
Response letter of gmd-2020-211 

 

Dear Editor, 

 

Please find the revised version of our manuscript “Combining Ensemble Kalman Filter and 

Reservoir Computing to predict spatio-temporal chaotic systems from imperfect observations and 

models”, which we would like to resubmit for publication in Geoscientific Model Development. 

 

Comments made by the reviewers were highly insightful. They allowed us to greatly improve the 

quality of the manuscript. We described the responses to the comments. 

 

Each comment made by the reviewers is written in italic font. We numbered each comment as (n.m) 

in which n is the reviewer number and m is the comment number. In the revised manuscript, changes 

are highlighted in yellow in the single-column and double-spaced paper. 

 

We trust that the revisions and responses are sufficient for this manuscript to be published in 

Geoscientific Model Development. 

 

Sincerely, 

Futo Tomizawa, Yohei Sawada 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Responses to the comments of Referee #1 

(1.1) Section 2.4 "Combination of RC and LETKF" is the scientific innovation that is at the core of 

the paper, however the authors only explore the idea in a purely textual form. Some equations 

comparing the three methods (RC-Obs, RC-Anl, LETKF) or perhaps a diagram would be immensely 

beneficial to the average reader, as that will be more eye-catching, and would help explain the papers 

innovation. 

→ The prediction schemes of RC-Obs, RC-Anl, and LETKF are compared in Table 2 in the original 

version of manuscript. However, there is the room to improve the description of the idea of RC-Anl. 

We have added some equations to explain the concept of each prediction scheme, LETKF-Ext, RC-

Obs, and RC-Anl. 

Lines 192-196: Predictions are made by the model alone, using the latest analysis state 

variables as the initial condition: 

𝒙𝑲+𝟏
𝑓

= 𝓜̃(𝒙𝑲
𝒂̅̅ ̅̅ ),   𝒙𝑲+𝟐

𝑓
= 𝓜̃(𝒙𝐾+1

𝑓 ),   … 

where 𝒙𝒌
𝑓
 is the prediction variables at time 𝑘, 𝓜̃ is the prediction model (an imperfect 

L96 model), and  𝒙𝐾
𝑎̅̅̅̅  is the mean of the analysis ensemble at the initial time of the 

prediction. 

Lines 243-247: At this point, RC can now be used as the surrogate model that mimics the 

state dynamics: 

𝒙𝑘+1
𝑓

= ℳ̃𝑅𝐶 (𝒙𝑘
𝑓

, {𝒙𝑘
𝑡𝑟𝑎𝑖𝑛}

1≤𝑘≤𝐾
) (16) 

where 𝒙𝑘
𝑓
 is the prediction variables at time 𝑘, ℳ̃𝑅𝐶 is the dynamics of RC (equations 

(12) and (13)) and {𝒙𝑘
𝑡𝑟𝑎𝑖𝑛}

1≤𝑘≤𝐾
= {𝒙1

𝑡𝑟𝑎𝑖𝑛 , 𝒙2
𝑡𝑟𝑎𝑖𝑛 , … , 𝒙𝐾

𝑡𝑟𝑎𝑖𝑛 }  is the time series of 

training data. 

Lines 251-254: Prediction time series here can be expressed using equation (16) as follows: 

𝒙𝐾+1
𝑓

= ℳ̃𝑅𝐶 (𝒚𝐾
𝑂 , {𝒚𝑘

𝑂}
1≤𝑘≤𝐾

) ,  𝒙𝐾+2
𝑓

= ℳ̃𝑅𝐶 (𝒙𝐾+1
𝑓

, {𝒚𝑘
𝑂}

1≤𝑘≤𝐾
) , … (17)  

where {𝒚𝑘
𝑂}

1≤𝑘≤𝐾
= {𝒚1

𝑂 , 𝒚2
𝑂 , … , 𝒚𝐾

𝑂 } is the observation time series and 𝒚𝐾
𝑂  is the 

observation at the initial time of the prediction. 

Lines 292-304: Suppose we have sparse and noisy observations for the training data. If we 

take observations as inputs and analysis variables as outputs, LETKF can be considered as 

an operator to estimate the full state variables from the sparse observations: 

{𝒙𝑘
𝑎̅̅ ̅}

1≤𝑘≤𝐾
= {𝒟(𝒚𝑘

𝑂)}
1≤𝑘≤𝐾

(22) 

where {𝒙𝑘
𝑎̅̅ ̅}

1≤𝑘≤𝐾
= {𝒙1

𝑎 , 𝒙2
𝑎 , … , 𝒙𝐾

𝑎 } is the full-state variables (time series of the LETKF 

analysis ensemble mean), 𝒚𝑘
𝑂  is the observation, and 𝒟: ℝ𝑛 → ℝ𝑚  represents the state 

estimation operator, which is realized by LETKF in this study. Then, RC is trained by using 

{𝒙𝑘
𝑎}1≤𝑘≤𝐾 as the training data set. In this way, RC can mimic the dynamics of analysis time 



series computed by forecast-analysis cycle of LETKF. Prediction can be generated by using 

the analysis variables at current time step (𝒙𝐾
𝑎 ) as the initial value. Since RC is trained with 

LETKF analysis variables, we call this method “RC-Anl”. By using the notation of equation 

(16), the prediction of RC-Anl can be expressed as follows: 

𝒙𝐾+1
𝑓

 = ℳ̃𝑅𝐶(𝒙𝐾
𝑎 , {𝒙𝑘

𝑎}1≤𝑘≤𝐾), 𝒙𝐾+2
𝑓

 = ℳ̃𝑅𝐶(𝒙𝐾+1
𝑓

, {𝒙𝑘
𝑎}1≤𝑘≤𝐾), … (23)  

where {𝒙𝑘
𝑎}1≤𝑘≤𝐾 = {𝒙1

𝑎 , 𝒙2
𝑎 , … , 𝒙𝐾

𝑎  } is the time series of the LETKF analysis variables. 

In addition, we have added a flow chart that explains the procedures of LETKF-Ext, RC-Obs, RC-

Anl.  

Lines 324-325: The schematics of the LETKF-Ext, RC-Obs, and RC-Anl are shown in the 

Figure 3. Initial values and model dynamics used in each method are compared in Table 1. 

 

Figure 3. The algorithm flow of LETKF-Ext, RC-Anl, and RC-Obs. Solid and dotted lines 

show the flow of variables and models (either process-based or data-driven surrogate), 

respectively.  

 

 

(1.2) Section 3 "Experimental Design" mention the parameters used to construct the RC network, 

however motivations for the choices are lacking, and would help potential follow-up works, including 

those by practitioners to intuit logical choices. 

→ The parameter values used in this study is chosen based on the settings in previous works such as 

Vlachas et al., 2020 (with the adoption of parallelized Reservoir Computing, we changed the reference 

from Chattopadhyay et al., 2019 to Vlachas et al., 2020), and we had confirmed that these parameters 

give the good accuracy by performing some sensitivity tests. Through these sensitivity tests, we found 

that most of the parameters do not substantially affect the accuracy of the prediction. One effective 

parameter is the spectral radius of the reservoir network (𝜌). Jiang and Lai (2019) reported that 𝜌 

needs to be tuned to obtain good prediction accuracy. We also verified this fact and found the proper 



value for 𝜌 by the sensitivity tests. This point was indeed unclear in the original version of the paper 

and has been clarified in the revised version of the paper. 

Lines 342-347: Jiang and Lai (2019) revealed that the performance of RC is sensitive to 𝜌 

and it needs to be tuned. We identified the proper value of 𝜌 by sensitivity studies. Other 

parameters do not substantially affect the prediction accuracy, and we selected them based 

on the settings in previous works such as Vlachas et al. (2020). The nonlinear transformation 

function for the output layer in equation (13) is the same as Chattopadhyay et al. (2019), 

which is represented as follows: 

 

(1.3) Equation (15) represents Gaussian kernel localization, however this is not explicitly mentioned, 

which seems very strange, as a reader familiar with data assimilation literature would be more 

familiar with that framing of the method. Additionally, such applications are typically done on the 

inverse of the matrix R (which is also explicitly taken to be diagonal), through a Woodbury matrix 

identity application, though such details are glossed over in the text. 

→ Since the actual procedure of localization process in LETKF was not clearly mentioned in the 

original version of the paper, we have added the explanations in the revised version of the paper. The 

general description of the smooth localization is discussed in section 2, following the comment (3.33).  

Lines 329-335: As the localization process, the observation point within 10 indices are 

chosen to be assimilated for every grid point. The “smooth localization” is also performed 

on observation covariance 𝑹. Since we assume that each observation error is independent 

and thus 𝑹 is diagonal, the localization procedure can be done just by dividing each 

diagonal elements of observation covariance 𝑹 by the value w calculated as follows: 

𝑤(𝑟) = exp (−
𝑟2

18
) (24) 

where 𝑟 is the distance between each observation point and each analyzed point. For 

every grid point, the observation point with 𝑤(𝑟) ≥ 0.0001 are chosen to be assimilated.  

However, to our best knowledge, “Gaussian Kernel Localization” is not a common term in the data 

assimilation community of geoscience, meteorology, or hydrology. We did not use this word in the 

revised version of the manuscript. It would be very helpful if the reviewer will give us some references 

that use the term “Gaussian Kernel Localization” in the next iteration of the peer-review process.  

 

(1.4) The strangest thing is the choice of 𝑚 =  8 for the experimental design. The standard L96 with 

𝑚 =  40 variables is known to be very chaotic and have 13 positive Lyapunov exponents. In that 

regime, a lot is known about the system. However as far as the reviewer can tell, the case of 𝑚 =  8 

as to be weakly chaotic by necessity. It would be of benefit to the casual reader (and the reviewer) to 

state some facts about this regime of the system. 



→  As the reviewer pointed out,  𝑚 =  8  is not commonly used in the previous studies. We 

conducted new experiments with the 40-dimensional L96 system with parallelized reservoir 

computing which is more suitable for the prediction of higher dimensional systems. We have added 

the description of the 40-dimensional L96 system introduced by Lorenz & Emanuel (1998). 

Lines 105-110: It is known that the model with 𝑚 = 40  and 𝐹 = 8  shows chaotic 

dynamics with 13 positive Lyapunov exponents (Lorenz & Emanuel, 1998), and this setting 

is commonly used in the previous studies (e.g. Kotsuki et al., 2017; Miyoshi, 2005; Penny, 

2014; Raboudi et al., 2018). The time width Δ𝑡 = 0.2 corresponds to one day in real 

atmospheric motion from the view of dissipative decay time (Lorenz & Emanuel, 1998). 

In the revised version of the paper, all the sentences that refer to the dimensions of state space have 

been modified, and all results have been updated to the 40-dimension L96 system. Figures 4, 5, 7-10 

(Figures 2-7 in the original paper) have been replaced in the revised version of the paper the revised 

figures are shown below. It should be noted that the primary findings of the original paper do not 

change when we changed the dimension of the L96 system. 

 

Figure 4. The Hovmöller diagram of (a) Nature Run, (b) A prediction of RC-Obs, (c) 

difference of (a) and (b). Horizontal axis shows the timesteps and vertical axis shows the 

nodal number. Value at each timestep and node is represented by the color. 
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Figure 5. The mRMSE time series of the predictions of RC-Obs with perfect observation. 

Horizontal axis shows the timestep and vertical shows the value of mRMSE. 

  

Figure 7. The mRMSE time series of the predictions of (a)LETKF-Ext and (b)RC-Obs 

with spatially sparse observation. Each color corresponds to the number of the observation 

points. 

 

Figure 8. The same as figure4, for the RC-Anl prediction. 

 

(a) (b)



 

Figure 9. The mRMSE time series of the predictions of (a)LETKF-Ext and (b)RC-Anl 

with biased model. Each color corresponds to each value of F term. 

 

Figure 10. The mRMSE(80) of the predictions of LETKF-Ext(red) and RC-Anl(blue) for 

each model bias. Horizontal axis shows the value of the force parameter of equation (1) (8 

is the true value) and vertical axis shows the value of mRMSE. 

 

 

(1.5) The reviewer wonders if for such a small system it might have been of benefit to examine the 

more rigorously studied 3-variable Lorenz system, for which a lot is known, in terms of reservoir 

computing, data assimilation, and general nature of the system. The same type of sparsity experiments 

could be performed with such a system. 

→ We believe that the 3-variable Lorenz system is too small for our study. Figures 4 and 5 in the 

original paper shows the result of predictions in which we reduce the observable points one by one up 

to a half of full state. It is difficult to perform this sensitivity study with only 3 state variables. Since 

our future prospect is to extend the proposed method to be applicable to much higher-dimensional 

systems such as the NWP problem, we have decided to increase the dimension rather than decrease it 

(a) (b)



to the 3-variable Lorenz system. As mentioned in our response to the comment (1.4), we conducted 

new experiments with 40-dimensional L96 system in the revised version of the paper. See our response 

to (1.4). We have decided not to change the paper responding to this comment. 

 

(1.6) Section 4 "Results" contains a statement to the effect of "if ’e’ is set to zero then the LETKF does 

not work". This is technically true, but very misleading. Take the Kalman filter formula with perfect 

and full observations 𝑥𝑎 = 𝑥𝑓 − (𝑥𝑓 − 𝑦𝑜) = 𝑦𝑜 . Under the regime of perfect observation (𝑒 =

0, 𝐻 = 𝐼 ), and Kalman filter would replace the analysis by the observations, and collapse the 

distribution of the uncertainty about the analysis. This means that in this regime, the LETKF would 

replace each ensemble member by the observations, even if a particular implementation would fail. It 

would make sense to—instead of using the LETKF—to simply look at the predictive regime of the RC-

Obs. The 𝑒 = 0.01 is entirely unnecessary. 

→ We agree with this reviewer’s comment and we have deleted Figure 2 of the original version of 

the paper. In many previous studies that applied machine learning methods to predict chaotic systems, 

observations of full state space with no noise are often assumed so that we performed RC-Obs with 

these perfect observations. Since we compared RC and LETKF with many different settings, we 

guessed that the reader might want us to compare them under these perfect observations. Therefore, 

we performed the LETKF with almost perfect observations (e=0.01) in the original version of the 

paper although it is essentially not meaningful as the reviewer pointed out.  

For readers of Geoscientific Model Development, who are not necessarily familiar with data 

assimilation methods, we have added some explanations which we discussed above. 

Line 380-384: Figure 4 shows the Hovmöller diagram of a prediction of RC-Obs and Nature 

Run. Figure 4 also shows the difference between prediction and Nature Run, as well as the 

actual prediction results so that we can see how long we can keep the prediction accurate. 

RC is trained with perfect observation (𝑒 = 0 at all grid point). Figure 4 shows that RC-Obs 

predicts accurately within approximately 200 timesteps. 

Line 386-391: Figure 5 shows the time variation of the mRMSE (see equation (26)) of RC-

Obs with perfect observation. It also shows that RC-Obs can predict with good accuracy for 

approximately 200 timesteps. It should be noted that LETKF (as well as other data 

assimilation methods) is just  the model’s forecast with the initial conditions identical to 

Nature Run when all state variables can be perfectly observed, and thus the prediction 

accuracy of LETKF-Ext will be perfect if we have no model bias. LETKF-Ext is much 

superior to RC-Obs under this regime (not shown). 

 

 



(1.7) The choice of which indices are observed in such experiments is not given as far as the reviewer 

can tell. 

→Observed grid points are chosen to maintain the uniformity of the observation. This point was 

indeed unclear in the original version of the paper. We have added a table showing the observed 

indices.. 

Line 402-403: Observation is reduced as uniformly as possible. The observation network in 

each experiment is shown in Table 3.  

Table 3. The indices of observed grid points. 

 

(1.8) In section 5 "Discussion" the authors mention the generalization of their methodology to other 

dynamical systems. The authors focus on the generalization to "higher dimensional systems" as their 

main worry. The reviewer believes that another more substantial worry is that Lorenz ’96 is known to 

be ergodic, while most systems used for NWP are possibly not, (the authors mention the KS system, 

but that is also possibly ergodic for well-posed initial conditions). It would be of benefit to mention 

other possible shortcoming on testing only on the Lorenz ’96 system. 

→ We agree that the main concern of testing only on the L96 is that this model is ergodic. However, 

it is known that the 40-dimensional L96 shows strong chaos and large Lyapunov exponents, and this 

model has been used as a good initial testbed toward the application to the large and non-ergodic NWP 

problems. In the revised version of the manuscript, the scalabilities in terms of dimensionality and 

ergodicity are discussed separately, and main shortcomings on testing only on the L96 system are 

explicitly mentioned. 

Lines 505-508: Although we tested our method only on 40-dimensional Lorenz 96 system, 

Pathak, Hunt et al. (2018) indicated that parallelized RC can be extended to predict the 

dynamics of substantially high dimensional chaos such as 200-dimensional Kuramoto-

Sivashinski equation with small computational costs. It implies that the findings of this study 

can also be applied to higher dimensional systems. 

Lines 515-518: However, since the Lorenz 96 model (and other conceptual models such as 

Kuramoto-Sivashinski equation) is ergodic, it is unclear that our method can be applied to 

real NWP problems directly, which are possibly non-ergodic. Although our proposed 

method has a potential to extend to larger and more complex problems, further studies are 

needed. 

  



Responses to the comments of Referee #2 

 

The summary of existing work, novel directions, and discussion of findings is strong. Some further 

questions: Does learning the LETFK analysis with a different method (e.g. vanilla feedforward 

network) give the same result? In other words, is there anything interesting about reservoir computing 

in particular in this context? Does learning the analysis from some other method work in the same 

way? 

→ We thank the reviewer for highly evaluating the paper. We believe that our method has flexibility 

in choosing machine learning methods, since our method does not depend on a specific framework. If 

other machine learning methods perform as good as the RC implementation of our study, replacing 

RC with them would give similar results. However, the training of RC is computationally cheaper than 

the other neural networks, which is the significant advantage of our strategy toward the real-world 

applications. Although Vlachas et al. (2020) pointed out that RC is more vulnerable to the sparse 

observation networks than the other neural network methods, we overcome this issue by combining it 

with data assimilation. Therefore, we believe that the use of RC is particularly interesting in this 

context although we can directly carry out to learn from the LETKF analysis using other neural 

networks. This point has been clarified in the revised version of the paper. 

Lines 476-486: Note also that the computational cost to train RC is much cheaper than the 

other neural networks. Since the framework of our method does not depend on a specific 

machine learning framework, we believe that we can flexibly choose other machine learning 

methods such as RNN, LSTM, ANN, etc. Previous studies such as Chattopadhyay et al., 

(2019) or Vlachas et al., (2020) revealed that these methods show competitive performances 

compared to RC in predicting spatio-temporal chaos. Using them instead of RC in our 

method would probably give similar results. However, the advantage of RC is its cheap 

training procedure. RC does not need to perform an expensive back-propagation method for 

training, unlike other neural networks (Lu et al., 2017; Chattopadhyay et al., 2019). 

Therefore, RC is considered as a promising tool for predicting spatio-temporal chaos. 

Although our method has flexibility in the choice of machine learning methods, we consider 

that the good performance with RC is important in this research context. 

We can say similar things if we use different data assimilation methods. We consider that the LETKF 

can effectively estimate state variables using imperfect models and observations, although it cannot 

modify the model bias itself when the sources of bias are unknown. To our best knowledge, they are 

general features of data assimilation methods. Thus, we believe that replacing LETKF with other data 

assimilation methods will give us similar results as in this study. Since we believe that this feature of 

sequential data assimilation is well known in the data assimilation community, we have not included 

this point explicitly for brevity. 



Responses to the comments of Referee #3  

1. Major issues 

In spite of the obvious care taken to write this manuscript, it has quite a few issues, mainly but not 

only related to the presentation of the theory and to the choices made for the numerical experiments: 

 

(3.1) I don’t see the point in presenting the Kalman filter. Why not go straight to the introduction of 

the (L)ETKF? The introduction of the Kalman filter is really unnecessary. 

→ In the original version of the paper, we thought that some explanations of very basics of Kalman 

Filter is necessary for readers who were not familiar to data assimilation. We agree with this reviewer’s 

comment that our explanation was circuitous. We have deleted the introduction of Kalman Filter and 

explained LETKF directly in the revised version of the manuscript. 

Linear approximation of the observation operator is also explained only in the Kalman Filter section. 

We have added some descriptions to introduce this assumption. 

Lines 151-153: Although ℋ can be either linear or nonlinear, we assume it to be linear in 

this study and expressed as a ℎ × 𝑚 matrix 𝑯 (the treatment of the nonlinear case is 

discussed in Hunt et al., 2007). 

The descriptions of forecast step in LETKF is modified to explain without using the equation of 

Kalman Filter.  

Lines 155-162-: LETKF uses an ensemble of state variables to estimate the evolution 

of  𝒙𝒌

𝒇̅̅ ̅
 and 𝑷𝑘

𝑓
. The time evolution of each ensemble members is as follows: 

𝒙𝒌
𝒇,(𝒊)

= 𝓜 (𝒙𝒌−𝟏
𝒂,(𝒊)

) (5) 

where 𝒙𝒌
𝒇,(𝒊)

 is the 𝑖th ensemble member of forecast value at time 𝑘. Then the mean and 

covariance of state variables can be expressed as follows: 

𝒙𝒌

𝒇̅̅ ̅
≈

1

𝑁𝑒

∑ 𝒙𝑘
𝑓,(𝑖)

𝑁𝑒

𝑖=1

, 𝑷𝑘
𝑓

=
1

𝑁𝑒 − 1
𝑿𝒌

𝒇
(𝑿𝒌

𝒇
)

𝑻
(6) 

where 𝑁𝑒 is the number of ensemble members and 𝑿𝒌
𝒇
 is the matrix whose 𝑖th column 

is the deviation of the 𝑖th ensemble member from the ensemble mean.  

The description of the analysis step of LETKF is also modified in the form that does not depend on 

the explanation of Kalman Filter. However, the modification of this part is more relevant to the 

comment (3.3). See also the corresponding response. 

 

(3.2) The introduction of the LETKF can be perfected (see a few points below). 

→ We have modified the introduction of LETKF following the reviewer’s indications. See the 

response to (3.1) and (1.3), which is shown below. 



------------------------------------------------------------------ 

(1.3) Equation (15) represents Gaussian kernel localization, however this is not explicitly 

mentioned, which seems very strange, as a reader familiar with data assimilation literature 

would be more familiar with that framing of the method. Additionally, such applications are 

typically done on the inverse of the matrix R (which is also explicitly taken to be diagonal), 

through a Woodbury matrix identity application, though such details are glossed over in the 

text. 

→ Since the actual procedure of localization process in LETKF was not clearly mentioned 

in the original version of the paper, we have added explanations in the revised version of the 

paper. The general description of the smooth localization is discussed in section 2, following 

the comment (3.33).  

Lines 329-335: As the localization process, the observation point within 10 

indices are chosen to be assimilated for every grid point. The “smooth localization” 

is also performed on observation covariance 𝑹  Since we assume that each 

observation error is independent and thus 𝑹  is diagonal, the localization 

procedure can be done just by dividing each diagonal elements of observation 

covariance 𝑹 by the value w calculated as follows: 

𝑤(𝑟) = exp (−
𝑟2

18
) (24) 

where 𝑟 is the distance between each observation point and each analyzed 

point. For every grid point, the observation point with 𝑤(𝑟) > 0.0001 are 

chosen to be assimilated.  

However, to our best knowledge, “Gaussian Kernel Localization” is not a common term in 

the data assimilation community of geoscience, meteorology, or hydrology. We did not use 

this word in the revised version of the manuscript. It would be very helpful if the reviewer 

will give us some references that use the term “Gaussian Kernel Localization” in the next 

iteration of the peer-review process.  

--------------------------------------------------------------- 

 

(3.3) Localisation is never explicitly mentioned, which is at serious odds with the use of the LETKF. 

→ The explanation of localization was indeed unclear in the original version of the paper. We have 

added the detailed explanation of localization in section 2. 

Lines 164-170: In the analysis step, LETKF assimilates only the observations close to each 

grid point. Therefore, the assimilated observations are different at different grid points and 

the analysis variables of each grid points are computed separately. 



For each grid points, observations to be assimilated are chosen. The rows or elements of 𝒚𝑜, 

𝑯 , and 𝑹  corresponding to non-assimilated observations should be removed as the 

localization procedure. “Smooth localization” can also be performed by multiplying some 

factors to each element of 𝑹  based on the distance between target grid point and 

observation points. 

The actual procedure of localization used in our experiment is explained in section 3 more explicitly 

in the revised version of the manuscript. See also our response to (3.2). 

 

(3.4) The description of the main algorithm is not very precise. I believe that it could be significantly 

improved. 

→ The description of RC-Anl in the original paper was just a textual form and the explanation was 

not sufficient. We have modified the description of the algorithm in the revised version of the paper, 

along with a new figure that compares the implementations of LETKF-Ext, RC-Anl, and RC-Obs. See 

our response to (1.1) shown below. 

 

------------------------------------------------------------------ 

(1.1) Section 2.4 "Combination of RC and LETKF" is the scientific innovation that is at the 

core of the paper, however the authors only explore the idea in a purely textual form. Some 

equations comparing the three methods (RC-Obs, RC-Anl, LETKF) or perhaps a diagram 

would be immensely beneficial to the average reader, as that will be more eye-catching, and 

would help explain the papers innovation. 

→ The prediction schemes of RC-Obs, RC-Anl, and LETKF are compared in Table 2 in 

the original version of manuscript. However, there is the room to improve the description of 

the idea of RC-Anl. We have added some equations explaining the concept of each 

prediction scheme, LETKF-Ext, RC-Obs, and RC-Anl. 

Lines 192-196: Prediction are made by the model alone, using the latest analysis 

state variables as the initial condition: 

𝒙𝑲+𝟏
𝑓

= 𝓜̃(𝒙𝑲
𝒂̅̅ ̅̅ ),   𝒙𝑲+𝟐

𝑓
= 𝓜̃(𝒙𝐾+1

𝑓
),   … 

where 𝒙𝒌
𝑓

 is the prediction variables at time 𝑘, 𝓜̃ is the prediction model (an 

imperfect L96 model), and  𝒙𝐾
𝑎̅̅̅̅  is the mean of the analysis ensemble at the initial 

time of the prediction. 

Lines 243-247: At this point, RC can now be used as the surrogate model that 

mimics the state dynamics: 

𝒙𝑘+1
𝑓

= ℳ̃𝑅𝐶 (𝒙𝑘
𝑓

, {𝒙𝑘
𝑡𝑟𝑎𝑖𝑛}

1≤𝑘≤𝐾
) (16) 



where 𝒙𝑘
𝑓

 is the prediction variables at time 𝑘, ℳ̃𝑅𝐶  is the dynamics of RC 

(equations (12) and (13)) and {𝒙𝑘
𝑡𝑟𝑎𝑖𝑛}

1≤𝑘≤𝐾
= {𝒙1

𝑡𝑟𝑎𝑖𝑛 , 𝒙2
𝑡𝑟𝑎𝑖𝑛 , … , 𝒙𝐾

𝑡𝑟𝑎𝑖𝑛 }  is the 

time series of training data. 

Lines 251-254: Prediction time series here can be expressed using equation (16) 

as follows: 

𝒙𝐾+1
𝑓

= ℳ̃𝑅𝐶 (𝒚𝐾
𝑂 , {𝒚𝑘

𝑂}
1≤𝑘≤𝐾

) ,  𝒙𝐾+2
𝑓

= ℳ̃𝑅𝐶 (𝒙𝐾+1
𝑓

, {𝒚𝑘
𝑂}

1≤𝑘≤𝐾
) , …  

where {𝒚𝑘
𝑂}

1≤𝑘≤𝐾
= {𝒚1

𝑂 , 𝒚2
𝑂 , … , 𝒚𝐾

𝑂 } is the observation time series and 𝒚𝐾
𝑂 is the 

observation at the initial time of the prediction. 

Lines 292-304: Suppose we have sparse and noisy observations for the training 

data. If we take observations as inputs and analysis variables as outputs, LETKF 

can be considered as an operator to estimate the full state variables from the sparse 

observations: 

{𝒙𝑘
𝑎̅̅ ̅}

1≤𝑘≤𝐾
= {𝒟(𝒚𝑘

𝑂)}
1≤𝑘≤𝐾

(22) 

where {𝒙𝑘
𝑎̅̅ ̅}

1≤𝑘≤𝐾
= {𝒙1

𝑎 , 𝒙2
𝑎 , … , 𝒙𝐾

𝑎  } is the full-state variables (time series of the 

LETKF analysis ensemble mean), 𝒚𝑘
𝑂  is the observation, and 𝒟: ℝ𝑛 → ℝ𝑚 

represents the state estimation operator, which is realized by LETKF in this study. 

Then, RC is trained by using {𝒙𝑘
𝑎}1≤𝑘≤𝐾 as the training data set. In this way, RC 

can mimic the dynamics of analysis time series computed by forecast-analysis 

cycle of LETKF. Prediction can be generated by using the analysis variables at 

current time step (𝒙𝐾
𝑎 ) as the initial value. Since RC is trained with LETKF 

analysis variables, we call this method “RC-Anl”. By using the notation of 

equation (16), the prediction of RC-Anl can be expressed as follows: 

𝒙𝐾+1
𝑓

 = ℳ̃𝑅𝐶(𝒙𝐾
𝑎 , {𝒙𝑘

𝑎}1≤𝑘≤𝐾), 𝒙𝐾+2
𝑓

 = ℳ̃𝑅𝐶(𝒙𝐾+1
𝑓

, {𝒙𝑘
𝑎}1≤𝑘≤𝐾), …  

where {𝒙𝑘
𝑎}1≤𝑘≤𝐾 = {𝒙1

𝑎 , 𝒙2
𝑎 , … , 𝒙𝐾

𝑎  } is the time series of the LETKF analysis 

variables. 

In addition, we have added a flow chart that explains the procedures of LETKF-Ext, RC-

Obs, RC-Anl. The Table 1 in the original version of the manuscript is deleted since the 

Figure 3 contains the information that was explained in the table.  

Lines 324-325: The schematics of the LETKF-Ext, RC-Obs, and RC-Anl are 

shown in the Figure 3. Initial values and model dynamics used in each method 

are compared in Table 1. 



 

Figure 3. The algorithm flow of LETKF-Ext, RC-Anl, and RC-Obs. Solid and 

dotted lines show the flow of variables and models (either process-based or data-

driven surrogate), respectively.  

------------------------------------------------------------------ 

 

(3.5) The statements about the applicability of the method in the discussion and the conclusion are 

much too strong, and should either be retracted or significantly mitigated. 

→ We agree that our statements on the scalability of our method in the sections 5 and 6 are too strong 

considering the numerical experiments conducted in our study. We have mitigated or modified the 

expressions in these sections following the suggestions by the reviewer. See the following responses 

to (3.54), (3.56), and (3.57). 

  

(3.6) The numerical experiment choices show that localisation is totally unnecessary here which 

significantly undermines the manuscript. Using the ETKF would have yielded results at least as good. 

In particular any claim of applicability to higher dimensional models the authors make in the 

discussion and conclusion is seriously undermined by this issue (see specific points below). In this 

vein, it is rather disappointing that the authors did not apply the local RC (together with the LETKF) 

which would have been a significant added value to the paper. This is what I initially expected from 

the title and abstract of the paper. 

→  We agree that the localization is unnecessary for the 8-dimensional L96 system. We have 

conducted new experiments with commonly used the 40-dimensional L96 system. As the target system 

was enlarged, we have adopted the parallelized reservoir computing (which we believe the reviewer 

indicated by the term “local RC”) as the RC architecture. 

The Abstract is modified to clearly show that we used parallelized reservoir computing. 

Lines 19-20: In order to increase the scalability to larger systems, we applied parallelized 

RC framework. 



The original papers from Pathak, Lu et al., (2018) that introduces the parallelized reservoir approach 

is explicitly cited in the introduction section. 

Lines 59-61: Pathak, Lu et al. (2018) succeeded in using a parallelized RC to predict each 

segment of the state space locally, which enhanced the scalability of RC to much higher 

dimensional systems. 

The introduction of parallelized Reservoir Computing is shown right after the description of serial RC, 

along with a conceptual diagram. 

Lines 256-276 : 2.3.1  Parallelized Reservoir Computing 

In general, the required reservoir size 𝐷𝑟 for accurate prediction increases as the dimension 

of the state space 𝑚 increases. Since the RC framework needs to keep adjacency matrix 𝑨 

on the memory, and to perform inverse matrix calculation of 𝐷𝑟 × 𝐷𝑟 matrix (equation (15)), 

too large reservoir size leads to unfeasible computational cost. Pathak, Hunt et al. (2018) 

proposed a solution to this issue, which is called the parallelized reservoir approach. 

In this approach, the state space is divided into 𝑔 groups, all of which contains 𝑞 = 𝑚/𝑔 

state variables: 

𝒈𝑘
(𝑖)

= (𝑢𝑘,(𝑖−1)×𝑞+1, 𝑢𝑘,(𝑖−1)×𝑞+2, … , 𝑢𝑘,𝑖×𝑞)
𝑇

, 𝑖 = 1, 2, … , 𝑔 (18) 

where 𝒈𝑘
(𝑖)

 is the  𝑖th group at time  𝑘, 𝑢𝑘,𝑗 is the  𝑗th state variable at time  𝑘. Each 

group is predicted by different reservoir placed in parallel. 𝑖th reservoir accepts the state 

variables of  𝑖th group as well as adjacent 𝑙 grids, which can be expressed as follows: 

𝒉𝑘
(𝒊)

= (𝑢𝑘,(𝑖−1)×𝑞+1−𝑙 , 𝑢𝑘,(𝑖−1)×𝑞+2−𝑙 , … , 𝑢𝑘,𝑖×𝑞+𝑙)
𝑇

(19) 

where 𝒉𝑘
(𝑖)

 is the input vector for 𝑖th reservoir at time 𝑘. The dynamics of each reservoir 

can be expressed as follows according to equation (12): 

𝒓𝑘+1
(𝑖)

= tanh [𝑨(𝑖)𝒓𝑘
(𝑖)

+ 𝑾𝒊𝒏
(𝑖)

𝒉𝑘
(𝑖)

] (20) 

where 𝒓𝑘
(𝑖)

, 𝑨(𝒊), 𝑾𝑖𝑛
(𝑖)

 and 𝑾𝒐𝒖𝒕
(𝑖)

 are the reservoir state vector, adjacency matrix, input 

matrix, and output matrix for 𝑖th reservoir. Each reservoir is trained independently using 

equation (13) so that: 

𝒈𝑘
(𝑖)

= 𝑾𝑜𝑢𝑡
(𝑖)

𝒇 (𝒓𝑘
(𝑖)

) (21) 

where 𝑾𝑜𝑢𝑡
(𝑖)

 is the output matrix in the 𝑖th reservoir. The prediction scheme of parallelized 

RC is summarized in Figure 2. 

 



Figure 2. The conceptual diagram of parallelized reservoir computing architecture. The 

state space is separated into some groups and the same number of reservoirs are put 

parallelly. Each reservoir groups accepts the inputs from the corresponding group and some 

adjacent grids and predict the dynamics of the corresponding group. 

 

When using the parallelized reservoir computing, the prediction accuracy did not become worse 

catastrophically even if we reduce half of the observations. This point was slightly different from the 

results of the original paper. The sensitivity of RC-Obs to the reduction of the observation points is 

still much greater than that of LETKF-Ext. We have modified some expressions to present the result 

more precisely.  

Lines 400-406: However, RC-Obs showed a greater sensitivity to the density of observation 

points than LETKF-Ext. Figures 6a and 6b show the sensitivity of the prediction accuracy 

of LETKF-Ext and RC-Obs, respectively, to the number of observed grid points. 

Observation is reduced as uniformly as possible. The choices which grid point to observe is 

shown in Table 2. Even though we can observe a small part of the system, the accuracy of 

LETKF-Ext changed only slightly. On the other hand, the accuracy of RC-Obs gets worse 

when we remove a few observations. As assumed in the section 2.4, we verified that RC-

Obs is more sensitive to the observation sparsity than LETKF-Ext. 

The other results did not significantly change even though we modified the experiment design using 

the 40-dimesional L96 model and the parallelized reservoir computing.  

 

 

(3.7) I believe that the English of the manuscript could be significantly improved. 

→ We have corrected the points raised by the reviewer.  

 

As a consequence, I believe the manuscript requires major revisions before being acceptable for 

publication. 



 

 

2. Typos, remarks and suggestions, some related to the main issues: 

(3.8) l.46: “have been receiving”→“have received”  

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.9) l.69: Brajard et al. 2020a and Brajard et al. 2020b correspond to the same paper. You can safely 

remove Brajard et al. 2020a (which is the arXiv preprint of Brajard et al. 2020b). However, there is 

another 2020 paper from these authors which is directly relevant to your manuscript, see below in the 

references (Brajard et al.,2020b). 

→ We have deleted Brajard et al., 2020a from the References. Brajard et al.,2020b is taking a similar 

strategy to ours, in which the machine learning model is trained with the analysis variables of data 

assimilation methods to interpolate the observation. Considering the studies like Brajard et al., 2020a, 

Brajard et al., 2020b, Bocquet et al., 2020, Dueben and Bauer, 2018, we believe that the study on 

combining data assimilation and machine learning is getting popular in NWP and related fields. 

Brajard et al. 2020b has been cited following the reviewer’s instruction in the discussion section, along 

with the discussion above. 

Lines 500-503: Recently, some studies proposed methods to combine data assimilation and 

machine learning, to emulate the system dynamics from imperfect model and observations 

(e.g. Bocquet et al., 2019; Brajard et al., 2020; Bocquet et al., 2020), and these approaches 

are getting popular. Our study significantly contributes to this emerging research field. 

 

 

(3.10) l.71-72: “However, their method needs to iterate the data assimilation and training, which is 

computationally expensive and infeasible toward the real-world problem.”: Not really. Actually it 

depends on the number of iterations. One can use only one iteration for instance – this is actually 

what you do. Please mitigate your statement. 

→ Thank you for pointing that out. This statement was written since the surrogate model’s error 

converges after about 20 iterations and the first few iterates did not seem to give accurate prediction 

compared to the ones after convergence. However, as the reviewer pointed out, one can stop the 

training with a few iterates, and this also provides the reasonably accurate surrogate model. The 

statement in the original paper was certainly too strong and we have mitigated it in the revised version 

of the paper. 

Lines 73-78: However, their method needs to iterate the data assimilation and training until 

the prediction accuracy of the trained model converges. Although one can stop the iteration 



in a few times, it can be longer and the training can be computationally expensive if one 

should wait until the convergence. 

We believe that the first iterate of the method in Brajard et al., 2020 is different from what we did in 

current study. They assume that one has no information on the state dynamics and the machine learning 

based surrogate model is used in the data assimilation step instead of the numerical model. However, 

we have assumed that we have a biased process-based model, and data assimilation is conducted using 

this model. Since the description of our method may not be sufficient and misleading, we have 

modified the description of our newly proposed method. See also the response to (3.4). 

 

(3.11). l.67-75: Bocquet et al. (2020) have recently proposed to use a local EnKF (LETKF for 

instance) coupled with machine learning. This must be cited since this is very relevant to your paper. 

→ We strongly agree that this paper is quite relevant to our study. They proposed a method to 

combine EnKF and machine learning methods to obtain both the state estimation and the surrogate 

model of the system at the same time online. We have cited this study in the introduction section. 

Lines 76-78: Bocquet et al. (2020) proposed a method to combine EnKF and machine 

learning methods to obtain both the state estimation and the surrogate model online. They 

showed successful results without using the process-based model at all. 

Bocquet et al. (2020) is also cited in the discussion section as relevant works on combining data 

assimilation and machine learning to accurately predict chaotic systems. See also the response to (3.9). 

 

(3.12) l.94-97: Your definition of the periodic nature of the L96 model is not precise enough, since x0 

or xm+1 are not defined for instance. Please improve the wording of your definition. 

→ The periodic nature of L96 is represented in the original manuscript by the word “ring structured” 

and “𝑥𝑚 is adjacent to 𝑥1”, but this was not enough to define the all possible variables emerging in 

equation (1). To make the definition complete, we have modified the wordings in the revised 

manuscript.  

Line 104: where 𝐹 stands for the force parameter, and we define 𝑥−1 = 𝑥𝑚−1, 𝑥0 = 𝑥𝑚, 

and 𝑥𝑚+1 = 𝑥1. 

 

(3.13) l.100: The characteristic time of the L96 model has been discussed in the original paper by 

Lorenz and Emanuel (1998). If don’t believe that you should cite Miyoshi et al. 2005 here in the text. 

→ As the reviewer pointed out, this point was discussed in detail in the original paper by Lorenz & 

Emanuel (1998). We have modified the expressions and the citation here in the revised version of 

paper. Revisions are shown in the response to (1.4) pasted below. 

 

 



------------------------------------------------------------------ 

(1.4) The strangest thing is the choice of 𝑚 =  8 for the experimental design. The standard 

L96 with 𝑚 =  40 variables is known to be very chaotic and have 13 positive Lyapunov 

exponents. In that regime, a lot is known about the system. However as far as the reviewer 

can tell, the case of 𝑚 =  8 as to be weakly chaotic by necessity. It would be of benefit to 

the casual reader (and the reviewer) to state some facts about this regime of the system. 

→ As the reviewer pointed out,  𝑚 =  8 is not commonly used in the previous studies. 

We conducted new experiments with the 40-dimensional L96 system with parallelized 

reservoir computing which is more suitable for the prediction of higher dimensional systems. 

We have added the description of the 40-dimensional L96 system introduced by Lorenz & 

Emanuel (1998). 

Lines 105-110: It is known that the model with 𝑚 = 40  and 𝐹 = 8  shows 

chaotic dynamics with 13 positive Lyapunov exponents (Lorenz & Emanuel, 

1998), and this setting is commonly used in the previous studies (e.g. Kotsuki et 

al., 2017; Miyoshi, 2005; Penny, 2014; Raboudi et al., 2018). The time width 

Δ𝑡 = 0.2 corresponds to one day in real atmospheric motion from the view of 

dissipative decay time (Lorenz & Emanuel, 1998). 

In the revised version of the paper, all the sentences that refer to the dimensions of state 

space have been modified, and all results have been updated to the 40-dimension L96 system. 

Figure 4, 5, 7-10 (Figures 2-7 in the original paper) have been replaced in the revised version 

of the paper. It should be noted that the primary findings of the original paper do not change 

when we changed the dimension of the L96 system. 



 

Figure 4. The Hovmöller diagram of (a) Nature Run, (b) A prediction of RC-

Obs, (c) difference of (a) and (b). Horizontal axis shows the timesteps and 

vertical axis shows the nodal number. Value at each timestep and node is 

represented by the color. 

 

 

 

Figure 5. The mRMSE time series of the predictions of RC-Obs with perfect 

observation. Horizontal axis shows the timestep and vertical shows the value of 

mRMSE. 
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Figure 7. The mRMSE time series of the predictions of (a)LETKF-Ext and 

(b)RC-Obs with spatially sparse observation. Each color corresponds to the 

number of the observation points. 

 

Figure 8. The same as figure4, for the RC-Anl prediction. 

 

(a) (b)



 

Figure 9. The mRMSE time series of the predictions of (a)LETKF-Ext and 

(b)RC-Anl with biased model. Each color corresponds to each value of F term. 

 

Figure 10. The mRMSE(80) of the predictions of LETKF-Ext(red) and RC-

Anl(blue) for each model bias. Horizontal axis shows the value of the force 

parameter of equation (1) (8 is the true value) and vertical axis shows the value 

of mRMSE. 

 

------------------------------------------------------------------ 

 

 

(3.14) l.108: “and identically distributed on Gaussian distribution”→“and identically distributed 

from a Gaussian distribution” 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.15) l.119: “in some countries”: this is too vague a statement; which ones for instance? 

(a) (b)



→ Scraff et al. (2016) shows the LETKF application to the operational COSMO model, which is used 

in Germany. We have clarified this point in the revised version of the paper. 

Lines 129-130: LETKF is also used for the operational NWP in some countries (e.g. 

Germany; Schraff et al., 2016) 

 

(3.16) l.126: “and the time width of k corresponds to the assimilation window”: This statement is not 

clear to me. 

→ Subscript k here stands for the time step at which estimations are generated, and number of the 

timesteps between time 𝑘 and 𝑘 + 1 is equal to the assimilation window setting of LETKF. This 

point was clarified in the revised version of the manuscript.  

Lines 137-138: and the time width between 𝑘 and 𝑘 + 1 corresponds to the assimilation 

window 

In addition, the description of the term “assimilation window” was not precise and sufficient. We have 

modified the statement in the revised version of the manuscript. 

Lines 132-135: The analysis step makes the state estimation based on the forecast variables 

and observations. The forecast step makes the prediction from the current analysis variables 

to the time for the next analysis using the model. The interval for each analysis is called 

“assimilation window”.  

 

(3.17) l.129: I suggest the change “and N(0,Q) means the Gaussian distribution”→“and N(0,Q) 

means the multivariate Gaussian distribution” in order to contrast this definition with your previous 

definition for the univariate N(0,). 

→ We have revised the manuscript according to your identification. 

 

(3.18) l.134: “extracted from”→“sampled from” 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.19) l.136-141: It is not clear at this point why you would assume the model to be linear. 

→ We meant that the Gaussian nature of the state variables collapses in a strict sense when the 

nonlinear transformation is applied (in application, one can assume that the state variables keep being 

Gaussian random variables after a time evolution of short assimilation window even if the model is 

nonlinear). The original paper might be confusing since the description of Kalman Filter begins right 

after this sentence without detail explanations on this point.  

The linear assumption here is removed and the discussion written above is added to the revised version 

of the manuscript. 



Lines 142-147 : Since the error in the model is assumed to follow the Gaussian distribution, 

forecasted state 𝒙𝒇  can also be considered as a random variable from the Gaussian 

distribution. When the assimilation window is short, the Gaussian nature of the forecast 

variables is preserved even if the model dynamics is nonlinear. In this situation, the 

probability distribution of 𝒙𝒇 (and also 𝒙𝒂) can be parametrized by mean 𝒙𝒇̅̅ ̅ (𝒙𝒌
𝒂̅̅ ̅,) and 

covariance matrix 𝑷𝒇 (𝑷𝒌
𝒂).  

 

(3.20) l.149-150: “If either the model operator M or observation operator H is nonlinear, we cannot 

directly use this method.”: that is a bit of an exaggeration. If the model is mildly nonlinear, the 

extended Kalman filter can be used. Please reformulate. 

→ This statement was indeed too strong considering the applicability of the extended Kalman Filter 

to weak nonlinear models. However, we have deleted the introduction of Kalman Filter and this 

description no longer exists in the revised version of the manuscript. See also the response to (3.1). 

 

(3.21) l.153: “is EnKF. EnKF uses”−→“is the EnKF. The EnKF uses” 

→ This statement was deleted in the revised version of the paper since we removed the description 

of Kalman Filter following the reviewer’s instruction (3.1). 

 

(3.22) l.161: Your statement is misleading; the covariances matrices in state space are actually never 

explicitly computed in the (L)ETKF! Please correct this. 

→ We fully agree with this reviewer’s comment. In the revised version of the paper, we have modified 

our description in the following: 

Lines 171-186: From the forecast ensemble, the mean and the covariance of the analysis 

ensemble can be calculated in the ensemble subspace as follows: 

𝒘𝒌
𝒂̅̅ ̅̅ = 𝑷̃𝒌

𝒂 (𝑯𝑿𝒌
𝒇

)
𝑻

𝑹−𝟏 (𝒚𝒐 − 𝑯𝒙𝒌

𝒇̅̅ ̅
)

𝑷̃𝒇
𝒂 = [(𝒌 − 𝟏)𝑰 + (𝑯𝑿𝒌

𝒇
)

𝑻

𝑹−𝟏𝑯𝑿𝒌

𝒇
]

−𝟏 (7) 

where 𝒘𝒌
𝒂, 𝑷̃𝒇

𝒂 stands for the mean and covariance of the analysis ensemble calculated in 

the ensemble subspace. They can be transformed into model space as follows: 

𝒙𝒌
𝒂̅̅ ̅ = 𝒙𝒌

𝒇̅̅ ̅
+ 𝑿𝒌

𝒇
𝒘𝒌

𝒂̅̅ ̅̅  

𝑷𝒌
𝒂 = 𝑿𝒌

𝒇
𝑷̃𝒌

𝒂 (𝑿𝒌
𝒇

)
𝑻

(8) 

On the other hand, as equation (6), we can consider the analysis covariance as the product 

of the analysis ensemble matrix: 

𝑷𝒌
𝒂 =

1

𝑁𝑒 − 1
𝑿𝒌

𝒂(𝑿𝒌
𝒂)𝑻 (9) 



where 𝑿𝒌
𝒂 is the matrix whose 𝑖th column is the variation of the 𝑖th ensemble member 

from the mean for the analysis ensemble. Therefore, decomposing 𝑷̃𝒌
𝒂 of equation (7) into 

square root, we can get each analysis ensemble member at time 𝑘 without explicitly 

computing the covariance matrix in the state space: 

𝑾𝒌
𝒂(𝑾𝒌

𝒂)𝑻 = 𝑷̃𝒌
𝒂, 𝒙𝒌

𝒂 = 𝒙𝒌

𝒇̅̅ ̅
+ √𝑁𝑒 − 1 𝑿𝒌

𝒇
𝒘𝒌

𝒂 (10) 

where 𝒘𝒌
𝒂 is the 𝑖th column of 𝑾𝒌

𝒂 in the first equation. 

 

(3.23) l.171, Eq.(10): The second equation is incomplete ;xfk is missing. 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

 

(3.24) page 10: How come you don’t ever mention localization for the LETKF? 

→ The localization was explained in the section 3 of the original paper. Since the page 10 is the 

description of “L”ETKF, we should have also added the explanation of localization in this section. 

We have added the explanation of localization in the section 2 in the revised version of manuscript. 

See the response to (3.3) 

 

(3.25) l.180: Why use the dedicated name “LETKF-Ext”? Forecasting from the analysis is just 

standard proceeding. I may have missed something here. 

→   We agree that forecasting from the analysis is just a standard procedure. However, in the 

following sections, LETKF is used in a different purpose; to make the analysis time series as the 

training data for RC-Anl. The name LETKF-Ext was given for the purpose of clarifying this difference. 

This point has been clarified in the revised version of the manuscript. 

Lines 196-198: This way of making prediction is called “Extended Forecast”, and we call 

this prediction “LETKF-Ext” in this study, to distinguish it from the forecast-analysis 

iteration of LETKF. 

 

(3.26). l.184: “shows the architecture.” → “shows its architecture.” 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.27). l.185: “in the Section 1, the previous works” →“in Section 1, previous works” 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.28) l.189: “uk∈Rm”: is it m or M as displayed in l.191? 

→ “m” and ”M” are both used as the same meaning, the dimension of the state space (this time, 40). 

We have unified them into m (lowercase) in the revised version of manuscript. 



 

(3.29) l.194: “is extracted from uniform distribution”→“is sampled from the uniform distribution”  

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.30) l.197: I guess v should be bold, as a vector.  

→ Yes, this is a mistake. We have modified as the reviewer pointed. 

 

(3.31) l.200: “is the operator for nonlinear transformation.“→“is an operator of nonlinear 

transformations.“ 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.32) l.202: “Therefore, the computational cost required to train RC is small”: You do not explain 

why! In particular you do not mention that the problem to optimise is linear (the loss function is 

quadratic). 

→ The fact that the optimization problem is linear could be found in the equation (15). However, this 

point was not connected to the computational cost in the original version of the paper, as the reviewer 

pointed out. We have stressed that the small computational cost is due to this linearity in both 

introduction and method sections in the revised version of manuscript. 

Lines 63-66: RC can learn the dynamics only by training a single matrix as a linear 

minimization problem just once, while other neural networks have to train numerous 

parameters and need many iterations (Lu et al., 2017). 

Lines 220-223: It is important that 𝑨 and 𝑾𝒊𝒏 are fixed and only 𝑾𝒐𝒖𝒕 will be trained 

by just solving a linear problem. Therefore, the computational cost required to train RC is 

small and it is an outstanding advantage of RC compared to the other neural network 

frameworks. 

In addition, it is stressed that the problem to calculate is just a linear function. 

Lines 231-232: Although the objective function (14) is quadratic, it is differentiable, and the 

optimal value can be obtained by just solving a linear equation as follows: 

  

 

(3.33) l.213: “matrix”→“matrices” 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.34) l.240-241: It seems to me like the first iteration of Brajard et al. 2020’ loop. 

→ We believe that our strategy is conceptually different from the first iterate of the method in Brajard 

et al., 2020 although we can agree that they are similar. See also the response to (3.10). 



 

(3.35) l.236-242: What you intend to do is not clear enough to me. Please be more specific. For 

instance, give the corresponding algorithm. What is the model used by the LETKF supposed to be? 

→The description of the method of RC-Anl was quite insufficient and unclear. In the LETKF step for 

the RC-Anl, the L96 model with a bias in the Force term was used as the model. These statements 

have been significantly revised in the revised version of the manuscript, and the detail of the model 

has also been added. See the response to (3.4). 

 

(3.36) p.15: A state space dimension of m= 8 is small while the ensemble size Ne= 20 is quite large 

for such state space size. That makes localization totally unnecessary if not useless. This is really 

problematic as a demonstration of the method. 

→ We agree that the state space dimension was too small to use no less than 20 ensemble data 

assimilation, and thus the localization is unnecessary in this case. In order to show the effectiveness 

of localization and the expandability to higher dimensional systems, we have conducted different 

experiments with the 40 dimensional L96 system along with parallelized reservoir computing. See the 

response to (3.13) 

 

(3.37) l.253: “F term in”→“The F term in” 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.38) l.253-254: “F term in the model was changed to represent the model bias.”: This is only one 

degree of freedom. Any good data assimilation method can handle this without resorting to machine 

learning, see for instance Bocquet and Sakov (2013). This undermines your demonstration to some 

extent. 

→ We fully agree that some of the data assimilation methods can handle the model bias induced by 

uncertainty in model’s parameters. Even if the number of parameters is larger, one can correct them 

by optimization methods if one identifies the parameters which are the source of model bias. However, 

when the sources of biases are unknown, the optimization approach is no longer effective, and it is 

difficult to raise the accuracy of the model by putting the parameters into the state vector of EnKF or 

EnKS. The motivation of our study is to emulate the system dynamics from the observation and biased 

model especially when the source of model’s bias is unknown. In this problem setting, the number of 

unknown parameters is not primarily important. This point was indeed unclear in the original version 

of the paper and has been clarified in the revised version of the manuscript, along with the citation of 

Bocquet and Sakov (2013). 

Lines 320-327: Here, we assume that the source of the model bias is unknown. When the 

source of bias is only the uncertainty in model parameters, and uncertain parameters which 



significantly induce the model bias is completely identified, optimization methods can 

estimate the value of the uncertain parameters to minimize the gaps between simulation and 

observation. This problem can also be solved by data assimilation methods (e.g. Bocquet 

and Sakov, 2013). However, it is difficult to calibrate the model when the source of 

uncertainty is unknown. Our proposed method does not need to identify the source of model 

bias so that it may be useful especially when the source of model bias is unknown. It  is 

often the case in the large and complex model such as NWP systems. 

 

(3.39) l.262, Eq.(15): the work/concept of “localisation” has not been mentioned once. Has it? 

→ No. The concept of localization was not explained through the section 2, and the description ended 

up an explanation of EnKF. We have added the explanation of localization in the section 2 and 

modified the description of this part in the revised version of the manuscript. We have already 

addressed this point in our responses to the comment (3.2) and (3.22).  

 

(3.40) l.267: “The configuration of RC used in this study was similar”→“The configuration of RC 

used in this study is similar” 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

 

(3.41) l.267, Eq.(16): The words “odd“ and ’even” need not be italicised. 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.42) From line 271 till the end of the numerical section, please use the present tense, not the past 

tense. 

→ We have modified it in the revised version of the paper following the reviewer’s instruction. 

 

(3.43) page 16: You could also use an (L)ETKF that accounts for model error, for instance that of 

Raanes et al. (2015). All NWP data assimilation methods have model error correction steps. 

→ We fully agree that all NWP (ensemble) data assimilation methods have model error correction 

steps because the background covariance is underestimated without considering model noise. We used 

the covariance inflation method to maintain the sufficiently large background covariance. Raanes et 

al. (2015) had the similar motivation to the covariance inflation and compared their proposed method 

with the covariance inflation. Although we mentioned the covariance inflation in the original version 

of the paper, it was indeed unclear that we used it to empirically account for model noise. We have 

clarified this point in the revised version of the paper: 



Lines 186-188: A covariance inflation parameter is multiplied to take measures for the 

tendency of data assimilation to underestimate the uncertainty of state estimate by 

empirically accounting for model noise (see equation (3)). 

Lines 335-338: In equation (10), a “covariance inflation factor”, which was set to 1.05 in 

our study, was multiplied to 𝑷̃𝒌
𝒂  in each iteration to maintain the sufficiently large 

background error covariance by empirically accounting for model noise (see equation (3)). 

 

It should be noted that the model noise which we and Raanes et al. (2015) address should be modeled 

as Gaussian noise with zero mean (see equation (3)) so that the model error correction discussed here 

cannot directly address the general systematic bias of models. 

  

 

(3.44) l.295: What you refer to is the “forecast lead time”.  

→ Yes, this is so called forecast lead time. We have added the notes. 

Lines 375-377: Using this metric, we can see how the prediction accuracy is degraded as 

time elapses from initial time (so called “forecast lead time”). 

 

(3.45) l.312: It seems to me that you cannot refer to figures of the supplement material. Your paper 

has to be self-contained. Please incorporate the figures or remove the paragraph. You may want to 

discuss this issue with the Editor. 

→ Thank you for pointing that out. We have removed the supplementary materials and corresponding 

paragraph. We have incorporated Figure S1 in the supplement material as Figure 6 in the revised 

version of the paper, and we have added detailed description of the figure that is referred to as the 

supplement material in the original version of the paper. 

Lines 394-398: Figure 6a and 6b show the effect of the observation error on the prediction 

skill. The value of observation error 𝑒 is changed from 0.1 to 1.5 and the mRMSE time 

series is drawn. We can see that LETKF-Ext is more sensitive to the increase of observation 

error than RC-Obs, although the LETKF-Ext is superior in accuracy to RC-Obs within this 

range of observation error. 

  



Figure 6. The mRMSE time series of the predictions of (a)LETKF-Ext and (b)RC-Obs 

with noisy observation. Each color corresponds to the observation error indicated by the 

legend. 

 

(3.46) l.324: “under imperfect models”: do you mean “perfect model“? This is very confusing because 

you just discussed perfect model experiments and will do so again in the next sentence of the same 

paragraph (figure 5). It is only in the next paragraph that you report experiments with imperfect model. 

Please improve the text. 

→ Yes, this paragraph and Figure 5 shows the results with perfect model, and the description here 

was a mistake. We have modified it in the revised version of the manuscript. 

Lines 408-409: We tested the prediction skill of our newly proposed method, RC-Anl, under 

perfect models and sparse observations. 

 

(3.47) l.334-335: To which values do you change F? 

→ F term was moved from 5.0 to 11.0, which can be confirmed in the Figure 6 and 7 in the original 

manuscript. Since these values cannot be found in the text, we have explicitly mentioned this range in 

the revised version of the paper. 

Lines 418-420: The 𝐹 term in equation (1) was changed from the true value 8 (the 𝐹 value 

of the model for Nature Run) to values in [5.0, 11.0] as the model bias, and the accuracy 

of LETKF-Ext and RC-Anl is plotted. 

 

(3.48) Figure 2: Where are the tags (a), (b), ..., (e) in the panels? 

→ Tags are missing in the original version of paper. We have added them in the revised version. 

 

(3.49) Figure 4: You could use a log scale for the y-axis (RMSE) to see what happens for the shorter 

forecast lead times. 

(a) (b)



→ We have replaced these figures with the ones showing the 40-dimensional results. We believe that 

the corresponding figures are now clear to see through the whole forecast lead time without adopting 

the log scale axis. We have decided not to change this aspect of the paper. 

 

(3.50) l.336-338 and Figure 6: The comparison is visually difficult. I suggest to merge Figure 6a and 

6b which should facilitate the comparison. 

→ We admit that the Figure 6a and 6b (9a and 9b in the revised version of the manuscript) is difficult 

to compare. However, merging these two figures will yield more complicated figure since the lines 

are winding here and there. The Figure 7 (10 in the revised version), which is a truncated visualization 

of the same result, is shown to make the visual comparison easy. We believe that this figure enables 

us the sufficient comparison and decided not to merge the Figures 6a and 6b.  

 

(3.51) l. 351: You cannot refer to figures of the supplement material. Your paper has to be self-

contained. Please incorporate the figures or remove the paragraph. 

→ We have incorporated the figure as the Figure 11 in the revised version of the manuscript. 

Figure 11. The mRMSE time series of the predictions of RC-Anl with various length of 

training data, with perfect observation and perfect model. Each color corresponds to the 

value of the size of training data. 

 

 

(3.52) l.388-390: No, in their method one can limit the number of iterations, to 1 for instance, just as 

you do. These authors also have a sequel to this paper, where they use a physical imperfect model as 

a first iteration, just as you do and this is potentially applicable to high-dimensions (Brajard et al., 

2020b). By the way, you are using m=8 while they are using m=40, so they are a little closer to high-

dimension than you are. 



→ In the original version of the paper, our explanation of the applicability of  Brajard et al., 2020 

was misleading. We have already addressed this issue in the introduction section as our response to 

the comment (3.10). We have also modified the description here in the revised version of the 

manuscript. 

Lines 468-472: Brajard et al. (2020) iterated the learning and data assimilation until they 

converge, because it replaced the model used in data assimilation with CNN. Although their 

model-free method has an advantage that it was not affected by the process-based model’s 

reproducibility of the phenomena, it can be computationally expensive since the number of 

iterates can be relatively large. 

However, we believe that our method is different from the first iterate of Brajard et al. (2020). See our 

response to (3.10). 

 

The reviewer mentioned that Brajard et al. (2020) set m = 40 so that they are better toward the 

application of high-dimension systems. We have also set m = 40 in the revised version of the paper 

and obtained the robust results. Therefore, we believe that this point has been addressed in the revised 

version of the paper. See our response to the comment (3.13). 

 

(3.53) l.390: “contrary”→“By contrast” 

→ We have modified this in the revised version of the manuscript. 

 

(3.54) l.406: “The advantage of our proposed method is that we allow both models and observation 

networks to be imperfect.”: So do a lot of other methods that use other ML technique than RC (Bocquet 

et al., 2019; Brajard et al., 2020a; Bocquet et al., 2020) for instance. 

→ We intended to show the superiority of our method over the series of RC studies (not works raised 

by reviewers). We agree that there are some other studies that accounts for the uncertainty in both 

models and observations. We realized that this sentence was misleading and we have clarified that our 

proposed method addressed the current issue of the series of RC studies in the revised version of the 

paper. 

Lines 498-500: The advantage of our proposed method compared to these RC studies is that 

we allow both models and observation networks to be imperfect. 

Moreover, other studies that trained ML with imperfect models and observations are cited right after 

this sentence to show that our study is not the only. See the response to (3.9) 

 

(3.55) l.413-416: When reading the abstract of your paper, I honestly thought that you would use the 

local RC, since you were claiming to use the LETKF. Doing so would have make your paper much 

stronger and more consistent (using a local RC with a local ETKF). Why did you not try it? 



→ We have conducted the experiments with parallelized RC and obtained similar results. See also 

the response to (3.6). 

 

(3.56) l.421-422: “These results imply that our proposed method can be applicable to various realistic 

problems.”: Testing the method on a 8-dimensional problem with a global RC does not make it 

applicable to various realistic problems! Please mitigate this too bold statement. 

→ We have conducted additional experiments with the 40-dimensional L96 system, along with 

localization which is a strong tool for the application to higher dimensional problems. The new results 

seem to make this statement more convincing. However, we agree that it is still too strong. We have 

mitigated it in the revised version of the manuscript. The comment (1.8) is similar to this comment so 

that we have attached the response to the comment (1.8) below. Please find how we addressed the 

reviewer’s concern.  

------------------------------------------------------------------ 

(1.8) In section 5 "Discussion" the authors mention the generalization of their methodology 

to other dynamical systems. The authors focus on the generalization to "higher dimensional 

systems" as their main worry. The reviewer believes that another more substantial worry is 

that Lorenz ’96 is known to be ergodic, while most systems used for NWP are possibly not, 

(the authors mention the KS system, but that is also possibly ergodic for well-posed initial 

conditions). It would be of benefit to mention other possible shortcoming on testing only on 

the Lorenz ’96 system. 

→ We agree that the main concern of testing only on the L96 is that this model is ergodic. 

However, it is known that the 40-dimensional L96 shows strong chaos and large Lyapunov 

exponents, and this model has been used as a good initial testbed toward the application to 

large and non-ergodic NWP problems. In the revised version of the manuscript, the 

scalability in terms of dimensionality and ergodicity are discussed separately, and main 

shortcomings on testing only on the L96 system are explicitly mentioned. 

Lines 505-508: Although we tested our method only on 40-dimensional Lorenz 

96 system, Pathak, Hunt et al. (2018) indicated that parallelized RC can be 

extended to predict the dynamics of substantially high dimensional chaos such as 

200-dimensional Kuramoto-Sivashinski equation with small computational costs. 

It implies that the findings of this study can also be applied to higher dimensional 

systems. 

Lines 515-518: However, since Lorenz 96 model (and other conceptual models 

such as Kuramoto-Sivashinski equation) are ergodic, it is unclear that our method 

can be applied to real NWP problems directly, which are possibly non-ergodic. 



Although our proposed method has a potential to extend to larger and more 

complex problems, further studies are needed. 

------------------------------------------------------------------ 

 

(3.57) l.431-433: “Our new method is robust to the imperfectness of both models and observations so 

that it is feasible to apply it to the real NWP problem.”: I really don’t believe you can make such 

statement, from an 8-dimensional L96 model. Please remove that statement, which could be shocking 

to many colleagues working in numerical weather prediction and data assimilation. 

→  

We agree that the statement in the original paper was too strong. We have removed the statements on 

the real NWP problems, and modified following the revision in the response to (3.56).  

Lines 527-529: Our new method is robust to the imperfectness of both models and 

observations and we might obtain similar results in higher dimensional and more complexed 

systems.  

 

 


