9	14.3
Col. NO ₂ (10 ¹⁵ mole. cm ⁻³)	SCIAMACHY	1.55	1.55	0.86	0.04	0.3	33.5	1.53	0.87	-0.02	-1.2	33.1
Col. HCHO (10 ¹⁵ mole. cm ⁻³)	SCIAMACHY	4.87	2.48	0.29	-2.39	-49.0	50.1	2.53	0.28	-2.34	-48.0	49.2

Table 3. The 5-year average performance statistics for chemical variables between two-way WRF-CMAQ and offline CMAQ simulations in winter, 2008-2012.

Variables		Mean		Two-w	ay WRF-0	CMAQ		Offline CMAQ					
	Datasets	Obs	Mean Sim	R	MB	NMB (%)	NME (%)	Mean Sim	R	MB	NMB (%)	NME (%)	
Max 8-hr O ₃	AQS	47.9	53.0	0.66	5.1	10.6	13.2	54.8	0.66	6.8	14.2	15.6	
(ppb)	CASTNET	47.2	45.8	0.66	-1.4	-3.0	11.5	47.3	0.68	0.1	0.2	10.5	
$\mathbf{D}\mathbf{M}$ (up \mathbf{m}^{-3})	CSN	11.4	9.9	0.74	-1.5	-13.2	20.5	9.8	0.71	-1.6	-14.0	20.8	
PM _{2.5} (µg m ⁻³)	IMPROVE	6.19	4.52	0.88	-1.66	-26.9	31.2	4.78	0.86	-1.41	-22.8	28.9	
PM ₁₀ (µg m ⁻³)	AQS	26.7	14.5	0.03	-12.2	-45.8	50.7	16.2	0.07	-10.5	-39.4	48.6	
SO 2- (3)	CSN	2.86	2.57	0.91	-0.29	-10.2	15.1	2.34	0.91	-0.52	-18.1	19.5	
SO_4^{2-} (µg m ⁻³)	IMPROVE	1.40	1.11	0.98	-0.29	-20.9	21.3	1.08	0.98	-0.31	-22.5	22.6	
NO3 ⁻ (µg m ⁻³)	CSN	0.49	0.71	0.54	0.22	45.2	70.6	0.77	0.59	0.28	57.2	76.8	
	IMPROVE	0.20	0.19	0.6	-0.01	-4.7	71.4	0.22	0.63	0.02	10.3	72.2	
NH4 ⁺ (µg m ⁻³)	CSN	0.91	0.94	0.86	0.03	3.3	22.4	0.88	0.85	-0.03	-3.6	20.1	
EC (m. 3)	CSN	0.56	0.79	0.56	0.23	41.0	56.3	0.79	0.55	0.23	41.9	55.5	
EC (µg m ⁻³)	IMPROVE	0.20	0.24	0.56	0.04	20.4	58.8	0.26	0.52	0.06	27.9	63.0	
OC (µg m ⁻³)	IMPROVE	1.37	0.70	0.31	-0.67	-49.2	54.0	0.75	0.28	-0.62	-45.4	52.4	
TC (CSN	2.85	2.17	0.54	-0.67	-23.6	29.3	2.19	0.5	-0.65	-22.9	29.7	
TC (µg m ⁻³)	IMPROVE	0.88	0.61	0.56	-0.27	-30.5	47.6	0.66	0.53	-0.23	-25.6	47.6	
Col. CO (10 ¹⁸ mole. cm ⁻³)	MOPITT	1.82	1.32	0.75	-0.5	-27.8	27.8	1.32	0.54	-0.5	-27.3	27.3	
TOR (DU)	OMI	35.0	32.2	0.87	-2.8	-8.0	9.0	32.4	0.85	-2.6	-7.3	8.6	
Col. NO ₂ (10 ¹⁵ mole. cm ⁻³)	SCIAMACHY	1.08	0.78	0.81	-0.3	-27.8	38.0	0.78	0.80	-0.3	-27.5	38.1	
Col. HCHO (10 ¹⁵ mole. cm ⁻³)	SCIAMACHY	5.81	6.71	0.82	0.9	15.0	22.5	6.82	0.82	1.01	17.4	23.5	

Table 4. The 5-year average performance statistics for chemical variables between two-way WRF-CMAQ and offline CMAQ simulations in summer, 2008-2012.

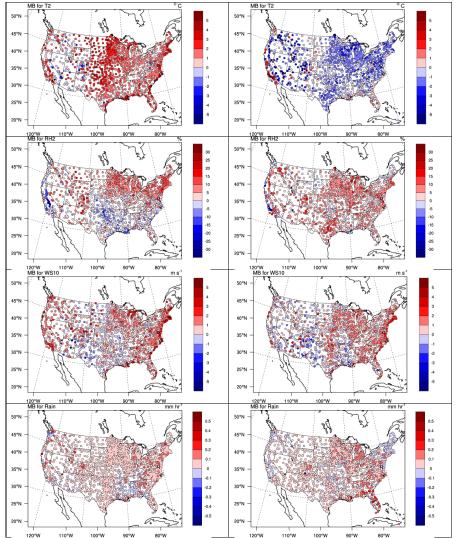


Figure 1. Spatial distributions of 5-year average MBs for 2-m temperature (T2), 2-m relative humidity (RH2), 10-m wind speed (WS10), and hourly precipitation from NCDC for two-way WRF-CMAQ in winter (left panel) and summer (right panel), 2008-2012.

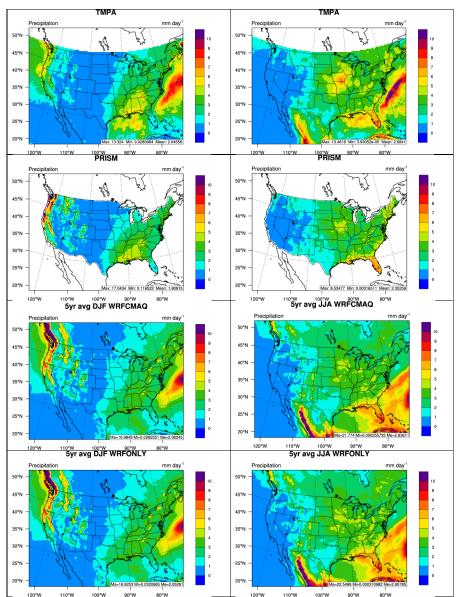


Figure 2. Spatial distributions of 5-year average of daily precipitation from TMPA, PRISM, twoway WRF-CMAQ, and WRF-only (from top to bottom) in winter (left panel) and summer (right panel), 2008-2012.

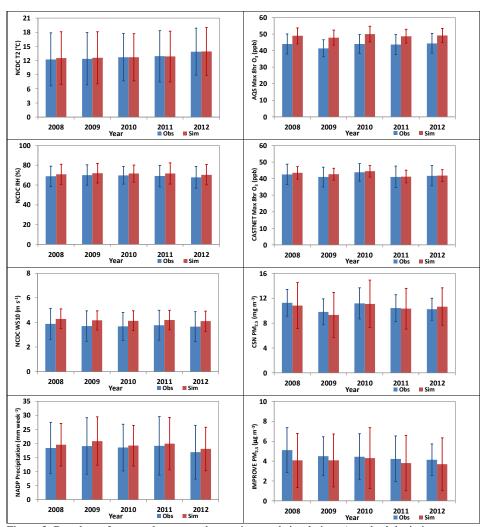


Figure 3. Bar charts for annual average observations and simulations (standard deviations are displayed as the error bars)) from two-way WRF-CMAQ for major meteorological variables (left panel) and chemical species (right panel) in 2008-2012.

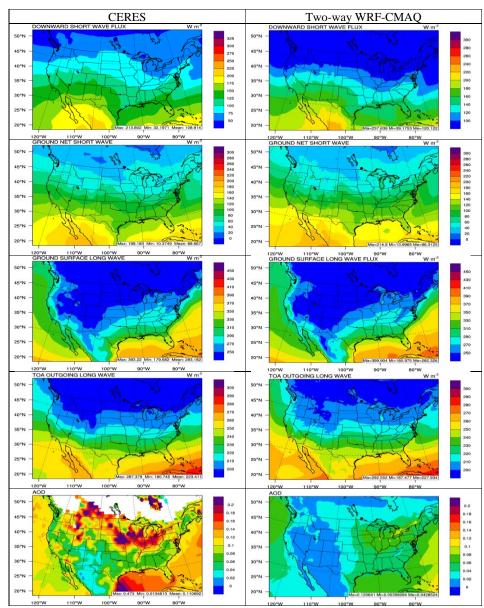


Figure 4. Spatial distribution of 5-year average major radiation variables (from top to bottom: SWDOWN, GSW, GLW, OLR, and AOD) between CERES observations (left panel) vs. two-way WRF-CMAQ (right panel) in winter, 2008-2012.

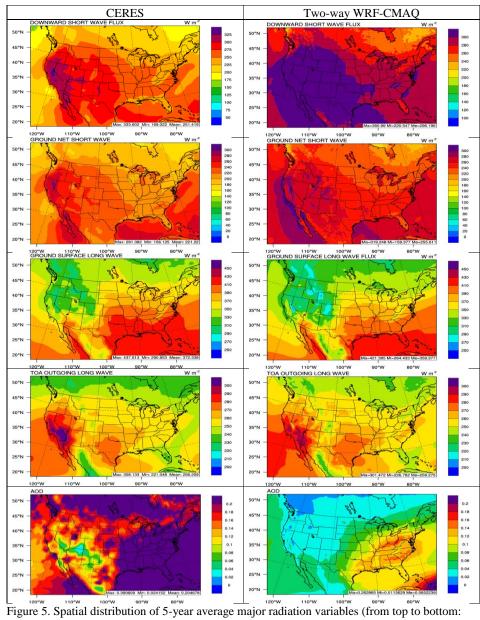
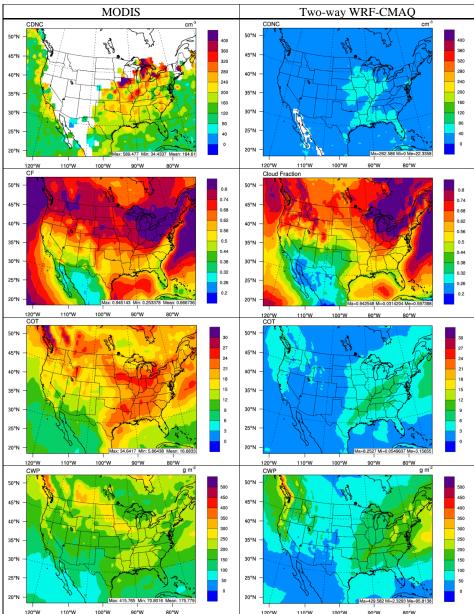



Figure 5. Spatial distribution of 5-year average major radiation variables (from top to bottom: SWDOWN, GSW, GLW, OLR, and AOD) between CERES observations (left panel) vs. twoway WRF-CMAQ (right panel) in summer, 2008-2012.

L 120 W 110 W 100 W 80 W 80 W 120 W 100 W 100 W 80 W 80 W 120 W 100 W 100 W 80 W 80 W 120 W 100 W 100 W 100 W 80 W 100 W 10

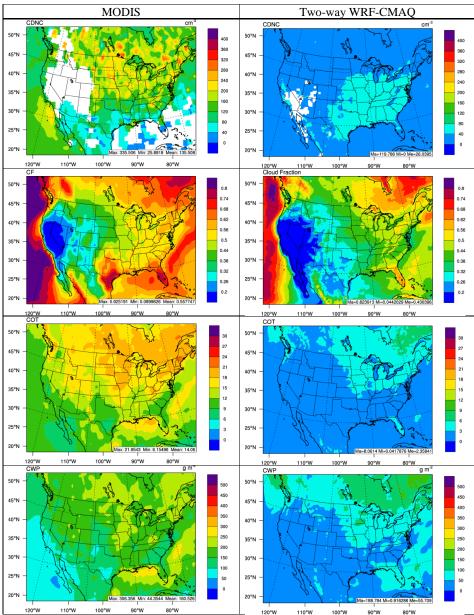


Figure 7. Spatial distribution of 5-year average major cloud variables (from top to bottom: CDNC, CF, COT, and CWP) between MODIS observations (left panel) vs. two-way WRF-CMAQ (right panel) in summer, 2008-2012.

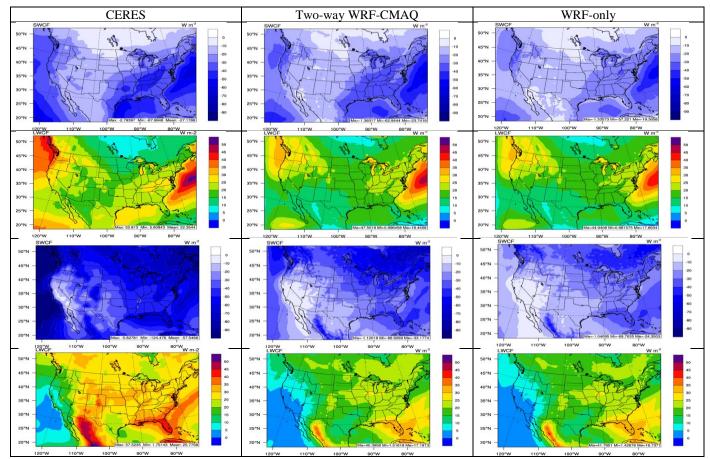


Figure 8. Spatial distribution of 5-year average SWCF in winter, LWCF in winter, SWCF in summer, and LWCF in summer (from top to bottom) between CERES observations (left panel) vs. two-way WRF-CMAQ (center panel) and WRF-only (right panel) in 2008-2012.

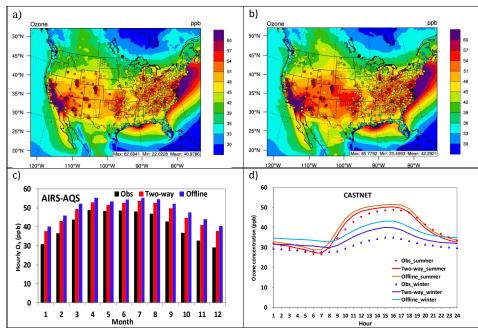


Figure 9. Spatial distributions of 5-year averaged max 8-h O₃ in summer overlaid with observations from AIRS-AQS and CASTNET for a) two-way WRF-CMAQ and b) offline CMAQ; c) bar chart for 5-year average monthly O₃ between observations (black bar), two-way WRF-CMAQ (red bar), and offline CMAQ (blue bar); and d) diurnal plots of observed (dots) vs. simulated (lines) hourly O₃ concentrations against CASTNET for winter (cold colors) and summer (warm colors) in 2008-2012.

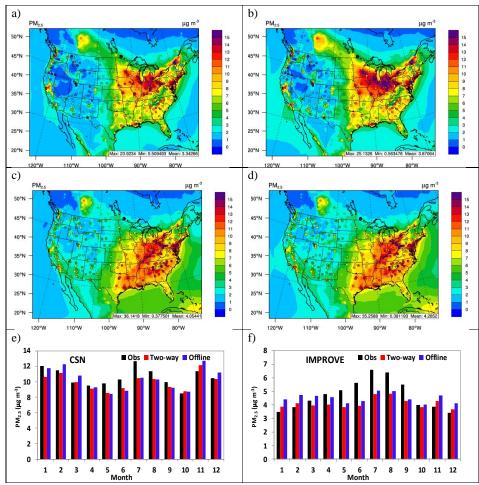


Figure 10. Spatial distributions of 5-year averaged daily PM_{2.5} overlaid with observations from CSN and IMPROVE for two-way WRF-CMAQ in a) winter and c) summer and offline CMAQ in b) winter and d) summer; bar charts for 5-year average monthly PM_{2.5} between observations (black bar), two-way WRF-CMAQ (red bar), and offline CMAQ (blue bar) over e) CSN and f) IMPROVE in 2008-2012.

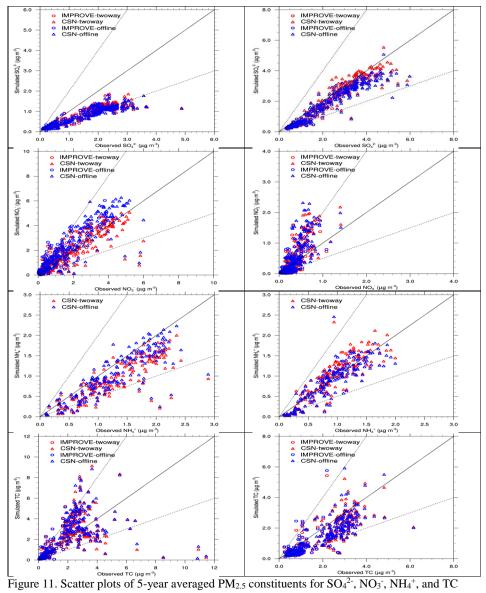


Figure 11. Scatter plots of 5-year averaged $PM_{2.5}$ constituents for SO_4^{2-} , NO_3^{-} , NH_4^+ , and TC (from top to bottom) between observations and simulations of two-way WRF-CMAQ (red color) and offline CMAQ (blue) in winter (left panel) and summer (right panel), 2008-2012.

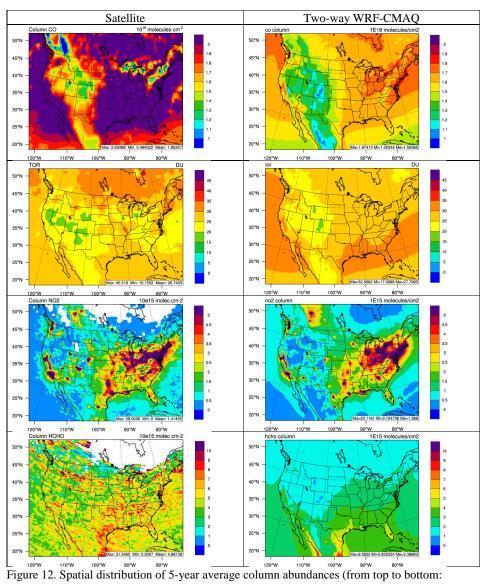


Figure 12. Spatial distribution of 5-year average column abundances (from top to bottom: column CO, TOR, column NO₂, and column HCHO) between various satellite observations (left panel) vs. two-way WRF-CMAQ (right panel) in winter, 2008-2012.

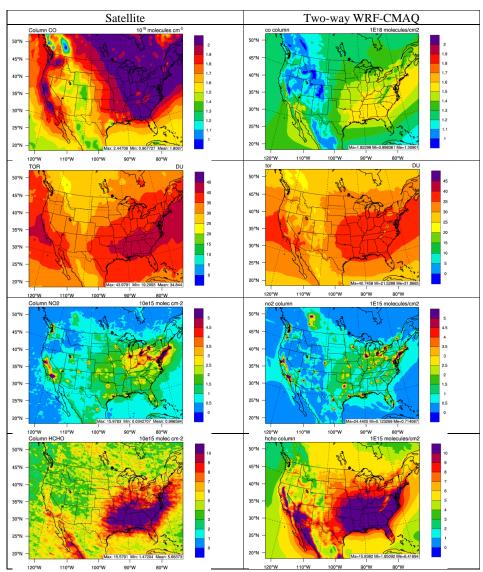


Figure 13. Spatial distribution of 5-year average column abundances (from top to bottom: column CO, TOR, column NO₂, and column HCHO) between various satellite observations (left panel) vs. two-way WRF-CMAQ (right panel) in summer, 2008-2012.

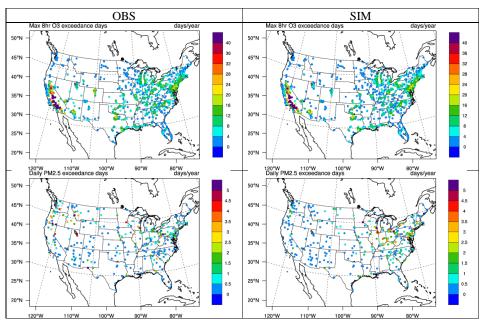


Figure 14. The spatial distribution of 5-year average annual exceedance days of max 8-h O₃ and daily PM_{2.5} between observations (O₃ over the AIRS-AQS/CASTNET network and PM_{2.5} over the IMPROVE/CSN network) and two-way WRF-CMAQ in 2008-2012.

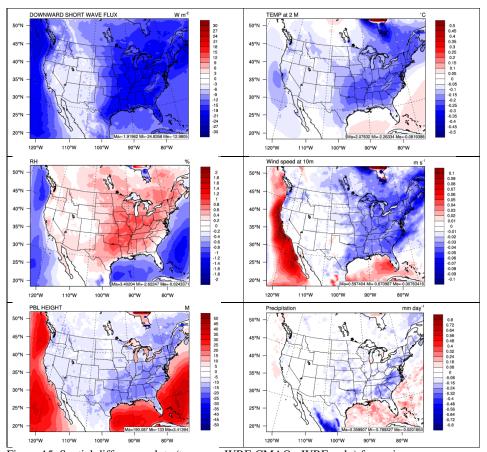


Figure 15. Spatial difference plots (two-way WRF-CMAQ - WRF-only) for major meteorological variables between two-way WRF-CMAQ and WRF-only in 2008-2012.

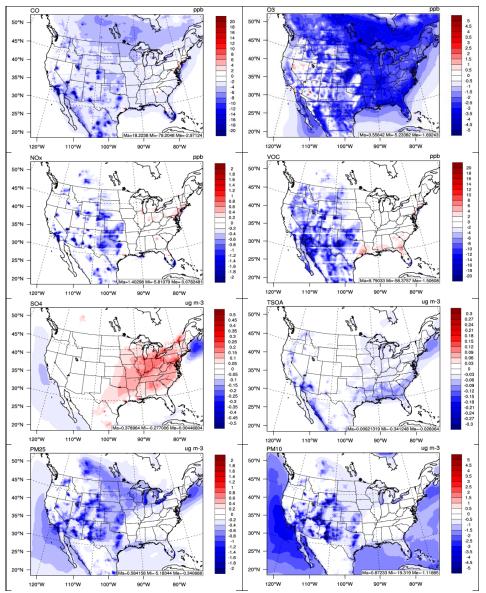


Figure 16. Spatial difference plots (two-way WRF-CMAQ - offline CMAQ) for major chemical species between two-way WRF-CMAQ and offline CMAQ in 2008-2012.