
Response to Reviewer1 

 

This paper sets out a methodology and presents summary results for assimilating aerosol index 

measurements in to an aerosol forecasting model. This is relevant and interesting for the 

modelling community as it is effectively aerosol radiance assimilation. Radiance assimilation is 

common place in the NWP data assimilation community but has still to be explored for aerosol 

assimilation. For NWP it provides improved results compared to a level 2 retrieval and it has not 

yet been established whether the same may be true for aerosol assimilation. The article is very 

nicely written and provides a clear and precise overview of the work carried out. The detail of 

the forward model and assimilation procedure used is thoroughly covered but the clear structure 

of the article means the overall message of the paper is not lost in all the detail. The results of the 

assimilation experiment are succinctly presented in easy to understand figures without inflating 

the results or claiming more than is shown. This well written paper presents an advance to 

modelling science and deserves publication. I do, however, have a few minor comments that I 

list below 

 

We thank the reviewer for his/her constructive comments 

 

 

Minor comments 

 

Question 1. It was not quite clear to me from the article whether the three models whose results 

are compared were the same version of the NAAPS model? I understand that the NAAPS 

reanalysis v1 was used to show the results with AOD assimilation (pg 8, paragraph 1) and that a 

free running version was used to provide the results without any aerosol assimilation at all (line 

176). You also state that the assimilation system is based on variations of aerosol particles from 

NAAPS (line 106). Are all three the same version at the same resolution or are there differences 

between them? It would be beneficial to clarify this in the article as any differences will also 

impact on the results of the three experiments compared to Aeronet. 

 

Response: The same research version of the NAAPS model is used for all three experiments.  

For the natural runs, only the NAAPS forecast model was used, that is, without any form of data 

assimilation.  For the NAAPS reanalysis version 1, NAAPS was run with additional assimilation 

using MODIS and MISR AOD data.  For the OMI AI data assimilation as presented in the study, 

NAAPS was run with the newly developed OMI AI assimilation.  All three runs are at the same 

spatial and temporal resolutions, and are driven by the same meteorology and model physics. 

We expect that differences among three model runs resulted from the different aerosol data 

assimilation schemes implemented versus the natural run.  We have added the following sentence 

to clarify the issue: 

 

“Note that the same version of the NAAPS model with the same temporal and spatial resolutions, 

and driven by the same meteorological data, were used in constructing Figure 5 and thus the 

differences in Figures 5a, 5b and 5c only result from different aerosol data assimilation methods 

implemented (no data assimilation for the natural run).“  

 

 



Question 2. Related to this, I’m slightly confused by your description of the post-processing 

system in lines 209-211. I would consider the construction of a new NAAPS analysis based on 

the background NAAPS aerosol concentrations and increments as derived from the assimilation 

system to be part of the assimilation process itself. In fact I would assume that this updated 

analysis state would be forecast forward in time to create the background state for the next cycle 

of the data assimilation process. Is this not the case? 

 

Response:  Post-processing as mentioned in lines 209-211 is a part of the typical data 

assimilation process.  In a typical data assimilation method, increments are constructed based 

on the differences between observations and modeled parameters (innovations), as well as error 

characteristics of both model and observations. These increments include new changes that need 

to be made for each model grid.  At the last step of a typical data assimilation process, the 

modeled background is updated by adding those increments (or corrections) to construct a 

revised background state (analysis).  The revised background state is then used as the initial 

state for the forecast for the next time cycle.   

 

In another word, analysis = background + increments.  Note that a similar post-processing step 

is also included in the NAVDAS-AOD for MODIS and MISR AOD assimilation (Zhang et al., 

2008). 

 

Zhang, J. and J. S. Reid, D. Westphal, N. Baker, and E. Hyer, A System for Operational Aerosol 

Optical Depth Data Assimilation over Global Oceans, J. Geophys. Res., 113, D10208, 

doi:10.1029/2007JD009065, 2008. 

 

 

Question: 3. Your Figure 7 is a comparison of the vertical profiles of the NAAPS natural and AI 

DA runs. Assuming that the AI DA runs are as described above, so an analysis model state that is 

used as the initial condition for a short forecast to create the background state for the next 

assimilation cycle, then I don’t believe you can draw the conclusions that you do in lines 493-

498. There is no guarantee that the profile before assimilation is the same as the nature run 

profile and so you can not disentangle what profile differences come from previous assimilation 

versus what is due to the assimilation of the AI data in the current cycle. To look at the impact of 

assimilating AI data in one specific cycle you would need to plot the background model state 

versus the analysis state, rather than the nature run. 

 

Response: Both natural and OMI AI DA runs were performed with the same version of the 

NAAPS model, at the same spatial and temporal resolutions, with the same initial conditions at 

the beginning of the study period (00Z, July 1, 2007).  The only difference between the two-

month natural and OMIAI DA runs is that OMI AI data assimilation was implanted in the OMI 

AI DA run, while OMI AI data assimilation was not implanted for the natural run.  Therefore, 

the differences between the two model runs arise uniquely from the OM AI data assimilation 

process.  

 

Note that for a given cycle, once the model has begun integrating forward in time, the differences 

in vertical profiles between the natural and OMI AI DA runs will also be impacted by increments 

from previous cycles (after the starting date of the study period).  So the differences between 



OMI DA and natural runs as shown in Figure 7 can be considered as an integrated effect of OMI 

AI DA from 00Z, July 01 to 12 Z, July 28, 2007. 

  

We added the following sentence to avoid confusion: “Note that the differences between OMI DA 

and natural runs as shown in Figure 7 are essentially an integrated effect of OMI AI DA from 

00Z, July 01 to 12 Z, July 28, 2007.” 

 

 

Question 4. What do you think is the impact of using gridded OMI data (line 130-133) versus 

the higher resolution (I assume) AOD data of the reanalysis. Do you think that the results would 

change if you were able to use the AI data at its native resolution and that it would closer match 

the results of the reanalysis? 

 

Response :  I assume the reviewer meant to say “high resolution (I assume ) AI data” based on 

the second sentence.  Changes are definitely expected with the use of AI at its native resolution. 

This is because each data point included/removed will introduce changes in the computed 

increments.  Still, for a given grid, the gridded OMI data represents the averaged properties for 

that grid.  Thus, we expect the difference between using gridded data or OMI data at the native 

resolution to be marginal.   

 

 

 

Question 5. It is interesting and useful to have an idea of the computational burden of the call to 

the radiative transfer model in Section 4.4, but it would add perspective if this could be 

compared to the equivalent computational burden for AOD assimilation. 

 

Response: The time scale for running AOD assimilation for 1 month is at the hourly level, 

depending on the machines used.  We have added the following remark: 

 

“In comparison, the time scale for running AOD assimilation for 1 month is at the hourly level.“ 

 

 

 

Typos 

 

Question: Pg. 7, line 147: AERONET 

 

Response: done. 

 

 

Question: Pg. 8, line 169: precipitation data are used to constrain the wet removal process 

 

Response:  done 

 

 



 

Question: Pg. 18, line 405-407: It is unclear to me which figures you are talking about in this 

sentence. I assume it is Figure 3c, but coming directly after discussion of a comparison of 3b to 

3d it needs further clarification. 

 

Response:  We added Figure 3c in the text. 

 



Responses to reviewer 2 comments 

 

This paper develops a data assimilation scheme using the VLIDORT radiative transfer model 

and simulated aerosol information from the NAAPS model to assimilate OMI AI measurements 

into the NAAPS model. Including the OMI AI assimilation improves the NAAPS simulation 

compared to the OMI AI, and improves NAAPS simulated AOD compared to AERONET AOD, 

but it does not outperform the NAAPS reanalysis AOD compared to AERONET. Overall the 

paper is well written and their data assimilation approach is well explained. I do have some 

comments. 

 

We thank the reviewer for his/her comments 

 

 

 

Question : My main issue with the paper is that the authors state in the abstract: “Improvements 

in model simulations demonstrate the utility of OMI AI data assimilation for improving the 

accuracy of aerosol model analysis over cloudy regions and bright surfaces.” But this is not 

really shown anywhere in the paper.. On line 149 it is even stated: “As AERONET data require a 

cloud-free line of sight to the solar disk, the performance of OMI AI data assimilation over 

overcast regions is not evaluated.” Yes there are AI measurements over cloudy regions and 

bright surfaces, but nowhere in the paper have the authors specifically evaluated the performance 

of their analysis over bright or cloudy surfaces compared to, say, the NAAPS reanalysis AOD 

from MODIS and MISR. The authors even state that their assimilation does not improve the 

NAAPS AOD compared to the reanalysis AOD, so where is the evidence of improvement over 

bright and cloudy surfaces? It is not explicitly stated which products from MODIS and MISR go 

into the NAAPS reanalysis, but both MODIS deep blue and MISR retrieve AOD quite accurately 

over bright surfaces, especially deserts, so this statement really should be backed up somehow. 

 

Response:  One of the advantages of OMI AI is its ability to detect UV- absorbing aerosols over 

cloudy skies as well bright surfaces such as over desert regions and snow/ice-covered regions.  

In this study, we examined the possibility of assimilating OMI AI data over cloudy regions as 

well as desert regions (bright surfaces).  All quality-checked (excluding noisy data and data with 

row anomalies) OMI AI data over cloudy regions and desert regions were used in the 

assimilation process.  In comparison, no reliable AOD retrievals are available over cloudy 

regions from traditional passive-based aerosol retrieval methods.  Also, retrievals over the 

desert regions are also limited to select algorithms.  Therefore, having the OMI AI data 

assimilation capability over cloudy regions and over bright surfaces is an advancement in 

aerosol data assimilation. 

 

We agree with the reviewer that it is hard to evaluate NAAPS performance over cloudy regions.  

We also agree that OMI AI is an indirect indicator of aerosol properties, and assimilating OMI 

AI typically cannot out-perform assimilating of MODIS/MISR AOD over cloud free regions.  

Nonetheless, the improvements in NAAPS analyses over cloudy regions or bright surfaces 

through OMI AI DA can be directly or indirectly illustrated from three aspects. 

 



First, our study suggests, based on the AERONET evaluation, that over cloud-free regions, in 

comparing NAAPS natural runs (without aerosol assimilation), the accuracy of NAAPS analyses 

is improved with the assimilation of OMI AI data.  This suggests OMI AI data can be used to 

improve NAAPS performance.  Also, OMI AI has comparable capability to detect UV absorbing 

aerosols over cloud-free skies as well over cloudy skies, thus, benefits in NAAPS analysis over 

cloudy regions or bright surfaces are expected through assimilating quality- controlled OMI AI 

data over cloudy and bright surfaces.  Note, no passive-based AOD data are currently available 

for assimilation over cloudy regions.  

 

Secondly, as the reviewer mentioned, there are AI measurements over cloudy regions and bright 

regions for evaluation.  We have performed this approach in the paper.  One of the steps for a 

data assimilation system is to check the difference between observation and analysis (O-A), as 

well as the difference between observation and background (O-B).  OMI AI can be considered as 

observations.  NAAPS data includes aerosol concentrations, and thus to perform O-A or O-B, we 

used the forward model and computed simulated OMI AI using NAAPS data.  The two-month 

(July and August 2007) mean O-A is shown in Figure 4d and the two-month mean O-B is shown 

in Figure 4h.  While near zero O-A values are found for the study region as shown in Figure 4d, 

large O-B values can be found in Figure 4h over heavy smoke and dust aerosol polluted regions.  

Note to compute two-month mean O-A and O-B, both NAAPS and OMI AI data over both cloudy 

and cloud-free skies were used.  At the instantaneous level, Figures 3b and 3f show the O and A 

for 12UTC, July 28, 2007.  Figures3b and 3e show the O and B for 12 UTC, July 28, 2007 as 

well.  Again, while observation and simulated AI using NAAPS analysis are similar over both 

cloudy regions and cloud free regions, large discrepancies can be found between OMI AI and 

simulated OMI AI using NAAPS natural run data.  The O-A/O-B analyses at both two-month 

mean and instantaneous levels indicating NAAPS performance can be improved over cloudy 

regions. 

 

Third, as a qualitative check, as highlighted in red ellipses in Figure 3, the NAAPS AOD 

patterns after OMI AI DA show a very similar spatial pattern to OMI AI over both cloudy and 

non-cloudy regions.  This can be considered as an indirect indicator that NAAPS AOD patterns 

match OMI AI patterns after OMIAI DA, even over cloudy regions. 

 

However, we have revised the sentence along the lines suggested by the reviewer:“Improvements 

in model simulations demonstrate the utility of OMI AI data assimilation for aerosol model 

analysis over cloudy regions and bright surfaces” 

 

 

Other comments: 

Question:  - In section 4.3 Sensitivity Analysis, the authors discuss how varying smoke SSA 

affects the AI and conclude that there is a need for regionally varying SSA values for smoke to 

be included for future studies. However, the issue is not necessarily varying smoke SSA, it is the 

fact that the model used in this paper treats all “smoke” as one aerosol type with a single SSA 

value. In reality, “smoke” is composed of both black and organic (that is, brown) carbon, which 

have different SSA values, and different areas have different contributions of black and brown 

carbon to the overall “smoke”. So really what the authors are showing is a major limitation in 

modelling absorbing aerosol with the particular model they chose. 



 

Response:  Agreed.  However, the problem we are encountering is very similar to that faced by 

the passive-based AOD retrieval community.  Dust/smoke aerosol properties vary as a function 

of region and season, creating a problem not only for this study but for AOD retrievals using 

passive sensors.   To deal with this problem, regional-based aerosol properties are used in some 

algorithms (e.g MODIS Dark Target).  Similar methods may be also adopted for this study, as 

we have mentioned.  However, this is outside the scope of our paper and is the subject for a 

future study. 

 

 

Question:- Also in section 4.3, the authors state: “Interestingly, although simulated AI values are 

significantly affected by perturbing SSA values as shown in Figure 6, less significant impacts are 

observed for NAAPS AOD.” However, this is to be expected, because AOD is a measure of the 

total extinction due to the presence of aerosols, so changing the fraction that is either scattering 

or absorbing would not change the overall extinction. 

 

Response:  NAAPS-modeled UV-absorbing aerosol (dust and smoke) concentrations are 

corrected based on OMI AI observations.  We agree that dust and smoke aerosols are only a 

fraction of the total aerosol concentration.   

 

 

Question: - Lines 136-139: “Isolated high AI values are removed as follows. First, for a 4x4 

pixel box, if the mean AI is less than 0.7 but an individual AI value is larger than 0.7, then that 

one value is removed. Second, if the standard deviation of AI values for a 3x3 pixel box 

surrounding a pixel is larger than 0.5, that individual AI value is likewise removed” It is not 

explained how the authors came up with this criteria, and it might be helpful for them to include 

a bit of an explanation. 

 

Response:  Both approaches are essentially homogeneity tests that are used for identifying 

outliers.  The thresholds are estimated empirically through visual inspection.   

 

We added this sentence: “Note that both approaches are essentially homogeneity tests that are 

used for identifying outlies.  The thresholds are estimated empirically through visual 

inspection.” 

 

 

 

 

Technical comments: 

 

Question: - Lines 80-86 are worded a little confusingly: “AI retrievals are currently computed 

using observations from sensors with ozone-sensitive channels. For example, the Ozone 

Monitoring Instrument (OMI), Ozone Mapping and Profiler Suite (OMPS), TROPOspheric 

Monitoring Instrument (TROPOMI) and the future Plankton, Aerosol, Cloud and ocean 

Ecosystem (PACE) mission can detect UV-absorbing aerosol particles, such as black carbon 

laden smoke or iron-bearing dust, over bright surfaces, such as desert, snow and ice covered 



regions, and aerosol plumes above clouds (e.g. Torres et al., 2012; Yu et al., 2012; Alfaro-

Contreras et al., 2014; 2016).” At first it is being discussed how AI retrievals use ozone sensitive 

channels, then the “for example” is talking about detecting absorbing aerosols. 

 

Response: We revised the sentence to read:“For example, the Ozone Monitoring Instrument 

(OMI), Ozone Mapping and Profiler Suite (OMPS), TROPOspheric Monitoring Instrument 

(TROPOMI) and the future Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) mission 

include ozone-sensitive channels that can detect UV-absorbing aerosol particles, such as black 

carbon laden smoke or iron-bearing dust, over bright surfaces, such as desert, snow and ice 

covered regions, and aerosol plumes above clouds (e.g. Torres et al., 2012; Yu et al., 2012; 

Alfaro-Contreras et al., 2014; 2016).” 

 

 

Question: - Line 276: dust “plums” should be “plumes” 

 

Response: Done. 

 

Question: - Line 453: “proving” should be “providing”  

Response: Done. 



Response to short comment 

 

We thank the executive editor for the comment.  We will add the version number in the revised 

version of the paper as suggested.  

The OMI data assimilation scheme (V1.0) is constructed using VLIDORT and NAVDAS-AOD 

for NAAPS analyses and forecasts.  The VLIDORT radiative transfer code is a property of RT 

Solutions Inc. The distribution of the full VLIDORT package is publicly available, and comes 

with a standard GNU public license, through direct contact with RT Solutions Inc. 

(http://www.rtslidort.com/mainprod_vlidort.html).  Both NAAPS and NAVDAS-AOD are 

proprietary to the Naval Research Laboratory, United States Department of the Navy. Given 

their association with a defense system, they are not available publicly.  This situation is similar 

to that in other major centers such as ECMWF, JMA, and UKMO.  Nevertheless, both NAAPS 

and NAVDAS-AOD are well documented in past studies (e.g. Lynch et al., 2016; Zhang et al., 

2008; 2011; 2014; Rubin et al., 2017) and we have made every effort to thoroughly report our 

methods so that they may be replicated. In addition, AOD fields from the NAAPS OMI AI DA 

runs and natural runs over the study region and for the study period will be shared in the 

supplement. 

 

We have revised the code and data availability section to read: 

Code and data availability: The OMI data assimilation scheme (V1.0) is constructed using 

VLIDORT and NAVDAS-AOD for NAAPS analyses and forecasts.  The VLIDORT radiative 

transfer mode is a property of RT Solutions Inc.  The VLIDORT code is publicly available, and 

comes with a standard GNU public license, through direct contact with RT Solutions Inc. 

(http://www.rtslidort.com/mainprod_vlidort.html). Both NAAPS and NAVDAS-AOD are 

proprietary to Naval Research Laboratory, United States Department of the Navy. Nevertheless, 

both NAAPS and NAVDAS-AOD are well documented in past studies (e.g. Lynch et al., 2016; 

Zhang et al., 2008; 2011; 2014; Rubin et al., 2017) and we have made every effort to thoroughly 

report our methods so that they may be replicated. AOD fields from the NAAPS OMI AI DA 

and natural runs over the study region and period are shared as the supplement to the paper for 

readers who are interested.  The NAAPS reanalysis data are available from the USGODAE web 

site (https://nrlgodae1.nrlmry.navy.mil/cgi-

bin/datalist.pl?dset=nrl_naaps_reanalysis&summary=Go. The OMI OMAERUV data are 

available from the NASA's Goddard Earth Sciences Data and Information Services Center (GES 

DISC; https://disc.gsfc.nasa.gov/datasets/OMAERUV_003/summary). AERONET data are 

obtained from the NASA AERONET webpage (https://aeronet.gsfc.nasa.gov/). 

 

http://www.rtslidort.com/mainprod_vlidort.html
http://www.rtslidort.com/mainprod_vlidort.html
https://nrlgodae1.nrlmry.navy.mil/cgi-bin/datalist.pl?dset=nrl_naaps_reanalysis&summary=Go
https://nrlgodae1.nrlmry.navy.mil/cgi-bin/datalist.pl?dset=nrl_naaps_reanalysis&summary=Go
https://disc.gsfc.nasa.gov/datasets/OMAERUV_003/summary
https://aeronet.gsfc.nasa.gov/
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Abstract 26 

Using the Vector LInearized Discrete Ordinate Radiative Transfer (VLIDORT) code as the main 27 

driver for forward model simulations, a first-of-its-kind data assimilation scheme has been 28 

developed for assimilating Ozone Monitoring Instrument (OMI) aerosol index (AI) measurements 29 

into the Naval Aerosol Analysis and Predictive System (NAAPS).  This study suggests both RMSE 30 

and absolute errors can be significantly reduced in NAAPS analyses with the use of OMI AI data 31 

assimilation, when compared to values from NAAPS natural runs. Improvements in model 32 

simulations demonstrate the utility of OMI AI data assimilation for r improving the accuracy of 33 

aerosol model analysis over cloudy regions and bright surfaces.  However, the OMI AI data 34 

assimilation alone does not out-perform aerosol data assimilation that uses passive-based aerosol 35 

optical depth (AOD) products over cloud free skies and dark surfaces.  Further, as AI assimilation 36 

requires the deployment of a fully-multiple-scatter-aware radiative transfer model in the forward 37 

simulations, computational burden is an issue.  Nevertheless, the newly-developed modeling 38 

system contains the necessary ingredients for assimilation of radiances in the ultra-violet (UV) 39 

spectrum, and our study shows the potential of direct radiance assimilation at both UV and visible 40 

spectrums, possibly coupled with AOD assimilation, for aerosol applications in the future.  41 

Additional data streams can be added, including data from TROPOspheric Monitoring Instrument 42 

(TROPOMI), Ozone Mapping and Profiler Suite (OMPS) and eventually with the Plankton, 43 

Aerosol, Cloud and ocean Ecosystem (PACE) mission. 44 

 45 

  46 
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1.0         Introduction 47 

Operational chemical transport modeling (CTM) of atmospheric aerosol particles, 48 

including simulation of sources and sinks and long-range transport of aerosol events such as 49 

biomass burning aerosols from fires and dust outbreaks, is now commonplace at global 50 

meteorology centers for air quality and visibility forecasts (e.g. Sessions et al, 2015; Lynch et al., 51 

2016). Variational and ensemble-based assimilation of satellite derived aerosol products such as 52 

aerosol optical depth (AOD), lidar backscatter measurements, and surface aerosol properties, can 53 

substantially improve accuracies in CTM analyses and forecasts (Zhang et al., 2008; 2011; 2014; 54 

Yumimoto et al., 2008; Uno et al., 2008; Benedetti et al., 2009; Schutgens et al., 2010; Sekiyama 55 

et al., 2010; Saide et al. 2013; Schwartz, 2012; Li et al., 2013; Rubin et al., 2017; Lynch et al., 56 

2016).  57 

Currently, the main satellite inputs for operational aerosol modeling are AOD products 58 

derived from passive-based polar orbiting imagers, such as the Moderate Resolution Imaging 59 

Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and the 60 

Advance Very High Resolution Radiometer (AVHRR). Experimentation is proceeding with the 61 

use of products from the multi-angle imaging spectroradiometer (MISR) (e.g., Lynch et al., 2016; 62 

Randles et al. 2017; Buchard et al. 2017) and from geostationary instruments such as Himawari 63 

and Geostationary Operational Environmental Satellite (GOES).  A major advantage with such 64 

passive-based satellite sensors is that the AOD is retrieved with high spatial and temporal 65 

resolutions over relatively broad fields-of-view (e.g. Zhang et al., 2014).  For example, MODIS 66 

and VIIRS provide near-global daily daytime coverage (e.g. Levy et al., 2013; Hsu et al., 2019) 67 

and GOES and Himawari are capable of retrieving AOD over North American and East Asia 68 

regions at sub-hourly temporal resolution (e.g. Bessho et al., 2016).   69 
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To date, these traditional passive-based satellite AOD retrievals have been limited to darker 70 

surfaces and relatively cloud-free conditions.  The widely-used MODIS Dark Target aerosol data, 71 

for instance, are available globally over only oceans and dark land surfaces (e.g. Levy et al., 2013).  72 

The MISR and MODIS Deep Blue aerosol products are also available over some arid 73 

environments, but are not applicable to snow and ice covered regions (e.g. Kahn et al., 2010; Hsu 74 

et al., 2013).  Also, none of the above-mentioned aerosol products are valid over cloudy regions. 75 

In comparison to AOD, the semi-quantitative UV-based aerosol index (AI) has long been 76 

used to monitor major aerosol events such as smoke plumes and dust storms, starting with the 77 

Total Ozone Mapping Spectrometer (TOMS) from the late 1970s (Herman et al., 1997). AI is 78 

derived using the ratio of observed UV radiances to simulated ones assuming only a clear Rayleigh 79 

sky (e.g. Torres et al., 2007). AI retrievals are currently computed using observations from sensors 80 

with ozone-sensitive channels. For example, the Ozone Monitoring Instrument (OMI), Ozone 81 

Mapping and Profiler Suite (OMPS), TROPOspheric Monitoring Instrument (TROPOMI) and the 82 

future Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) mission include ozone sensitive 83 

channels that can detect UV-absorbing aerosol particles, such as black carbon laden smoke or iron-84 

bearing dust, over bright surfaces, such as desert, snow and ice covered regions, and aerosol 85 

plumes above clouds (e.g. Torres et al., 2012; Yu et al., 2012; Alfaro-Contreras et al., 2014; 2016).   86 

To complement existing AOD assimilating systems, we have developed an AI data 87 

assimilation (AI-DA) system that is capable of assimilating OMI AI over bright surfaces and 88 

cloudy regions for aerosol analyses and forecasts.  This study can be considered as one of the first 89 

attempts for direct radiance assimilation in the UV spectrum for aerosol applications, as AI can be 90 

directly computed from UV radiances and the developed OMI AI-DA system has all necessary 91 

components for a typical radiance assimilation package. In time we expect our assimilation model 92 
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to merge with AOD or solar radiance assimilation to influence aerosol loading, height and 93 

absorption (e.g., VIIRS+OMPS product; such as Lee et al. 2015). Details of the developed OMI 94 

AI assimilation system are presented in the paper, which is organized as follows:  Data sets used 95 

in the study are summarized in Section 2; Section 3 discusses the components of the AI-DA 96 

system. Section 4 provides an evaluation of the developed system; and Section 5 contains a 97 

summary discussion.   98 

 99 

2.0 Datasets and Models 100 

Three datasets are used in this study. These are: (i) the OMI level 2 UV aerosol product 101 

(OMAERUV; Torres et al., 2007), (ii) the Aerosol Robotic Network (AERONET; Holben et al., 102 

1998) AOD product, and (iii) reanalysis data from the Naval Aerosol Analysis and Prediction 103 

System (NAAPS; Lynch et al., 2016), which was the first operational global aerosol mass transport 104 

model available to the community. The assimilation system is based on spatial and temporal 105 

variations of aerosol particles from NAAPS (Zhang et al., 2006; 2008), and the Vector LInearized 106 

Discrete Ordinate Radiative Transfer (VLIDORT; Spurr, 2006) code is used to construct a forward 107 

model for the AI-DA system. 108 

 109 

2.1 OMI aerosol product 110 

UV Aerosol Index data from the OMI level 2 version 3 UV aerosol products (OMAERUV) 111 

are used in this study.  The OMI instrument is on board the Aura satellite (launched in 2004) and 112 

it observes the earth’s atmosphere over the UV/visible spectrum with a pixel size of 13x24 km at 113 

nadir for the global scan mode, and a swath of ~2600 km (Levelt et al., 2018).  The daytime 114 

equatorial crossing for the Aura platform is ~1:30 p.m.  The dataset comprises the UV AI, viewing 115 
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and solar geometries, spectrally-dependent surface albedos at the 354 and 388 nm spectral 116 

channels, terrain pressure, geolocations, x-track and algorithm quality flags, plus other aerosol and 117 

ancillary parameters.  The UV AI is designed to detect UV-absorbing aerosol particles, and is 118 

based on radiance observations at 354 nm (Iobs354) and calculated radiance (Ical354) at 354 nm for a 119 

Rayleigh (no aerosol) atmosphere (e.g. Torres et al., 2007) as defined as 120 

𝐴𝐼 = − 100 log10
𝐼𝑜𝑏𝑠354

𝐼𝑐𝑎𝑙354
 .    (1) 121 

Unbiased, noise-reduced, quality-assured AI data are necessary for AI data assimilation. 122 

This is especially important for OMI observations, due to this particular sensor suffering from the 123 

well-referenced “row anomalies” issues (Torres et al., 2018).  To remove pixels with row 124 

anomalies, only retrievals with x-track flag values of 0 are retained.  Also, abnormal AI values 125 

were identified over mountain regions.  Thus, retrievals with terrain/surface pressure less than 850 126 

hpa are excluded in the study.  Finally, only retrievals with OMI AI values larger than -2 are used.  127 

Therefore, OMI observations over cloudy skies, which could have negative OMI AI values, are 128 

also included.     129 

Both cloud-free and above-cloud AI data satisfying these quality checks are aggregated / 130 

averaged in 1x1 (Latitude/Longitude) bins.  As a radiative transfer model run is applied for each 131 

observation, the gridded data are used in the assimilation process in order to reduce the 132 

computational burden.  Averaged parameters for the gridded data include the solar and sensor 133 

zenith angles, the relative azimuth angles, the spectrally-dependent surface albedos at 354 and 388 134 

nm, the cloud fraction, and the AI values themselves.  Additional quality assurance steps are also 135 

applied during the spatial-averaging process.  Isolated high AI values are removed as follows. 136 

First, for a 4x4 pixel box, if the mean AI is less than 0.7 but an individual AI value is larger than 137 

0.7, then that one value is removed.  Second, if the standard deviation of AI values for a 3x3 pixel 138 
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box surrounding a pixel is larger than 0.5, that individual AI value is likewise removed.  Note that 139 

both approaches are essentially homogeneity tests that are used for identifying outlies.  The 140 

thresholds are estimated empirically through visual inspection.   141 

 142 

 143 

2.2 AERONET data 144 

Version 3 level 2 daytime, cloud-cleared and quality-assured AERONET data are used to 145 

evaluate the performance of the OMI AI data assimilation in our study (Holben et al., 1998; Giles 146 

et al., 2019).  During daytime, AOD from AERONET instruments are derived by measuring the 147 

attenuated solar radiance typically at seven wavelengths ranging from 340 to 1020 nm.  In this 148 

study, AERONET data are collocated with NAAPS analyses with and without OMI AI 149 

assimilation.  In order to collocate AERONET and NAAPS AOD data, AERONETENT AOD 150 

values within ±30 minutes of a given NAAPS analysis time are averaged and used as ground-based 151 

AOD values for the NAAPS 1x1 (Latitude/Longitude) collocated bins.  As AERONET data 152 

require a cloud-free line of sight to the solar disk, the performance of OMI AI data assimilation 153 

over overcast regions is not evaluated.   154 

 155 

2.3 NAAPS and NAAPS reanalysis data 156 

The NAAPS (http://www.nrlmry.navy.mil/aerosol/) model is a multi-species, three-157 

dimensional, Eulerian global transport model using operational Navy Global Environmental 158 

Model (NAVGEM) as the meteorological driver (Hogan et al., 2014). NAAPS provides 6-day 159 

forecasts at a 3-hour interval with a spatial resolution of 1/3° (latitude/Longitude) and 42 vertical 160 

levels on a global scale.  NAAPS predicts four aerosol particle classes: anthropogenic and biogenic 161 

http://www.nrlmry.navy.mil/aerosol/
http://www.nrlmry.navy.mil/aerosol/
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fine particles (ABF, such as primary and secondary organic aerosols and sulfate aerosols); dust, 162 

biomass burning smoke; and sea salt (Lynch et al, 2016).  163 

The 2003-2018 NAAPS reanalysis version 1 (v1) (Lynch et al., 2016) is a modified version 164 

of the operational NAAPS model. In this version, quality-controlled retrievals of AOD from 165 

MODIS and MISR (Zhang et al., 2006; Hyer et al., 2011; Shi et al., 2014) are assimilated into 166 

NAAPS through the Naval Research Laboratory Atmospheric Variation Data Assimilation 167 

System-AOD system (NAVDAS-AOD; e.g., Zhang et al., 2008; Zhang et al., 2011; Zhang et al., 168 

2014). Aerosol source functions, including biomass burning, smoke and dust emissions, are tuned 169 

regionally based on the AERONET data. Other aerosol processes, including dry deposition over 170 

water, are also tuned based on AOD data assimilation correction fields.  NOAA Climate Prediction 171 

Center (CPC) MORPHing (CMORPH) precipitation data are used to constraint the wet removal 172 

process within the tropics (Joyce et al., 2004).  The usage of CMORPH avoids the ubiquitous 173 

precipitation bias that exists in all global atmospheric models (e.g. Dai, 2006) and is proven to 174 

improve aerosol wet deposition, therefore yielding better AOD (Xian et al., 2009). The reanalysis 175 

agrees reasonably well with AERONET data on a global scale (Lynch et al., 2016) and also 176 

reproduces AOD trends that are in a good agreement with satellite based analysis (e.g., Zhang and 177 

Reid, 2010; Hsu et al., 2012). In this study, we use a free running version of NAAPS reanalysis v1 178 

without AOD assimilation to provide aerosol fields every 6 hours at 1x1 (Latitude/Longitude) 179 

resolution.  180 

 181 

2.4 VLIDORT radiative transfer code 182 

VLIDORT is a linearized, multiple-scatter radiative transfer model for the simultaneous 183 

generation of Stokes 4-vectors and analytically-derived Jacobians (weighting functions) of these 184 
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4-vectors with respect to any atmospheric or surface property (Spurr, 2006). The model uses 185 

discrete-ordinate methods to solve the polarized plane-parallel RT equations in a multi-layer 186 

atmosphere, plus the solution of a boundary value problem and subsequent source-function 187 

integration to obtain radiation fields at any geometry and any atmospheric level. VLIDORT has a 188 

“pseudo-spherical” ansatz: the treatment of solar-beam attenuation in a spherical-shell atmosphere 189 

before scattering. Single-scattering in VLIDORT is accurate for both line-of-sight and solar-beam 190 

spherical geometry. The model has a full thermal emission capability. VLIDORT has two 191 

supplements, one dealing with bidirectional (non-Lambertian) reflection at the surface, and the 192 

other with the inclusion of surface light sources (SIF or water-leaving radiances). Full details on 193 

the VLIDORT model may be found in a recent review paper (Spurr and Christi, 2019, and 194 

references to VLIDORT therein). 195 

VLIDORT is used to simulate the AI in this study.  Simulations at 354 and 388 nm are 196 

performed both for Rayleigh atmospheres, and for scenarios with aerosol loadings (four mass-197 

mixing profiles for different aerosol types) taken from the NAAPS model. In addition to the AI, 198 

Jacobian calculations are needed with respect to these aerosol profiles. Firstly, radiance Jacobians 199 

with respect to these four mass-mixing profiles are computed analytically using VLIDORT’s 200 

linearization facility, and secondly the associated Jacobians of AI are further derived through a 201 

second VLIDORT linearization with respect to the Lambertian-equivalent reflectivity. The details 202 

of this process is given in the next section  203 

 204 

3.0 OMI AI assimilation system 205 

The OMI assimilation system has three components: a forward model, a 3-D variational 206 

assimilation system, and a post-processing system.  Based on the background NAAPS 3-D aerosol 207 
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concentrations for dust, smoke, ABF, and sea salt aerosols, the forward model not only computes 208 

the associated AI values, but also their Jacobians of AI with respect to the four aerosol mass-209 

loading profiles.  The 3-D variational assimilation system is a modified 3-D AOD system (Zhang 210 

et al., 2008; 2011; 2014) that computes increments for dust and smoke aerosol concentrations 211 

based on OMI AI data.  The post-processing system constructs a new NAAPS analysis based on 212 

the background NAAPS aerosol concentrations and increments as derived from the 3-D variational 213 

assimilation system. Details of the forward model and the modified NAVDAS-AOD system are 214 

described in this section.   215 

 216 

3.1 Forward model for simulating OMI AI 217 

To construct an AI-DA system, a forward model is needed to simulate AI using aerosol 218 

concentrations from NAAPS.  In this study, the forward model is built around the VLIDORT 219 

model, following a similar method to that suggested in Buchard et al. (2015).  Here VLIDORT is 220 

configured to compute OMI radiances and Jacobians as functions of the observational conditions 221 

at 354 and 388 nm, using geolocation information from OMI data such as satellite zenith, solar 222 

zenith and relative azimuth angles, as well as ancillary OMI data (surface albedos at 354 and 388 223 

nm).   224 

To convert from NAAPS mass-loading concentrations to aerosol extinction and scattering 225 

profiles, we require aerosol optical properties for the four species at 354 and 388 nm, which are 226 

summarized in Table 1.  The optical properties of ABF (assumed to be sulfate in this study), sea 227 

salt, dust and smoke aerosols, including mass extinction cross sections and single scattering 228 

albedos at 354 and 388 nm are adapted from NASA’s Goddard Earth Observing System version 5 229 

(GEOS-5) model (e.g. Colarco et al., 2014; Buchard et al., 2015).  Note that the study period is 230 
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July and August of 2007 over Africa, coinciding with the early biomass burning season associated 231 

with lower single scattering albedo values (Eck et al., 2013).  With that in mind, we choose a quite 232 

low value of 0.85 for the single-scattering albedo value at 354nm (e.g. Eck et al., 2013; Cochrane 233 

et al., 2019).  A slightly higher single scattering albedo of 0.86 is assumed at 388 nm.  The slight 234 

increase in single scattering albedo from 354 to 388 nm has also been observed from Solar Spectral 235 

Flux Radiometer (SSFR) observations during the recent NASA ObseRvations of CLouds above 236 

Aerosols and their intEractionS (ORACLES) Campaign (Pistone et al., 2019).  Scattering matrices 237 

for dust, smoke, sea salt and sulfate (to represent ABF) aerosols are based on associated expansion 238 

coefficients (e.g. Colarco et al., 2014; Buchard et al., 2015) taken from NASA’s GEOS-5 model. 239 

Also to reduce computational expenses, scalar radiative transfer calculations are performed. 240 

To simulate OMI AI, the Lambertian Equivalent Reflectivity (LER) at 388 nm (R388) is 241 

needed for estimating LER at 354 nm.  The R388 is calculated from VLIDORT, based on equation 242 

2 below, adapted from Buchard et al. (2015), or 243 

𝑅388 =
𝐼𝑎𝑒𝑟388(𝜌388)−𝐼𝑟𝑎𝑦388(0)

𝑇+𝑆𝑏(𝐼𝑎𝑒𝑟388(𝜌388)−𝐼𝑟𝑎𝑦388(0))
  . (2)  244 

Iray388(0) is the calculated path radiance at 388 nm assuming a Rayleigh atmosphere with surface 245 

albedo 0.  T and Sb are the calculated transmittance and spherical albedo at 388 nm.  Iaer388(ρ388) is 246 

the computed radiance including 3-D aerosol fields from NAAPS and the 388 nm surface albedo 247 

from OMI data.  In Buchard et al. (2015), an adjusting factor is applied to R388 by adding the 248 

difference between climatological surface albedos at 354 and 388 nm.  The similar approach is 249 

also adopted in this study, as shown in their Equation 3.    250 

 𝑅388
′ = 𝑅388 − (𝜌388 − 𝜌354)   . (3) 251 
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Here, Rʹ388ʹ is surface albedo adjusted Lambertian Equivalent Reflectivity at 388 nm. ρ388 and ρ354 252 

are surface albedo values at 388 and 354 nm channels that are obtained from the OMI OMAERUV 253 

data.  Finally, the simulated AI (AInaaps) is given by 254 

𝐴𝐼𝑛𝑎𝑎𝑝𝑠 = − 100 log10
𝐼𝑎𝑒𝑟354(𝜌354)

𝐼𝑟𝑎𝑦354(𝑅388
′ )

   . (4) 255 

Here, Iaer354(ρ354) is the calculated radiance at 354 nm using NAAPS aerosol fields as well as the 256 

OMI-reported surface albedo at 354 nm (ρ354).  Iray354(Rʹ388
ʹ) is the calculated radiance assuming a 257 

Rayleigh atmosphere and the derived value of Rʹ388ʹ as surface albedo (Buchard et al., 2015). 258 

The forward model-simulated OMI AI values are inter-compared with OMI AI values as 259 

shown in Figure 1 for the study region.  A total of one month (01-31 July 2007) of NAAPS 260 

reanalysis data and OMI AI data were used.  Note that OMI AI data over both cloud-free and 261 

cloudy skies were used.  Since surface albedos included in the OMI data represent reflectivities 262 

under clear-sky situations, the albedo under cloudy sky is then computed 263 

𝜌𝑐𝑙𝑑 = 𝜌𝑐𝑙𝑟 ∗ (1 − 𝑓𝑐) + 0.8 ∗ 𝑓𝑐  . (5) 264 

Here, ρclr and fc are the clear sky surface albedo (e.g. ρ354 or ρ388) and the cloud fraction, both 265 

quantities obtained from the OMI dataset.  Clouds are assumed to be tropospheric (close to the 266 

surface) with an UV albedo of 0.8, such that this equation applies to both the 354 and 388 nm 267 

channels. 268 

 Figure 1a shows the spatial distribution of NAAPS AOD over Central and North Africa, 269 

using collocated NAAPS and OMI AI datasets.  OMI AI data are grid-averaged in 1x1 270 

(latitude/longitude) bins.  Also, we focus over Africa in this paper as this area includes dust plumes 271 

over deserts and smoke plumes overlying stratus cloud decks.  The Arctic is not included as 272 

additional efforts may be needed to fully understand properties of sea ice reflectivity; we leave this 273 

topic for a future paper. Only bins that have valid NAAPS and OMI AI data are used to generate 274 
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Figure 1. Dust plumes are visible over North Africa and the Persian Gulf, and a smoke plume from 275 

Central Africa is also evident.  These UV-absorbing aerosol plumes are also captured by OMI AI, 276 

as seen in Figure 1c.  Shown in Figure 1b are the simulated OMI AI using the NAAPS aerosol 277 

fields and viewing geometries and surface albedos from OMI.  The simulated OMI AI shows 278 

similar patterns to those derived from OMI, especially for the dust plumes over North Africa and 279 

smoke plumes over Central Africa.  An overall correlation of 0.785 is found between simulated 280 

and satellite-retrieved OMI AI values, as shown in Figure 1, suggesting the forward model is 281 

functioning reasonably as designed. 282 

 283 

3.21 Forward model for Jacobians of AI  284 

Jacobians of OMI AI with respect to aerosol mass concentrations are needed for the OMI 285 

AI assimilation system. In this study, AI Jacobians (K) are calculated from radiance Jacobians 286 

with respect to aerosol mass concentrations for four aerosol species (smoke, dust, ABF/sulfate, 287 

sea-salt) at 354 nm (𝐾354,𝑛𝑘 =
𝜕𝐼𝑎𝑒𝑟354

𝜕𝑀𝑛𝑘
 ) and 388 nm (𝐾388,𝑛𝑘 =

𝜕𝐼𝑎𝑒𝑟388

𝜕𝑀𝑛𝑘
 ) wavelengths.  Here 𝑀𝑛𝑘 288 

is the mass concentration for aerosol type, k, and for vertical layer, n.  Iaer354 and Iaer388 are radiances 289 

for the 354 and 388 nm channels, respectively.  K354,nk and K388,nk are the corresponding radiance 290 

Jacobians at 354 and 388 nm, respectively.  AI Jacobians can then be calculated by analytic 291 

differentiation of the basic formula in Equation (1), and, after some algebra, we find the following 292 

result: 293 

𝜕𝐴𝐼

𝜕𝑀𝑛𝑘
= 𝒜1𝐾354,𝑛𝑘(𝜌354) + 𝒜2𝐾388,𝑛𝑘(𝜌388)    .  (6) 294 

Here, 𝒜1 and 𝒜2 are given respectively by Equations (7) and (8), as 295 

𝒜1 =  (−
100

𝐼𝑎𝑒𝑟354(𝜌354)×ln 10
)      , and  (7) 296 
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𝒜2 = (−
100

𝐼𝑟𝑎𝑦354(𝑅388𝑅388
′ )×ln 10

)
𝜕𝐼𝑟𝑎𝑦354(𝑅388𝑅388

′ )

𝜕𝑅
[

(1−𝑆388𝑅388)2

𝑇388
]                    . (8) 297 

Based on these equations, radiance Jacobians with respect to aerosol particles, K354,nk and K388,nk, 298 

are computed at 354 and 388 nm, respectively, using OMI-reported surface albedo values (ρ354 299 

and ρ388), followed by a calculation of the albedo Jacobian 
𝜕𝐼𝑎𝑒𝑟354(𝑅388𝑅388

′ )

𝜕𝑅
 at 354 nm. 300 

To check this analytic Jacobian calculation in Eqns. (6)-(8), we compute the aerosol AI 301 

Jacobians using a finite difference (FD) method.  Here, the derivative of AI as a function of aerosol 302 

concentration of a species, k, in layer n, is computed using  303 

𝜕𝐴𝐼

𝜕𝑀𝑛𝑘
=

(𝐴𝐼−𝐴𝐼′)

(𝐶𝑛𝑘−𝐶𝑛𝑘
′ )

    . (9) 304 

Here Cnk and Cnk’ are the baseline and perturbed aerosol concentrations, respectively, and AI and 305 

AI’ are computed using Cnk and Cnk’, respectively.   306 

Figure 2b shows the comparison of Jacobians of dust aerosols estimated from the analytic 307 

and the FD solutions.  Dust, smoke, ABF and sea salt aerosol concentrations as a function of 308 

altitude are shown in Figure 2a.  To compute FD Jacobians with respect to dust aerosols, a 10% 309 

perturbation is introduced in the dust profiles.  A very close match is found between analytic and 310 

FD Jacobians.  This validates the analytical solution used in the study.  The analytic solution is of 311 

course much faster, as a single call to VLIDORT will deliver all necessary Jacobians at one 312 

wavelength, as compared to 97 separate calls to VLIDORT with the FD calculation (baseline; 4 313 

species perturbations in the 24-layer atmosphere). 314 

 315 

3.2 The variational OMI AI assimilation system 316 

The OMI AI assimilation system is based on AI simulations (with Jacobians) from the 317 

forward model. Two principles underlay the assimilation procedure. First, we assume that OMI AI 318 
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is sensitive to UV-absorbing aerosol particles, such as NAAPS smoke and dust, or that only smoke 319 

and dust are injected high enough into the troposphere to impact AI.  Therefore, innovations are 320 

limited to modifications of dust and smoke aerosol properties.  For classes that do not strongly 321 

project onto AI, such as sea salt and ABF aerosols, aerosol concentrations are not modified during 322 

the process. Second, contributions of smoke/dust aerosols to AI (AIsmoke / AIdust) prior to 323 

assimilation are estimated by multiplying smoke/dust aerosol concentrations from NAAPS with 324 

Jacobians of AI respective of smoke/dust aerosols.  The ratio of AI innovation from smoke aerosols 325 

(AIsmoke) to total AI innovation (AI or OMI AI - AInaaps) is assumed to be the ratio of AIsmoke to 326 

AIsmoke + AIdust.  The same assumption holds for dust aerosols.   327 

Given these two principles, the overall design concept for the OMI AI assimilation can be 328 

expressed as 329 

 330 

𝐶𝑎 = 𝐶𝑏+ 331 

𝑃𝑑𝑢𝑠𝑡𝑯𝑑𝑢𝑠𝑡 
𝑇

𝑯𝑑𝑢𝑠𝑡 
𝑇𝑃𝑑𝑢𝑠𝑡𝑯𝑑𝑢𝑠𝑡+𝑅

[y-H(𝐶𝑏)]×
𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 + 332 

 
𝑃𝑠𝑚𝑘𝑯𝑠𝑚𝑘 

𝑇

𝑯𝑠𝑚𝑘 
𝑇𝑃𝑠𝑚𝑘𝑯𝑠𝑚𝑘+𝑅

[y-H(𝐶𝑏)]×
𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 ,        (10) 333 

 334 

where Cb and Ca are NAAPS aerosol concentrations for the analysis and background fields, 335 

respectively, Cdust
b and Csmk

b are background NAAPS particle mass concentrations for dust and 336 

smoke, H(C) is the NAAPS forward model that links NAAPS partcleparticle mass concentrations 337 

to AI, and H is defined as H(C)/C, which is the Jacobian matrix of AI with respect to aerosol 338 

concentrations.  Y is the observed OMI AI, and Y- H(𝐶𝑏) is the innovation of AI, representing the 339 

difference between observed and modeled AI values.   340 
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The 
𝑯𝑑𝑢𝑠𝑡𝐶𝑑𝑢𝑠𝑡 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 and  
𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 terms are the fractional contribution 341 

of innovation from dust and smoke aerosol, respectively.  These terms are estimated using NAAPS 342 

aerosol concentrations for relatively high aerosol loading cases (AOD > 0.15).  For low aerosol 343 

loading (AOD < 0.15) as reported from NAAPS, it is possible that NAAPS could underestimate 344 

aerosol concentrations.  Thus, the fractional contribution of innovations is assigned to 1 for the 345 

dominant aerosol type based on a NAAPS aerosol climatology (Zhang et al., 2008).  Note that the 346 

term [y-H(𝐶𝑏)]×
𝑯𝑑𝑢𝑠𝑡𝐶𝑑𝑢𝑠𝑡 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 is in observational space.  Pdust and Psmk are model error 347 

spatial covariance matrices for dust and smoke  (model space) aerosols (e.g. Zhang et al., 2008; 348 

2011; 2014).  R is the observation-based error covariance in model space.  The 349 

𝑃𝑑𝑢𝑠𝑡𝑯𝑑𝑢𝑠𝑡 
𝑇

𝑯𝑑𝑢𝑠𝑡 
𝑇𝑃𝑑𝑢𝑠𝑡𝑯𝑑𝑢𝑠𝑡+𝑅

[y-H(𝐶𝑏)]×
𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 

𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏 and  
𝑃𝑠𝑚𝑘𝑯𝑠𝑚𝑘 

𝑇

𝑯𝑠𝑚𝑘 
𝑇𝑃𝑠𝑚𝑘𝑯𝑠𝑚𝑘+𝑅

[y-H(𝐶𝑏)]×350 

𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 
𝑏

𝑯𝒅𝒖𝒔𝒕𝐶𝑑𝑢𝑠𝑡 
𝑏+𝑯𝑠𝑚𝑘𝐶𝑠𝑚𝑘 

𝑏  terms represent the estimated increments in model space.    351 

The background error covariance matrix is constructed from modeled error variances and 352 

error correlations, following the methodology in previous studies (Zhang et al., 2008; 2011).  The 353 

horizontal background error covariance is generated using the second-order regressive function 354 

(SOAR), as shown in Equation 11 (Zhang et al., 2008), or 355 

 𝐶(𝑥, 𝑦) = (1 + 𝑅𝑥𝑦/𝐿)exp (−
𝑅𝑥𝑦

𝐿
) .  (11) 356 

Here, x and y are two given locations, and Rxy is the great circle distance.  L is the averaged error 357 

correlation length and is set to 200 km based on Zhang et al. (2008).  Similarly, the vertical error 358 

correlation between two pressure levels p1 and p2 is also based on the SOAR function, this time in 359 

pressure space, based on Zhang et al., (2011), is 360 

𝐶(𝑝1, 𝑝2) = [1 + |∫
dln 𝑝

𝐿

𝑝2

𝑝1
|]𝑒

−|∫
dln 𝑝

𝐿

𝑝2
𝑝1

|
 .  (12) 361 
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Here, L is a unit-less number representing vertical correlation length and is set to 0.015.   362 

The horizontal error variance is based on the RMS error of aerosol concentrations, which 363 

is arbitrarily set to 100 µg/m3 for near-surface dust aerosols (ground to 700 hPa).  The RMS error 364 

of dust aerosol mass is assumed to decrease as altitude increases, and is set to 50%, 25%, and 1% 365 

of the near-surface values for 500-700, 350-500 and 70-350 hPa respectively. Note that different 366 

aerosol species have different mass extinction values.  Here we assume the modeled error in 367 

aerosol extinction is the same for different aerosol species and thus, the RMS error of smoke 368 

aerosol concentration is scaled by mass extinction cross section ratio between smoke and dust 369 

aerosols.  The observational errors are assumed to be non-correlated in this study (e.g. Zhang et 370 

al., 2008).  OMI AI values over cloud-free and cloudy skies are used in the study and therefore, 371 

RMS errors of AI are required for both these situations.  Note, as suggested by Yu et al. (2012), 372 

for the same above cloud CALIOP AOD, variations in AI are found to be of the order of 1 for 373 

cloud optical depth changing from 2 to 20.  Thus, we assume the RMS error of OMI AI is 0.5 for 374 

cloud-free skies, increasing linearly with cloud fraction up to a value of 1 for the 100% overcast.   375 

Lastly, we assume that detectable UV absorbing aerosols have AI values larger than 0.8 376 

(e.g. Torres et al., 2013).  Therefore, for regions with OMI AI values larger than 0.8, UV absorbing 377 

aerosol particles can both be added or removed from air columns based on innovations, which are 378 

the differences between OMI reported and simulated AI values.  For regions with OMI AI values 379 

less than 0.8, innovations are only used to remove UV absorbing aerosol particles from air 380 

columns. 381 

 382 

4.0 System evaluation & discussion 383 

4.1 Evaluating the performance of the AI assimilation system over Africa 384 
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Using two months of OMI data (July-August, 2007), the performance of OMI AI 385 

assimilation was evaluated around the Africa region (20S-40N; 610W-560E).  The study 386 

region was chosen to examine the performance of OMI AI data assimilation over bright surfaces 387 

such as the deserts of North Africa, as well as study aerosol advection over clouds, in this case 388 

smoke off the west coast of Southern Africa.  In this demonstration, two NAAPS runs were 389 

performed for the period of July 1 to August 31, 2007, one with and one without the use of OMI 390 

AI assimilation (AI-DA run).  Both runs were initialized with the use of NAAPS reanalysis data 391 

at 0000 UTC 1 July and do not include any other form of aerosol assimilation.   392 

Figure 3a shows the true color composite from Aqua MODIS for July 28, 2007 over the 393 

study region that is obtained from the NASA world view site 394 

(https://worldview.earthdata.nasa.gov/; last accessed June 2020).  Visible in the image are the dust 395 

plumes from North Africa transported to the Atlantic Ocean, and smoke plumes from Central and 396 

Southern Africa transported to the west coast of South Africa.  As indicated by the aggregated 397 

OMI AI data for 1200 UTC 28 July 2007 (Figure 3b), dust plumes from North Africa are 398 

transported to the North corner of the west coast of North Africa.  Smoke plumes are also visible 399 

in the OMI AI plot in Southern Africa and are transported to the west coast and over the Atlantic.  400 

Comparing Figure 3a and Figure 3b, smoke plumes, as identified from OMI, are also found over 401 

cloudy regions as indicated from the MODIS visible imagery.  Note that Figure 3b shows the OMI 402 

AI data used in the assimilation process and again, AI retrievals over both cloud free and cloudy 403 

conditions are included as suggested by Figure 3b.   404 

Figure 3c is the 1200 UTC 28 July 2007 NAAPS AOD product from the natural run.  In 405 

comparison, Figure 3d shows the same situation, this time with the use of OMI AI data 406 

assimilation.  Comparing 3b with 3d, dust and smoke aerosol patterns as shown from OMI AI 407 

https://worldview.earthdata.nasa.gov/
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resemble more closely the NAAPS AOD fields after AI assimilation.  Over the northeast coast of 408 

Africa, heavy aerosol plumes, as hinted at in NAAPS AOD from the natural run (Figure 3c), cover 409 

larger spatial areas than those inferred from OMI AI data.  In comparison, NAAPS AOD patterns 410 

from the OMI AI data assimilation cycle closely resemble aerosol patterns as suggested from OMI 411 

AI data.  Also shown in Figures 3e and 3f are the simulated AI using NAAPS data from the natural 412 

and OMI AI DA runs (data from Figures 3c and 3d) respectively.  Clearly, with the use of NAAPS 413 

data from the natural run, simulated OMI AI are overestimated in comparison with OMI AI data 414 

(Figure 3b).  Simulated AI patterns with the used of NAAPS data from the OMI AI DA run rather 415 

closely resemble AI patterns from the OMI data, again, indicating the OMI AI DA system is 416 

functioning reasonably as designed. 417 

The performance of AI-DA is also evaluated using OMI AI for the whole study period, as 418 

shown in Figure 4.  These data are constructed using collocated OMI AI and NAAPS data 419 

according to the conditions introduced in Sec. 3.  Here, Figures 4a and 4e are spatial distributions 420 

of two-monthly averaged (July and August 2007) AODs for NAAPS AI-DA and natural runs, 421 

respectively.  Figure 4b is the spatial distribution of the simulated AI using NAAPS data from AI-422 

DA runs, and Figure 4c is the spatial distribution of OMI AI for the two-month period. Figures 4f 423 

and 4g show similar plots to those in Figures 4c and 4d, but this time for NAAPS natural runs.  424 

While simulated AI values from NAAPS natural runs (Figure 4f) are overestimated compared to 425 

OMI AI values (Figure 4g) for the study region, the patterns of simulated AI from NAAPS AI-DA 426 

runs (Figure 4b) are similar to patterns shown from OMI AI (Figure 4c).  This is also seen from 427 

Figure 4d, which is the difference between simulated AI from NAAPS AI-DA runs and OMI AI.  428 

In contrast with the situation in Figure 4d, Figure 4h, which is the difference between simulated 429 

AI from NAAPS natural runs and OMI AI, shows much larger differences in AI values. 430 
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While it is not too difficult to make the model mimic the AI product, proof of real skill lies 431 

in any improvements to AOD calculations.  To this end, the performance of OMI AI assimilation 432 

was evaluated with the use of AERONET data.  Figure 5a shows the inter-comparison of NAAPS 433 

AOD versus AERONET AOD at 0.55 µm.  A total of 144350 collocated pairs of NAAPS and 434 

AERONET data were compiled for the study region over the two months test period.  Comparing 435 

with AERONET data, NAAPS AOD from the natural run had a correlation of 0.684, a mean 436 

absolute error in AOD of 0.1547, and an RMSE of 0.2205.  In comparison, with AI assimilation, 437 

NAAPS AOD correlations to AERONET increased to 0.742 (Figure 5b), the absolute error 438 

reduced to 0.1042, and RMSE reduced to 0.1568, both roughly a 30% reduction.  Note that 439 

AERONET AOD values are only available for lines-of-sight that are free of cloud presence for the 440 

sun photometer instruments.  Also, the slope of AERONET versus NAAPS AOD is 0.8793 for the 441 

NAAPS natural runs, and a similar slope of 0.8492 is found for the NAAPS AI-DA runs. 442 

 443 

4.2 Inter-comparison with AOD data assimilation 444 

Typically, NAAPS reanalyses are constructed through assimilation of MISR and MODIS 445 

aerosol products (NAAPS AOD assimilation).  Thus, the performances of NAAPS AOD and AI-446 

DA assimilations are compared against AERONET data.  Figure 5c shows the comparison of 447 

AERONET AOD and NAAPS AOD after AOD assimilation, while Figure 5b shows a similar plot 448 

but using NAAPS data from AI-DA.  Note that the same version of the NAAPS model with the 449 

same temporal and spatial resolutions, and driven by the same meteorological data, were used in 450 

constructing Figure 5 and thus the differences in Figures 5a, 5b and 5c only result from different 451 

aerosol data assimilation methods implemented (no data assimilation for the natural run).  A better 452 

correlation between AERONET and NAAPS data of 0.7982 isand a slope of 1.01 are found using 453 

AOD data assimilation.  In comparison, the correlation is 0.742 and the slope is 0.92 for the AI-454 
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DA runs.  Slightly better RMSE (0.1405 versus 0.1568) and absolute error (0.09511 versus 0.1042) 455 

values are also found for the AOD data assimilation runs.  This result is not surprising as OMI AI 456 

provides only a proxy for aerosol properties while passive-based AOD retrievals are often 457 

considered as a more reliable parameter for representing column-integrated aerosol properties. But 458 

still, the evaluation efforts are over cloud-free line-of-sight as detected from AERONET, AI DA 459 

may further assist traditional AOD data assimilation by provingproviding AI assimilation over 460 

cloudy regions. 461 

 462 

4.3 Sensitivity test 463 

As mentioned in Section 3, aerosol properties for non-smoke aerosol types were obtained 464 

from the NASA GEOS-5 model (e.g. Colarco et al., 2014; Buchard et al., 2015). Yet, different 465 

smoke aerosol SSA values are used in this study, as values for central Africa have a strong seasonal 466 

dependency (e.g. Eck et al., 2013). While SSA values of 0.85 and 0.86 are used for the 354 and 467 

388 nm channels, respectively, in our study, we have also examined the sensitivity of simulated 468 

OMI AI with respect to differing SSA values (Figure 6).  Figures 6a-c show the simulated AI at 469 

1200 UTC 28 July 2007 using NAAPS reanalysis data (Lynch et al, 2016) for three scenarios: SSA 470 

values at 354 and 388 nm of 0.84 and 0.84 (Figure 6a), 0.85 and 0.85 (Figure 6b) and 0.86 and 471 

0.86 (Figure 6c).  Over the central Africa area, where smoke plumes are expected, simulated OMI 472 

AI patterns are similar for Figures 6a and 6b, but reduced values in AI are found when using higher 473 

SSA values of 0.86 at both 354 and 388 nm.  This is further confirmed by the averaged AI for the 474 

smoke region over central Africa (14.5-0.5 to -1450.5 S latitude and 10.5 to 30.5 E longitude; 475 

indicated using the black box in Figure 6f) of 0.96, 0.94 and 0.78 for Figures 6a, 6b and 6c 476 

respectively. 477 
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Figures 6d-f show the sensitivity for adjustments of the SSA values at 388nm while 478 

maintaining a fixed SSA value of 0.85 at 354 nm.  Here the SSA values at 388 nm are set to 0.85, 479 

0.855 and 0.86 for Figures 6d, 6e and 6f respectively.  Interestingly, the spectral dependence of 480 

SSA seems to affect the simulated AI significantly, and this phenomenon has also been reported 481 

by previous studies (e.g. Hammer et al., 2017).  The averaged AI values over central Africa (again, 482 

indicated by the black box in Figure 6f) are 0.94, 1.11 and 1.32 for 388 nm SSAs of 0.85, 0.855 483 

and 0.86, respectively. This exercise suggests that simulated AI is a strong function of SSA, so 484 

that both the spectral dependence of SSA values at 354 and 388 nm and reliable SSA values are 485 

needed on a regional basis for future applications. 486 

Interestingly, although simulated AI values are significantly affected by perturbing SSA 487 

values as shown in Figure 6, less significant impacts are observed for NAAPS AOD.  This is found 488 

by running the OMI AI DA for 1200UTC, July 28, 2015 for SSA values used in generating Figure 489 

6.  For example, for the black box highlighted region in Figure 6f, the averaged values for the 490 

simulated OMI AI are 0.96, 0.94 and 0.78 for using SSA values at 354 / 388 nm channels of 0.84 491 

/ 0.84, 0.85 / 0.85 and 0.86 / 0.86, respectively.  The corresponding NAAPS AODs are found to 492 

be 0.559, 0.560 and 0.585 after OMI AI DA, which is a change of less than 5%.  Similar, by fixing 493 

the SSA value of the 354 nm channel as 0.85 and perturbing SSA values at 388 nm from 0.85 to 494 

0.86, a ~30% change is found in simulated OMI AI (from 0.94 to 1.32), yet a ~10% change is 495 

found for the NAAPS AOD (from 0.560 to 0.504) after OMI AI DA.   496 

It is also of interest to investigate the changes in aerosol vertical distributions due to the 497 

OMI AI DA.  For this exercise, we selected the 1200 UTC 28 July 2007 case and compared vertical 498 

distributions of smoke and dust aerosols near the peak AI value of the smoke plume (9.5S and 499 

20.5E) for the NAAPS natural and AI DA runs (Figure 7a). Note that the differences between 500 
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OMI DA and natural runs as shown in Figure 7 are essentially an integrated effect of OMI AI DA 501 

from 00Z, July 01 to 12 Z, July 28, 2007.  As shown in Figure 7a, the corrections to dust and 502 

smoke aerosol concentrations from the AI DA system seem to be systematic changes across the 503 

majority of vertical layers, instead of moving dust or smoke aerosol plumes vertically. As dust 504 

aerosol concentrations are reduced at all layers and a systematic correction to smoke aerosol 505 

concentrations, although non-linear, is also observed.  AI assimilation helps reduce the amount of 506 

upper troposphere dust (likely to be artifact) but does change the layer centroid slightly upwards.   507 

We have also evaluated NAAPS vertical distributions near a peak dust plume region (25.5N and 508 

12.5W) for the 12Z 28 July 2007 case as shown in Figure 7b.  Similar to Figure 7a, a non-linear 509 

correction to dust aerosol concentrations is also observed across the vertical domain. 510 

 511 

4.4 Issues and discussions 512 

The OMI AI data assimilation system is a proxy for all-sky, all-band modeling system 513 

radiance assimilation. It contains all the necessary components for such radiance assimilation, 514 

including a forward model for simulating radiances and AI values and their Jacobians, based on a 515 

full vector linearized radiative transfer model called for every observation.  Therefore, the 516 

computational burden is a direct issue associated with the deployment of calls to a radiative transfer 517 

model for each observation.  For the study area in this work, after binning OMI AI data into a 518 

11 (Latitude/Longitude) product, it still takes about ~1 CPU day for NAAPS to run for one 519 

month of model time.  In comparison, the time scale for running AOD assimilation for 1 month is 520 

at the hourly scalelevel. Clearly, there will be an unavoidable computational burden of some sort 521 

for OMI AI assimilation and by extension, for future radiance assimilation in the UV/visible 522 

spectrum for aerosol analyses.  Performance enhancement methods, such as parallel processing 523 
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(the VLIDORT software is thread-safe and can be used in parallel environments such as OpenMP), 524 

or fast look-up-table extraction based on neural-networks and trained data sets of forward 525 

simulation, must be explored in order to enable such assimilation applications in near real time on 526 

a global scale. 527 

In contrast with the assimilation of retrieved aerosol properties, both aerosol absorption 528 

and scattering need to be accounted for when assimilating radiance or OMI AI in the UV spectrum.  529 

This requires the inclusion of more dynamic aerosol optical properties into the data assimilation 530 

process, and properties that vary with region and season.  As noted already, even for biomass 531 

burning aerosols over South Africa, lower single scattering albedo values were found at earlier 532 

stages of burning seasons (e.g. Eck et al., 2013). A look-up-table of aerosol optical properties as 533 

functions of region and season will be needed for global implications of OMI AI as well as future 534 

radiance assimilation for aerosol modeling.   535 

OMI AI is sensitive to above-cloud UV-absorbing aerosols (e.g. Yu et al., 2012; Alfaro-536 

Contreras et al., 2014), and therefore, OMI AI values over cloudy scenes were also used in this 537 

study.  However, OMI AI cannot be used to infer aerosol properties for aerosol plumes beneath a 538 

cloud deck.  For regions with high clouds, the use of OMI AI data assimilation will likely result in 539 

an underestimation of AOD as below-cloud aerosol plumes are not accounted for.  Therefore, only 540 

OMI AI data over low cloud scenes are to be used for aerosol assimilation efforts.  In addition, 541 

although some quality assurance steps were applied in this study for the OMI AI data, lower AI 542 

values were observed over glint regions near the west coast of Africa. Abnormally high OMI AI 543 

values are also seen near the Arctic region - this may be related to the presence of floating ice 544 

sheets.  Thus, innovative and detailed data screening and quality assurance steps are needed to 545 
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exclude potentially noisy OMI AI retrievals and for further application of OMI AI data 546 

assimilation on a global scale.   547 

Even with these known issues, OMI AI assimilation as presented in the study illustrates a 548 

new method for assimilating non-conventional aerosol products.  Bearing in mind that OMI AI 549 

assimilation is essentially radiance assimilation in the UV spectrum, this study demonstrates the 550 

potential of directly assimilating satellite radiance in the UV/visible spectrum for aerosol modeling 551 

and analyses.   552 

 553 

5.0 Conclusions 554 

The OMI aerosol index (AI), which measures the differences between simulated radiances 555 

over Rayleigh sky and observed radiances at 354 nm, has been used to detect the presence of 556 

absorbing aerosols over both dark and bright surfaces.  We have constructed a new assimilation 557 

system, based on the VLIDORT radiative transfer code as the major component of the forward 558 

model, for the direct assimilation of OMI AI. The aim is to improve accuracies of aerosol analyses 559 

over bright surfaces such as cloudy regions and deserts.  560 

The performance of the OMI AI data assimilation system was evaluated over South-Central 561 

and Northern Africa regions for the period of 01 July -31 August 2007. This evaluation was done 562 

through inter-comparing NAAPS analyses with and without the inclusion of OMI AI data 563 

assimilation.  Besides cloud-free AI retrievals over dark surfaces, OMI AI retrievals over desert 564 

regions and over areas were also considered. When compared against AERONET data, a total of 565 

~298% reduction in Root-Mean-Square-Error (RMSE) with a ~32% reduction in absolute error 566 

were found for NAAPS analyses with the use of OMI AI assimilation.  Also, NAAPS analyses 567 

with the inclusion of OMI AI data assimilation show similar aerosol patterns to those in the OMI 568 

AI data sets, showing that our OMI AI data assimilation system works as expected.   569 
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This study also suggests that NAAPS analyses with OMI AI data assimilation cannot out-570 

perform NAAPS reanalyses data that were incorporated with MODIS and MISR AOD 571 

assimilation, and validated against AERONET data.  This is not surprising, as OMI AI is only a 572 

proxy for the AOD and is sensitive to other factors such as surface albedo and aerosol vertical 573 

distribution.  Also, AERONET data are only available over cloud-free field of views, so the 574 

performance of our OMI AI data assimilation system over cloudy regions has not been evaluated. 575 

There are a number of issues arising from our study.  For example, aerosol optical 576 

properties are needed for the OMI AI-DA system - these have strong regional and temporal 577 

signatures that need to be carefully quantified before applying them to the AI-DA on a global scale.  578 

Also, OMI AI retrievals are rather noisy and contain known and unknown biases.  Abnormally 579 

high OMI AI values are found over mountain regions as well the polar regions.  Sporadic high AI 580 

values are also known to occur, for reasons that are still not properly understood.  Even though 581 

quality assurance steps were proposed in this study, detailed analysis of OMI AI data are needed 582 

for future implementation of OMI AI data assimilation for aerosol studies.     583 

Lastly, AI values are derived from radiances and thus, the AI-DA system presented in the 584 

study can be thought of as a radiance assimilation system for the UV spectrum.  This is because 585 

the AI-DA system contains all necessary components for radiance assimilation, based on a forward 586 

model for calculating not only simulated satellite radiances, but also the aerosol-profile Jacobians 587 

of these radiance, both quantities as functions of observation conditions.  This study is among the 588 

first attempts at radiance assimilation at the UV spectrum and indicates the future potential for 589 

direct radiance assimilation at the UV and visible spectra for aerosol analyses and forecasts.  590 

 591 
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 39 

Table 1.  Mass extinction cross-sections (σ, m2/g) and single scattering albedos (o) used in 839 

this study. 840 

 ABF Dust Smoke Sea Salt 

σ (354 nm) 7.81 0.56 6.91 0.52 

o (354 nm) 1.0 0.88 0.85 1.0 

σ (388 nm) 6.96 0.58 6.07 0.52 

o (388 nm) 1.0 0.91 0.86 1.0 

 841 

 842 
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Figure Captions 843 

 844 
Figure 1. (a) Spatial distribution of NAAPS AODs, using NAAPS reanalysis data from the 845 

collocated OMI and NAAPS dataset for July 2007.  (b).  Simulated AI using NAAPS reanalysis 846 

data as shown in (a).  (c). Spatial distribution of OMI AI using gridded OMI data from the 847 

collocated OMI and NAAPS dataset for July 2007.  Grey color highlights those 1x1 848 

(Latitude/Longitude) bins that have less than threewo collocated NAAPS and OMI AI data for the 849 

study period. 850 

Figure 2. (a). Vertical distributions of smoke, dust, anthropogenic and sea salt aerosols for the test 851 

case as shown in (b). (b) Scatter plot of Jacobians of AI as a function of dust concentration: analytic 852 

versus finite difference solutions. 853 

Figure 3. (a). Aqua MODIS true-color image over Central and North Africa for July 28, 2007.  854 

This composite was obtained from the NASA worldview site 855 

(https://worldview.earthdata.nasa.gov/). (b). Spatial distribution of Gridded OMI AI for 12 UTC, 856 

July 28, 2007. (c). Spatial distribution of NAAPS AOD from the NAAPS natural run for 12 UTC, 857 

July 28, 2007. (d). Similar to (c) but using NAAPS AOD from the AI-DA run. (e). Simulated AI 858 

using data from (c). (f). Simulated AI using data from (d). 859 

Figure 4. (a). Spatial distribution of NAAPS AOD using NAAPS data from the AI-DA runs for 860 

July and August 2007.  Only NAAPS data that have collocated OMI AI data are used. (b). Spatial 861 

distribution of simulated AI for July and August 2007 using NAAPS data from the AI-DA runs.  862 

(c). Spatial distribution of gridded OMI AI for July and August 2007. (d). Differences between 863 

Figures 4(b) and 4(c).  (e-h) Similar to Figures 4(a)-4(d) but using NAAPS natural runs.  Grey 864 

color highlights those 1x1 (Latitude/Longitude) bins that have less than threewo collocated 865 

NAAPS and OMI AI data for the study period. 866 

https://worldview.earthdata.nasa.gov/
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Figure 5. (a). Scatter plot of AERONET and NAAPS AOD (0.55 µm) using NAAPS data from 867 

the natural runs for July-August 2007 over the study region.  (b). Similar to Figure 5(a) but using 868 

NAAPS data from the AI-DA runs. (c). Similar to Figure 5(a) but with AODs taken from the 869 

NAAPS reanalysis. 870 

Figure 6. Spatial distributions of simulated AI at 12 Z on July 28, 2007 using NAAPS reanalysis 871 

data, with single scattering albedos of smoke aerosol at 354 and 388 nm taken to be: (a) 0.84 and 872 

0.84; (b) 0.85 and 0.85; (c) 0.86 and 0.86; (d) 0.85 and 0.85; (e) 0.85, 0.855; (f) 0.85 and 0.86. 873 

Figure 7. (a). Vertical distributions of smoke and dust aerosol concentrations over 9.5S and 874 

10.5E at 12 Z on July 28, 2007 for both natural and AI DA runs.  (b).  Similar as (a) but over 875 

25.5N and 12.5W. 876 

 877 

  878 
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 879 

 880 

 881 
Figure 1. (a) Spatial distribution of NAAPS AODs, using NAAPS reanalysis data from the collocated 

OMI and NAAPS dataset for July 2007.  (b).  Simulated AI using NAAPS reanalysis data as shown in (a).  

(c). Spatial distribution of OMI AI using gridded OMI data from the collocated OMI and NAAPS dataset 

for July 2007.  Grey color highlights those 1x1 (Latitude/Longitude) bins that have less than threewo 

collocated NAAPS and OMI AI data for the study period. 
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 882 

 883 

Figure 2. (a). Vertical distributions of smoke, dust, anthropogenic and sea salt aerosols for the test 884 
case as shown in (b). (b) Scatter plot of Jacobians of AI as a function of dust concentration: analytic 885 

versus finite difference solutions. 886 
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 892 

 893 

 894 

Figure 3. (a). Aqua MODIS true-color image over Central and North Africa for July 28, 2007.  895 
This composite was obtained from the NASA worldview site 896 

(https://worldview.earthdata.nasa.gov/). (b). Spatial distribution of Gridded OMI AI for 12 UTC, 897 
July 28, 2007. (c). Spatial distribution of NAAPS AOD from the NAAPS natural run for 12 UTC, 898 

July 28, 2007. (d). Similar to (c) but using NAAPS AOD from the AI-DA run. (e). Simulated AI 899 
using data from (c). (f). Simulated AI using data from (d). 900 
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 905 

Figure 4. (a). Spatial distribution of NAAPS AOD using NAAPS data from the AI-DA runs for 906 
July and August 2007.  Only NAAPS data that have collocated OMI AI data are used. (b). Spatial 907 
distribution of simulated AI for July and August 2007 using NAAPS data from the AI-DA runs.  908 

(c). Spatial distribution of gridded OMI AI for July and August 2007. (d). Differences between 909 
Figures 4(b) and 4(c).  (e-h) Similar to Figures 4(a)-4(d) but using NAAPS natural runs.  Grey 910 

color highlights those 1x1 (Latitude/Longitude) bins that have less than threewo collocated 911 
NAAPS and OMI AI data for the study period. 912 
 913 
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Figure 5. (a). Scatter plot of AERONET and NAAPS AOD (0.55 µm) using NAAPS data from 916 
the natural runs for July-August 2007 over the study region.  (b). Similar to Figure 5(a) but using 917 
NAAPS data from the AI-DA runs. (c). Similar to Figure 5(a) but with AODs taken from the 918 

NAAPS reanalysis. 919 
 920 

 921 

Figure 6. Spatial distributions of simulated AI at 12 Z on July 28, 2007 using NAAPS reanalysis 922 

data, with single scattering albedos of smoke aerosol at 354 and 388 nm taken to be: (a) 0.84 and 923 
0.84; (b) 0.85 and 0.85; (c) 0.86 and 0.86; (d) 0.85 and 0.85; (e) 0.85, 0.855; (f) 0.85 and 0.86. 924 
  925 
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 926 

Figure 7. (a). Vertical distributions of smoke and dust aerosol concentrations over 9.5S and 927 

10.5E at 12 Z on July 28, 2007 for both natural and AI DA runs.  (b).  Similar as (a) but over 928 

25.5N and 12.5W. 929 
 930 

 931 
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