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Abstract 20 

The two-way coupled Weather Research and Forecasting and Community Multiscale Air 21 

Quality (WRF-CMAQ) model has been developed to more realistically represent the atmosphere 22 

by accounting for complex chemistry-meteorology feedbacks. In this study, we present a 23 

comparative analysis of two-way (with consideration of both aerosol direct and indirect effects) 24 

and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous U.S. Long-term (five-year 25 

of 2008-2012) simulations using WRF-CMAQ with both offline and two-way coupling modes 26 

are carried out with anthropogenic emissions based on multiple years of the U.S. National 27 

Emission Inventory and chemical initial and boundary conditions derived from an advanced 28 

Earth system model (i.e., a modified version of the Community Earth System Model/Community 29 

Atmospheric Model). The comprehensive model evaluations show that both two-way WRF-30 

CMAQ and WRF-only simulations perform well for major meteorological variables such as 31 

temperature at 2 m, relative humidity at 2 m, wind speed at 10 m, and precipitation (except for 32 

against the National Climatic Data Center data) as well as shortwave/longwave radiation. Both 33 

two-way and offline CMAQ also show good performance for ozone (O3) and fine particulate 34 

matter (PM2.5). Due to the consideration of aerosol direct and indirect effects, two-way WRF-35 

CMAQ shows improved performance over offline-coupled WRF and CMAQ in terms of 36 

spatiotemporal distributions and statistics, especially for radiation, cloud forcing, O3, sulfate, 37 

nitrate, ammonium, and elemental carbon as well as tropospheric O3 residual and column 38 

nitrogen dioxide (NO2). For example, the mean biases have been reduced by more than 10 W m-2 39 

for shortwave radiation and cloud radiative forcing and by more than 2 ppb for max 8-h O3. 40 

However, relatively large biases still exist for cloud predictions, some PM2.5 species, and PM10, 41 

which warrant follow-up studies to better understand those issues. The impacts of chemistry-42 
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meteorological feedbacks are found to play important roles in affecting regional air quality in the 43 

U.S. by reducing domain-average concentrations of carbon monoxide (CO), O3, nitrogen oxide 44 

(NOx), volatile organic compounds (VOCs), and PM2.5 by 3.1% (up to 27.8%), 4.2% (up to 45 

16.2%), 6.6% (up to 50.9%), 5.8% (up to 46.6%), and 8.6% (up to 49.1%), respectively, mainly 46 

due to reduced radiation, temperature, and wind speed. The overall performance of the two-way 47 

coupled WRF-CMAQ model achieved in this work is generally good or satisfactory and the 48 

improved performance for two-way coupled WRF-CMAQ should be considered along with other 49 

factors in developing future model applications to inform policy making. 50 

Keywords: CMAQ, Two-way coupling, Evaluation, Chemistry-meteorology feedback  51 

1. Introduction 52 

The Community Multiscale Air Quality (CMAQ) modeling system developed by the U.S. 53 

Environmental Protection Agency (EPA) (Byun and Schere, 2006; Scheffe et al., 2016; San 54 

Joaquin Valley APCD, 2018; Pye et al., 2020; U.S. EPA, 2020) has been extensively used by 55 

both scientific community and governmental agencies over various geographical regions and 56 

under different meteorological and air pollution conditions to address major key air quality 57 

issues such as atmospheric ozone (O3), acid rain, regional haze, and trans-boundary or long-58 

range transport of air pollutants during the past decades over North America (Zhang et al., 59 

2009a,b; Wang and Zhang, 2012; Hogrefe et al., 2015), Asia (Wang et al., 2009, 2012; Liu et al., 60 

2010; Zheng et al., 2015; Li et al., 2017; Xing et al., 2017; Yu et al., 2018; Mehmood et al., 61 

2020), and Europe (Kukkonen et al., 2012; Mathur et al., 2017; Solazzo et al., 2017). The 62 

CMAQ model is traditionally driven offline by the three-dimensional meteorology fields 63 

generated separately from other meteorological models such as the Weather Research and 64 

Forecasting (WRF) model, and the dynamic feedbacks of chemistry predictions on meteorology 65 
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are neglected. However, more recently (IPCC, 2018), chemistry-meteorology feedbacks have 66 

been found to play important roles in affecting the both global and regional climate change and 67 

air quality (Jacobson et al., 1996; Mathur et al., 1998; Ghan et al., 2001; Zhang, 2008; Zhang et 68 

al., 2010, 2015a,b, 2017; Grell and Baklanov, 2011; Wong et al., 2012; Baklanov et al., 2014; Yu 69 

et al., 2014; Gan et al., 2015a; Wang et al., 2015a; Xing et al., 2015a,b; Yahya et al., 2015a,b; 70 

Hong et al., 2017; Jung et al., 2019). Feedbacks of aerosols on radiative transfer through aerosol-71 

radiation interactions (i.e., aerosol direct forcing) and aerosol-cloud interactions (i.e., aerosol 72 

indirect forcing) are especially important (Zhang, 2008; Zhang et al,, 2015a,b; Baklanov et al., 73 

2014; Wang et al., 2015a; Yahya et al., 2015a,b). Recognizing this importance, as well as the 74 

recent advances in knowledge on chemistry-meteorology interactions and computational 75 

resources, the U.S. EPA developed a two-way coupled WRF-CMAQ model that accounts for the 76 

aerosol direct effect alone (Wong et al., 2012). This version of CMAQ has been applied for both 77 

regional and hemispheric studies (Wang et al., 2014; Hogrefe et al., 2015; Xing et al., 2016, 78 

2017; Hong et al., 2017, 2020; Sekiguchi et al., 2018; Yoo et al., 2019). For example, Xing et al. 79 

(2016) showed that aerosol direct feedbacks may further improve air quality resulting from 80 

emission controls in the U.S. and also indicated that coupled models are key tools for quantifying 81 

such feedbacks. Reduction in atmospheric ventilation resulting from aerosol induced surface 82 

cooling can exacerbate ground level air pollution. Hong et al. (2017) estimated an increase by 83 

4.8%-9.5% in concentrations of major air pollutants over China in winter due to incorporation of 84 

such effects. Xing et al. (2017) reported that the aerosol direct effects could reduce daily max 1h 85 

O3 by up to 39 g m-3 over China in January through reducing solar radiation and photolysis 86 

rates. Hong et al. (2020) found that the benefits of reduced pollutant emissions through 87 

weakening aerosol direct effects can largely offset the additional deaths caused by the warming 88 
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effect of greenhouse gases over China. Some of those studies have also found that the missing 89 

aerosol indirect effects in WRF-CMAQ may introduce large model biases on their simulations of 90 

radiation and thus air quality (Wang et al., 2014; Sekiguchi et al., 2018; Yoo et al., 2019). There 91 

has been a growing awareness that both aerosol effects should be considered together to provide 92 

greater fidelity in coupling complex atmospheric processes among chemistry, aerosols, cloud, 93 

radiation, and precipitation (Grell and Baklanov, 2011). To address this issue and better represent 94 

the one-atmosphere modeling capability of CMAQ, Yu et al. (2014) further extended the two-95 

way coupled WRF-CMAQ model by including aerosol indirect effects and improved WRF-96 

CMAQ’s capability for predicting cloud and radiation variables.    97 

Different from the traditional online integrated air quality models such as the Gas, 98 

Aerosol, Transport, Radiation, General Circulation, and Mesoscale Meteorological (GATOR-99 

GCMM) model (Jacobson, 2001), the WRF model coupled with chemistry (WRF/Chem; Grell et 100 

al., 2005) and the WRF model coupled with the Community Atmosphere Model version 5 101 

(WRF-CAM5; Ma et al., 2013; Zhang et al., 2015a,b; 2017), in which atmospheric dynamics and 102 

chemistry are integrated and simulated altogether without an interface between meteorology and 103 

atmospheric chemistry (Zhang et al., 2013), two-way WRF-CMAQ (also referred to as the online 104 

access model) is created by combining existing meteorology (i.e., WRF) and atmospheric 105 

chemistry (i.e., CMAQ) models with an interactive interface (Yu et al., 2014). As pointed out by 106 

Yu et al. (2014), the main advantage of two-way CMAQ is to allow the existing numerical 107 

techniques to be used in both WRF and CMAQ to facilitate future independent development of 108 

both models while also maintaining CMAQ as a stand-alone model (the offline capability). In the 109 

past, a number of studies have compared and evaluated online vs. offline-coupled model 110 

performance (Pleim et al, 2008; Matsui et al., 2009; Wilczak et al., 2009; Lin et al., 2010; 111 
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Herwehe et al., 2011; Yu et al., 2011; Wong et al., 2012; Zhang et al., 2013, 2016a; Choi et al., 112 

2019). However due to the missing offline-coupled mode or component for most online-coupled 113 

models, many of those intercomparison studies are subject to some key limitations such as 114 

inconsistent model treatments in chemical options (Matsui et al., 2009; Lin et al., 2010; Zhang et 115 

al., 2013; Choi et al., 2019) or in both physical and chemical options (Wilczak et al., 2009; 116 

Herwehe et al., 2011; Zhang et al., 2016a), different domain projection methods or resolutions 117 

(Wilczak et al., 2009; Lin et al., 2010; Zhang et al., 2013), or disunified model inputs (Wilczak et 118 

al., 2009; Lin et al., 2010; Zhang et al., 2013). Due to the unique coupling approach, two-way 119 

WRF-CMAQ can be used to overcome those limitations and set up ideal intercomparisons 120 

between online and offline simulations using consistent model treatments (Pleim et al, 2008; Yu 121 

et al., 2011; Wong et al., 2012).  122 

In this study, we provide a robust examination of model improvements by considering 123 

chemistry-meteorology feedbacks and their impacts on the U.S. air quality using the two-way 124 

WRF-CMAQ model (same version as in Yu et al., 2014) with both aerosol direct and indirect 125 

effects. Long-term (five-year of 2008-2012) simulations using both two-way and offline coupled 126 

WRF and CMAQ models are carried out and compared to the best of our knowledge for the first 127 

time over the contiguous U.S. (CONUS) with anthropogenic emissions based on multiple years 128 

of the U.S. National Emission Inventory (NEI) and chemical initial and boundary conditions 129 

(ICONs/BCONs) downscaled from the advanced Earth system model, i.e., an updated version of 130 

the Community Earth System Model/CAM5 (CESM/CAM5; He and Zhang, 2014; Glotfelty et 131 

al., 2017). Our objectives include 1) perform a comprehensive model evaluation for major 132 

meteorological variables and chemical species from this long-term application of the two-way 133 
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coupled WRF-CMAQ; and 2) conduct a comparative study of two-way and offline coupled WRF 134 

and CMAQ to examine the impacts of chemistry-meteorology interactions on U.S. air quality.  135 

Compared to previous studies in the literature, there are a few key features of this work. 136 

First, the intercomparisons between two-way (or online) and offline WRF-CMAQ are performed 137 

here using consistent model configurations including both physical/chemical options and inputs. 138 

Second, unlike a few previous intercomparison studies (Pleim et al, 2008; Yu et al., 2011; Wong 139 

et al., 2012) using two-way WRF-CMAQ with only aerosol direct effects for relatively short 140 

episodes, the model version in this work includes both aerosol direct and indirect effects and 141 

simulations are conducted for multiple years to provide more robust assessments. Third, 142 

compared to other studies (e.g., Yahya et al., 2015a,b; Choi et al., 2019) focusing on the impacts 143 

of chemistry-meteorology feedbacks on meteorology only or limited chemical species, this study 144 

performs comprehensive and extensive evaluation and comparison to demonstrate importance of 145 

chemistry-meteorology feedbacks on regional meteorology and air quality.  146 

2. Model description, simulation setup, and evaluation protocols 147 

Two sets of five-year (i.e., 2008-2012) long-term simulations are conducted using the two-148 

way coupled WRF v3.4-CMAQ v5.0.2 model with both aerosol direct and indirect effects and 149 

the sequentially offline-coupled WRF v3.4 and CMAQ v5.0.2 model, respectively, over the 150 

CONUS with 36-km horizontal grid spacing. The vertical resolution for these simulations 151 

consists of 34 layers from the surface (~38 m) to 100 hPa (~15 km). The two-way coupled WRF-152 

CMAQ includes estimations of aerosol optical properties based on prognostic aerosol size 153 

distributions and composition . These aerosol optical properties are then used to modulate the 154 

shortwave radiation budget estimated using the Rapid and accurate Radiative Transfer Model for 155 
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General circulation (RRTMG) radiation scheme (Iacono et al., 2008) in WRF. Additionally, 156 

aerosol indirect effects, including the first (cloud albedo) and second (cloud lifetime) indirect 157 

aerosol forcing and the glaciation (ice and mixed-phase cloud lifetime) indirect aerosol forcing 158 

are also modeled. More details on the model development of this version of WRF-CMAQ can be 159 

found in Yu et al. (2014). On the other hand, the WRF only model calculates the radiation 160 

budgets by using prescribed aerosol optical properties such as aerosol optical depth, single 161 

scattering albedo and asymmetry parameters and cloud formation by assuming default droplet 162 

number concentration and fixed cloud effective radius, which may not be representative for the 163 

large regions with complex air pollution conditions. Both the two-way and offline coupled WRF-164 

CMAQ use the same model configurations as shown in Table S1 in the supplementary material, 165 

except that prognostic aerosol impacts on radiation and clouds are fully treated in two-way 166 

WRF-CMAQ. The physics options include the RRTMG shortwave and longwave radiation 167 

schemes, the Asymmetric Convective Model (ACM2) planetary boundary layer (PBL) scheme 168 

(Pleim, 2007), the Pleim-Xiu (PX) land-surface scheme (Xiu and Pleim, 2001), the Morrison 169 

two-moment microphysics scheme (Morrison et al., 2009), and version 2 of the Kain–Fritsch 170 

(KF2) cumulus scheme (Kain, 2004). The chemical options include the Carbon Bond 2005 171 

(CB05) chemical mechanism (Yarwood et al., 2005) with additional chloride chemistry (Sarwar 172 

et al., 2008), the sixth generation CMAQ aerosol module (AERO6) (Appel et al., 2013), and 173 

CMAQ’s aqueous phase chemistry (AQCHEM). In addition, the time steps of dynamics and 174 

radiation for two-way WRF-CMAQ are set as 1 min and 15 mins, respectively, and the call 175 

frequency for CMAQ in the two-way coupled model is set to be 5 mins.  176 

The meteorological ICONs/BCONs are generated from the National Centers for 177 

Environmental Prediction Final Analysis (NCEP-FNL) datasets and the chemical 178 
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ICONs/BCONs are downscaled from a modified version of CESMv1.2.2/CAM5 (He and Zhang, 179 

2014; Glotfelty et al., 2017). The chemical ICONs/BCONs generated from CESM simulations 180 

consider the year-to-year variation. The CESM simulations have been comprehensively 181 

evaluated against surface, remoting sensing including satellite data, and reanalysis data for major 182 

meteorological and chemical variables over Europe, Asia, North America, and the globe. The 183 

results are also compared with other existing global model results and show generally 184 

satisfactory/superior performance. The anthropogenic emissions are based on two versions of 185 

NEI. NEI 2008 and NEI 2011 are used to cover the 5-year period, i.e., NEI 2008 for 2008-2010 186 

and NEI 2011 for 2011-2012, respectively. Biogenic emissions are calculated online using the 187 

Biogenic Emissions Inventory System (BEIS) v3 (Schwede et al., 2005). The sea-salt and dust 188 

emissions are also generated online by CMAQ’s inline modules (Zender et al., 2003; Zhang et 189 

al., 2005; Foroutan et al., 2017). Two-way coupled WRF-CMAQ simulations are reinitialized 190 

every 5 days for meteorology fields only. We have conducted sensitivity simulations in the past 191 

(Wang et al., 2021) and found that a 5-day reinitialization frequency is more suitable to improve 192 

the overall simulation quality to make meteorology simulations as accurate as possible while 193 

preserving the two-way chemistry-meteorology feedbacks. The WRF-only simulations that are 194 

used to drive the offline CMAQ simulations apply the same reinitialization method to make sure 195 

any deviation between two simulations are more determined by the feedback processesbe 196 

consistent with the two-way coupled WRF-CMAQ simulations. 197 

The model evaluation in this work mainly focuses on the long-term climatological type of 198 

performance in representative seasons (i.e., winter and summer) by comparing 5-year average 199 

spatially and temporally matched model predictions of major surface meteorological/radiation-200 

cloud variables and surface/column chemical species against various surface/satellite 201 
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observations and reanalysis data (The 5-year annual results can be found in the supplemental 202 

materials). A brief inter-annual comparison between observations and two-way CMAQ 203 

simulations are also performed for selected major meteorological and chemical variables to 204 

examine the model’s capability in reproducing the year-to-year variations of those variables. The 205 

surface meteorological data include temperature at 2 m (T2), relative humidity at 2 m (RH2), 206 

wind speed at 10 m (WS10), and wind direction at 10 m (WD10) from the National Climatic 207 

Data Center (NCDC), and precipitation from the NCDC, the National Acid Deposition Program 208 

(NADP), the Global Precipitation Climatology Project (GPCP), the Parameter-elevation 209 

Regressions on Independent Slopes Model (PRISM), and the Tropical Rainfall Measuring 210 

Mission Multisatellite Precipitation Analysis (TMPA). The radiation and cloud data include 211 

downward shortwave radiation at the ground surface (SWDOWN), net shortwave radiation at the 212 

ground surface (GSW), downward longwave radiation at the ground surface (GLW), outgoing 213 

longwave radiation at the top of the atmosphere (OLR), and shortwave and longwave cloud 214 

forcing (SWCF and LWCF) from the Clouds and the Earth’s Radiant Energy System (CERES); 215 

aerosol optical depth (AOD), cloud fraction (CF), cloud water path (CWP), and cloud optical 216 

thickness (COT) from the MODerate resolution Imaging Spectroradiometer (MODIS); and cloud 217 

droplet number concentration (CDNC) derived based on MODIS data by Bennartz (2007). The 218 

chemical data include surface O3 from the Aerometric Information Retrieval System-Air Quality 219 

Subsystem (AIRS-AQS) and the Clean Air Status and Trends Network (CASTNET); surface fine 220 

particulate matter with 2.5 m or less (PM2.5) and its constituents including sulfate (SO4
2-), 221 

nitrate (NO3
-), ammonium (NH4

+), elemental carbon (EC), organic carbon (OC), and total carbon 222 

(TC = EC + OC) from the Interagency Monitoring of Protected Visual Environments 223 

(IMPROVE) and the Chemical Speciation Network (CSN); surface coarse particulate matter 224 

Formatted: Font: Symbol
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with diameters of 10 m or less (PM10) from the AQS; and column abundance variables such as 225 

column carbon monoxide (CO) from the Measurements of Pollution in the Troposphere 226 

(MOPITT), tropospheric ozone residual (TOR) from the Ozone Monitoring Instrument (OMI), 227 

and column nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Scanning Imaging 228 

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY).  229 

The satellite datasets used in this study are all level-3 gridded monthly-averaged data 230 

with various resolutions (i.e., 0.25° for OMI and PRISM, 0.5° for SCIAMACHY, 1° for CERES, 231 

GPCP, MODIS, and MOPITT). For the calculation of model performance statistics, the satellite 232 

data with different resolutions are mapped to CMAQ’s Lambert conformal conic projection 233 

using bi-linear interpolation in the NCAR command language. CMAQ model outputs at 234 

approximate time of the satellite overpass are paired with the satellite retrievals to facilitate a 235 

consistent comparison. Note that only those grid points with valid satellite observations are 236 

considered when paring model results with observations, and the averaging kernels are not 237 

considered when analyzing the column CO and NO2 results, which may introduce some 238 

uncertainties (Wang et al., 2015b). Modeled CDNC is calculated as the average value of the 239 

layer of low-level warm clouds between 950 and 850 hPa as suggested by Bennartz (2007). 240 

Following the approach of Wielicki et al. (1996), the SWCF and LWCF are calculated as the 241 

difference between the clear-sky and the all-sky reflected radiation at the top of atmosphere for 242 

both simulations and observations. 243 

The statistical performance evaluation follows a protocol similar to that of Zhang et al. 244 

(2006, 2009a) and Yahya et al. (2016) and uses well-accepted statistical measures such as 245 

correlation coefficient (R), mean bias (MB), root mean square error (RMSE), normalized mean 246 

biases (NMB), and normalized mean error (NME) (S. Yu et al., 2006). Because of different 247 

Formatted: Font: Symbol
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sampling protocols among monitoring networks, the evaluation is conducted separately for 248 

individual networks for the same simulated variables/species. 249 

3. Comprehensive model evaluation of two-way WRF-CMAQ 250 

3.1 Meteorological evaluation 251 

3.1.1 Surface meteorological variables 252 

Figures 1a-d shows the spatial distribution of 5-year average MBs for T2, RH2, WS10, 253 

and hourly precipitation from two-way WRF-CMAQ against the NCDC data in winter and 254 

summer, 2008-2012 and Tables 1 and 2 summarizes the statistics for the same variables. All 255 

Most variables except for precipitation show overall moderate to good or moderate spatial 256 

performance with many sites showing MBs within ±1.00.6 C for T2, ±105 % for RH2, ±1 m s-1 257 

for WS10, and ±0.21 mm hr-1 for precipitation, respectively in both seasons. WRF-CMAQ tends 258 

to overpredict T2 (i.e., warm bias) over widespread areas of domain especially along the Atlantic 259 

coast, the eastern/southeastern U.S., the Central U.S., and Pacific coast in winter and 260 

underpredict T2 (i.e., cold bias) over the eastern U.S., the Central U.S., and mountainous U.S. in 261 

summer, which leads to an overall small warm bias in the whole year (see Figure S1). The model 262 

also shows cold biases (i.e., underprediction in T2) over the mountainous regions and 263 

northeastern U.S. Similar warm biases of T2 in winter have been previously reported by Cohen 264 

et al. (2015) and are found to be associated with the relatively deeper PBL depth using the non-265 

local ACM2 PBL scheme. The relatively larger warm/cold biases over coastal and mountainous 266 

areas are likely caused bydue to the coarse spatial grid spacing of 36-km which that cannot well 267 

resolve the complex topography (Yahya et al., 2016). Compared to many previous WRF studies 268 

(Wang et al., 2012; Brunner et al., 2015; Yahya et al., 2016), which typically show cold T2 269 
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biases, the overall small warm biases in this study can be attributed to the soil moisture nudging 270 

technique used in the PX land surface scheme (Pleim and Gilliam, 2009). The spatial patterns of 271 

MBs for RH2 show a clear general anti-correlation compared to T2 (i.e., RH2 is overpredicted 272 

where T2 is underpredicted and vice versa) due to the way how RH2 is calculated based on T2. 273 

This is consistent with how RH2 is calculated based on T2. The spatial distribution of MBs for 274 

WS10 also shows dominant overpredictions in both winter and summer especially along 275 

coastlines, indicating the prescribed sea-surface temperature might not be sufficient to resolve 276 

the air-sea interactions. Systematic overpredictions of hourly precipitation against NCDC data in 277 

both seasons are found to be mainly caused by low non-convective precipitation events and 278 

should can be attributed to the uncertainties associated with the Morrison microphysics scheme 279 

(Yahya et al., 2016).   280 

The precipitation performance is further examined by comparing WRF-CMAQ with 281 

GPCP TMPA and PRISM as shown in Figures 1e-g2. The spatial distribution of precipitation is 282 

well simulated by WRF-CMAQ especially over the landCONUS against both GPCP and 283 

PRISMobservations by capturing the hot spots along the Pacific Northwest coast in winter and 284 

some areas over eastern the Central U.S. and FL in summer. Moderate overpredictions of 285 

precipitation against GPCP TMPA over the Atlantic Ocean and Gulf of Mexico in summer are 286 

also evident, possibly due tocaused by overprediction of convective precipitation intensity by the 287 

Kain-–Fritsch cumulus scheme (Hong et al., 2017) over ocean. As shown in Tables 1 and 2, the 288 

domain-average seasonal statistics demonstrate good performance for all variables except for 289 

precipitation against NCDC in terms of MBs, NMBs, RMSE, and Rs. For example, the MBs for 290 

T2, RH2, WS10, and precipitation are 10.1 °C, 2.2%, 0.5744 m s-1, and 0.0514-0.2328 mm day-1 291 

(except for 0.71 mm day-1 for NCDC) in winter and -1.1 °C, 3.7%, 0.38 m s-1, and 0.13-0.23 mm 292 Formatted: Superscript
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day-1 (except for 0.75 mm day-1 for NCDC) in summer, respectively, and Rs for those variables 293 

are typically between 0.5-0.978, which are well within the performance benchmark values 294 

recommended by Zhang et al. (2013) and Emery et al. (2017). 295 

Figure 3 shows the bar charts of annual trends for T2, RH2, WS10, and precipitation in 296 

2008-2012. Two-way WRF-CMAQ predicts the annual average T2 very well with MBs < 297 

0.25 °C in all years. The simulation can also capture the increasing trend of T2 from 2008 to 298 

2012 observed by NCDC.  RH2 is consistently overpredicted by the two-way WRF-CMAQ in all 299 

years despite relatively low biases (MBs < 3%). Both observations and simulations show the 300 

lowest RH2 in 2012 and the highest in 2009.  As also shown in Figure 1, the model tends to 301 

systematically overpredict both WS10 and precipitation throughout all years as well. There are 302 

no clear trends (i.e., increasing or decreasing) for WS10 and precipitation between 2008 to 2012 303 

from either observations or simulations. However two-way WRF-CMAQ is able to capture both 304 

the lowest wind speed and precipitation in 2012 and the highest wind speed in 2008 from 305 

observations. In general, the model performs very well in reproducing the year-to-year variation 306 

for the major meteorological variables between 2008 to 2012. 307 

3.1.2 Radiation and cloud variables 308 

Figures 4 and 52 compares the 5-year average spatial distribution of major radiation 309 

variables (i.e., SWDOWN, GSW, GLW, OLR, and AOD) based on the satellite retrievals and 310 

two-way WRF-CMAQ simulations in winter and summer, 2008-2012, and Tables 1 and 2 311 

summarizes the domain-average model performance statistics. WRF-CMAQ predicts the 312 

longwave radiation variables GLW and OLR very well with domain-average of NMBs of -313 

0.31.9% and 10.8% in winter and -3.6% and 0.9% in summer, respectively, and Rs of 0.96 to 314 
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0.99 for both. The shortwave radiation variables SWDOWN and GSW are slightly overpredicted 315 

on average with NMBs of 113.30% and 7.511.1% in winter and 17.1% and 15.1% in summer, 316 

respectively, and Rs of ranging from 0.75 to 0.997 for both. The simulations also reliably 317 

reproduce the spatial distribution of both longwave and shortwave radiation compared to 318 

observations in both seasons. The relatively large overpredictions for shortwave radiation 319 

especially in summer are very likely caused by the large underpredictions of aerosol direct 320 

radiative forcing reflected from the underpredictions of AOD (Figure 52) as well as 321 

underprediction of indirect cloud radiative forcing (see Figure 83). It has been reported that WRF 322 

v3.4 does not treat the subgrid cloud feedback to radiation, which could also contribute to the 323 

overpredictions in shortwave radiation especially in summer (Alapaty et al., 2012; Hong et al., 324 

2017). The model largely underpredicts the magnitude of AOD in both seasons (NMBs of: -64.8 325 

-59.8% in winter and -67.8% in summer), while providing a reasonable representation of the 326 

spatial distribution of AOD over the U.S., with generally higher values overin the Midwest in 327 

winter and over the eastern U.S. in summer and lower values in the west. The model also 328 

underpredicts the elevated AODs over oceans and the northern part of domain in both seasons. 329 

Similar AOD underpredictions have been reported in previous studies over the U.S. using two-330 

way coupled WRF-CMAQ (Gan et al., 2015a; Hogrefe et al., 2015; Xing et al., 2015a). The 331 

relatively large underpredictions of AOD may be caused by several factors. First, 332 

underprediction of PM2.5 concentrations, particularly SO4
2- in both seasons and OC in summer 333 

(Tables 3 and 42), can contribute significantly to the underprediction of AOD, especially over 334 

the eastern U.S.  Second, the underestimation of dust emissions may contribute to missing hot 335 

spots from the model over arid areas in CA and AZ (Foroutan et al., 2017Zender et al., 2003) and 336 

underestimates of sea-salt emissions may lead to missing elevated AODs over oceans (Gan et al., 337 
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2015b). Third, challenges in adequately representing prescribed and wildfire emissions in the 338 

NEI (Kelly et al., 2019) may cause many missing hot spots over large areas of the Pacific 339 

Northwest, CA, Canada, and the eastern U.S. especially in summer. Fourth, uncertainties in 340 

BCONs of PM2.5 concentrations may further contribute to underpredictions of AOD over oceans 341 

and the northern part of the domain. For example, Kaufman et al. (2001) found that the 342 

background AOD could reach 0.1 over the Pacific Northwest using Aerosol Robotic Network 343 

(AERONET) data. The AODs in the current simulation seem to be biased low (between 0.026-344 

0.068 in both seasons over the Pacific Ocean) and indicate potential underpredictions of PM2.5 345 

BCONs, especially in the free troposphere. Finally, there are uncertainties associated with 346 

MODIS retrievals. Remer et al. (2005) found that the uncertainty of level 3 MODIS monthly 347 

AODs can be up to ±0.05±0.15AOD over the land due to clouds and surface reflectance. More 348 

AOD data from other satellites or AERONET might be considered in the future work to provide 349 

more robust ensemble type of evaluation for AOD. 350 

Figures 6-83 and 4 compare the 5-year average spatial distribution of major cloud and 351 

cloud radiative variables for the satellite retrievals and two-way WRF-CMAQ simulations in 352 

winter and summer, 2008-2012, and Tables 1 and 2 summarizes the domain-average model 353 

performancecorresponding statistics. As shown in Figures 6 and 73, WRF-CMAQ tends to 354 

largely underpredict CDNC, COT, and CWP in both seasons over most of the whole domain 355 

with the domain-average NMBs of -82.14%, -80.81%, and -4551.32% in winter and -79.2%, -356 

83.6%, and -66.3% in summer, respectively. Despite the large underprediction of those cloud 357 

variables, the spatial correlations are generally predicted well, especially for COT and CWP with 358 

Rs ranging from 0.63 to 0.74of 0.84 and 0.79, respectively. Compared to the other cloud 359 

variables, CF is much better predicted with an NMB of -10.42.2% and an R of 0.8792 in winter 360 
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and an NMB of -23.0% and an R of 0.81 in summer, respectively, which is consistent with the 361 

performance reported in Yu et al. (2014). The model can reproduce the high CFs over northern 362 

and northeastern part of domain as well as over oceans while capturing the low CFs over the 363 

mountainous and plateau regions in the U.S. and Mexico especially in winter. In addition to the 364 

underprediction of PM2.5 (thus underestimating CCN), the large underpredictions of cloud 365 

variables (especially CDNC and COT) can be attributed to uncertainties in aerosol microphysics 366 

schemes (Yahya et al., 2016) as well as missing aerosol indirect effects on subgrid convective 367 

clouds (Yu et al., 2014). Gantt et al. (2014) and Zhang et al. (2015b) also showed the aerosol 368 

activation scheme (i.e., Abdul-Razzak and Ghan, 2000) used in the current version of WRF-369 

CMAQ may have underestimated CDNC and thus CWP and COT due to some missing processes 370 

such as insoluble aerosol adsorption and giant cloud condensation nuclei. Overall, the relatively 371 

poor model performance for cloud variables reflects current limitations in representing aerosol 372 

indirect effects and aerosol-cloud interactions in state-of-science online coupled models. Further 373 

model improvements that incorporate new knowledge from emerging studies should be 374 

conducted in the future. 375 

As shown in Figure 84, WRF-CMAQ predictions of SWCF and LWCF generally agree 376 

well with the satellite observations in both seasons-based values. The model partially can 377 

captures the elevated SWCF and LWCF over the Atlantic Ocean, Pacific Northwest, and 378 

widespread areas over the eastern U.S. in winter and those over the Pacific Northwest, northern 379 

part of the domain, and Atlantic Ocean in summer. The domain-average NMBs are -11.126.0% 380 

for SWCF and -15.122.2% for LWCF in winter and -41.3% for SWCF and -33.3% for LWCF in 381 

summer, respectively. The relatively larger biases in summer compared to winter are correlated 382 

with larger biases associated with radiation and cloud predictions potentially caused by larger 383 
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underpredictions of aerosol predictions. As discussed earlier, the underpredictions of SWCF may 384 

partially contribute the overprediction of SWDOWN (more shortwave radiation reaching the 385 

ground) and those of LWCF may further lead to the overpredictions in OLR (more longwave 386 

radiation emitted into the space). The performance of SWCF and LWCF is consistent with the 387 

12-km simulation reported in Yu et al. (2014) and even slightly better in terms of NMBs, which 388 

might be associated with the long-term vs. short-term simulations. It is also worth noting that 389 

SWCF (LWCF) is calculated as the difference between the clear-sky and all-sky shortwave 390 

(longwave) radiation at the top of atmosphere, and so performance for SWCF and LWCF 391 

depends on performance for both radiation and cloud properties. The generally better 392 

performance in terms of model bias for SWCF and LWCF compared to the cloud variables 393 

seems to be driven by the relatively good performance of shortwave/longwave radiation in the 394 

model. 395 

3.2 Chemical evaluation 396 

3.2.1 O3  397 

Figure 95a shows the spatial distribution of simulated average daily maximum 8-h O3 in 398 

summer, 2008-2012 from two-way WRF-CMAQ overlaid with observations from both the 399 

AIRS-AQS and CASTNET networks. WRF-CMAQ shows good performance by capturing the 400 

spatial distribution of max 8-h O3 over widespread areas of the domain. The model tends to 401 

overpredict O3 along coastlines in the southeastern U.S., Gulf of Mexico, and Pacific coast, 402 

which can be attributed to a poor representation of coastal boundary layers (Yu et al., 2007), the 403 

warm T2 biases as shown in Figure 1, and lack of O3 sink via halogen chemistry (Sarwar et al., 404 

2015) and deposition to water (Gantt et al., 2017). The simulation also underpredicts O3 in 405 
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widespread areas in the Midwest, easternCentral, and mountainous regions of the U.S., which is 406 

consistent with the results of 36-km simulations from Wang and Zhang (2012) that used an 407 

earlier version of CMAQ v4.6 with the same CB05 gas-phase mechanism. In addition to cold T2 408 

biases over those areas (Figure 1), the underpredictions are also believed to be associated with 409 

inaccurate representations of precursor emissions and elevated/complex terrain due to the coarse 410 

grid spacing of 36-km over those regions. Wang and Zhang (2012) found that their 12-km 411 

simulation showed improved performance over similar regions especially in summer. 412 

Figure 95c shows the monthly variation of domain-average 5-year average O3 mixing 413 

ratios between observations from AIRS-AQS and simulations from two-way WRF-CMAQ, and 414 

Figure 95d shows the diurnal variation of domain-average 5-year average hourly O3 mixing 415 

ratios between observations from CASTNET and simulations from two-way WRF-CMAQ for 416 

representative winter (DJF and blue color) and summer (JJA and red color) seasons. As shown in 417 

Figure 95c, the O3 mixing ratios are overpredicted throughout the year, which is consistent with 418 

overprediction of T2 (figure not shown). The largest overprediction occurs in the relatively cold 419 

months such as September to December. It is interesting that the observations show the largest 420 

monthly O3 mixing ratios in spring and early summer while the simulation shows the peak 421 

during the summer. The difference in timing of peak O3 between observations and simulations 422 

during the year might be associated with uncertainties in the BCONs of O3 that reflect impacts of 423 

the long-range transport and associated stratosphere-troposphere exchange of O3. As shown in 424 

Figure 95d, WRF-CMAQ tends to overpredict O3 during most hours (i.e., 2:00-18:00) in summer 425 

and throughout the whole day in winter partially due to the overprediction of T2, especially in 426 

winter (figure not shownFigure 1). The diurnal pattern of O3 is captured much better during 427 

summer with much less prediction bias, especially during the nighttime, indicating that the 428 



20 
 

model does a better job in predicting the evolution of nocturnal boundary layer and atmospheric 429 

chemistry in the warm season than the cold season. The overall overpredictions in this work are 430 

also consistent with previous studies (Eder and Yu, 2006; Appel et al., 2007; Wang et al., 2012), 431 

although our results show much better nighttime performance owing to the application of the 432 

ACM2 scheme that treats both local and non-local closure (Pleim, 2007). As also shown in Table 433 

42, the domain-average NMBs and NMEs for max 8-h O3 in summer are 10.62.6% and 13.21% 434 

against AIRS-AQS and -3.01.5% and 11.58.4% against CASTNET, respectively. The statistics 435 

are also consistent with previous studies using the CMAQ model (Zhang et al., 2009a; Appel et 436 

al., 2013, 2017; Penrod et al., 2014) and can be considered as good performance according to the 437 

criteria suggested by Zhang et al. (2013) and Emery et al. (2017).  438 

Figure 3 also shows the bar charts of annual trends for max 8-h O3 from two-way WRF-439 

CMAQ against AQS and CASTNET observations in 2008-2012.  Two-way WRF-CMAQ 440 

systematically overpredicts O3 especially against AQS data with MBs typically > 4.0 ppb. The 441 

potential reasons for model biases have been discussed earlier in this section. There are no 442 

obvious decreasing or increasing trends for max 8-h O3 from AQS or CASTNET observations. 443 

However, the model can generally capture the high O3 mixing ratios in 2008 and 2010 and the 444 

low O3 mixing rations in 2009 from both AQS and CASTNET. The similar down and up trends 445 

between 2008 to 2010 for O3 (i.e., decreasing from 2008 to 2009 and increasing from 2009 to 446 

2010) from AQS observations were also found by Yahya et al. (2016), but not captured by their 447 

simulations. Zhang and Wang (2016) was able to reproduce the similar trend over the 448 

southeastern U.S. between 2008 to 2010 using their models and attributed the abnormal high 449 

2010 O3 mixing ratios to the extreme dry and warm weather conditions during fall 2010. 450 

3.2.2 Aerosols 451 
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Figures 106a and 10c shows the spatial distribution of simulated 5-year average PM2.5 452 

from two-way WRF-CMAQ overlaid with observations from both the CSN and IMPROVE 453 

networks in winter and summer, 2008-2012 and Figure S1 shows the spatial distribution of the 454 

major PM2.5 constituents overlaid with observations from the CSN and IMPROVE network and 455 

PM10 overlaid with observations from the AQS network. As shown, WRF-CMAQ performs well 456 

for PM2.5 over widespread areas of the Midwest and northeastern U.S. in both seasons, while 457 

PM2.5 is underpredicted over the southeastern and western U.S. especially in winter. The model 458 

also misses some hot spots of observed concentrations in the western U.S., which are mainly 459 

caused by TC underpredictions (Figure S61) that are likely linked to poorly allocated and 460 

underestimated wildfire emissions in the NEI (Wiedinmyer et al., 2006; Roy et al., 2007; Kelly 461 

et al., 2019). The relatively large underpredictions over the eastern U.S. are mainly caused by the 462 

combined effects from SO4
2-, NH4

+, and TC. As shown in Figure S61, WRF-CMAQ largely 463 

underpredicts SO4
2- in the Midwest and southeastern U.S. mainly due to the underprediction of 464 

oxidants such as O3 (see Figure 95a) (which leads to less production from the gaseous oxidation), 465 

overprediction of precipitation (see Figure 21d) (which leads to more wet deposition and 466 

removal), and large underprediction of cloud fields (see Figures 6-73) (which leads to less 467 

aqueous phase formation), over the same area. On the other hand, NH4
+ and NO3

- are either 468 

underpredicted or overpredicted, respectively, over the similar areas mainly due to 469 

underprediction of SO4
2-. According to the aerosol thermodynamics, when SO4

2- is 470 

underpredicted, NH4
+ tends to be underpredicted due to its major role as cation. More gaseous 471 

NH3 will be available to neutralize NO3
-, thus leading to overprediction of NO3

- especially over 472 

the sulfate poor regions (West et al., 1999). Other potential reasons include the inaccurate 473 

assumptions in the thermodynamic module (for example, the internally mixed aerosol state and 474 
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equilibrium assumption may not be representative over some regions and different time periods, 475 

S. Yu et al., 2006), uncertainties in emissions of key species such as NH3 and non-volatile 476 

cations that affect particle acidity (Mebust et al., 2003; Wang and Zhang, 2014; Vasilakos et al., 477 

2018; Pye et al., 2020), and measurement errors especially for NO3
- and NH4

+ (X.-Y. Yu et al., 478 

2006; Karydis et al., 2007; Wang and Zhang, 2012). TC underpredictions over most sites of the 479 

domain can be attributed to the underprediction of emissions (e.g., wildfire and primary OC) and 480 

underestimation of secondary organic aerosol (SOA) formation (Appel et al., 2017; Pye et al., 481 

2017) since EC (a chemically inert species) is overpredicted, which suggest that atmospheric 482 

mixing did not drive the TC underpredictions.  483 

Figures 6e-6h show the scatter plots of major PM2.5 components such as SO4
2-, NH4

+, and 484 

NO3
-, and TC. The WRF-CMAQ predicts PM2.5 constituents well with the majority of data 485 

within the 1:2 ratio lines. Systematic underpredictions of SO4
2- and NH4

+ and overpredictions of 486 

NO3
- are shown, which are consistent with their spatial distributions. Relatively large under- and 487 

overpredictions of TC compensate each other and lead to relatively low overall model biases. As 488 

also shown in Figure S1, the model fails to reproduce high concentrations of PM10 (those > 20 489 

g m-3) over widespread areas of the domain, especially over dust source areas in CA, AZ, and 490 

NM. Hong et al. (2017) found the similar large underprediction of dust using CMAQ v5.0.2 over 491 

China and attributed it to a too-high threshold for friction velocity in the current dust module 492 

(Dong et al., 2016). Sea-salt also seems to be underpredicted by WRF-CMAQ, although sea-salt 493 

predictions are better than dust as shown along the coastlines.  494 

Figures 106ec and 10f6d show the monthly variation of 5-year average PM2.5 between 495 

observations from CSN and IMPROVE, respectively, and simulations from two-way WRF-496 

CMAQ. Both observations and WRF-CMAQ show higher monthly PM2.5 concentrations at CSN 497 
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sites than IMPROVE sites throughout for the whole year because most of CSN sites are in more 498 

polluted urban areas while majority of IMPROVE sites are in rural areas and national parks. The 499 

model tends to underpredict PM2.5 over both CSN and IMPROVE sites in the warm months (i.e., 500 

April to September) mainly due to the underpredictions of SO4
2- and OC while it overpredicts 501 

PM2.5 in cold months mainly due to NO3
-. The model also captures the seasonality of PM2.5 502 

better over CSN sites than IMPROVE sites, especially in the summer months. The large 503 

underpredictions over IMPROVE sites during summer months are likely due to the 504 

underestimation of precursor emissions (such as wildfire emissions).  505 

Figure 11 shows the scatter plots of major PM2.5 components such as SO4
2-, NH4

+, and 506 

NO3
-, and TC in winter and summer, 2008-2012. The WRF-CMAQ predicts PM2.5 constituents 507 

well with majority of data within the 1:2 ratio lines in both seasons. Systematic underpredictions 508 

of SO4
2- and NH4

+ in winter and overpredictions of NO3
- in summer are shown, which are 509 

consistent with their spatial distributions. Relatively large under- and overpredictions of TC 510 

especially in winter compensate each other and lead to relatively low overall model biases. As 511 

also shown in Figure S6, the model fails to reproduce high concentrations of PM10 (those > 20 512 

g m-3) over widespread areas of the domain, especially over dust source areas in CA, AZ, and 513 

NM. Hong et al. (2017) found the similar large underprediction of dust using CMAQ v5.0.2 over 514 

China and attributed it to a too-high threshold for friction velocity in the current dust module 515 

(Dong et al., 2016). Sea-salt also seems to be underpredicted by WRF-CMAQ, although sea-salt 516 

predictions are better than dust as shown along the coastlines.  517 

Figure 3 shows the bar charts of annual averaged observations and simulations for PM2.5 518 

over the CSN and IMPROVE sites. Overall, the model performs well for PM2.5 for most of years 519 

and better over CSN than IMPROVE sites with general underpredictions in most years. The 520 
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observations for both CSN and IMPROVE show a general decreasing trend (except for 2010 521 

over CSN) especially over IMPROVE sites. Two-way WRF-CMAQ is able to reproduce the 522 

declining trend well particularly over IMPROVE sites and again demonstrate its capability in 523 

accurately simulating the year-to-year variations of not only meteorology but air quality.  524 

There are no universally accepted performance criteria for aerosols. As recommended by 525 

some previous studies (Zhang et al., 2006; Wang and Zhang, 2012; Emery et al., 2017), 526 

generally ±15% and ±30% for model biases and 30% and 50% for model errors can be 527 

considered as good and acceptable performance. As shown in Tables 3 and 42, WRF-CMAQ in 528 

this work demonstrates an overall good or acceptable performance in predicting aerosols in terms 529 

of statistics especially for PM2.5 in both seasons, NO3
-, NH4

+, OC, and TC in winter, and SO4
2- 530 

and NH4
+ in summer. It shows the domain-average NMBs of -7.20% and 8.6-13.7% in winter 531 

and -13.2% and -26.9% in summer for PM2.5 against CSN and IMPROVE, respectively; NMBs 532 

of -10.226.7% and -20.927.2% in in summer for SO4
2- against CSN and IMPROVE, 533 

respectively; NMBs of -0.316.6% and 13.34.6% in winter for NO3
- against CSN and IMPROVE, 534 

respectively; an NMB of 3-14.3% for NH4
+ in summer against CSN; NMBs of 20.6% and 29.4% 535 

for EC against CSN and IMPROVE, respectively; an NMB of 13.0-28.9% in winter for OC 536 

against IMPROVE; and NMBs of 7.2-9.4% and 17.5-9.2% in winter for TC against CSN and 537 

IMPROVE, respectively. The relatively large underpredictions of PM10 in both seasons, i.e., an 538 

NMBs of -36.345.9% in winter and -45.8% in summer against AQS, indicate further 539 

improvements of dust emissions are warranted. Overall, the aerosol performance is also 540 

comparable or better than previous CMAQ or WRF-CMAQ applications (Wang and Zhang, 541 

2012; Penrod et al., 2014; Yu et al., 2014). For example, Penrod et al. (2014) showed 5-year 542 

(2001-2005) averagesummer mean NMBs of -23.3% and 4.0% in winter and -19.1% to -17.6% 543 
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in summer for PM2.5 against CSN and IMPROVE data over the CONUS using the CMAQ v5.0 544 

and Yu et al. (2014) reported the monthly mean NMBs of -6.2% and -16.8% for PM2.5 against 545 

CSN and IMPROVE over the eastern U.S. using the same version of WRF-CMAQ as that used 546 

in this study. 547 

3.2.3 Column abundance 548 

Figures 12 and 137 shows the spatial distribution of 5-year average column abundances 549 

between various satellite products and two-way WRF-CMAQ for column CO, TOR, column 550 

NO2, and column HCHO in winter and summer, 2012, and Tables 3 and 42 summarizes the 551 

statistics. As shown, WRF-CMAQ can reproduce the spatial distribution of the column 552 

abundances of gases quite well in both seasons except for column HCHO in winter with Rs 553 

ranging from 0.7083 to 0.8791. TOR in both seasons, column NO2 in winter and column HCHO 554 

in summer are also generally well predicted in terms of magnitudes with NMBs of 4.71.6% for 555 

TOR and, 0.3 for NO2-14.5%, and 18.0%, respectively, in winter and -8.0% for TOR and 15.0% 556 

for HCHO, respectively, in summer. Systematic underpredictions for column CO occur in both 557 

seasons over the whole domain with an NMBs of -20.56.6% in winter and -27.8% in summer for 558 

a few reasons. First, the BCONs of CO may be significantly underestimated from the CESM 559 

model. Using WRF/Chem or its variant, Zhang et al. (2016b, 2019) found that the column CO 560 

performance could be greatly improved by adjusting the BCON using the satellite observation. A 561 

similar approach could be applied in future WRF-CMAQ simulations as well. Second, as pointed 562 

by Heald et al. (2003), the regional emissions, especially biomass burning, could be a significant 563 

source for elevated CO concentrations and thus underestimation of these emissions could 564 

contribute to the CO underprediction. A more robust set of fire emissions from FINN generated 565 

by NCAR based on satellite retrievals has been applied to the similar time period recently but 566 
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using the WRF-Chem model (Zhang and Wang, 2019) and were found to improve the column 567 

CO performance. Last, Emmons et al. (2009) showed positive biases (i.e., 19%) of MOPITT 568 

retrievals over the land when compared to in-situ measurements and the biases may have been 569 

increasing over time due to the MOPITT bias drift (e.g., 0.5% yr-1 for version 7 retrieval). The 570 

predicted TOR can capture the observed high values over the eastern U.S. and oceans and the 571 

low values in elevated terrain especially in summer; and it shows the best performance among all 572 

gas species. Both satellite observations and simulations can capture the elevated column NO2 573 

over the industrial and metropolitan areas in the domain where large nitrogen oxide (NOx) 574 

emission sources are located especially in winter. The model shows moderate underprediction 575 

with an NMB of -27.8% in summer which can be attributed to both uncertainties in the emissions 576 

and satellite retrievals. For example, the lightning emissions of NOx are missing from this study, 577 

which have been found by previous studies (Allen et al., 2012) to contribute up to 2.0 × 1015 578 

molecules cm-2 over the southern U.S., the Gulf of Mexico, and northern Atlantic Ocean during 579 

certain episodesthe summer. Boersma et al. (2004) also found that different column NO2 580 

retrieval approaches may lead to large errors (> 25%) over polluted areas. Column HCHO over 581 

the CONUS especially the southeastern U.S. is well predicted in summer in terms of both 582 

magnitude and spatial distribution and correlates well with the biogenic emission source regions. 583 

The underprediction of column HCHO in winter may thus indicate potential underestimation of 584 

biogenic emissions from the BEISanthropogenic emissions. Other reasons including potential 585 

low yield of HCHO from isoprene and terpene in the CB05 mechanism and uncertainties in 586 

satellite retrievals (Stavrakou et al., 2009; Lorente et al., 2017) 587 

3.2.4 Simulated O3 and PM2.5 exceedances of NAAQS levels 588 
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National Ambient Air Quality Standards (NAAQS) are set for criteria pollutants, 589 

including O3 and PM2.5, to provide protection against adverse health and welfare effects 590 

(www.epa.gov/criteria-air-pollutants/naaqs-table). In this section, the average number of days 591 

per year where the 24-hr PM2.5 NAAQS level (35 g m-3) and the max 8-h O3 NAAQS level (70 592 

ppb) are exceeded from the WRF-CMAQ predictions is compared with the number of 593 

exceedances in the monitoring data (i.e., O3 from AQS and CASTNET and PM2.5 from 594 

IMPROVE and CSN). This comparison is intended to better characterize the ability of the model 595 

to simulate the high-concentration days that could be especially relevant in regulatory 596 

assessments. In Figure 148, the five-year average of the annual number of exceedance days is 597 

shown for WRF-CMAQ and the monitoring data at monitor locations. The sizes of circles and 598 

shades of color represent the magnitude of exceedances (i.e., larger circles and darker shades 599 

indicate a greater number of exceedance days).  As shown, the observations indicate a large 600 

number of annual exceedance days for max 8-h O3 over major cities, especially in CA, TX, the 601 

Midwest, and northeastern U.S. The spatial distribution of the observed number of exceedance 602 

days from the AQS and CASTNET networks aligns well with the nonattainment map reported by 603 

the Green Book of U.S. EPA (https://www.epa.gov/green-book). The WRF-CMAQ model also 604 

generally captures the distribution of the number of exceedance days very well, especially in CA 605 

and northeastern U.S. The domain-average values of NMB, NME, and R are -3.4%, 14.0%, and 606 

0.98, respectively, also indicating a good performance. For PM2.5, the largest number of 607 

exceedance days based on the IMPROVE and CSN observations mainly occurs in the 608 

northwestern U.S., Midwest, and major cities in the northeastern U.S. The number of exceedance 609 

days is generally much lower for PM2.5 than O3. The spatial distribution of the number of 610 

exceedance days for observed PM2.5 aligns well with nonattainment areas reported by the Green 611 
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Book from U.S. EPA in CA. However, the number of simulated PM2.5 exceedance days 612 

underpredicts the observation-based values in the western U.S. mainly due to large 613 

underpredictions of PM2.5 concentrations in the same areas as shown in Figure 106a.  The 614 

simulation better predicts the distribution of the number of exceedance days in the eastern U.S. 615 

where terrain is relatively flat and wildfire less prevalent.  The domain-average values of NMB, 616 

NME, and R are -29.0%, 80.8%, and 0.21, respectively. 617 

4. Impacts of chemistry-meteorology feedbacks 618 

In this section, the impacts of chemistry-meteorology feedbacks including aerosol direct 619 

and indirect effects on regional meteorology and air quality over the U.S. are further examined 620 

by comparing results from two-way WRF-CMAQ and offline coupled WRF and CMAQ. Model 621 

performance from the two sets of simulations is first compared to demonstrate the potential 622 

performance improvements of the two-way model, and the impacts on regional meteorology and 623 

air quality are further investigated via the spatial difference plots for selected variables and 624 

species. 625 

4.1 Meteorology 626 

Figures 21 and 84 compare observations and simulations from the two-way WRF-CMAQ 627 

and WRF-only models for precipitation and SWCF/LWCF, respectively. Tables 1 and 2 also 628 

summarizes the model performance statistics for all major meteorological variables for the two 629 

simulations. The statistics of some cloud variables from the WRF-only simulation are not 630 

available due to missing model outputs.  Overall, good performance is evident for both 631 

simulations for surface meteorological variables with slightly better performance for most of 632 

variables (except for RH2 in both seasons and T2 in summer) for the two-way WRF-CMAQ 633 
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simulation than the WRF-only simulation. The MBs for the two-way WRF-CMAQ vs. WRF-634 

only simulation are 10.1 °C vs 10.2 °C for T2, 2.2% vs 2.11.8% for RH2, 0.5744 m s-1 vs 0.5846 635 

m s-1 for WS10, 16.732.8 degree vs 16.933.4 degree for WD10, and 0.0514-0.71 mm day-1 vs 636 

0.042-0.728 mm day-1 for precipitation in winter and -1.1 °C vs -0.9 °C for T2, 3.7% vs 3.2% for 637 

RH2, 0.38 m s-1 vs 0.42 m s-1 for WS10, 49.1 degree vs 49.8 degree for WD10, and 0.13-0.75 638 

mm day-1 vs 0.19-0.9 mm day-1 for precipitation in summer. The spatial distributions for SWCF 639 

and LWCF are slightly better captured in both seasons especially over the eastern U.S., Atlantic 640 

Ocean, and Gulf of Mexico in winter and over the Midwest, Atlantic Ocean, and Pacific 641 

Northwest in summerregions. Compared to WRF-only, two-way WRF-CMAQ shows noticeably 642 

better performance in terms of both MB and RMSE for radiation and cloud forcing, with MBs of 643 

11.337.0 vs. 19.524.2 W m-2 for SWDOWN, 728.5 vs 14.17.6 W m-2 for GSW, -0.910.6 vs. -644 

6.31 W m-2 for GLW, 4.02.8 vs. 4.72.0 W m-2 for OLR, -3.017.6 vs. -7.410.7 W m-2 for SWCF, 645 

and -3.35.9 vs. -4.15.3 W m-2 for LWCF in winter and with MBs of 43.6 vs. 59.4 W m-2 for 646 

SWDOWN, 33.6 vs 47.2 W m-2 for GSW, -13.4 vs. -16.8 W m-2 for GLW, 2.3 vs. 3.0 W m-2 for 647 

OLR, -22.8 vs. -31.1 W m-2 for SWCF, and -8.6 vs. -9.0 W m-2 for LWCF in summer. These 648 

results are consistent with those reported by Yahaya et al. (2015a,b) that showed similar 649 

improvements in meteorological and radiative variables when comparing predictions from WRF-650 

Chem with those from WRF only.  Since identical inputs and physics options are used in both 651 

simulations, the differences in performance for meteorological variables is due to the 652 

consideration of feedback processes among chemistry, aerosol, cloud, and radiation in the two-653 

way coupled WRF-CMAQ simulation.  654 

Figure 159 shows the 5-year average difference plots of selected major meteorological 655 

variables including SWDOWN, T2, RH2, WS10, PBL height, and precipitation between two-656 
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way WRF-CMAQ and WRF-only in 2008-2012. As shown, the incoming shortwave radiation is 657 

reduced by up to 24.8 W m-2 (13.6%) with a domain-average of 13.0 W m-2 (6%) due to the 658 

combined aerosol direct and indirect radiative effects over the domain. The reduction is 659 

predominant over the eastern U.S. where both aerosol loading and cloud cover are high and over 660 

the oceans where cloud cover is high. The magnitude of shortwave radiation reduction in this 661 

work is consistent with other studies. For example, Wang et al. (2015a) found that the combined 662 

aerosol direct and indirect effects using the WRF/Chem model, which includes the sub-scale 663 

cloud forcing not treated in the current WRF-CMAQ model, may decrease the incoming 664 

shortwave radiation by 16.0 W m-2 in the summer over the U.S. Hogrefe et al. (2015) reported 665 

the reduction of shortwave radiation may reach up to 20 W m-2 over the eastern U.S. by only 666 

considering the aerosol direct effect using an older version of WRF-CMAQ v5.0.1. Xing et al. 667 

(2015b) showed that the aerosol direct forcing may cause the surface shortwave radiation to 668 

decrease by up to 10 W m-2 over the eastern U.S. over a decadal time period using WRF-CMAQ 669 

v5.0. The reduction of shortwave radiation further reduces the surface temperature by up to 670 

0.25 °C over the eastern U.S., which is much larger than the reduction of 0.1 °C reported by 671 

Hogrefe et al. (2015), mainly due to the inclusion of aerosol indirect effects. However there are 672 

smaller reductions of T2 over the Pacific Ocean and even increases (by up to 0.1 °C) over large 673 

areas of Atlantic Ocean and Gulf of Mexico where much larger reductions of shortwave radiation 674 

occur. As pointed by Wang et al. (2015a), due to the much larger heat capacity of ocean, the 675 

response of sea surface temperature is less sensitive to the change of shortwave radiation for 676 

ocean compared to the land. The large increase of incoming longwave radiation and latent heat 677 

(figures not shown) caused by the aerosol indirect effects and other complex feedback processes 678 

over the ocean compensates for the reduction of shortwave radiation, especially over the Atlantic 679 
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Ocean and Gulf of Mexico, and thus leads to less reduction or even increases of T2. RH2 is 680 

found to mostly increase by 3.4% over the land caused by the decrease of temperature while 681 

decrease by 2.6% over the ocean caused by either the increase of temperature or large decrease 682 

of water vapor. Over the land, the decreases in solar shortwave radiation and temperatureT2 683 

along with the latent heat (figure not shown) lead to a more stable PBL and thus suppress the 684 

wind (by reducing the wind speed as shown). Over the ocean, the changes lead to a more 685 

unstable PBL and thus enhance the wind over the ocean. The wind speed and PBL height are 686 

reduced by up to 0.05 m s-1 and 25 m, respectively, over the U.S. The aerosol feedbacks on 687 

precipitation are also mixed with relatively large decreases by up to 0.4 mm day-1 over the U.S. 688 

and increases by up to 0.4 mm day-1 over oceans. The suppression of precipitation over the land 689 

is mainly due to the formation of more small sized CCNs caused by aerosol indirect effects and 690 

align well with areas with high aerosol loadings while the enhancement of precipitation, 691 

especially along coastlines and over oceans, might be associated with the larger CCN formation 692 

via more activated sea-salt particles as indicated by Zhang et al. (2010) and Wang et al. (2015a). 693 

4.2 Air Quality 694 

Figures 9-115 and 6 compare observations and simulations from two-way WRF-CMAQ 695 

and offline CMAQ for O3, PM2.5, and PM2.5 constituents. Tables 3 and 42 summarizes the 696 

statistics for all major chemical variables for the two simulations. As shown in Figure 95, two-697 

way WRF-CMAQ shows better performance for both the monthly variation of O3 (throughout 698 

the whole year) over AQS sites and the diurnal pattern of O3 (especially during winter) over 699 

CASTNET sites due to better performance of T2 and radiation compared to offline WRF and 700 

CMAQ. As shown in Figure 106, two-way WRF-CMAQ shows better similar spatial distribution 701 

of PM2.5 in winter and similar one in summer and better performance for PM2.5 for most of 702 
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months over CSN sites and for cold seasons across IMPROVE sites compared to offline CMAQ. 703 

It alsoFigure 11 shows systematically better performance for SO4
2-, NO3

-, NH4
+, and TC with 704 

more data within 1:2 orand closer to 1:1 ratio lines of scatter plots in both seasons. Overall, as 705 

shown in Tables 3 and 42, both simulations show generally good performance for all major 706 

chemical species except for PM10. For example., the domain-average NMBs are 102.6% (AQS) 707 

and -3.01.5% (CASTNET) vs. 147.27% (AQS) and 0.27.7% (CASTNET) for O3 in summer, and 708 

-7.20% (CSN) and 8.6-13.7% (IMPROVE) vs. -1.83.4% (CSN) and 23.7-5.7% (IMPROVE) for 709 

PM2.5 in winter and -13.2% (CSN) and -26.9% (IMPROVE) vs. -14.0% (CSN) and -22.8% 710 

(IMPROVE) for PM2.5 in summer for two-way WRF-CMAQ and offline-coupled CMAQ, 711 

respectively. The two-way WRF-CMAQ shows better domain-wide statistics in terms of both 712 

correlation and biases for many variables including O3, SO4
2-, NO3

-, NH4
+, and EC as well as 713 

TOR and column NO2 in both seasons, apparently due to the treatment of chemistry-meteorology 714 

feedbacks. Offline CMAQ performs better for total PM2.5 especially in the western U.S. due to 715 

higher dust emissions from higher wind speed and higher SOA due to stronger radiation and 716 

higher temperature. However more robust comparisons are needed in the future with improved 717 

dust emissions and the use of FINN wildfire emissions. 718 

Figure 160 shows the 5-year average difference plots of selected chemical variables 719 

including CO, O3, NOx, volatile organic compounds (VOCs), SO4
2-, SOA, PM2.5, and PM10 720 

between two-way WRF-CMAQ and offline-coupled CMAQ. As shown, the CO mixing ratios 721 

decrease by up to 79.2 ppb (27.8%) especially over the western U.S. with a domain-average 722 

reduction of 3.0 ppb (3.1%) due to reduced formation of CO from the oxidation of VOCs caused 723 

by reduced solar radiation as indicated by Zhang et al. (2017). Such reductions seem to dominate 724 

over the increases caused by reduced PBL height, especially in the western U.S. where PBL 725 
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height reductions are minimum. The O3 mixing ratios decrease by up to 5.2 ppb (16.2%) with 726 

domain-average of 1.7 ppb (4.2%) mainly due to the reduced solar radiation and T2. The change 727 

of O3 is consistent with other studies such as Makar et al. (2015) and Wang et al. (2015a) that 728 

also reported lower O3 mixing ratios caused by aerosol direct and indirect effects. On the other 729 

hand, both NOx and VOC mixing ratios increase over the eastern U.S. while they decrease over 730 

the western U.S. The increase should be caused by the combination of the large reduction of PBL 731 

mixing and reduced solar radiation which reduces NO2 photolysis and VOC oxidation to SOA. 732 

For aerosol species, SO4
2- concentrations increase by up to 0.38 g m-3 (26.6%) especially over 733 

the eastern U.S.  In fact, the reduction decrease of O3 mixing ratios due to aerosol effectscaused 734 

by feedbacks is expectinged to reduce SO4
2- production via the gas-phase oxidation pathway due 735 

to the influence of O3 on OH, but increase SO4
2- production via the aqueous-phase chemistry 736 

pathway due to more clouds in the two-way WRF-CMAQ simulation. Thus, the net increase of 737 

SO4
2- is more dominate by the aqueous-phase chemistry instead of the gas-phase oxidation. This 738 

net increase of SO4
2-, in turn, leads to an increase of NH4

+ and decrease of NO3
- (figures not 739 

shown) through aerosol thermodynamic equilibrium. SOA concentrations decrease by up to 0.34 740 

g m-3 (41.6%) especially over the eastern U.S. due to the large reduction of oxidants. PM2.5 741 

concentrations also decrease by up to 5.2 g m-3 (49.1%) with a domain-average of 0.34 g m-3 742 

(8.6%), and PM10 concentrations decrease by up to 19.3 g m-3 (64.8%) with a domain-average 743 

of 1.1 g m-3 (11.1%). The reductions are more apparent over the western U.S. than the eastern 744 

U.S. partially due to the compensation of the increase of SO4
2- and NH4

+ and decrease of other 745 

secondary aerosols over the eastern U.S., as well as the relatively large reduction of dust 746 

concentrations over the western U.S. caused by reduced wind speed.  747 

5. Summary and conclusion 748 
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In this study, two sets of long-term simulations for 2008-2012 using the two-way coupled 749 

WRF-CMAQ and offline coupled WRF and CMAQ, respectively, are conducted, evaluated, and 750 

compared to investigate the performance improvements due to chemistry-meteorology feedbacks 751 

and impacts of those feedbacks on the reginal air quality in the U.S. First, the two-way coupled 752 

WRF-CMAQ simulation with both aerosol direct and indirect radiative forcing is 753 

comprehensively evaluated in both winter and summer seasons and the annual trend is examined 754 

between observations and simulations for selected major variables. The results show that WRF-755 

CMAQ performs well for major surface meteorological variables such as temperature at 2 m, 756 

relative humidity at 2 m, wind speed at 10 m, and precipitation with domain-average MBs of -757 

1.1-1.10.1 °C, 2.2-3.7 %, 0.38-0.5744 m s-1, and 0.134-0.2328 mm day-1
 (except for 0.71-0.75 758 

mm day-1 against NCDC), respectively, in winter and summer. The overall small warm bias 759 

compared to other studies is most likely associated with the soil moisture nudging technique used 760 

in the PX land surface scheme. The relatively large positive biases for precipitation are found to 761 

be more apparent when observed precipitation is low (dominated more by the non-convective 762 

precipitation) and are thus believed to be more associated with uncertainties in the Morrison 763 

microphysics scheme. The long-term simulation also shows generally good performance for 764 

major radiation and cloud radiative variables. Relatively large model biases still exist for cloud 765 

variables such as CDNC, COT, and CWP, indicating that the processes associated with aerosol 766 

indirect effects are still not well understood and an accurate simulation of those effects is still 767 

challenging using state-of-the-science models. WRF-CMAQ can also capture the observed year-768 

to-year variations well for almost all the major meteorological and chemical variables.  769 

Two-way WRF-CMAQ also shows generally good or acceptable performance for max 8-770 

h O3, PM2.5 and PM2.5 constituents, with NMBs generally within ±15% for O3 and ±30% for 771 
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PM2.5 species. For example, the domain-average NMBs are 102.6 % and -3.01.5 % for max 8-h 772 

O3 against AQS and CASTNET in summer and -13.2 to -7.20 % and -26.9 to 8.613.7 % for 773 

PM2.5 against CSN and IMPROVE, respectively in both seasons. O3 mixing ratios are 774 

overpredicted for most months, especially in the winter, in part due to the larger overprediction 775 

of T2 during the cold season. The overall model biases are small for PM2.5 due to the 776 

compensation of relatively large underpredictions of SO4
2- and OC, especially in the warm 777 

season, and overprediction of NO3
- in the cold season. In addition to biases inherited from the 778 

meteorology, the model performance for chemistry also suffers from uncertainties associated 779 

with emissions, the use of a coarse spatial resolution, and representation of aerosol formation 780 

pathways in the model. For example, the relatively large biases for EC might be associated with 781 

poorly allocated anthropogenic/wildfire emissions and those for OC might be due to 782 

underestimation of SOA formation in version 5.0.2 of CMAQ. WRF-CMAQ also predicts the 783 

column abundances of chemical species well and the relatively large model biases for CO are 784 

found to be associated with an underestimation of BCONs. The model better reproduces the 785 

observed number of exceedance days for O3 than PM2.5 mainly due to better performance for O3 786 

than PM2.5 concentrations. 787 

The performance comparison between two-way WRF-CMAQ and WRF-only simulations 788 

shows that two-way WRF-CMAQ model performs better for major surface meteorological, 789 

radiation, and cloud radiative variables due to the consideration of chemistry-meteorology 790 

feedbacks associated with aerosol direct and indirect forcing. The feedbacks are found to reduce 791 

the 5-year average SWDOWN by up to 24.8 W m-2, T2 by up to 0.25 °C, PBL height by up to 25 792 

m, wind speed by up to 0.05 m s-1, and precipitation by up to 0.4 mm day-1 over the CONUS, 793 

which in turn affect the air quality significantly. As a result of feedbacks, two-way WRF-CMAQ 794 
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outperforms offline CMAQ for O3, SO4
2-, NO3

-, NH4
+, and EC as well as TOR and column NO2 795 

in terms of both spatiotemporal variations and domain-average statistics due to better 796 

meteorology performance for variables such as T2, WS10, radiation, and precipitation. Despite 797 

these improvements, the offline CMAQ performs better for total PM2.5 in terms of domain-798 

average statistics, which could be partially caused by the compensation of larger under- and 799 

over-predictions of PM2.5 constituents. More robust comparison for PM2.5 should be performed 800 

with improved dust and wildfire emissions in future work. Chemistry-meteorology feedbacks are 801 

found to play important roles in affecting U.S. air quality by reducing domain-wide 5-year 802 

average surface CO by 3.0 ppb (3.1%) and up to 79.2 ppb (27.8%), O3 by 1.7 ppb (4.1%) and up 803 

to 5.2 ppb (16.2%), PM2.5 by 0.34 g m-3 (8.6%) and up to 5.2 g m-3 (49.1%), and PM10 by 1.1 804 

g m-3 (11.1%) and up to 19.3 g m-3 (64.8%) mainly due to reduction of radiation, temperature, 805 

and wind speed. 806 

In summary, the two-way coupled WRF-CMAQ modeling in this study shows generally 807 

satisfactory and consistent performance for the long-term prediction of regional meteorology and 808 

air quality when compared to other studies in the literature. Possible causes for the 809 

meteorological and chemical biases that were identified through this work can provide valuable 810 

information for future model development to improve the two-way coupled WRF-CMAQ model 811 

and those biases should also be considered when making future climate/air quality projections. 812 

Non-negligible model improvements for many major meteorological and chemical variables 813 

compared to the traditional application of offline coupled WRF and CMAQ suggest the 814 

importance of chemistry-meteorology feedbacks, especially aerosol direct and indirect effects.  815 

The feedbacks should be considered along with other factors in developing future model 816 

applications to inform policy making.  817 
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Table 1. The 5-year average performance statistics for meteorological variables between two-way WRF-CMAQ and WRF-only 

simulations in winter, 2008-2012. 

Variables Datasets 
Mean 

Obs 

Two-way WRF-CMAQ WRF-only 

Mean 

Sim 
R MB 

NMB 

(%) 
RMSE 

Mean 

Sim 
R MB 

NMB 

(%) 
RMSE 

T2 (oC) 

NCDC 

7.5 8.6 0.97 1.1 14.9 1.6 8.6 0.97 1.2 15.8 1.6 

RH2 (%) 72.9 75.1 0.79 2.2 3.0 6.3 75.0 0.79 2.1 2.8 6.3 

WS10 (m s-1) 3.93 4.50 0.4 0.57 14.6 1.17 4.50 0.4 0.58 14.6 1.17 

WD10 (deg) 166.4 183.1 0.0 16.7 10.0 44.2 183.3 0.0 16.9 10.2 44.4 

Precipitation 

(mm day-1
) 

NCDC 1.54 2.25 0.46 0.71 46.3 1.94 2.26 0.47 0.72 47.0 1.94 

NADP 2.48 2.68 0.77 0.2 8.0 1.14 2.69 0.77 0.21 8.6 1.14 

GPCP 1.81 2.04 0.80 0.23 12.8 1.03 2.04 0.80 0.23 12.8 1.02 

PRISM 1.91 2.08 0.89 0.17 9.0 0.79 2.09 0.89 0.18 9.4 0.79 

TMPA 2.02 2.07 0.81 0.05 2.4 1.01 2.06 0.81 0.04 2.0 1.02 

SWDOWN (W m-2) 

CERES 

108.5 119.8 0.99 11.3 10.4 13.7 128.0 0.98 19.5 17.9 22.2 

GSW (W m-2) 87.1 94.6 0.99 7.5 8.6 10.1 101.3 0.98 14.1 16.2 17.1 

GLW (W m-2) 278.9 278.0 0.99 -0.9 -0.3 5.9 272.7 0.99 -6.3 -2.2 8.6 

OLR (W m-2) 222.3 226.2 0.99 4.0 1.8 5.1 227.0 0.99 4.7 2.1 5.8 

SWCF (W m-2) -26.6 -23.6 0.91 -3.0 -11.1 6.3 -19.2 0.85 -7.4 -27.8 10.6 

LWCF (W m-2) 22.0 18.7 0.76 -3.3 -15.1 6.0 18.0 0.72 -4.1 -18.4 6.7 

AOD 

MODIS 

0.11 0.04 0.44 -0.06 -59.8 0.08 N/A N/A N/A N/A N/A 

CF 0.66 0.59 0.87 -0.07 -10.4 0.1 N/A N/A N/A N/A N/A 

CDNC (cm-3) 172.3 30.4 0.21 -141.9 -82.4 157.5 N/A N/A N/A N/A N/A 

CWP (g m-2) 177.4 97.0 0.63 -80.4 -45.3 93.2 N/A N/A N/A N/A N/A 

COT 16.9 3.3 0.74 -13.6 -80.8 14.2 N/A N/A N/A N/A N/A 
*outputs of AOD, CF, CDNC, CWP, and COT are not available from WRF-only simulations 
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Table 2. The 5-year average performance statistics for meteorological variables between two-way WRF-CMAQ and WRF-only 

simulations in summer, 2008-2012. 

Variables Datasets 
Mean 

Obs 

Two-way WRF-CMAQ WRF-only 

Mean 

Sim 
R MB 

NMB 

(%) 
RMSE 

Mean 

Sim 
R MB 

NMB 

(%) 
RMSE 

T2 (oC) 

NCDC 

22.3 22.2 0.95 -1.1 -4.6 1.7 22.4 0.95 -0.9 -3.7 1.6 

RH2 (%) 67.0 70.7 0.91 3.7 5.5 6.6 70.1 0.91 3.2 4.7 6.3 

WS10 (m s-1) 3.19 3.57 0.36 0.38 11.8 0.99 3.61 0.35 0.42 13.1 1.01 

WD10 (deg) 146.4 195.4 0.0 49.1 33.5 67.3 196.1 0.0 49.8 34.0 67.9 

Precipitation 

(mm day-1
) 

NCDC 2.11 2.86 0.5 0.75 35.6 1.93 3.01 0.5 0.9 42.6 2.01 

NADP 2.82 2.99 0.83 0.17 5.9 0.87 3.14 0.83 0.32 11.2 0.93 

GPCP 2.55 2.78 0.80 0.23 9.0 1.19 2.86 0.80 0.30 11.9 1.21 

PRISM 2.35 2.55 0.89 0.20 8.4 0.69 2.65 0.89 0.30 12.9 0.73 

TMPA 2.70 2.83 0.80 0.13 4.8 1.27 2.89 0.81 0.19 6.8 1.27 

SWDOWN (W m-2) 

CERES 

254.7 298.3 0.84 43.6 17.1 46.6 314.1 0.73 59.4 23.3 62.8 

GSW (W m-2) 222.5 256.1 0.75 33.6 15.1 37.6 269.7 0.57 47.2 21.2 51.7 

GLW (W m-2) 372.2 358.8 0.98 -13.4 -3.6 15.3 355.4 0.98 -16.8 -4.5 18.7 

OLR (W m-2) 257.2 259.6 0.96 2.3 0.9 4.8 260.2 0.96 3.0 1.2 5.2 

SWCF (W m-2) -55.1 -32.3 0.69 -22.8 -41.3 27.6 -24.0 0.50 -31.1 -56.4 36.2 

LWCF (W m-2) 26.1 17.5 0.85 -8.6 -33.0 9.8 17.1 0.87 -9.0 -34.6 10.0 

AOD 

MODIS 

0.20 0.07 0.67 -0.13 -67.8 0.14 N/A N/A N/A N/A N/A 

CF 0.53 0.41 0.81 -0.12 -23.0 0.16 N/A N/A N/A N/A N/A 

CDNC (cm-3) 138.9 28.9 0.11 -110.0 -79.2 124.1 N/A N/A N/A N/A N/A 

CWP (g m-2) 162.2 54.6 0.65 -107.6 -66.3 113.8 N/A N/A N/A N/A N/A 

COT 14.2 2.3 0.73 -11.9 -83.6 12.2 N/A N/A N/A N/A N/A 
*outputs of AOD, CF, CDNC, CWP, and COT are not available from WRF-only simulations 
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Table 3. The 5-year average performance statistics for chemical variables between two-way WRF-CMAQ and offline CMAQ 

simulations in winter, 2008-2012. 

Variables Datasets 
Mean 

Obs 

Two-way WRF-CMAQ Offline CMAQ 

Mean 

Sim 
R MB 

NMB 

(%) 

NME 

(%) 

Mean 

Sim 
R MB 

NMB 

(%) 

NME 

(%) 

Max 8-hr O3 

(ppb) 

AQS 32.4 39.6 0.61 7.2 22.5 23.0 42.3 0.65 9.9 30.7 30.9 

CASTNET 34.9 36.6 0.76 1.7 4.9 9.4 39.7 0.75 4.7 13.5 14.3 

PM2.5 (g m-3) 
CSN 11.4 10.6 0.21 -0.8 -7.2 29.3 11.7 0.2 0.21 1.8 31.0 

IMPROVE 3.59 3.90 0.83 0.31 8.6 30.3 4.44 0.86 0.85 23.7 32.1 

PM10 (g m-3) AQS 19.9 12.7 0.04 -7.2 -36.3 46.9 15.7 0.17 -4.2 -21.3 42.8 

SO4
2- (g m-3) 

CSN 2.06 1.06 0.78 -1.0 -48.3 48.4 1.02 0.78 -1.04 -50.7 50.8 

IMPROVE 0.79 0.49 0.95 -0.3 -37.4 38.9 0.49 0.95 -0.3 -38.5 39.9 

NO3
- (g m-3) 

CSN 2.37 2.36 0.79 -0.01 -0.3 25.8 2.89 0.81 0.52 21.7 37.8 

IMPROVE 0.73 0.83 0.87 0.1 13.3 40.9 1.06 0.90 0.33 44.6 54.4 

NH4
+ (g m-3) CSN 1.30 0.92 0.80 -0.38 -29.4 30.5 1.03 0.81 -0.27 -21.0 24.1 

EC (g m-3) 
CSN 0.69 0.75 0.18 0.06 8.7 58.5 0.79 0.24 0.1 14.2 58.0 

IMPROVE 0.17 0.23 0.80 0.06 40.8 59.2 0.25 0.84 0.09 53.4 65.6 

OC (g m-3) IMPROVE 0.65 0.74 0.65 0.09 13.0 55.7 0.8 0.67 0.15 23.1 56.4 

TC (g m-3) 
CSN 3.05 3.27 0.01 0.22 7.2 53.2 3.49 0.0 0.44 14.4 55.8 

IMPROVE 0.53 0.62 0.75 0.09 17.5 51.3 0.68 0.78 0.15 28.1 52.6 

Col. CO (1018 

mole. cm-3) 
MOPITT 1.96 1.56 0.70 -0.4 -20.5 21.6 1.57 0.69 -0.39 -19.8 21.1 

TOR (DU) OMI 26.4 27.6 0.78 1.2 4.7 14.0 28.0 0.19 1.6 5.9 14.3 

Col. NO2 (1015 

mole. cm-3) 
SCIAMACHY 1.55 1.55 0.86 0.04 0.3 33.5 1.53 0.87 -0.02 -1.2 33.1 

Col. HCHO (1015 

mole. cm-3) 
SCIAMACHY 4.87 2.48 0.29 -2.39 -49.0 50.1 2.53 0.28 -2.34 -48.0 49.2 
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Table 4. The 5-year average performance statistics for chemical variables between two-way WRF-CMAQ and offline CMAQ 

simulations in summer, 2008-2012. 

Variables Datasets 
Mean 

Obs 

Two-way WRF-CMAQ Offline CMAQ 

Mean 

Sim 
R MB 

NMB 

(%) 

NME 

(%) 

Mean 

Sim 
R MB 

NMB 

(%) 

NME 

(%) 

Max 8-hr O3 

(ppb) 

AQS 47.9 53.0 0.66 5.1 10.6 13.2 54.8 0.66 6.8 14.2 15.6 

CASTNET 47.2 45.8 0.66 -1.4 -3.0 11.5 47.3 0.68 0.1 0.2 10.5 

PM2.5 (g m-3) 
CSN 11.4 9.9 0.74 -1.5 -13.2 20.5 9.8 0.71 -1.6 -14.0 20.8 

IMPROVE 6.19 4.52 0.88 -1.66 -26.9 31.2 4.78 0.86 -1.41 -22.8 28.9 

PM10 (g m-3) AQS 26.7 14.5 0.03 -12.2 -45.8 50.7 16.2 0.07 -10.5 -39.4 48.6 

SO4
2- (g m-3) 

CSN 2.86 2.57 0.91 -0.29 -10.2 15.1 2.34 0.91 -0.52 -18.1 19.5 

IMPROVE 1.40 1.11 0.98 -0.29 -20.9 21.3 1.08 0.98 -0.31 -22.5 22.6 

NO3
- (g m-3) 

CSN 0.49 0.71 0.54 0.22 45.2 70.6 0.77 0.59 0.28 57.2 76.8 

IMPROVE 0.20 0.19 0.6 -0.01 -4.7 71.4 0.22 0.63 0.02 10.3 72.2 

NH4
+ (g m-3) CSN 0.91 0.94 0.86 0.03 3.3 22.4 0.88 0.85 -0.03 -3.6 20.1 

EC (g m-3) 
CSN 0.56 0.79 0.56 0.23 41.0 56.3 0.79 0.55 0.23 41.9 55.5 

IMPROVE 0.20 0.24 0.56 0.04 20.4 58.8 0.26 0.52 0.06 27.9 63.0 

OC (g m-3) IMPROVE 1.37 0.70 0.31 -0.67 -49.2 54.0 0.75 0.28 -0.62 -45.4 52.4 

TC (g m-3) 
CSN 2.85 2.17 0.54 -0.67 -23.6 29.3 2.19 0.5 -0.65 -22.9 29.7 

IMPROVE 0.88 0.61 0.56 -0.27 -30.5 47.6 0.66 0.53 -0.23 -25.6 47.6 

Col. CO (1018 

mole. cm-3) 
MOPITT 1.82 1.32 0.75 -0.5 -27.8 27.8 1.32 0.54 -0.5 -27.3 27.3 

TOR (DU) OMI 35.0 32.2 0.87 -2.8 -8.0 9.0 32.4 0.85 -2.6 -7.3 8.6 

Col. NO2 (1015 

mole. cm-3) 
SCIAMACHY 1.08 0.78 0.81 -0.3 -27.8 38.0 0.78 0.80 -0.3 -27.5 38.1 

Col. HCHO (1015 

mole. cm-3) 
SCIAMACHY 5.81 6.71 0.82 0.9 15.0 22.5 6.82 0.82 1.01 17.4 23.5 



54 
 

 

  

  

   

  
Figure 1. Spatial distributions of 5-year average MBs for 2-m temperature (T2), 2-m relative 

humidity (RH2), 10-m wind speed (WS10), and hourly precipitation from NCDC for two-way 

WRF-CMAQ in winter (left panel) and summer (right panel), 2008-2012. 
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Figure 2. Spatial distributions of 5-year average of daily precipitation from TMPA, PRISM, two-

way WRF-CMAQ, and WRF-only (from top to bottom) in winter (left panel) and summer (right 

panel), 2008-2012.  
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Figure 3. Bar charts for annual average observations and simulations (standard deviations are 

displayed as the error bars)) from two-way WRF-CMAQ for major meteorological variables (left 

panel) and chemical species (right panel) in 2008-2012.  
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CERES Two-way WRF-CMAQ 

 

 

 

 

 

 

 

 

  
Figure 4. Spatial distribution of 5-year average major radiation variables (from top to bottom: 

SWDOWN, GSW, GLW, OLR, and AOD) between CERES observations (left panel) vs. two-

way WRF-CMAQ (right panel) in winter, 2008-2012.  
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CERES Two-way WRF-CMAQ 

 

 

  

  

 

 

  
Figure 5. Spatial distribution of 5-year average major radiation variables (from top to bottom: 

SWDOWN, GSW, GLW, OLR, and AOD) between CERES observations (left panel) vs. two-

way WRF-CMAQ (right panel) in summer, 2008-2012. 
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Figure 6. Spatial distribution of 5-year average major cloud variables (from top to bottom: 

CDNC, CF, COT, and CWP) between MODIS observations (left panel) vs. two-way WRF-

CMAQ (right panel) in winter, 2008-2012.  
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Figure 7. Spatial distribution of 5-year average major cloud variables (from top to bottom: 

CDNC, CF, COT, and CWP) between MODIS observations (left panel) vs. two-way WRF-

CMAQ (right panel) in summer, 2008-2012. 
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Figure 8. Spatial distribution of 5-year average SWCF in winter, LWCF in winter, SWCF in summer, and LWCF in summer (from top 

to bottom) between CERES observations (left panel) vs. two-way WRF-CMAQ (center panel) and WRF-only (right panel) in 2008-

2012.
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a)

 

b)

 
c) 

 

d) 

 
Figure 9. Spatial distributions of 5-year averaged max 8-h O3 in summer overlaid with 

observations from AIRS-AQS and CASTNET for a) two-way WRF-CMAQ and b) offline 

CMAQ; c) bar chart for 5-year average monthly O3 between observations (black bar), two-way 

WRF-CMAQ (red bar), and offline CMAQ (blue bar); and d) diurnal plots of observed (dots) vs. 

simulated (lines) hourly O3 concentrations against CASTNET for winter (cold colors) and 

summer (warm colors) in 2008-2012. 
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a) 

 

b) 

 
c) 

  

d) 

  
e) 

 

f) 

 
Figure 10. Spatial distributions of 5-year averaged daily PM2.5 overlaid with observations from 

CSN and IMPROVE for two-way WRF-CMAQ in a) winter and c) summer and offline CMAQ 

in b) winter and d) summer; bar charts for 5-year average monthly PM2.5 between observations 

(black bar), two-way WRF-CMAQ (red bar), and offline CMAQ (blue bar) over e) CSN and f) 

IMPROVE in 2008-2012. 
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Figure 11. Scatter plots of 5-year averaged PM2.5 constituents for SO4

2-, NO3
-, NH4

+, and TC 

(from top to bottom) between observations and simulations of two-way WRF-CMAQ (red color) 

and offline CMAQ (blue) in winter (left panel) and summer (right panel), 2008-2012. 
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Figure 12. Spatial distribution of 5-year average column abundances (from top to bottom: 

column CO, TOR, column NO2, and column HCHO) between various satellite observations (left 

panel) vs. two-way WRF-CMAQ (right panel) in winter, 2008-2012. 
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Figure 13. Spatial distribution of 5-year average column abundances (from top to bottom: 

column CO, TOR, column NO2, and column HCHO) between various satellite observations (left 

panel) vs. two-way WRF-CMAQ (right panel) in summer, 2008-2012. 
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Figure 14. The spatial distribution of 5-year average annual exceedance days of max 8-h O3 and 

daily PM2.5 between observations (O3 over the AIRS-AQS/CASTNET network and PM2.5 over 

the IMPROVE/CSN network) and two-way WRF-CMAQ in 2008-2012.  
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Figure 15. Spatial difference plots (two-way WRF-CMAQ - WRF-only) for major 

meteorological variables between two-way WRF-CMAQ and WRF-only in 2008-2012. 
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Figure 16. Spatial difference plots (two-way WRF-CMAQ - offline CMAQ) for major chemical 

species between two-way WRF-CMAQ and offline CMAQ in 2008-2012. 

 


