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 2 

Abstract 26 

Using the Vector LInearized Discrete Ordinate Radiative Transfer (VLIDORT) code as the main 27 

driver for forward model simulations, a first-of-its-kind data assimilation scheme has been 28 

developed for assimilating Ozone Monitoring Instrument (OMI) aerosol index (AI) measurements 29 

into the Naval Aerosol Analysis and Predictive System (NAAPS).  This study suggests both RMSE 30 

and absolute errors can be significantly reduced in NAAPS analyses with the use of OMI AI data 31 

assimilation, when compared to values from NAAPS natural runs. Improvements in model 32 

simulations demonstrate the utility of OMI AI data assimilation for aerosol model analysis over 33 

cloudy regions and bright surfaces.  However, the OMI AI data assimilation alone does not out-34 

perform aerosol data assimilation that uses passive-based aerosol optical depth (AOD) products 35 

over cloud free skies and dark surfaces.  Further, as AI assimilation requires the deployment of a 36 

fully-multiple-scatter-aware radiative transfer model in the forward simulations, computational 37 

burden is an issue.  Nevertheless, the newly-developed modeling system contains the necessary 38 

ingredients for assimilation of radiances in the ultra-violet (UV) spectrum, and our study shows 39 

the potential of direct radiance assimilation at both UV and visible spectrums, possibly coupled 40 

with AOD assimilation, for aerosol applications in the future.  Additional data streams can be 41 

added, including data from TROPOspheric Monitoring Instrument (TROPOMI), Ozone Mapping 42 

and Profiler Suite (OMPS) and eventually with the Plankton, Aerosol, Cloud and ocean Ecosystem 43 

(PACE) mission. 44 

 45 

  46 
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1.0         Introduction 47 

Operational chemical transport modeling (CTM) of atmospheric aerosol particles, 48 

including simulation of sources and sinks and long-range transport of aerosol events such as 49 

biomass burning aerosols from fires and dust outbreaks, is now commonplace at global 50 

meteorology centers for air quality and visibility forecasts (e.g. Sessions et al, 2015; Lynch et al., 51 

2016). Variational and ensemble-based assimilation of satellite derived aerosol products such as 52 

aerosol optical depth (AOD), lidar backscatter measurements, and surface aerosol properties, can 53 

substantially improve accuracies in CTM analyses and forecasts (Zhang et al., 2008; 2011; 2014; 54 

Yumimoto et al., 2008; Uno et al., 2008; Benedetti et al., 2009; Schutgens et al., 2010; Sekiyama 55 

et al., 2010; Saide et al. 2013; Schwartz, 2012; Li et al., 2013; Rubin et al., 2017; Lynch et al., 56 

2016).  57 

Currently, the main satellite inputs for operational aerosol modeling are AOD products 58 

derived from passive-based polar orbiting imagers, such as the Moderate Resolution Imaging 59 

Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and the 60 

Advance Very High Resolution Radiometer (AVHRR). Experimentation is proceeding with the 61 

use of products from the multi-angle imaging spectroradiometer (MISR) (e.g., Lynch et al., 2016; 62 

Randles et al. 2017; Buchard et al. 2017) and from geostationary instruments such as Himawari 63 

and Geostationary Operational Environmental Satellite (GOES).  A major advantage with such 64 

passive-based satellite sensors is that the AOD is retrieved with high spatial and temporal 65 

resolutions over relatively broad fields-of-view (e.g. Zhang et al., 2014).  For example, MODIS 66 

and VIIRS provide near-global daily daytime coverage (e.g. Levy et al., 2013; Hsu et al., 2019) 67 

and GOES and Himawari are capable of retrieving AOD over North American and East Asia 68 

regions at sub-hourly temporal resolution (e.g. Bessho et al., 2016).   69 
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To date, these traditional passive-based satellite AOD retrievals have been limited to darker 70 

surfaces and relatively cloud-free conditions.  The widely-used MODIS Dark Target aerosol data, 71 

for instance, are available globally over only oceans and dark land surfaces (e.g. Levy et al., 2013).  72 

The MISR and MODIS Deep Blue aerosol products are also available over some arid 73 

environments, but are not applicable to snow and ice covered regions (e.g. Kahn et al., 2010; Hsu 74 

et al., 2013).  Also, none of the above-mentioned aerosol products are valid over cloudy regions. 75 

In comparison to AOD, the semi-quantitative UV-based aerosol index (AI) has long been 76 

used to monitor major aerosol events such as smoke plumes and dust storms, starting with the 77 

Total Ozone Mapping Spectrometer (TOMS) from the late 1970s (Herman et al., 1997). AI is 78 

derived using the ratio of observed UV radiances to simulated ones assuming only a clear Rayleigh 79 

sky (e.g. Torres et al., 2007). AI retrievals are currently computed using observations from sensors 80 

with ozone-sensitive channels. For example, the Ozone Monitoring Instrument (OMI), Ozone 81 

Mapping and Profiler Suite (OMPS), TROPOspheric Monitoring Instrument (TROPOMI) and the 82 

future Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) mission include ozone sensitive 83 

channels that can detect UV-absorbing aerosol particles, such as black carbon laden smoke or iron-84 

bearing dust, over bright surfaces, such as desert, snow and ice covered regions, and aerosol 85 

plumes above clouds (e.g. Torres et al., 2012; Yu et al., 2012; Alfaro-Contreras et al., 2014; 2016).   86 

To complement existing AOD assimilating systems, we have developed an AI data 87 

assimilation (AI-DA) system that is capable of assimilating OMI AI over bright surfaces and 88 

cloudy regions for aerosol analyses and forecasts.  This study can be considered as one of the first 89 

attempts for direct radiance assimilation in the UV spectrum for aerosol applications, as AI can be 90 

directly computed from UV radiances and the developed OMI AI-DA system has all necessary 91 

components for a typical radiance assimilation package. In time we expect our assimilation model 92 
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to merge with AOD or solar radiance assimilation to influence aerosol loading, height and 93 

absorption (e.g., VIIRS+OMPS product; such as Lee et al. 2015). Details of the developed OMI 94 

AI assimilation system are presented in the paper, which is organized as follows:  Data sets used 95 

in the study are summarized in Section 2; Section 3 discusses the components of the AI-DA 96 

system. Section 4 provides an evaluation of the developed system; and Section 5 contains a 97 

summary discussion.   98 

 99 

2.0 Datasets and Models 100 

Three datasets are used in this study. These are: (i) the OMI level 2 UV aerosol product 101 

(OMAERUV; Torres et al., 2007), (ii) the Aerosol Robotic Network (AERONET; Holben et al., 102 

1998) AOD product, and (iii) reanalysis data from the Naval Aerosol Analysis and Prediction 103 

System (NAAPS; Lynch et al., 2016), which was the first operational global aerosol mass transport 104 

model available to the community. The assimilation system is based on spatial and temporal 105 

variations of aerosol particles from NAAPS (Zhang et al., 2006; 2008), and the Vector LInearized 106 

Discrete Ordinate Radiative Transfer (VLIDORT; Spurr, 2006) code is used to construct a forward 107 

model for the AI-DA system. 108 

 109 

2.1 OMI aerosol product 110 

UV Aerosol Index data from the OMI level 2 version 3 UV aerosol products (OMAERUV) 111 

are used in this study.  The OMI instrument is on board the Aura satellite (launched in 2004) and 112 

it observes the earth’s atmosphere over the UV/visible spectrum with a pixel size of 13x24 km at 113 

nadir for the global scan mode, and a swath of ~2600 km (Levelt et al., 2018).  The daytime 114 

equatorial crossing for the Aura platform is ~1:30 p.m.  The dataset comprises the UV AI, viewing 115 
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and solar geometries, spectrally-dependent surface albedos at the 354 and 388 nm spectral 116 

channels, terrain pressure, geolocations, x-track and algorithm quality flags, plus other aerosol and 117 

ancillary parameters.  The UV AI is designed to detect UV-absorbing aerosol particles, and is 118 

based on radiance observations at 354 nm (Iobs354) and calculated radiance (Ical354) at 354 nm for a 119 

Rayleigh (no aerosol) atmosphere (e.g. Torres et al., 2007) as defined as 120 

𝐴𝐼 = − 100 log10
𝐼𝑜𝑏𝑠354

𝐼𝑐𝑎𝑙354
 .    (1) 121 

Unbiased, noise-reduced, quality-assured AI data are necessary for AI data assimilation. 122 

This is especially important for OMI observations, due to this particular sensor suffering from the 123 

well-referenced “row anomalies” issues (Torres et al., 2018).  To remove pixels with row 124 

anomalies, only retrievals with x-track flag values of 0 are retained.  Also, abnormal AI values 125 

were identified over mountain regions.  Thus, retrievals with terrain/surface pressure less than 850 126 

hpa are excluded in the study.  Finally, only retrievals with OMI AI values larger than -2 are used.  127 

Therefore, OMI observations over cloudy skies, which could have negative OMI AI values, are 128 

also included.     129 

Both cloud-free and above-cloud AI data satisfying these quality checks are aggregated / 130 

averaged in 1x1 (Latitude/Longitude) bins.  As a radiative transfer model run is applied for each 131 

observation, the gridded data are used in the assimilation process in order to reduce the 132 

computational burden.  Averaged parameters for the gridded data include the solar and sensor 133 

zenith angles, the relative azimuth angles, the spectrally-dependent surface albedos at 354 and 388 134 

nm, the cloud fraction, and the AI values themselves.  Additional quality assurance steps are also 135 

applied during the spatial-averaging process.  Isolated high AI values are removed as follows. 136 

First, for a 4x4 pixel box, if the mean AI is less than 0.7 but an individual AI value is larger than 137 

0.7, then that one value is removed.  Second, if the standard deviation of AI values for a 3x3 pixel 138 
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box surrounding a pixel is larger than 0.5, that individual AI value is likewise removed.  Note that 139 

both approaches are essentially homogeneity tests that are used for identifying outlies.  The 140 

thresholds are estimated empirically through visual inspection.   141 

 142 

2.2 AERONET data 143 

Version 3 level 2 daytime, cloud-cleared and quality-assured AERONET data are used to 144 

evaluate the performance of the OMI AI data assimilation in our study (Holben et al., 1998; Giles 145 

et al., 2019).  During daytime, AOD from AERONET instruments are derived by measuring the 146 

attenuated solar radiance typically at seven wavelengths ranging from 340 to 1020 nm.  In this 147 

study, AERONET data are collocated with NAAPS analyses with and without OMI AI 148 

assimilation.  In order to collocate AERONET and NAAPS AOD data, AERONET AOD values 149 

within ±30 minutes of a given NAAPS analysis time are averaged and used as ground-based AOD 150 

values for the NAAPS 1x1 (Latitude/Longitude) collocated bins.  As AERONET data require a 151 

cloud-free line of sight to the solar disk, the performance of OMI AI data assimilation over overcast 152 

regions is not evaluated.   153 

 154 

2.3 NAAPS and NAAPS reanalysis data 155 

The NAAPS (http://www.nrlmry.navy.mil/aerosol/) model is a multi-species, three-156 

dimensional, Eulerian global transport model using operational Navy Global Environmental 157 

Model (NAVGEM) as the meteorological driver (Hogan et al., 2014). NAAPS provides 6-day 158 

forecasts at a 3-hour interval with a spatial resolution of 1/3° (latitude/Longitude) and 42 vertical 159 

levels on a global scale.  NAAPS predicts four aerosol particle classes: anthropogenic and biogenic 160 

http://www.nrlmry.navy.mil/aerosol/
http://www.nrlmry.navy.mil/aerosol/
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fine particles (ABF, such as primary and secondary organic aerosols and sulfate aerosols); dust, 161 

biomass burning smoke; and sea salt (Lynch et al, 2016).  162 

The 2003-2018 NAAPS reanalysis version 1 (v1) (Lynch et al., 2016) is a modified version 163 

of the operational NAAPS model. In this version, quality-controlled retrievals of AOD from 164 

MODIS and MISR (Zhang et al., 2006; Hyer et al., 2011; Shi et al., 2014) are assimilated into 165 

NAAPS through the Naval Research Laboratory Atmospheric Variation Data Assimilation 166 

System-AOD system (NAVDAS-AOD; e.g., Zhang et al., 2008; Zhang et al., 2011; Zhang et al., 167 

2014). Aerosol source functions, including biomass burning, smoke and dust emissions, are tuned 168 

regionally based on the AERONET data. Other aerosol processes, including dry deposition over 169 

water, are also tuned based on AOD data assimilation correction fields.  NOAA Climate Prediction 170 

Center (CPC) MORPHing (CMORPH) precipitation data are used to constrain the wet removal 171 

process within the tropics (Joyce et al., 2004).  The usage of CMORPH avoids the ubiquitous 172 

precipitation bias that exists in all global atmospheric models (e.g. Dai, 2006) and is proven to 173 

improve aerosol wet deposition, therefore yielding better AOD (Xian et al., 2009). The reanalysis 174 

agrees reasonably well with AERONET data on a global scale (Lynch et al., 2016) and also 175 

reproduces AOD trends that are in a good agreement with satellite based analysis (e.g., Zhang and 176 

Reid, 2010; Hsu et al., 2012). In this study, we use a free running version of NAAPS reanalysis v1 177 

without AOD assimilation to provide aerosol fields every 6 hours at 1x1 (Latitude/Longitude) 178 

resolution.  179 

 180 

2.4 VLIDORT radiative transfer code 181 

VLIDORT is a linearized, multiple-scatter radiative transfer model for the simultaneous 182 

generation of Stokes 4-vectors and analytically-derived Jacobians (weighting functions) of these 183 
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4-vectors with respect to any atmospheric or surface property (Spurr, 2006). The model uses 184 

discrete-ordinate methods to solve the polarized plane-parallel RT equations in a multi-layer 185 

atmosphere, plus the solution of a boundary value problem and subsequent source-function 186 

integration to obtain radiation fields at any geometry and any atmospheric level. VLIDORT has a 187 

“pseudo-spherical” ansatz: the treatment of solar-beam attenuation in a spherical-shell atmosphere 188 

before scattering. Single-scattering in VLIDORT is accurate for both line-of-sight and solar-beam 189 

spherical geometry. The model has a full thermal emission capability. VLIDORT has two 190 

supplements, one dealing with bidirectional (non-Lambertian) reflection at the surface, and the 191 

other with the inclusion of surface light sources (SIF or water-leaving radiances). Full details on 192 

the VLIDORT model may be found in a recent review paper (Spurr and Christi, 2019, and 193 

references to VLIDORT therein). 194 

VLIDORT is used to simulate the AI in this study.  Simulations at 354 and 388 nm are 195 

performed both for Rayleigh atmospheres, and for scenarios with aerosol loadings (four mass-196 

mixing profiles for different aerosol types) taken from the NAAPS model. In addition to the AI, 197 

Jacobian calculations are needed with respect to these aerosol profiles. Firstly, radiance Jacobians 198 

with respect to these four mass-mixing profiles are computed analytically using VLIDORT’s 199 

linearization facility, and secondly the associated Jacobians of AI are further derived through a 200 

second VLIDORT linearization with respect to the Lambertian-equivalent reflectivity. The details 201 

of this process is given in the next section  202 

 203 

3.0 OMI AI assimilation system 204 

The OMI assimilation system has three components: a forward model, a 3-D variational 205 

assimilation system, and a post-processing system.  Based on the background NAAPS 3-D aerosol 206 
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concentrations for dust, smoke, ABF, and sea salt aerosols, the forward model not only computes 207 

the associated AI values, but also their Jacobians of AI with respect to the four aerosol mass-208 

loading profiles.  The 3-D variational assimilation system is a modified 3-D AOD system (Zhang 209 

et al., 2008; 2011; 2014) that computes increments for dust and smoke aerosol concentrations 210 

based on OMI AI data.  The post-processing system constructs a new NAAPS analysis based on 211 

the background NAAPS aerosol concentrations and increments as derived from the 3-D variational 212 

assimilation system. Details of the forward model and the modified NAVDAS-AOD system are 213 

described in this section.   214 

 215 

3.1 Forward model for simulating OMI AI 216 

To construct an AI-DA system, a forward model is needed to simulate AI using aerosol 217 

concentrations from NAAPS.  In this study, the forward model is built around the VLIDORT 218 

model, following a similar method to that suggested in Buchard et al. (2015).  Here VLIDORT is 219 

configured to compute OMI radiances and Jacobians as functions of the observational conditions 220 

at 354 and 388 nm, using geolocation information from OMI data such as satellite zenith, solar 221 

zenith and relative azimuth angles, as well as ancillary OMI data (surface albedos at 354 and 388 222 

nm).   223 

To convert from NAAPS mass-loading concentrations to aerosol extinction and scattering 224 

profiles, we require aerosol optical properties for the four species at 354 and 388 nm, which are 225 

summarized in Table 1.  The optical properties of ABF (assumed to be sulfate in this study), sea 226 

salt, dust and smoke aerosols, including mass extinction cross sections and single scattering 227 

albedos at 354 and 388 nm are adapted from NASA’s Goddard Earth Observing System version 5 228 

(GEOS-5) model (e.g. Colarco et al., 2014; Buchard et al., 2015).  Note that the study period is 229 
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July and August of 2007 over Africa, coinciding with the early biomass burning season associated 230 

with lower single scattering albedo values (Eck et al., 2013).  With that in mind, we choose a quite 231 

low value of 0.85 for the single-scattering albedo value at 354nm (e.g. Eck et al., 2013; Cochrane 232 

et al., 2019).  A slightly higher single scattering albedo of 0.86 is assumed at 388 nm.  The slight 233 

increase in single scattering albedo from 354 to 388 nm has also been observed from Solar Spectral 234 

Flux Radiometer (SSFR) observations during the recent NASA ObseRvations of CLouds above 235 

Aerosols and their intEractionS (ORACLES) Campaign (Pistone et al., 2019).  Scattering matrices 236 

for dust, smoke, sea salt and sulfate (to represent ABF) aerosols are based on associated expansion 237 

coefficients (e.g. Colarco et al., 2014; Buchard et al., 2015) taken from NASA’s GEOS-5 model. 238 

Also to reduce computational expenses, scalar radiative transfer calculations are performed. 239 

To simulate OMI AI, the Lambertian Equivalent Reflectivity (LER) at 388 nm (R388) is 240 

needed for estimating LER at 354 nm.  The R388 is calculated from VLIDORT, based on equation 241 

2 below, adapted from Buchard et al. (2015), or 242 

𝑅388 =
𝐼𝑎𝑒𝑟388(𝜌388)−𝐼𝑟𝑎𝑦388(0)

𝑇+𝑆𝑏(𝐼𝑎𝑒𝑟388(𝜌388)−𝐼𝑟𝑎𝑦388(0))
  . (2)  243 

Iray388(0) is the calculated path radiance at 388 nm assuming a Rayleigh atmosphere with surface 244 

albedo 0.  T and Sb are the calculated transmittance and spherical albedo at 388 nm.  Iaer388(ρ388) is 245 

the computed radiance including 3-D aerosol fields from NAAPS and the 388 nm surface albedo 246 

from OMI data.  In Buchard et al. (2015), an adjusting factor is applied to R388 by adding the 247 

difference between climatological surface albedos at 354 and 388 nm.  The similar approach is 248 

also adopted in this study, as shown in their Equation 3.    249 

 𝑅388
′ = 𝑅388 − (𝜌388 − 𝜌354)   . (3) 250 
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Here, Rʹ388 is surface albedo adjusted Lambertian Equivalent Reflectivity at 388 nm. ρ388 and ρ354 251 

are surface albedo values at 388 and 354 nm channels that are obtained from the OMI OMAERUV 252 

data.  Finally, the simulated AI (AInaaps) is given by 253 

𝐴𝐼𝑛𝑎𝑎𝑝𝑠 = − 100 log10
𝐼𝑎𝑒𝑟354(𝜌354)

𝐼𝑟𝑎𝑦354(𝑅388
′ )

   . (4) 254 

Here, Iaer354(ρ354) is the calculated radiance at 354 nm using NAAPS aerosol fields as well as the 255 

OMI-reported surface albedo at 354 nm (ρ354).  Iray354(Rʹ388) is the calculated radiance assuming a 256 

Rayleigh atmosphere and the derived value of Rʹ388 as surface albedo (Buchard et al., 2015). 257 

The forward model-simulated OMI AI values are inter-compared with OMI AI values as 258 

shown in Figure 1 for the study region.  A total of one month (01-31 July 2007) of NAAPS 259 

reanalysis data and OMI AI data were used.  Note that OMI AI data over both cloud-free and 260 

cloudy skies were used.  Since surface albedos included in the OMI data represent reflectivities 261 

under clear-sky situations, the albedo under cloudy sky is then computed 262 

𝜌𝑐𝑙𝑑 = 𝜌𝑐𝑙𝑟 ∗ (1 − 𝑓𝑐) + 0.8 ∗ 𝑓𝑐  . (5) 263 

Here, ρclr and fc are the clear sky surface albedo (e.g. ρ354 or ρ388) and the cloud fraction, both 264 

quantities obtained from the OMI dataset.  Clouds are assumed to be tropospheric (close to the 265 

surface) with an UV albedo of 0.8, such that this equation applies to both the 354 and 388 nm 266 

channels. 267 

 Figure 1a shows the spatial distribution of NAAPS AOD over Central and North Africa, 268 

using collocated NAAPS and OMI AI datasets.  OMI AI data are grid-averaged in 1x1 269 

(latitude/longitude) bins.  Also, we focus over Africa in this paper as this area includes dust plumes 270 

over deserts and smoke plumes overlying stratus cloud decks.  The Arctic is not included as 271 

additional efforts may be needed to fully understand properties of sea ice reflectivity; we leave this 272 

topic for a future paper. Only bins that have valid NAAPS and OMI AI data are used to generate 273 
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Figure 1. Dust plumes are visible over North Africa and the Persian Gulf, and a smoke plume from 274 

Central Africa is also evident.  These UV-absorbing aerosol plumes are also captured by OMI AI, 275 

as seen in Figure 1c.  Shown in Figure 1b are the simulated OMI AI using the NAAPS aerosol 276 

fields and viewing geometries and surface albedos from OMI.  The simulated OMI AI shows 277 

similar patterns to those derived from OMI, especially for the dust plumes over North Africa and 278 

smoke plumes over Central Africa.  An overall correlation of 0.785 is found between simulated 279 

and satellite-retrieved OMI AI values, as shown in Figure 1, suggesting the forward model is 280 

functioning reasonably as designed. 281 

 282 

3.2 Forward model for Jacobians of AI  283 

Jacobians of OMI AI with respect to aerosol mass concentrations are needed for the OMI 284 

AI assimilation system. In this study, AI Jacobians (K) are calculated from radiance Jacobians 285 

with respect to aerosol mass concentrations for four aerosol species (smoke, dust, ABF/sulfate, 286 

sea-salt) at 354 nm (𝐾354,𝑛𝑘 =
𝜕𝐼𝑎𝑒𝑟354

𝜕𝑀𝑛𝑘
 ) and 388 nm (𝐾388,𝑛𝑘 =

𝜕𝐼𝑎𝑒𝑟388

𝜕𝑀𝑛𝑘
 ) wavelengths.  Here 𝑀𝑛𝑘 287 

is the mass concentration for aerosol type, k, and for vertical layer, n.  Iaer354 and Iaer388 are radiances 288 

for the 354 and 388 nm channels, respectively.  K354,nk and K388,nk are the corresponding radiance 289 

Jacobians at 354 and 388 nm, respectively.  AI Jacobians can then be calculated by analytic 290 

differentiation of the basic formula in Equation (1), and, after some algebra, we find the following 291 

result: 292 

𝜕𝐴𝐼

𝜕𝑀𝑛𝑘
= 𝒜1𝐾354,𝑛𝑘(𝜌354) + 𝒜2𝐾388,𝑛𝑘(𝜌388)    .  (6) 293 

Here, 𝒜1 and 𝒜2 are given respectively by Equations (7) and (8), as 294 

𝒜1 =  (−
100

𝐼𝑎𝑒𝑟354(𝜌354)×ln 10
)      , and  (7) 295 
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𝒜2 = (−
100

𝐼𝑟𝑎𝑦354(𝑅388
′ )×ln 10

)
𝜕𝐼𝑟𝑎𝑦354(𝑅388

′ )

𝜕𝑅
[

(1−𝑆388𝑅388)2

𝑇388
]                    . (8) 296 

Based on these equations, radiance Jacobians with respect to aerosol particles, K354,nk and K388,nk, 297 

are computed at 354 and 388 nm, respectively, using OMI-reported surface albedo values (ρ354 298 

and ρ388), followed by a calculation of the albedo Jacobian 
𝜕𝐼𝑎𝑒𝑟354(𝑅388

′ )

𝜕𝑅
 at 354 nm. 299 

To check this analytic Jacobian calculation in Eqns. (6)-(8), we compute the aerosol AI 300 

Jacobians using a finite difference (FD) method.  Here, the derivative of AI as a function of aerosol 301 

concentration of a species, k, in layer n, is computed using  302 

𝜕𝐴𝐼

𝜕𝑀𝑛𝑘
=

(𝐴𝐼−𝐴𝐼′)

(𝐶𝑛𝑘−𝐶𝑛𝑘
′ )

    . (9) 303 

Here Cnk and Cnk’ are the baseline and perturbed aerosol concentrations, respectively, and AI and 304 

AI’ are computed using Cnk and Cnk’, respectively.   305 

Figure 2b shows the comparison of Jacobians of dust aerosols estimated from the analytic 306 

and the FD solutions.  Dust, smoke, ABF and sea salt aerosol concentrations as a function of 307 

altitude are shown in Figure 2a.  To compute FD Jacobians with respect to dust aerosols, a 10% 308 

perturbation is introduced in the dust profiles.  A very close match is found between analytic and 309 

FD Jacobians.  This validates the analytical solution used in the study.  The analytic solution is of 310 

course much faster, as a single call to VLIDORT will deliver all necessary Jacobians at one 311 

wavelength, as compared to 97 separate calls to VLIDORT with the FD calculation (baseline; 4 312 

species perturbations in the 24-layer atmosphere). 313 

 314 

3.2 The variational OMI AI assimilation system 315 

The OMI AI assimilation system is based on AI simulations (with Jacobians) from the 316 

forward model. Two principles underlay the assimilation procedure. First, we assume that OMI AI 317 
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is sensitive to UV-absorbing aerosol particles, such as NAAPS smoke and dust, or that only smoke 318 

and dust are injected high enough into the troposphere to impact AI.  Therefore, innovations are 319 

limited to modifications of dust and smoke aerosol properties.  For classes that do not strongly 320 

project onto AI, such as sea salt and ABF aerosols, aerosol concentrations are not modified during 321 

the process. Second, contributions of smoke/dust aerosols to AI (AIsmoke / AIdust) prior to 322 

assimilation are estimated by multiplying smoke/dust aerosol concentrations from NAAPS with 323 

Jacobians of AI respective of smoke/dust aerosols.  The ratio of AI innovation from smoke aerosols 324 

(AIsmoke) to total AI innovation (AI or OMI AI - AInaaps) is assumed to be the ratio of AIsmoke to 325 

AIsmoke + AIdust.  The same assumption holds for dust aerosols.   326 

Given these two principles, the overall design concept for the OMI AI assimilation can be 327 

expressed as 328 

 329 

𝐶𝑎 = 𝐶𝑏+ 330 

𝑃𝑑𝑢𝑠𝑡𝑯𝑑𝑢𝑠𝑡 
𝑇

𝑯𝑑𝑢𝑠𝑡 
𝑇𝑃𝑑𝑢𝑠𝑡𝑯𝑑𝑢𝑠𝑡+𝑅

[y-H(𝐶𝑏)]×
𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 + 331 

 
𝑃𝑠𝑚𝑘𝑯𝑠𝑚𝑘 

𝑇

𝑯𝑠𝑚𝑘 
𝑇𝑃𝑠𝑚𝑘𝑯𝑠𝑚𝑘+𝑅

[y-H(𝐶𝑏)]×
𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 ,        (10) 332 

 333 

where Cb and Ca are NAAPS aerosol concentrations for the analysis and background fields, 334 

respectively, Cdust
b and Csmk

b are background NAAPS particle mass concentrations for dust and 335 

smoke, H(C) is the NAAPS forward model that links NAAPS particle mass concentrations to AI, 336 

and H is defined as H(C)/C, which is the Jacobian matrix of AI with respect to aerosol 337 

concentrations.  Y is the observed OMI AI, and Y- H(𝐶𝑏) is the innovation of AI, representing the 338 

difference between observed and modeled AI values.   339 
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The 
𝑯𝑑𝑢𝑠𝑡𝐶𝑑𝑢𝑠𝑡 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 and  
𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 terms are the fractional contribution 340 

of innovation from dust and smoke aerosol, respectively.  These terms are estimated using NAAPS 341 

aerosol concentrations for relatively high aerosol loading cases (AOD > 0.15).  For low aerosol 342 

loading (AOD < 0.15) as reported from NAAPS, it is possible that NAAPS could underestimate 343 

aerosol concentrations.  Thus, the fractional contribution of innovations is assigned to 1 for the 344 

dominant aerosol type based on a NAAPS aerosol climatology (Zhang et al., 2008).  Note that the 345 

term [y-H(𝐶𝑏)]×
𝑯𝑑𝑢𝑠𝑡𝐶𝑑𝑢𝑠𝑡 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 is in observational space.  Pdust and Psmk are model error 346 

covariance matrices for dust and smoke aerosols (e.g. Zhang et al., 2008; 2011; 2014).  R is the 347 

observation-based error covariance.  The 
𝑃𝑑𝑢𝑠𝑡𝑯𝑑𝑢𝑠𝑡 

𝑇

𝑯𝑑𝑢𝑠𝑡 
𝑇𝑃𝑑𝑢𝑠𝑡𝑯𝑑𝑢𝑠𝑡+𝑅

[y-H(𝐶𝑏)]×
𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 and  348 

𝑃𝑠𝑚𝑘𝑯𝑠𝑚𝑘 
𝑇

𝑯𝑠𝑚𝑘 
𝑇𝑃𝑠𝑚𝑘𝑯𝑠𝑚𝑘+𝑅

[y-H(𝐶𝑏)]×
𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏  terms represent the estimated increments in 349 

model space.    350 

The background error covariance matrix is constructed from modeled error variances and 351 

error correlations, following the methodology in previous studies (Zhang et al., 2008; 2011).  The 352 

horizontal background error covariance is generated using the second-order regressive function 353 

(SOAR), as shown in Equation 11 (Zhang et al., 2008), or 354 

 𝐶(𝑥, 𝑦) = (1 + 𝑅𝑥𝑦/𝐿)exp (−
𝑅𝑥𝑦

𝐿
) .  (11) 355 

Here, x and y are two given locations, and Rxy is the great circle distance.  L is the averaged error 356 

correlation length and is set to 200 km based on Zhang et al. (2008).  Similarly, the vertical error 357 

correlation between two pressure levels p1 and p2 is also based on the SOAR function, this time in 358 

pressure space, based on Zhang et al., (2011), is 359 

𝐶(𝑝1, 𝑝2) = [1 + |∫
dln 𝑝

𝐿

𝑝2

𝑝1
|]𝑒

−|∫
dln 𝑝

𝐿

𝑝2
𝑝1

|
 .  (12) 360 
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Here, L is a unit-less number representing vertical correlation length and is set to 0.015.   361 

The horizontal error variance is based on the RMS error of aerosol concentrations, which 362 

is arbitrarily set to 100 µg/m3 for near-surface dust aerosols (ground to 700 hPa).  The RMS error 363 

of dust aerosol mass is assumed to decrease as altitude increases, and is set to 50%, 25%, and 1% 364 

of the near-surface values for 500-700, 350-500 and 70-350 hPa respectively. Note that different 365 

aerosol species have different mass extinction values.  Here we assume the modeled error in 366 

aerosol extinction is the same for different aerosol species and thus, the RMS error of smoke 367 

aerosol concentration is scaled by mass extinction cross section ratio between smoke and dust 368 

aerosols.  The observational errors are assumed to be non-correlated in this study (e.g. Zhang et 369 

al., 2008).  OMI AI values over cloud-free and cloudy skies are used in the study and therefore, 370 

RMS errors of AI are required for both these situations.  Note, as suggested by Yu et al. (2012), 371 

for the same above cloud CALIOP AOD, variations in AI are found to be of the order of 1 for 372 

cloud optical depth changing from 2 to 20.  Thus, we assume the RMS error of OMI AI is 0.5 for 373 

cloud-free skies, increasing linearly with cloud fraction up to a value of 1 for the 100% overcast.   374 

Lastly, we assume that detectable UV absorbing aerosols have AI values larger than 0.8 375 

(e.g. Torres et al., 2013).  Therefore, for regions with OMI AI values larger than 0.8, UV absorbing 376 

aerosol particles can both be added or removed from air columns based on innovations, which are 377 

the differences between OMI reported and simulated AI values.  For regions with OMI AI values 378 

less than 0.8, innovations are only used to remove UV absorbing aerosol particles from air 379 

columns. 380 

 381 

4.0 System evaluation & discussion 382 

4.1 Evaluating the performance of the AI assimilation system over Africa 383 
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Using two months of OMI data (July-August, 2007), the performance of OMI AI 384 

assimilation was evaluated around the Africa region (20S-40N; 60W-50E).  The study region 385 

was chosen to examine the performance of OMI AI data assimilation over bright surfaces such as 386 

the deserts of North Africa, as well as study aerosol advection over clouds, in this case smoke off 387 

the west coast of Southern Africa.  In this demonstration, two NAAPS runs were performed for 388 

the period of July 1 to August 31, 2007, one with and one without the use of OMI AI assimilation 389 

(AI-DA run).  Both runs were initialized with the use of NAAPS reanalysis data at 0000 UTC 1 390 

July and do not include any other form of aerosol assimilation.   391 

Figure 3a shows the true color composite from Aqua MODIS for July 28, 2007 over the 392 

study region that is obtained from the NASA world view site 393 

(https://worldview.earthdata.nasa.gov/; last accessed June 2020).  Visible in the image are the dust 394 

plumes from North Africa transported to the Atlantic Ocean, and smoke plumes from Central and 395 

Southern Africa transported to the west coast of South Africa.  As indicated by the aggregated 396 

OMI AI data for 1200 UTC 28 July 2007 (Figure 3b), dust plumes from North Africa are 397 

transported to the North corner of the west coast of North Africa.  Smoke plumes are also visible 398 

in the OMI AI plot in Southern Africa and are transported to the west coast and over the Atlantic.  399 

Comparing Figure 3a and Figure 3b, smoke plumes, as identified from OMI, are also found over 400 

cloudy regions as indicated from the MODIS visible imagery.  Note that Figure 3b shows the OMI 401 

AI data used in the assimilation process and again, AI retrievals over both cloud free and cloudy 402 

conditions are included as suggested by Figure 3b.   403 

Figure 3c is the 1200 UTC 28 July 2007 NAAPS AOD product from the natural run.  In 404 

comparison, Figure 3d shows the same situation, this time with the use of OMI AI data 405 

assimilation.  Comparing 3b with 3d, dust and smoke aerosol patterns as shown from OMI AI 406 

https://worldview.earthdata.nasa.gov/
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resemble more closely the NAAPS AOD fields after AI assimilation.  Over the northeast coast of 407 

Africa, heavy aerosol plumes, as hinted at in NAAPS AOD from the natural run (Figure 3c), cover 408 

larger spatial areas than those inferred from OMI AI data.  In comparison, NAAPS AOD patterns 409 

from the OMI AI data assimilation cycle closely resemble aerosol patterns as suggested from OMI 410 

AI data.  Also shown in Figures 3e and 3f are the simulated AI using NAAPS data from the natural 411 

and OMI AI DA runs (data from Figures 3c and 3d) respectively.  Clearly, with the use of NAAPS 412 

data from the natural run, simulated OMI AI are overestimated in comparison with OMI AI data 413 

(Figure 3b).  Simulated AI patterns with the used of NAAPS data from the OMI AI DA run rather 414 

closely resemble AI patterns from the OMI data, again, indicating the OMI AI DA system is 415 

functioning reasonably as designed. 416 

The performance of AI-DA is also evaluated using OMI AI for the whole study period, as 417 

shown in Figure 4.  These data are constructed using collocated OMI AI and NAAPS data 418 

according to the conditions introduced in Sec. 3.  Here, Figures 4a and 4e are spatial distributions 419 

of two-monthly averaged (July and August 2007) AODs for NAAPS AI-DA and natural runs, 420 

respectively.  Figure 4b is the spatial distribution of the simulated AI using NAAPS data from AI-421 

DA runs, and Figure 4c is the spatial distribution of OMI AI for the two-month period. Figures 4f 422 

and 4g show similar plots to those in Figures 4c and 4d, but this time for NAAPS natural runs.  423 

While simulated AI values from NAAPS natural runs (Figure 4f) are overestimated compared to 424 

OMI AI values (Figure 4g) for the study region, the patterns of simulated AI from NAAPS AI-DA 425 

runs (Figure 4b) are similar to patterns shown from OMI AI (Figure 4c).  This is also seen from 426 

Figure 4d, which is the difference between simulated AI from NAAPS AI-DA runs and OMI AI.  427 

In contrast with the situation in Figure 4d, Figure 4h, which is the difference between simulated 428 

AI from NAAPS natural runs and OMI AI, shows much larger differences in AI values. 429 
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While it is not too difficult to make the model mimic the AI product, proof of real skill lies 430 

in any improvements to AOD calculations.  To this end, the performance of OMI AI assimilation 431 

was evaluated with the use of AERONET data.  Figure 5a shows the inter-comparison of NAAPS 432 

AOD versus AERONET AOD at 0.55 µm.  A total of 1443 collocated pairs of NAAPS and 433 

AERONET data were compiled for the study region over the two months test period.  Comparing 434 

with AERONET data, NAAPS AOD from the natural run had a correlation of 0.68, a mean 435 

absolute error in AOD of 0.154, and an RMSE of 0.220.  In comparison, with AI assimilation, 436 

NAAPS AOD correlations to AERONET increased to 0.74 (Figure 5b), the absolute error reduced 437 

to 0.104, and RMSE reduced to 0.156, both roughly a 30% reduction.  Note that AERONET AOD 438 

values are only available for lines-of-sight that are free of cloud presence for the sun photometer 439 

instruments.  Also, the slope of AERONET versus NAAPS AOD is 0.87 for the NAAPS natural 440 

runs, and a similar slope of 0.84 is found for the NAAPS AI-DA runs. 441 

 442 

4.2 Inter-comparison with AOD data assimilation 443 

Typically, NAAPS reanalyses are constructed through assimilation of MISR and MODIS 444 

aerosol products (NAAPS AOD assimilation).  Thus, the performances of NAAPS AOD and AI-445 

DA assimilations are compared against AERONET data.  Figure 5c shows the comparison of 446 

AERONET AOD and NAAPS AOD after AOD assimilation, while Figure 5b shows a similar plot 447 

but using NAAPS data from AI-DA.  Note that the same version of the NAAPS model with the 448 

same temporal and spatial resolutions, and driven by the same meteorological data, were used in 449 

constructing Figure 5 and thus the differences in Figures 5a, 5b and 5c only result from different 450 

aerosol data assimilation methods implemented (no data assimilation for the natural run).  A better 451 

correlation between AERONET and NAAPS data of 0.79 is found using AOD data assimilation.  452 

In comparison, the correlation is 0.74  for the AI-DA runs.  Slightly better RMSE (0.140 versus 453 



 21 

0.156) and absolute error (0.095 versus 0.104) values are also found for the AOD data assimilation 454 

runs.  This result is not surprising as OMI AI provides only a proxy for aerosol properties while 455 

passive-based AOD retrievals are often considered as a more reliable parameter for representing 456 

column-integrated aerosol properties. But still, the evaluation efforts are over cloud-free line-of-457 

sight as detected from AERONET, AI DA may further assist traditional AOD data assimilation by 458 

providing AI assimilation over cloudy regions. 459 

 460 

4.3 Sensitivity test 461 

As mentioned in Section 3, aerosol properties for non-smoke aerosol types were obtained 462 

from the NASA GEOS-5 model (e.g. Colarco et al., 2014; Buchard et al., 2015). Yet, different 463 

smoke aerosol SSA values are used in this study, as values for central Africa have a strong seasonal 464 

dependency (e.g. Eck et al., 2013). While SSA values of 0.85 and 0.86 are used for the 354 and 465 

388 nm channels, respectively, in our study, we have also examined the sensitivity of simulated 466 

OMI AI with respect to differing SSA values (Figure 6).  Figures 6a-c show the simulated AI at 467 

1200 UTC 28 July 2007 using NAAPS reanalysis data (Lynch et al, 2016) for three scenarios: SSA 468 

values at 354 and 388 nm of 0.84 and 0.84 (Figure 6a), 0.85 and 0.85 (Figure 6b) and 0.86 and 469 

0.86 (Figure 6c).  Over the central Africa area, where smoke plumes are expected, simulated OMI 470 

AI patterns are similar for Figures 6a and 6b, but reduced values in AI are found when using higher 471 

SSA values of 0.86 at both 354 and 388 nm.  This is further confirmed by the averaged AI for the 472 

smoke region over central Africa (14.5 to 40.5 S latitude and 10.5 to 30.5 E longitude; 473 

indicated using the black box in Figure 6f) of 0.96, 0.94 and 0.78 for Figures 6a, 6b and 6c 474 

respectively. 475 
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Figures 6d-f show the sensitivity for adjustments of the SSA values at 388nm while 476 

maintaining a fixed SSA value of 0.85 at 354 nm.  Here the SSA values at 388 nm are set to 0.85, 477 

0.855 and 0.86 for Figures 6d, 6e and 6f respectively.  Interestingly, the spectral dependence of 478 

SSA seems to affect the simulated AI significantly, and this phenomenon has also been reported 479 

by previous studies (e.g. Hammer et al., 2017).  The averaged AI values over central Africa (again, 480 

indicated by the black box in Figure 6f) are 0.94, 1.11 and 1.32 for 388 nm SSAs of 0.85, 0.855 481 

and 0.86, respectively. This exercise suggests that simulated AI is a strong function of SSA, so 482 

that both the spectral dependence of SSA values at 354 and 388 nm and reliable SSA values are 483 

needed on a regional basis for future applications. 484 

Interestingly, although simulated AI values are significantly affected by perturbing SSA 485 

values as shown in Figure 6, less significant impacts are observed for NAAPS AOD.  This is found 486 

by running the OMI AI DA for 1200UTC, July 28, 2015 for SSA values used in generating Figure 487 

6.  For example, for the black box highlighted region in Figure 6f, the averaged values for the 488 

simulated OMI AI are 0.96, 0.94 and 0.78 for using SSA values at 354 / 388 nm channels of 0.84 489 

/ 0.84, 0.85 / 0.85 and 0.86 / 0.86, respectively.  The corresponding NAAPS AODs are found to 490 

be 0.559, 0.560 and 0.585 after OMI AI DA, which is a change of less than 5%.  Similar, by fixing 491 

the SSA value of the 354 nm channel as 0.85 and perturbing SSA values at 388 nm from 0.85 to 492 

0.86, a ~30% change is found in simulated OMI AI (from 0.94 to 1.32), yet a ~10% change is 493 

found for the NAAPS AOD (from 0.560 to 0.504) after OMI AI DA.   494 

It is also of interest to investigate the changes in aerosol vertical distributions due to the 495 

OMI AI DA.  For this exercise, we selected the 1200 UTC 28 July 2007 case and compared vertical 496 

distributions of smoke and dust aerosols near the peak AI value of the smoke plume (9.5S and 497 

20.5E) for the NAAPS natural and AI DA runs (Figure 7a). Note that the differences between 498 
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OMI DA and natural runs as shown in Figure 7 are essentially an integrated effect of OMI AI DA 499 

from 00Z, July 01 to 12 Z, July 28, 2007.  As shown in Figure 7a, the corrections to dust and 500 

smoke aerosol concentrations from the AI DA system seem to be systematic changes across the 501 

majority of vertical layers, instead of moving dust or smoke aerosol plumes vertically. As dust 502 

aerosol concentrations are reduced at all layers and a systematic correction to smoke aerosol 503 

concentrations, although non-linear, is also observed.  AI assimilation helps reduce the amount of 504 

upper troposphere dust (likely to be artifact) but does change the layer centroid slightly upwards.   505 

We have also evaluated NAAPS vertical distributions near a peak dust plume region (25.5N and 506 

12.5W) for the 12Z 28 July 2007 case as shown in Figure 7b.  Similar to Figure 7a, a non-linear 507 

correction to dust aerosol concentrations is also observed across the vertical domain. 508 

 509 

4.4 Issues and discussions 510 

The OMI AI data assimilation system is a proxy for all-sky, all-band modeling system 511 

radiance assimilation. It contains all the necessary components for such radiance assimilation, 512 

including a forward model for simulating radiances and AI values and their Jacobians, based on a 513 

full vector linearized radiative transfer model called for every observation.  Therefore, the 514 

computational burden is a direct issue associated with the deployment of calls to a radiative transfer 515 

model for each observation.  For the study area in this work, after binning OMI AI data into a 516 

11 (Latitude/Longitude) product, it still takes about ~1 CPU day for NAAPS to run for one 517 

month of model time.  In comparison, the time scale for running AOD assimilation for 1 month is 518 

at the hourly level. Clearly, there will be an unavoidable computational burden of some sort for 519 

OMI AI assimilation and by extension, for future radiance assimilation in the UV/visible spectrum 520 

for aerosol analyses.  Performance enhancement methods, such as parallel processing (the 521 
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VLIDORT software is thread-safe and can be used in parallel environments such as OpenMP), or 522 

fast look-up-table extraction based on neural-networks and trained data sets of forward simulation, 523 

must be explored in order to enable such assimilation applications in near real time on a global 524 

scale. 525 

In contrast with the assimilation of retrieved aerosol properties, both aerosol absorption 526 

and scattering need to be accounted for when assimilating radiance or OMI AI in the UV spectrum.  527 

This requires the inclusion of more dynamic aerosol optical properties into the data assimilation 528 

process, and properties that vary with region and season.  As noted already, even for biomass 529 

burning aerosols over South Africa, lower single scattering albedo values were found at earlier 530 

stages of burning seasons (e.g. Eck et al., 2013). A look-up-table of aerosol optical properties as 531 

functions of region and season will be needed for global implications of OMI AI as well as future 532 

radiance assimilation for aerosol modeling.   533 

OMI AI is sensitive to above-cloud UV-absorbing aerosols (e.g. Yu et al., 2012; Alfaro-534 

Contreras et al., 2014), and therefore, OMI AI values over cloudy scenes were also used in this 535 

study.  However, OMI AI cannot be used to infer aerosol properties for aerosol plumes beneath a 536 

cloud deck.  For regions with high clouds, the use of OMI AI data assimilation will likely result in 537 

an underestimation of AOD as below-cloud aerosol plumes are not accounted for.  Therefore, only 538 

OMI AI data over low cloud scenes are to be used for aerosol assimilation efforts.  In addition, 539 

although some quality assurance steps were applied in this study for the OMI AI data, lower AI 540 

values were observed over glint regions near the west coast of Africa. Abnormally high OMI AI 541 

values are also seen near the Arctic region - this may be related to the presence of floating ice 542 

sheets.  Thus, innovative and detailed data screening and quality assurance steps are needed to 543 
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exclude potentially noisy OMI AI retrievals and for further application of OMI AI data 544 

assimilation on a global scale.   545 

Even with these known issues, OMI AI assimilation as presented in the study illustrates a 546 

new method for assimilating non-conventional aerosol products.  Bearing in mind that OMI AI 547 

assimilation is essentially radiance assimilation in the UV spectrum, this study demonstrates the 548 

potential of directly assimilating satellite radiance in the UV/visible spectrum for aerosol modeling 549 

and analyses.   550 

 551 

5.0 Conclusions 552 

The OMI aerosol index (AI), which measures the differences between simulated radiances 553 

over Rayleigh sky and observed radiances at 354 nm, has been used to detect the presence of 554 

absorbing aerosols over both dark and bright surfaces.  We have constructed a new assimilation 555 

system, based on the VLIDORT radiative transfer code as the major component of the forward 556 

model, for the direct assimilation of OMI AI. The aim is to improve accuracies of aerosol analyses 557 

over bright surfaces such as cloudy regions and deserts.  558 

The performance of the OMI AI data assimilation system was evaluated over South-Central 559 

and Northern Africa regions for the period of 01 July -31 August 2007. This evaluation was done 560 

through inter-comparing NAAPS analyses with and without the inclusion of OMI AI data 561 

assimilation.  Besides cloud-free AI retrievals over dark surfaces, OMI AI retrievals over desert 562 

regions and over areas were also considered. When compared against AERONET data, a total of 563 

~29% reduction in Root-Mean-Square-Error (RMSE) with a ~32% reduction in absolute error 564 

were found for NAAPS analyses with the use of OMI AI assimilation.  Also, NAAPS analyses 565 

with the inclusion of OMI AI data assimilation show similar aerosol patterns to those in the OMI 566 

AI data sets, showing that our OMI AI data assimilation system works as expected.   567 
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This study also suggests that NAAPS analyses with OMI AI data assimilation cannot out-568 

perform NAAPS reanalyses data that were incorporated with MODIS and MISR AOD 569 

assimilation, and validated against AERONET data.  This is not surprising, as OMI AI is only a 570 

proxy for the AOD and is sensitive to other factors such as surface albedo and aerosol vertical 571 

distribution.  Also, AERONET data are only available over cloud-free field of views, so the 572 

performance of our OMI AI data assimilation system over cloudy regions has not been evaluated. 573 

There are a number of issues arising from our study.  For example, aerosol optical 574 

properties are needed for the OMI AI-DA system - these have strong regional and temporal 575 

signatures that need to be carefully quantified before applying them to the AI-DA on a global scale.  576 

Also, OMI AI retrievals are rather noisy and contain known and unknown biases.  Abnormally 577 

high OMI AI values are found over mountain regions as well the polar regions.  Sporadic high AI 578 

values are also known to occur, for reasons that are still not properly understood.  Even though 579 

quality assurance steps were proposed in this study, detailed analysis of OMI AI data are needed 580 

for future implementation of OMI AI data assimilation for aerosol studies.     581 

Lastly, AI values are derived from radiances and thus, the AI-DA system presented in the 582 

study can be thought of as a radiance assimilation system for the UV spectrum.  This is because 583 

the AI-DA system contains all necessary components for radiance assimilation, based on a forward 584 

model for calculating not only simulated satellite radiances, but also the aerosol-profile Jacobians 585 

of these radiance, both quantities as functions of observation conditions.  This study is among the 586 

first attempts at radiance assimilation at the UV spectrum and indicates the future potential for 587 

direct radiance assimilation at the UV and visible spectra for aerosol analyses and forecasts.  588 

 589 
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Table 1.  Mass extinction cross-sections (σ, m2/g) and single scattering albedos (o) used in 828 

this study. 829 

 ABF Dust Smoke Sea Salt 

σ (354 nm) 7.81 0.56 6.91 0.52 

o (354 nm) 1.0 0.88 0.85 1.0 

σ (388 nm) 6.96 0.58 6.07 0.52 

o (388 nm) 1.0 0.91 0.86 1.0 

 830 

 831 
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Figure Captions 832 

 833 
Figure 1. (a) Spatial distribution of NAAPS AODs, using NAAPS reanalysis data from the 834 

collocated OMI and NAAPS dataset for July 2007.  (b).  Simulated AI using NAAPS reanalysis 835 

data as shown in (a).  (c). Spatial distribution of OMI AI using gridded OMI data from the 836 

collocated OMI and NAAPS dataset for July 2007.  Grey color highlights those 1x1 837 

(Latitude/Longitude) bins that have less than three collocated NAAPS and OMI AI data for the 838 

study period. 839 

Figure 2. (a). Vertical distributions of smoke, dust, anthropogenic and sea salt aerosols for the test 840 

case as shown in (b). (b) Scatter plot of Jacobians of AI as a function of dust concentration: analytic 841 

versus finite difference solutions. 842 

Figure 3. (a). Aqua MODIS true-color image over Central and North Africa for July 28, 2007.  843 

This composite was obtained from the NASA worldview site 844 

(https://worldview.earthdata.nasa.gov/). (b). Spatial distribution of Gridded OMI AI for 12 UTC, 845 

July 28, 2007. (c). Spatial distribution of NAAPS AOD from the NAAPS natural run for 12 UTC, 846 

July 28, 2007. (d). Similar to (c) but using NAAPS AOD from the AI-DA run. (e). Simulated AI 847 

using data from (c). (f). Simulated AI using data from (d). 848 

Figure 4. (a). Spatial distribution of NAAPS AOD using NAAPS data from the AI-DA runs for 849 

July and August 2007.  Only NAAPS data that have collocated OMI AI data are used. (b). Spatial 850 

distribution of simulated AI for July and August 2007 using NAAPS data from the AI-DA runs.  851 

(c). Spatial distribution of gridded OMI AI for July and August 2007. (d). Differences between 852 

Figures 4(b) and 4(c).  (e-h) Similar to Figures 4(a)-4(d) but using NAAPS natural runs.  Grey 853 

color highlights those 1x1 (Latitude/Longitude) bins that have less than three collocated NAAPS 854 

and OMI AI data for the study period. 855 

https://worldview.earthdata.nasa.gov/
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Figure 5. (a). Scatter plot of AERONET and NAAPS AOD (0.55 µm) using NAAPS data from 856 

the natural runs for July-August 2007 over the study region.  (b). Similar to Figure 5(a) but using 857 

NAAPS data from the AI-DA runs. (c). Similar to Figure 5(a) but with AODs taken from the 858 

NAAPS reanalysis. 859 

Figure 6. Spatial distributions of simulated AI at 12 Z on July 28, 2007 using NAAPS reanalysis 860 

data, with single scattering albedos of smoke aerosol at 354 and 388 nm taken to be: (a) 0.84 and 861 

0.84; (b) 0.85 and 0.85; (c) 0.86 and 0.86; (d) 0.85 and 0.85; (e) 0.85, 0.855; (f) 0.85 and 0.86. 862 

Figure 7. (a). Vertical distributions of smoke and dust aerosol concentrations over 9.5S and 863 

10.5E at 12 Z on July 28, 2007 for both natural and AI DA runs.  (b).  Similar as (a) but over 864 

25.5N and 12.5W. 865 

 866 

  867 
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 868 

 869 

 870 
Figure 1. (a) Spatial distribution of NAAPS AODs, using NAAPS reanalysis data from the collocated 

OMI and NAAPS dataset for July 2007.  (b).  Simulated AI using NAAPS reanalysis data as shown in (a).  

(c). Spatial distribution of OMI AI using gridded OMI data from the collocated OMI and NAAPS dataset 

for July 2007.  Grey color highlights those 1x1 (Latitude/Longitude) bins that have less than three 

collocated NAAPS and OMI AI data for the study period. 
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 871 

 872 

Figure 2. (a). Vertical distributions of smoke, dust, anthropogenic and sea salt aerosols for the test 873 
case as shown in (b). (b) Scatter plot of Jacobians of AI as a function of dust concentration: analytic 874 

versus finite difference solutions. 875 

 876 

 877 

 878 

 879 

 880 
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 881 

 882 

 883 

Figure 3. (a). Aqua MODIS true-color image over Central and North Africa for July 28, 2007.  884 
This composite was obtained from the NASA worldview site 885 

(https://worldview.earthdata.nasa.gov/). (b). Spatial distribution of Gridded OMI AI for 12 UTC, 886 
July 28, 2007. (c). Spatial distribution of NAAPS AOD from the NAAPS natural run for 12 UTC, 887 

July 28, 2007. (d). Similar to (c) but using NAAPS AOD from the AI-DA run. (e). Simulated AI 888 
using data from (c). (f). Simulated AI using data from (d). 889 

 890 

 891 

 892 

 893 

https://worldview.earthdata.nasa.gov/
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 894 

Figure 4. (a). Spatial distribution of NAAPS AOD using NAAPS data from the AI-DA runs for 895 
July and August 2007.  Only NAAPS data that have collocated OMI AI data are used. (b). Spatial 896 
distribution of simulated AI for July and August 2007 using NAAPS data from the AI-DA runs.  897 

(c). Spatial distribution of gridded OMI AI for July and August 2007. (d). Differences between 898 
Figures 4(b) and 4(c).  (e-h) Similar to Figures 4(a)-4(d) but using NAAPS natural runs.  Grey 899 

color highlights those 1x1 (Latitude/Longitude) bins that have less than three collocated NAAPS 900 
and OMI AI data for the study period. 901 
 902 
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 903 



 47 

Figure 5. (a). Scatter plot of AERONET and NAAPS AOD (0.55 µm) using NAAPS data from 904 
the natural runs for July-August 2007 over the study region.  (b). Similar to Figure 5(a) but using 905 
NAAPS data from the AI-DA runs. (c). Similar to Figure 5(a) but with AODs taken from the 906 

NAAPS reanalysis. 907 
 908 

 909 

Figure 6. Spatial distributions of simulated AI at 12 Z on July 28, 2007 using NAAPS reanalysis 910 

data, with single scattering albedos of smoke aerosol at 354 and 388 nm taken to be: (a) 0.84 and 911 
0.84; (b) 0.85 and 0.85; (c) 0.86 and 0.86; (d) 0.85 and 0.85; (e) 0.85, 0.855; (f) 0.85 and 0.86. 912 
  913 
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 914 

Figure 7. (a). Vertical distributions of smoke and dust aerosol concentrations over 9.5S and 915 

10.5E at 12 Z on July 28, 2007 for both natural and AI DA runs.  (b).  Similar as (a) but over 916 

25.5N and 12.5W. 917 
 918 

 919 


