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Abstract. Demand for high-resolution climate information is growing rapidly to fulfill the needs of both scientists 11 

and stakeholders. However, deriving high-quality fine-resolution information is still challenging due to either the 12 

complexity of a dynamical climate model or the uncertainty of an empirical statistical model. In this work, a new 13 

downscaling framework is developed using the deep-learning based super-resolution method to generate very high-14 

resolution output from coarse-resolution input. The modeling framework has been trained, tested, and validated for 15 

generating high-resolution (here, 4 km) climate data focusing on temperature and precipitation at daily scale from the 16 

year 1981 to 2010. This newly designed downscaling framework is composed of multiple convolutional layers 17 

involving batch normalization, rectification-linear unit, and skip connection strategies, with different loss functions 18 

explored. The overall logic for this modeling framework is to learn optimal parameters from the training data for later-19 

on prediction applications. This new method and framework are found to largely reduce the time and computation 20 

cost (~23 milliseconds for one-day inference) for climate downscaling compared to current downscaling strategies. 21 

The strength and limitation of this deep-learning based downscaling have been investigated and evaluated using both 22 

fine-scale gridded observations and dynamical downscaling data from regional climate models. The performance of 23 

this deep-learning framework is found to be competitive in either generating the spatial details or maintaining the 24 

temporal evolutions at a very fine grid-scale. It is promising that this deep-learning based downscaling method can be 25 

a powerful and effective way to retrieve fine-scale climate information from other coarse-resolution climate data. 26 

When seeking an efficient and affordable way for intensive climate downscaling, an optimized convolution neural 27 

network framework like the one explored here could be an alternative option and applied to a broad relevant 28 

application. 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 
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1 Introduction 40 

 41 

With the increasing demand for high-resolution climate data across emerging climate studies and real-world needs 42 

(Giorgi et al., 2009; Stocker et al., 2014; Roberts et al., 2018), rapidly growing efforts have focused on developing 43 

methods and techniques to retrieve fine-scale details from coarse-resolution source either from reanalysis or 44 

simulations (Wood et al., 2004; Maraun et al., 2010; Giorgi and Gutowski, 2015). Existing downscaling methods 45 

mainly include but not limited to traditional dynamical downscaling (using either regional climate models, variable-46 

resolution global climate modeling, or high-resolution global climate models), and empirical statistical downscaling 47 

(either linear or nonlinear), attributing with unique strengths and also limitations (Huang et al., 2016). In detail, 48 

traditional dynamical downscaling relies on a complex numerical model, with relatively costly computation and time 49 

efforts, needing physical schemes optimizations. Statistical downscaling is relatively resource-efficient, but generally 50 

be constrained to the assumptions of temporal stationarity, empirical knowledge of the controlling factors/predictors, 51 

and/or perfect prognostic bias correction. 52 

 53 

In recent years, machine learning has gained its popularity in climate science (Liu et al. 2016; Kurth et al. 2018; Rasp 54 

et al. 2018; Rolnick et al., 2019; Tran Anh et al. 2019; Ahmed et al. 2020). The area of climate downscaling also sees 55 

some preliminary applications (Vandal et al. 2017; Rodrigues et al. 2018; Chang et al., 2018; Pan et al, 2019). For 56 

example, Vandal et al. (2017) presented a DeepSD framework composed of three convolutional layers. And Rodrigues 57 

et al. (2018) explored climate downscaling using several convolution layers and locality-specific layers. Further, Pan 58 

et al (2019) used convolutional layers and fully connected layers, with every entry in the input being connected to 59 

every entry in the output regardless of their locations, to predict per-grid point value. Overall, former studies exhibited 60 

the possibility of using deep-learning for climate downscaling compared to traditional statistical downscaling, but still 61 

leaving large space for in-depth explorations. Previous studies mostly used basic and early-stage deep learning 62 

strategies with simple convolutional neural frameworks and showed only a few experiments with downscaling results 63 

at moderate grid resolutions over very limited study regions.  64 

 65 

Importantly, deep learning has advanced a lot since then and is becoming rather sophisticated for many more 66 

applications (Lecun et al. 2015; He et al. 2016; Oord et al. 2016; Silver et al. 2017; Devlin et al. 2018;). In this work, 67 

the main goal is to explore the construction and application of a comprehensive deep-learning based framework for 68 

retrieving fine-scale temperature and precipitation data, using the image super-resolution method. In the area of image 69 

processing, image super-resolution is used to reconstruct high-resolution images from low-resolution images, which 70 

has advanced significantly in recent years using deep learning methods (Ledig et al. 2017; Lim et al. 2017; Zhang et 71 

al. 2018; Yang et al. 2019; Wang et al. 2020; Zhang et al. 2020). Climate downscaling has similar goals in terms of 72 

generating high-resolution information and has been an important topic for decades. The present study aims to 73 

incorporate up-to-date deep learning schemes for network design with robust tests of layers composition, layer 74 

connections, and loss functions. This work uses cutting-edge training strategies with high-performed GPUs for large 75 

numbers of epochs (as detailed in the methods). The modeling framework has been trained, tested, and validated for 76 

generating high-resolution (here, 4 km) near-surface temperature and precipitation data from coarse input (~81km) at 77 
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daily scale from the year 1981 to 2010. Comprehensive analysis of the results is presented compared to not only the 78 

“ground-truth” observations but also available traditional dynamical downscaling data. Overall, this study shows the 79 

promise of a broad application using the deep-learning based modeling framework for climate downscaling. 80 

 81 

2 Methods and dataset 82 

 83 

2.1 Building deep-learning neural network for downscaling 84 

 85 

The logic of using a deep convolution neural network framework for downscaling is to take coarse-scale input and/or 86 

supporting data to produce fine-scale output/prediction (as depicted in Figure 1). To build this framework, during the 87 

training stage, the finalized construction has incorporated convolutional layers (Conv), rectification linear unit (ReLU 88 

layers), and batch normalization layers (BN) as detailed below.  89 

 90 

 91 

Figure 1: Overview of the deep convolutional neural network and its components used in this study. The network 92 

is composed of a sequence of convolutional layers, batch normalization layers, and ReLU layers. (Note: Dashed arrow 93 

lines represent the skip connections; Gold-colored layers refer to the ones with stride value of 2. The numbers on the 94 

top of each convolutional layer refer to the filter size, and the number on the bottom of that refers to the grid size of 95 

the image.) 96 

 97 

2.1.1 Convolutional layers 98 

In short, a convolution layer consists of a certain number of filters. Each filter (i.e. channel) will operate on a local 99 

region (e.g. 3x3 region) within the input dimension in a sliding window manner. This operation is called convolution. 100 

Each convolution has two groups of trainable parameters: i.e. weights (𝑊) and bias (𝑏), and these trainable parameters 101 

will be learned in the training stage. Here, the author used 128, 256, and 512 filters (corresponding to the number of 102 

output channels) for different layers. Each filter has parameters: weight 𝑊 and bias 𝑏. Supposing the input is with 𝑀 103 

channels and denoted as 𝑋("), and the filter number is 𝑁, for a 𝐾 × 𝐾 sliding window (here, 𝐾 = 3) centered at (𝑖, 𝑗), 104 

the convolution output for the 𝑛th filter is computed in the following way: 105 

 106 
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 107 

here, 𝑌$,&'  represents the 𝑛th filter’s output at a location (𝑖, 𝑗). When designing a convolution layer, the parameters for 108 

stride and padding also need to be specified. The stride value controls the offset of the sliding window when moving 109 

to the next sliding. Padding is used to pad extra values (usually set as 0) at the borders to gather enough data for the 110 

convolution operation on the entries centered at borders.  111 

In this framework (Figure 1), stride value of 1 and stride value of 2 are used for different convolutional layers. For the 112 

convolutional layer with stride being 1, the spatial domain size of the output is the same with the spatial size of the 113 

input. For the convolutional layer with stride set as 2, the spatial size of the output is smaller (around half in each 114 

dimension) than that of the input. In deep learning practices, convolutional layers with stride being 2 are used to 115 

increase the receptive fields of the convolutional layers. The receptive field is defined as the area where the 116 

convolutional filters can influence. Usually, the area where a single convolution filter can influence depends on its 117 

kernel size (here, 3x3). The area (or receptive field) is accumulated by using more convolutional layers and having 118 

stride be 2 will further accumulate the receptive field. 119 

 120 

The left part of the network, which transforms the input into smaller dimension features, is called encoder as a custom 121 

in the computer vision field. In the encoder part, six convolutional layers are used with three of them having stride 122 

values of 2 and the rest three having stride values of 1. Each convolutional layer is connected by a batch normalization 123 

layer and a ReLU layer as explained below. Accordingly, the right part of the network, which transforms the lower 124 

dimensional features to final output, is called decoder. In the decoder part, there are three convolutional layers and 125 

three nearest upsampling layers with the hard-coded nearest upsampling rules (not shown in Figure 1, as no parameter 126 

needs to be trained for them). The upsampling layer and convolutional layer are applied alternately. Each 127 

convolutional layer in the decoder part is also connected by a batch normalization layer and a ReLU layer.  In total, 128 

28 layers have been utilized. 129 

 130 

2.1.2 ReLU layers 131 

As the mathematical operation of a convolution layer is a linear function, nonlinear functions are needed between the 132 

convolution layers to let the entire network describe a non-linear mapping. These nonlinear functions are called 133 

activation functions. In deep learning field, ReLU is a widely used activation functions as a one-to-one mathematical 134 

operation, defined as: 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥). This simple approximation can not only compute fast but also match 135 

the capability of more complex nonlinear functions, received as a foundation for current deep learning models (Nair 136 

et al. 2010, Glorot et al. 2011, Krizhevsky et al. 2012). In general, the key to a successful deep-learning based 137 

framework is to approximate the highly complex relation (here, for fine-scale temperature and precipitation features) 138 

by combining a sequence of linear and non-linear operations. 139 

 140 

2.1.3 Batch normalization layers  141 
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Deep neural networks can be sensitive to the initialized values of the trainable parameters during the training process. 142 

To reduce such sensitivity, batch normalization layers are used as a common way to stabilize the training, which is 143 

used to re-center and rescale the input and has been shown to be effective in improving the training speed, accuracy, 144 

and stability of deep neural networks (Ioffe et al. 2015). The batch normalization is computed through three steps: a) 145 

Calculate the mean (𝜇) and standard deviation (𝜎) of the input; b) Subtract the mean from the input and divide it with 146 

the standard deviation (i.e. 𝑥7 = (𝑥 − 𝜇)/;𝜎2()); c) Using the results from step b) to multiply the batch normalization 147 

layer’s parameter 𝛾 and then added to the layer’s parameter 𝛽(i.e. 𝑦	 = 𝛾𝑥7 + 𝛽). Detailed equations and algorithms can 148 

be found in Ioffe et al. (2015). 149 

 150 

2.1.4 Skip connections 151 

The idea of skip connections is to concatenate the outputs from two non-consecutive layers. Previous work shows that 152 

skip connections can improve some details for the output (Ronneberger et al. 2015). In this framework, two skip 153 

connections (see the stacked layers in Figure 1) are used as seen fit.  154 

 155 

2.2 Network training: loss function selection 156 

 157 

In the training stage, the difference between the prediction and the target is used to guide the updates of the trainable 158 

parameters. The mathematical function to compute such a difference is called loss function. Several commonly used 159 

loss functions have been tested to train a network based on existing successful applications in computer vision (Zhao 160 

et al. 2016; Johnson et al. 2016; Liu et al. 2018). In this work, two types of widely-used loss functions are chosen: L2 161 

loss and L1 loss.  162 

 163 

L2 or L1 loss is defined as the mean square error or the absolute difference loss between the prediction and the target 164 

respectively, i.e.: 165 

 166 

 167 

The derivative of L2 and L1 loss are: 168 

 169 

 170 

 171 

Usually, L2 loss is more sensitive to the scale of difference between prediction and ground truth than L1 loss, while 172 

L2 loss’s derivative is continuous at the value 0 while L1 loss’s derivative is not. As the derivative of the loss function 173 

is used to determine the updated values for the model parameters during the training process, the update of the model 174 

parameters is not stable around the value 0 for L1 loss. 175 

 176 
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In the case of precipitation downscaling, most of the entries are zeros. As a result, using L1 loss is more difficult to 177 

converge to an optimal solution than using L2 loss. Therefore, the output trained with L2 loss is used as the prediction 178 

for precipitation in this study. While, in the case of temperature downscaling, the input values are continuous without 179 

zero values (in the unit of Kelvin). The model using L1 loss has less chance for suffering instability, and L2 loss’s 180 

derivative is sensitive to the scale of the difference between prediction and ground truth. Therefore, for the temperature 181 

downscaling results, the model using L1 loss has a larger chance to converge more efficiently and reach a final optimal 182 

solution than L2 loss. As a result, the output trained with L1 loss is used as the prediction for temperature.  183 

 184 

2.3 Dataset and computation 185 

 186 

2.3.1 Dataset 187 

Daily data is targeted covering the whole western US from 1981 to 2010. The goal is to downscale the coarse-188 

resolution reanalysis input (here, using ERA-interim, ~81 km) to 4 km (also the resolution of the ground-truth) for 189 

near-surface (2 m) temperature (T2) and precipitation (Pr) for each day. A summary of the dataset used in this study 190 

is given in Table 1. In detail, ERA-interim, a widely-used reanalysis dataset (Dee et al., 2011), is chosen as the coarse-191 

resolution input. A well-received high-quality gridded observational dataset, PRISM (Parameter-elevation 192 

Regressions on Independent Slopes Model, Daly et al., 2008), is applied as the ground truth for training purposes.  193 

 194 

Table 1: Dataset description as used in this study 195 

 196 

Data type Dataset source Spatial 
resolution 

Time periods and 
frequency 

Variables 

Coarse input  ERA-interim ~81 km 1981-2010; Daily T2, Pr 

 Ground-truth (i.e. 
target) 

PRISM 4 km 1981-2010; Daily T2, Pr 

Supporting data ERA-interim ~81 km invariant Elevation 

Supporting data PRISM 4 km invariant Elevation 

Supporting data ERA-interim ~81 km 1981-2010; Daily  U, V, RH, Q 
(all at 850 hPa) 
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Output Training 4 km 1981-1990; Daily T2, Pr 

Output Prediction 4 km 1991-2010; Daily  T2, Pr 

Dynamical 
downscaling 

dataset 

  NA-CORDEX 
(WRF forced by 
ERA-interim)   

(Mearns et al., 2017) 

25 km 1991-2010; Daily  T2, Pr 

Dynamical 
downscaling 

dataset 

  WRF high-
resolution 

downscaling (forced    
by NARR) (Liu et 

al., 2017) 

4 km  2001-2010; Daily  T2, Pr 

 197 

 198 

Supporting datasets have been used together with the input for network training purposes, including elevations from 199 

both input and ground-truth sources at different native grid resolutions for both temperature and precipitation 200 

downscaling. Due to the discontinuity and complexity of precipitation field, additional supporting datasets have been 201 

used in addition to the elevations, including zonal and meridional winds (U and V), relative humidity (RH), and 202 

specific humidity (Q) from the coarse-resolution input data (i.e. ERA-interim) at 850 hPa vertical level. For evaluation 203 

purpose, dynamical downscaling datasets are also used, including public-shared WRF (the Weather Research and 204 

Forecasting model, Skamarock et al., 2008) simulations at 25 km from NA-CORDEX (Coordinated Regional Climate 205 

Downscaling Experiment featuring simulations for North America) (Mearns et al., 2017) and WRF simulations at 4 206 

km covering the CONUS (Contiguous United States) (Liu et al., 2017), as described in Table 1. For analysis’ 207 

convenience, all the datasets have been regridded to 4 km using the bilinear method. 208 

 209 

2.3.2 Training and inference 210 

To train the network, daily input in the first 10 years (i.e. 1981-1990) is used as training data and the rest 20 years are 211 

used for testing (i.e. for prediction and validation). The study region covers the whole western US regions, with a 212 

domain of 600x800 grid boxes after being re-gridded to 4 km. The network has been trained with 800 epochs, and 213 

each epoch refers to the full training of all the 10 years’ data. During the training iteration process, the adjustment of 214 

model parameters is controlled by the learning rate. Here, the learning rate is set as 0.002 for the first 600 epochs and 215 

0.0002 for the remaining 200 epochs. The last epoch from the trained model is used for the prediction. The determined 216 
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model framework with optimized parameters is then used to perform the inference on the remaining years’ values (i.e. 217 

1991-2010). 218 

 219 

The PyTorch framework is used to build deep learning models. To speed up the dataset reading, the training data has 220 

been converted to HDF5 database format, which provides a faster query compared to the NetCDF format or other non-221 

database files. The total trainable parameter number is ~7,500,000. The training loss curve from the finalized 222 

downscaling framework is shown in the supplemental (Figure S1). 223 

2.3.3 Computation and time cost  224 

This study has used 8 NVIDIA GPUs together to train the models for 800 epochs. Each training time is around 22 225 

hours on 10 years’ dataset. The inference (i.e. testing) time for one-day data is 22.75 milliseconds, and each day has 226 

been predicted in parallel using the trained model. The training time and inference time could be longer or shorter 227 

depending on what types of GPUs to use. 228 

 229 

3 Results 230 

 231 

3.1 Temperature 232 

 233 

Firstly, the prediction performance for the yearly average temperature is shown (Figure 2). It can be seen that the 234 

prediction results (hereafter, named as Supres) closely match the ground-truth (i.e., the PRISM observations), in terms 235 

of both spatial patterns and the grid-scale values. The spatial correlation is about ~0.997 between Supres and PRISM, 236 

while the coarse input and WRF 4km also show a high correlation with PRISM for about ~0.98 to 0.99. Given near-237 

surface temperature is strongly elevation-dependent, the supporting dataset of elevations from input and target (i.e. 238 

the ground-truth) (Figure S2), provides significant information for neural network learning to reconstruct the spatial 239 

details for the temperature over complex terrains due to associated orographic effects. 240 

 241 

 242 

  243 
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 244 

Figure 2: Yearly average near-surface (2m) temperature (T2) over 2001-2010. Upper row: T2 mean from PRISM 245 

(“ground-truth”), ERA-interim (input), Supres (i.e. the deep-learning based prediction), and WRF 4km; Bottom row: 246 

Absolute differences from PRISM for the input, Supres, and WRF 4km results. 247 

 248 

When zoomed into California, where diverse climate divisions locate (including coastal, inland valley, complex 249 

mountainous, desert, etc.), the fine-scale spatial features in the prediction show notable improvement from coarse 250 

resolution input. When compared to the WRF 4km dynamical downscaling data, the prediction outperforms if 251 

comparing the differences from the ground-truth (Figure 2). The mean absolute differences from the 252 

observation/reference are around 0.93K, 0.34K, and 0.71K for input, Supres, and the WRF 4km, respectively. A 253 

supplemental comparison to the WRF 25km dataset at a longer period, i.e. 20 years instead of 10 years, re-prove the 254 

value from the prediction dataset (see Figure S3). It is acknowledged that the deep-learning prediction is trained with 255 

the reference data (PRISM) first, while dynamical downscaling is a numerical modeling method without the direct 256 

feeding from the reference dataset. 257 

 258 

Further, the prediction output also captures the temporal evolution well for both yearly trends and seasonal cycles 259 

(Figure 3). When averaged over the whole western US as the plotted domain in Figure 2, the yearly averages from 260 

coarse-resolution input and the WRF 4km show overestimation (i.e. warmer signal) compared to PRISM, for about 261 

0.6-0.8 K, and 0.3-0.6 K, respectively. The bias from the prediction (i.e. Supres) is reduced with minor warm or cold 262 

differences, ranging from -0.02 to 0.25 K for different years. The seasonal cycle is overall well-captured for all of the 263 

datasets, with some overestimation signal found in the input and the WRF 4km dataset, especially over the summer 264 

seasons (up to 1 K). And the results from prediction closely match the PRISM dataset with bias within 0.3 K. As for 265 

the correlations, it is about ~0.97, 0.94, and 0.96 between Supres and ERA-interim/PRISM/WRF 4km, respectively. 266 

Although Supres correlates better with the driving data given the prediction is directly affected by the inter-annual 267 

variability of the climatology, it is beneficial that prediction can inherit and reflect the temporal variability from the 268 

input but with much finer spatial details. 269 
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 270 

 271 

Figure 3: Temporal evolution for T2. Left panel: Yearly mean over the western US for PRISM, ERA-interim, 272 

Supres, and WRF 4km results from year 1991 to 2010 (note that WRF 4km only covers 2001-2010); Right panel: 273 

Similar as left panel, but for the seasonal cycle (i.e. monthly average) during 2001 to 2010. 274 

In addition to the yearly and monthly average, the fine-scale temperature at daily scale is important in many 275 

applications: such as in understanding warming impacts on hydroclimate over complex mountainous regions, and 276 

quantification of heatwaves risks. For instance, over the southwest US, the near-surface temperature is generally hotter 277 

than other regions with a high risk of heatwaves during hot seasons. To further investigate the performance of the 278 

prediction in capturing the daily properties, frequency distributions of the daily T2 values over the southwest region 279 

(including California, Nevada, Utah, and Arizona) are exhibited in Figure 4. It is recognizable that the prediction can 280 

represent daily distribution well compared to the PRISM, which is comparable to the WRF results with observable 281 

improvement from the input. 282 

 283 

 284 

Figure 4: Daily frequency distribution of T2 based on all the grid values during 1991-2010 (left) and 2001-2010 285 

(right). The domain covers the southwest states (including California, Nevada, Utah, and Arizona) for results from 286 

ERA-interim, Supres, PRISM, and WRF at 25km/4km.  287 

 288 

 289 
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3.2 Precipitation  290 

 291 

Unlike temperature, precipitation is non-continuous and is involved with complex regional features, making it much 292 

more difficult to downscale for very high-resolution information from a coarse-resolution input. The intrinsic 293 

complication of precipitation downscaling requires a well-trained network. As described in the dataset section, 294 

additional relevant supporting data to precipitation downscaling include zonal and meridional winds (U and V), 295 

relative humidity (RH), and specific humidity (Q) at 850 hPa vertical level from the input are also used. However, 296 

precipitation over the western US is still largely controlled by the complex topography and orographic forcings, which 297 

also makes the elevation details the key supporting information to reconstruct the spatial details.  298 

 299 

Firstly, the yearly mean precipitation is investigated (Figure 5). As observed, the prediction exhibits a similar spatial 300 

pattern compared to the PRISM and WRF 4km with significant improvement from the input. The spatial correlation 301 

is about ~0.96 between Supres and PRISM, and the input and WRF 4km show a correlation with PRISM for about 302 

~0.89 to 0.93 over the whole domain. The spatial patterns and details are much better represented in the high-resolution 303 

output, especially over the west US regions with heavy precipitation. The input overall underestimates the precipitation 304 

over most of the regions, especially the heavier precipitated locations for about 2 to 8 mm/day when compared to 305 

PRISM. The deep-learning based downscaling output shows significantly reduced biases over the majority of study 306 

regions with differences less than 1 mm/day from the reference. Furthermore, the prediction results are comparable to 307 

the dynamical downscaling output from WRF 4km, which shows drier bias over the coastal area and wetter biases 308 

over the inland regions with biases for about -3 to 3 mm/day. Further comparison to the WRF 25km can be found in 309 

Figure S4, which further proves the importance of fine-scale features in retrieving precipitation distributions.  310 

 311 

Figure 5: Yearly mean precipitation over 2001-2010. Upper row: Precipitation mean from PRISM, ERA-interim, 312 

Supres, and WRF 4km; Bottom row: Absolute differences from PRISM for the input, prediction, and WRF dynamical 313 

downscaling results. 314 
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The precipitation features are further examined in terms of yearly trend and seasonal cycle in western US states, where 315 

heavier precipitation locates including WA (Washington), OR (Oregon), and CA (California) (Figure 6). The results 316 

show that prediction from the deep-learning downscaling can represent both the yearly trend and the seasonal cycle 317 

in a reasonable way for all of the three regions, with obvious improvement from the input. Specifically, the yearly 318 

mean values have been underestimated for about 56 to 62% on average over the three regions compared to PRISM in 319 

the ERA-interim, and the biases have reduced to -5% to 2% in the prediction. The WRF 4km results are also close to 320 

the PRISM observations with relative biases for about -2 to -10%. As for monthly mean, the input underestimated the 321 

precipitation on average for about 1.7, 1.24, and 1.0 mm/day for WA, OR, and CA, respectively, with the relative bias 322 

for about ~60% compared to PRISM. The bias has significantly reduced in the fine-scale output with relative biases 323 

for about 8 to 20%. It is further proved that the results from prediction are comparable to WRF 4km, which shows an 324 

average bias for about ~6% to 13% over the different states. (A supplementary comparison to WRF25km across the 325 

longer period (i.e. 1991-2010) can be found in Figure S5.) 326 

 327 

 328 

 329 

Figure 6: Time series features for Pr from 2001 to 2010 over the western US states including WA, OR, and CA. 330 

Left panel: Yearly averaged for PRISM, ERA-interim, Supres, and WRF 4km results; Right panel: Similar as left 331 

panel, but for the seasonal cycle (i.e. monthly average). 332 

 333 

Regions like the western US coast could be significantly impacted by heavy precipitation events. To further investigate 334 

the performance of the prediction in capturing the daily precipitation features, frequency distributions of the daily Pr 335 

over the western US coast (covering WA, OR, and CA) are shown in Figure 7. Here, both the distributions from the 336 

20 years and 10 years period are examined, and the prediction shows an overall good match to the PRISM with notable 337 
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improvement from the input. This further proves the added values of the high-resolution dataset in capturing 338 

precipitation extremes (Figure 7). WRF results at the same resolution (i.e. 4 km) show better performance than the 339 

prediction in capturing the extreme daily precipitation values and the distributions. Given the well-reproduced 340 

temperature and precipitation features either for the mean climatology or at the daily scale, the results exhibit that a 341 

robust deep-learning neural network can be used to get high-quality fine-scale climate information alternatively. 342 

 343 

Figure 7: Daily frequency distribution of Pr based on all the dataset for 2001-2010 (left) and 1991-2010 (right) 344 

over the grid points from WA, OR, and CA from ERA-interim, Supres, PRISM, and WRF results (note: Y-axis is 345 

logged for better visualization). 346 

 347 

4 Summary and discussions 348 

 349 

In this study, a newly developed deep-learning based framework has been explored for climate downscaling for 350 

temperature and precipitation at a high-resolution of 4 km over the whole western U.S. for 1981 to 2010 at daily scale. 351 

The designed modeling framework, based on a deep-learning super-resolution method, is composed of multiple 352 

convolutional layers, batch normalization, rectification linear unit, and skip connections. In sum, the neural framework 353 

learns optimal parameters from the training data for later-on prediction. Training is based on the first 10 years’ daily 354 

input (i.e. 1981-1990) and parameters are optimized using the selected loss function to the “ground-truth” (here, 355 

PRISM gridded observations). The finalized neural network with optimized parameters is then used to perform the 356 

inference over the remaining years’ values (i.e. 1991-2010). Given the intuitive attributions of the dataset, the L1 loss 357 

is chosen for temperature and L2 loss is used for precipitation based on the training process and multiple tests. 358 

 359 

Results prove that the prediction from deep-learning based downscaling can match the “ground-truth” closely for both 360 

temperature and precipitation. The performance of the deep-learning based modeling framework is also comparable 361 

to traditional regional climate downscaling methods in terms of accuracy in either representing the spatial or temporal 362 
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features at a fine grid-scale. The supporting dataset of elevation is key for the neural network to learn orographic 363 

effects, particularly over complex terrains. Precipitation downscaling incorporates additional supporting datasets 364 

including wind and humidity constraints. 365 

 366 

This newly developed method and framework largely reduce the time consuming and computation cost for climate 367 

downscaling. PRISM, as a fine-resolution observation dataset, is mainly used for training and validation purposes as 368 

“ground-truth”. That is to say, “ground-truth” is only needed in the training stage to optimize the model parameters 369 

and in the inference/testing stage it is not needed. Given a robust deep-learning network developed for downscaling, 370 

a broad application can be further explored including downscaling GCMs’ simulations or other types of climate 371 

datasets over an even longer period.  372 

 373 

The findings prove that a deep-learning based downscaling method as newly developed here can be a powerful and 374 

effective way to retrieve fine-scale information from a coarse-resolution input. When seeking an efficient and 375 

affordable way for intensive climate downscaling, an optimized convolution neural network framework, as this work 376 

targets, could be an alternative option. The author acknowledges that future work will require a better understanding 377 

of the components in the deep learning methods when applied in climate science. 378 

 379 

 380 

 381 

 382 

 383 

 384 
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 397 

 398 

 399 
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