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Abstract. Computational models of mantle convection must accurately represent curved boundaries and the associated bound-

ary conditions of a 3-D spherical shell, bounded by Earth’s surface and the core-mantle boundary. This is also true for compara-

ble models in a simplified 2-D cylindrical geometry. It is of fundamental importance that the codes underlying these models are

carefully verified prior to their application in a geodynamical context, for which comparisons against analytical solutions are an

indispensable tool. However, analytical solutions for the Stokes equations in these geometries, based upon simple source terms5

that adhere to physically realistic boundary conditions, are often complex and difficult to derive. In this paper, we present the

analytical solutions for a smooth polynomial source and a delta-function forcing, in combination with free-slip and zero-slip

boundary conditions, for both 2-D cylindrical and 3-D spherical-shell domains. We study the convergence of the Taylor Hood

(P2-P1) discretisation with respect to these solutions, within the finite element computational modelling framework Fluidity,

and discuss an issue of suboptimal convergence in the presence of discontinuities. To facilitate the verification of numerical10

codes across the wider community, we provide a python package, Assess, that evaluates the analytical solutions at arbitrary

points of the domain.

1 Introduction

Mantle convection transports Earth’s internal heat to its surface: it is the ‘engine’ driving our dynamic Earth (e.g. Davies, 1999).

The structure, composition and flow-regime within the mantle is reflected in near-surface phenomena such as plate tectonics,15

mountain building, dynamic topography, sea-level change, volcanism and the activity of Earth’s magnetic field (e.g. Morgan,

1972; Mitrovica et al., 1989; Gurnis, 1993; Olson et al., 2013; Kloecking et al., 2019; Davies et al., 2019). The grand-challenge

is to understand the operation of this giant heat engine over geologic time and its relationship to the surface geological record.

Computational modelling is one of the primary tools available for tackling this challenge. Whilst 2- and 3-D numerical

models of mantle convection processes in Cartesian domains have provided important insights into a range of mantle processes20

(e.g. McKenzie et al., 1974; Gurnis and Davies, 1986; Davies and Stevenson, 1992; Moresi and Solomatov, 1995; van Keken

et al., 2002; Hunt et al., 2012; Garel et al., 2014; Davies et al., 2016; Jones et al., 2016, 2019), 3-D spherical geometry is

required to simulate global mantle dynamics. Global 3-D spherical mantle convection models, and studies focussing on their

application, are now in common use (e.g. Baumgardner, 1985; Tackley et al., 1993; Bunge et al., 1996, 1997; Zhong et al.,
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2000; Oldham and Davies, 2004; McNamara and Zhong, 2005; Choblet et al., 2007; Zhong et al., 2008; Tackley, 2008; Davies25

and Davies, 2009; Wolstencroft et al., 2009; Stadler et al., 2010; Tan et al., 2011; Kronbichler et al., 2012; Davies et al., 2013;

Burstedde et al., 2013; Heister et al., 2017; Dannberg and Gassmoller, 2018; Stotz et al., 2018). However, the use of this

geometry for calculations at a realistic convective vigour remains expensive. As a consequence, simplifying geometries are

often used, including the axisymmetric spherical shell (e.g. Solheim and Peltier, 1994; van Keken and Yuen, 1995), the 2-D

cylinder (e.g. Jarvis, 1993; van Keken and Ballentine, 1998, 1999; van Keken, 2001; Nakagawa and Tackley, 2005) and the30

spherical annulus (e.g. Hernlund and Tackley, 2008). Such 2-D models can also provide a rapid and broad parameter space

appraisal, allowing one to focus on a targeted and more sparse study in a full 3-D spherical geometry.

Recent decades have seen extensive validation, verification and benchmarking of Cartesian mantle dynamics codes, in both

2- and 3-D. Verification is typically achieved via comparisons of numerical predictions against analytical solutions (e.g. Zhong

et al., 1993; Kramer et al., 2012), with benchmarking typically undertaken against solutions from other comparable codes, for35

incompressible (Blankenbach et al., 1989; Travis et al., 1990; Busse et al., 1994; van Keken et al., 1997, 2008; Tosi et al., 2015)

and compressible (King et al., 2009) convection. See also Popov et al. (2014) for an overview of geodynamical benchmarks.

The number of comparable studies, within a 2-D cylindrical or 3-D spherical geometry, however, is more limited. Given a

recent surge in the state-of-the-art tools available for simulating mantle dynamics in these geometries (e.g. Kronbichler et al.,

2012; Logg et al., 2012; Burstedde et al., 2013; Rathgeber et al., 2016; Heister et al., 2017; Wilson et al., 2017), it is important40

that these tools are verified and validated against a range of analytical and benchmark solutions.

A popular method to obtain analytical solutions is the Method of Manufactured Solutions (MMS; Roache, 2002). With this

approach, an arbitrary analytical solution is chosen beforehand and the necessary forcing terms on the right-hand side are

derived by substitution of the solution into the left-hand side of the flow equations. A drawback of this approach is that it can

be hard to choose solutions: (i) that satisfy physically realistic boundary conditions, in particular, in less trivial domains; and45

(ii) with a velocity that is divergence free, to avoid unnatural source terms. Alternatively, one can choose a simple analytical

expression for the forcing but the derivation of the corresponding analytical solutions is often laborious.

For the Stokes equations, a well-known set of solutions in the latter category is based on a forcing term in the form of a

delta-function, corresponding to an infinitely thin density anomaly at a certain depth. The solutions to these are also used in the

propagator matrix method, where a convolution of delta-function solutions at different depths is used to obtain the response to50

arbitrary density anomalies (e.g. Hager and Richards, 1989). Solutions for the Cartesian case have been published (e.g. Zhong

et al., 1993; Kramer et al., 2012). Spherical solutions can be found in, for example, Ribe (2009). They have previously been

used for validation by, for example, Zhong et al. (2000, 2008), Choblet et al. (2007), Davies et al. (2013) and Burstedde et al.

(2013). The derivation of these solutions is non-trivial and, often, only cases with simpler free-slip boundary conditions are

explicitly presented. Here, we derive solutions for both free- and zero-slip boundary conditions. In our convergence analyses,55

where we compare the analytical solutions with numerical solutions obtained using the Fluidity computational modelling

framework (Davies et al., 2011), we discuss a limitation of this set of solutions for the benchmarking of geodynamic codes.

For this reason, we also present solutions based on a smooth forcing term, with radial dependence formed by a polynomial

of arbitrary order, again for free- and zero-slip cases. This set of solutions provides a flexible way to test mantle dynamics
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codes with physically relevant solutions, where, for instance, a high order polynomial forcing can be used to obtain solutions60

with a strong gradient near the surface. The radial dependence can be combined with spherical harmonics of arbitrary degree

and order.

A key step in the derivation of these benchmarks is a decomposition of the solution into poloidal and toroidal components

in the Mie representation (Backus, 1986). This results in a biharmonic equation for the polodoidal scalar function. Combined

with a set of conditions for the radial dependence of this poloidal function, analytical Stokes solutions can be obtained that65

satisfy desired free-slip or zero-slip conditions. Similar techniques have been used in Tosi and Martinec (2007) and Horbach

et al. (2020). In Section 5.1, we will discuss previously published analytical benchmark cases in shell domains and how they

differ from those presented here (e.g. Blinova et al., 2016; Thieulot, 2017; Horbach et al., 2020).

Finally, in addition to the delta-function and smooth cases with either free-slip or zero-slip boundary conditions in a

spherical-shell domain, we present the solutions for the corresponding four cases in a 2-D cylindrical shell domain (annu-70

lus). Although ultimately, mantle convection is a 3-D phenomenon, a number of processes can be modelled adequately in

two dimensions and, accordingly, access to benchmark cases for 2-D numerical models is equally important. The number of

published analytical Stokes solutions in 2-D cylindrical shell domains, which are suitable as geodynamical benchmarks and

include a complete derivation, is limited. By presenting this extensive set of explicit analytical solutions, we provide a suite of

verification cases for use by the wider community of mantle dynamics code developers. An implementation of the solutions75

is provided through the python package Assess (Analytical Solutions for the Stokes Equations in Spherical Shells; Kramer,

2020).

The remainder of this paper is structured as follows. In Section 2 we derive the analytical solutions in cylindrical (section

2.2) and spherical (section 2.3) geometries. Smooth solutions are first provided, for free-slip and zero-slip cases, followed by

the delta-function solutions. In Section 3, we briefly describe the Fluidity computational modelling framework, which is used80

in Section 4 to obtain convergence results of the P2-P1 finite element discretisation to the analytical solutions. In Section 5

we discuss these results, and relate the analytical solutions presented here to those that have previously been published. In

particular, we discuss an issue with the delta-function cases for discretisations that use continuous pressure. To demonstrate,

we also show results with a P2bubble-P1DG discretisation that overcomes this issue.

2 Analytical Solutions85

2.1 Equations

The following derivation is applicable to the incompressible Stokes equations

−∇ · τ +∇p=−gρ′r̂, (1)

τ = ν
[
∇u+∇uT

]
, (2)

∇ ·u= 0, (3)90
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where the unknowns are velocity u and pressure p, with an assumed constant kinematic viscosity ν. The buoyancy force on

the right hand side (RHS) of (1) is based on a gravity of constant magnitude g, directed in the inward radial direction −r̂,

and a dimensionless density deviation ρ′: ρ= ρ0(1 + ρ′), where ρ is the density and the reference density ρ0 is constant. The

equations are solved in a 2-D cylindrical or 3-D spherical domain, bounded by R− ≤ r ≤R+, where r is the radial distance to

the origin.95

2.2 Cylindrical

In 2-D, any incompressible velocity field u can be written as the skew gradient of a streamfunction ψ

ur =−1

r

∂ψ

∂ϕ
, uϕ =

∂ψ

∂r
, (4)

where ϕ is the angle from the x-axis in polar coordinates, x= r cos(ϕ),y = r sin(ϕ), and ur and uϕ are the radial and trans-

verse components of velocity respectively. The normal deviatoric stress and shear stress components are given by100

τrr = 2νr̂ · [∇u] · r̂ =−2ν
∂

∂r

(
1

r

∂ψ

∂ϕ

)
, (5)

τrϕ = νr̂ · [∇u] · ϕ̂+ νϕ̂ · [∇u] · r̂ = ν

(
∂2ψ

∂r2
− 1

r

∂ψ

∂r
− 1

r2

∂2ψ

∂ϕ2

)
. (6)

The momentum equation (1) can be decomposed into radial and transverse components

ν

r

∂

∂ϕ
∇2ψ+

∂p

∂r
=−gρ′, (7)

−ν ∂
∂r
∇2ψ+

1

r

∂p

∂ϕ
= 0, (8)105

where the Laplacian, in polar coordinates, is given by

∇2ψ =
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂ϕ2
. (9)

For a derivation of Equations 5–8, see appendix A.

The curl of the momentum equation is obtained by summation of the operators − 1
r
∂ q
∂ϕ and 1

r
∂
∂r (r q) applied to the radial (7)

and transverse (8) components respectively, which leads to110

−∇4ψ =
g

ν

1

r

∂ρ′

∂ϕ
. (10)

The general, real-valued, solution to the biharmonic equation∇4ψ = 0 is given by

ψ(r,ϕ) =
∑
n>1

(
Anr

n +Bnr
−n +Cnr

n+2 +Dnr
−n+2

)
(en sin(nϕ) + fn cos(nϕ))

+
(
A1r+B1r

−1 +C1r
3 +D1r lnr

)
(e1 sin(ϕ) + f1 cos(ϕ))

+ A0 +B0 lnr+C0r
2 +D0r

2 lnr, (11)
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where An, Bn, Cn, Dn, en, and fn are constant coefficients, n≥ 0. The An and Bn terms are the standard solutions to the

homogeneous harmonic equation, and the Cn andDn terms are obtained as inhomogeneous solutions of the harmonic equation115

with the homogeneous harmonic solutions (An andBn terms) as the right-hand side. The fact that these (the Cn andDn terms)

are homogeneous biharmonic solutions then follows from: ∇4 =∇2∇2. In the following we will, for simplicity, focus on

sin(nϕ)-solutions for a single n > 1 and set en = 1,fn = 0.

An equation for pressure can be derived by taking the divergence of the momentum equation

∇2p=−g
r

∂ (rρ′)

∂r
. (12)120

From (7) it can be seen that sin(nϕ) solutions for ψ are associated with cos(nϕ) solutions of p and ρ′. The homogeneous

solutions, i.e. ρ′ = 0, are thus the standard harmonic solutions (again neglecting the n= 0,1 solutions)

p(r,ϕ) =
∑
n>1

(
Gnr

n +Hnr
−n)cos(nϕ), (13)

where Gn and Hn are constant coefficients, n > 1.

After substitution of p and ψ in (7)–(8), the following relations125

Gn =−4νCn(n+ 1), Hn =−4νDn(n− 1), (14)

between the coefficients of the homogeneous solutions for ψ and p can be derived.

2.2.1 Smooth density profile – cylindrical

In the first test case we consider a density perturbation of the following form

ρ′ =
rk

Rk+
cos(nϕ) (15)130

with k > 0. It is easily verified that an inhomogeneous solution to (10) exists of the form

ψ = Erk+3 sin(nϕ), E =
gR−k+ n

ν ((k+ 3)2−n2)((k+ 1)2−n2)
(16)

assuming k 6= n− 3 and k 6= n− 1, so that a general solution can be written as

ψ(r,ϕ) =
(
Arn +Br−n +Crn+2 +Dr−n+2 +Erk+3

)
sin(nϕ). (17)

Note that for the remainder of this derivation we drop the subscript n in the coefficients for A,B,C and D.135

An inhomogeneous solution for pressure of (12) is given by

p(r,ϕ) = Frk+1 cos(nϕ), F =−
gR−k+ (k+ 1)

(k+ 1)2−n2
. (18)

The general solution for pressure is thus

p(r,ϕ) =
(
Grn +Hr−n +Frk+1

)
cos(nϕ) (19)
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with G and H given by (14).140

The four remaining coefficients A,B,C, and D, are fixed by a choice of boundary conditions at the inner and outer surfaces

of the cylindrical domain at r =R+ and r =R−, respectively. At both, no-normal flow conditions are imposed via ∂ψ
∂ϕ = 0.

Two further equations are found by imposing either τrϕ = 0 (free slip), or ∂ψ∂r = 0 (zero slip) at both boundaries.

The solution coefficients for free-slip, no-normal flow at both boundaries are given by

A=
gR−n+3

+

ν

αk+n+3−α2

4(α+αn)(αn−α)(k+n+ 1)(k−n+ 3)
145

B =
gRn+3

+

ν

αk+n+3−α2n+2

4(αn+1 + 1)(αn+1− 1)(k+n+ 3)(k−n+ 1)

C =
gR−n+1

+

ν

−αk+n+3 + 1

4(αn+1 + 1)(αn+1− 1)(k+n+ 3)(k−n+ 1)

D =
gRn+1

+

ν

−αk+n+3 +α2n

4(α+αn)(αn−α)(k+n+ 1)(k−n+ 3)

where we use α=R−/R+.

The zero-slip solution coefficients are given by150

A=
gR−n+3

+ n

ν

(
αk+n+3 +α2n

)
(k+n+ 1)(n+ 1)−

(
αk+n+1 +α2n+2

)
(k+n+ 3)n−

(
αk+3n+3 + 1

)
(k−n+ 1)

2
(

(αn+1−αn−1)
2
n2− (α2n− 1)

2
)(

(k+ 3)
2−n2

)(
(k+ 1)

2−n2
)

B =
gRn+3

+ n

ν

−
(
αk+3n+3 +α2n

)
(k−n+ 1)(n− 1) +

(
αk+3n+1 +α2n+2

)
(k−n+ 3)n−

(
αk+n+3 +α4n

)
(k+n+ 1)

2
(

(αn+1−αn−1)
2
n2− (α2n− 1)

2
)(

(k+ 3)
2−n2

)(
(k+ 1)

2−n2
)

C =
gR−n+1

+ n

ν

(
αk+n+1 +α2n

)
(k+n+ 3)(n− 1)−

(
αk+n+3 +α2n−2

)
(k+n+ 1)n+

(
αk+3n+1 + 1

)
(k−n+ 3)

2
(

(αn+1−αn−1)
2
n2− (α2n− 1)

2
)(

(k+ 3)
2−n2

)(
(k+ 1)

2−n2
)

D =
gRn+1

+ n

ν

−
(
αk+3n+1 +α2n

)
(k−n+ 3)(n+ 1) +

(
αk+3n+3 +α2n−2

)
(k−n+ 1)n+

(
αk+n+1 +α4n

)
(k+n+ 3)

2
(

(αn+1−αn−1)
2
n2− (α2n− 1)

2
)(

(k+ 3)
2−n2

)(
(k+ 1)

2−n2
) .

2.2.2 Green’s function solution – cylindrical155

Another set of useful solutions is found considering the following perturbation density

ρ′ = δ(r− r′)cos(nϕ) (20)

representing an infinitely thin density anomaly at r = r′ with R− < r′ <R+. Since ρ′ = 0 for r′ 6= r, the solution is described

by combining two homogeneous solutions

ψ(r,ϕ) =

ψ−(r,ϕ) =
(
A−r

n +B−r
−n +C−r

n+2 +D−r
−n+2

)
sin(nϕ) for R− ≤ r < r′,

ψ+(r,ϕ) =
(
A+r

n +B+r
−n +C+r

n+2 +D+r
−n+2

)
sin(nϕ) for r′ < r ≤R+.

(21)160

We thus have 8 coefficients that are fixed by boundary conditions and conditions at the interface. Boundary conditions at the

inner and outer boundary again provide four equations. Furthermore we impose continuity of both velocity components at the
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interface

ψ−(r′,ϕ) = ψ+(r′,ϕ), and
∂ψ−
∂r

(r′,ϕ) =
∂ψ+

∂r
(r′,ϕ). (22)

Since no lateral force is being applied at the interface we also expect continuity of the shear stress (6) which in combination165

with the above implies

∂2ψ−
∂r2

(r′,ϕ) =
∂2ψ+

∂r2
(r′,ϕ). (23)

Finally the eighth equation is obtained by integrating (10) over a small strip r′− ε≤ r ≤ r′+ ε, between two arbitrary angles

ϕ1 ≤ ϕ≤ ϕ2:

r′+ε∫
r=r′−ε

ϕ2∫
ϕ=ϕ1

(
∇4ψ

)
rdrdϕ=

r′+ε∫
r=r′−ε

ϕ2∫
ϕ=ϕ1

gnsin(nϕ)

νr
δ(r− r′)rdrdϕ, (24)170

 ϕ2∫
ϕ=ϕ1

r̂ · ∇
(
∇2ψ

)
rdϕ

r=r
′+ε

r=r′−ε

+

 r′+ε∫
r=r′−ε

ϕ̂ · ∇
(
∇2ψ

)
rdr

ϕ2

ϕ=ϕ1

=

ϕ2∫
ϕ=ϕ1

gnsin(nϕ)

ν
dϕ. (25)

Taking the limit ε→ 0, the second term on the left-hand side disappears, whereas the first term becomes

ϕ2∫
ϕ=ϕ1

∂

∂r

(
1

r

∂

∂r

(
r
∂ψ+

∂r

)
+

1

r2

∂2ψ+

∂ϕ2

)∣∣∣∣
r=r′

r′dϕ −
ϕ2∫

ϕ=ϕ1

∂

∂r

(
1

r

∂

∂r

(
r
∂ψ−
∂r

)
+

1

r2

∂2ψ−
∂ϕ2

)∣∣∣∣
r=r′

r′dϕ.

Again using (22) and (23), only the jump term for the third radial derivative of ψ± remains:

ϕ2∫
ϕ=ϕ1

(
∂3ψ+

∂r3
(r′,ϕ)− ∂3ψ−

∂r3
(r′,ϕ)

)
r′dϕ=

ϕ2∫
ϕ=ϕ1

gnsin(nϕ)

ν
dϕ.175

Thus for this to hold for arbitrary ϕ1 and ϕ2, we need

∂3ψ+

∂r3
(r′,ϕ)− ∂3ψ−

∂r3
(r′,ϕ) =

gnsin(nϕ)

νr′
. (26)

The solution coefficients for free-slip boundary conditions at r =R− and r =R+ are

A± =
gr′−n+2

ν

±
(
α2n−2
∓ − 1

)
8
(
α2n−2
± −α2n−2

∓
)

(n− 1)

B± =
gr′n+2

ν

±
(
α2n+2
∓ − 1

)
α2n+2
±

8
(
α2n+2
± −α2n+2

∓
)

(n+ 1)
180

C± =
gr′−n

ν

±
(
α2n+2
∓ − 1

)
8
(
α2n+2
∓ −α2n+2

±
)

(n+ 1)

D± =
gr′n

ν

±
(
α2n−2
∓ − 1

)
α2n−2
±

8
(
α2n−2
∓ −α2n−2

±
)

(n− 1)
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(a) k=2, n=2

(d) k=8, n=8 (e) k=8, n=32

(b) k=2, n=8 (c) k=2, n=32

(f ) k=8, n=128

+ve

-ve

δρ

Figure 1. Density perturbation (δρ) field for smooth cylindrical cases across a range of n and k. As the wavenumber n increases, the

wavelength of the perturbation decreases. As k increases, the perturbation becomes more concentrated towards the domain’s outer boundary.

where we use α± =R±/r
′.

Zero-slip conditions at both boundaries lead to

A± =
gr′−n+2

ν

((
α2

+−α2
−
)
n+α−2n

+ −α−2n
− ± (n+ 1)

)
(n− 1)−

(
α−2n

+ α2
−−α2

+α
−2n
−
)
n±

(
γ±2n− γ∓2n2

)
8
(

(γ− γ−1)
2
n2− (γ−n− γn)

2
)

(n− 1)
185

B± =
gr′n+2

ν

((
α2

+−α2
−
)
n−α2n

+ +α2n
− ± (n− 1)

)
(n+ 1) +

(
α2n

+ α2
−−α2

+α
2n
−
)
n±

(
γ∓2n− γ∓2n2

)
8
(

(γ− γ−1)
2
n2− (γ−n− γn)

2
)

(n+ 1)

C± =
gr′−n

ν

((
α−2
− −α−2

+

)
n+α−2n

+ −α−2n
− ∓ (n− 1)

)
(n+ 1)−

(
α−2n

+ α−2
− −α−2

+ α−2n
−
)
n∓

(
γ±2n− γ±2n2

)
8
(

(γ− γ−1)
2
n2− (γ−n− γn)

2
)

(n+ 1)

D± =
gr′n

ν

((
α−2
− −α−2

+

)
n−α2n

+ +α2n
− ∓ (n+ 1)

)
(n− 1) +

(
α2n

+ α−2
− −α−2

+ α2n
−
)
n∓

(
γ∓2n− γ±2n2

)
8
(

(γ− γ−1)
2
n2− (γ−n− γn)

2
)

(n− 1)

where in addition we use γ =R−/R+.
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2.3 Spherical190

In this section we derive the equivalent of the four cylindrical cases in a 3-D spherical domain, R− ≤ r ≤R+. A more detailed

derivation of the equations can be found in Ribe (2009). In 3-D, a solenoidal velocity field u can be decomposed as

u=∇× (r×∇P) + r×∇T (27)

using poloidal and toroidal scalar fields P and T (Backus, 1986), where r = rr̂. In spherical coordinates

ur =
1

r
Λ2P, uθ =−1

r

∂2 (rP)

∂r∂θ
− 1

sin(θ)

∂T
∂ϕ

, uϕ =− 1

r sin(θ)

∂2 (rP)

∂r∂ϕ
+
∂T
∂θ

(28)195

where ϕ is the longitude and θ is the co-latitude, and

Λ2P =
1

sin(θ)

∂

∂θ

(
sin(θ)

∂P
∂θ

)
+

1

sin(θ)2

∂2P
∂ϕ2

, so that ∇2 =
1

r2

(
∂

∂r
r2 ∂

∂r
+ Λ2

)
. (29)

We further derive the components of stress normal to a spherical surface

τrr = 2ν
∂ur
∂r

= 2ν
∂

∂r

(
1

r
Λ2P

)
, (30)

τrθ = νr
∂

∂r

(uθ
r

)
+
ν

r

∂ur
∂θ

= ν
∂

∂θ

(
1

r2
Λ2P − ∂

2P
∂r2

+
2

r2
P
)
− νr ∂

∂r

(
1

r sin(θ)

∂T
∂ϕ

)
, (31)200

τrϕ = νr
∂

∂r

(uϕ
r

)
+

ν

r sin(θ)

∂ur
∂ϕ

=
ν

sin(θ)

∂

∂ϕ

(
1

r2
Λ2P − ∂2P

∂r2
+

2

r2
P
)

+ νr
∂

∂r

(
1

r

∂T
∂θ

)
. (32)

Using these, we can work out spherical components of the momentum equation (1) to be

−ν
r

Λ2∇2P +
∂p

∂r
=−gρ′, (33)

ν

r

∂2
(
r∇2P

)
∂r∂θ

+
ν

sin(θ)

∂∇2T
∂ϕ

+
1

r

∂p

∂θ
= 0, (34)

ν

r sin(θ)

∂2
(
r∇2P

)
∂r∂ϕ

+ ν
∂∇2T
∂θ

+
1

r sin(θ)

∂p

∂ϕ
= 0. (35)205

As can be seen from these equations, the toroidal part of the solution is independent of the density distribution. A nonzero

toroidal component is only introduced through a particular choice of boundary conditions. For the test cases in this paper we

only consider free-slip and zero-slip boundary conditions with radial forcing so we may assume T = 0. The assumption of

the velocity field being solenoidal, which underlies the Mie representation (27), follows directly from the incompressibility

condition and the no-normal flow condition on the boundary.210

Taking the curl of the momentum equation

−θ̂ ν

sin(θ)

∂∇4P
∂ϕ

+ ϕ̂ν
∂∇4P
∂θ

=−θ̂ 1

r sin(θ)

∂gρ′

∂ϕ
+ ϕ̂

1

r

∂gρ′

∂θ
. (36)

In a spherical domain this implies that ν∇4P − gρ′/r varies in the radial direction only. Without loss of generality we may

therefore seek solutions P that satisfy

∇4P =
gρ′

νr
, (37)215
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since for any other solution P +P ′ of (36) we know that ∇4P ′ is purely radial, and therefore P ′ can be written as a sum of

biharmonic solutions and a purely radial function. The biharmonic solutions are included in (37) and the purely radial function

is discarded by (27).

Solutions to the biharmonic equation∇4P = 0 in 3-D are given by

P(r,θ,ϕ) =
∑
l≥0

l∑
m=−l

(
Almr

l +Blmr
−l−1 +Clmr

l+2 +Dlmr
−l+1

)
Ylm(θ,ϕ), (38)220

where Alm, Blm, Clm, and Dlm are constant coefficients, and Ylm are Laplace’s spherical harmonic functions of degree l and

order m, which have the property that

Λ2Ylm =−l(l+ 1)Ylm. (39)

As in 2-D, an equation for the pressure is obtained by taking the divergence of the momentum equation, giving

∇2p=− g

r2

∂

∂r

(
r2ρ′

)
. (40)225

Homogeneous solutions for pressure are written

p(r,θ,ϕ) =
∑
l≥0

l∑
m=−l

(
Glmr

l +Hlmr
−l−1

)
Ylm(θ,ϕ), (41)

where substitution of (38) and (41) in (33) gives

Glm =−2ν(l+ 1)(2l+ 3)Clm, Hlm =−2νl(2l− 1)Dlm. (42)

2.3.1 Smooth density profile – spherical230

We consider a density perturbation of the following form

ρ′ =
rk

Rk+
Ylm(θ,ϕ). (43)

An inhomogeneous solution of (37) is given by

P = Erk+3Ylm, E =
gR−k+

ν ((k+ 1)(k+ 2)− l(l+ 1))((k+ 3)(k+ 4)− l(l+ 1))
(44)

with a more generic solution written as235

P =
(
Arl +Br−l−1 +Crl+2 +Dr−l+1 +Erk+3

)
Ylm (45)

where we have dropped the lm subscripts of the coefficients A, B, C, D. The pressure solution for (40) is

p=
(
Grl +Hr−l−1 +Frk+1

)
Ylm, F =−

g(k+ 2)R−k+

(k+ 1)(k+ 2)− l(l+ 1)
, (46)
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Figure 2. Illustrations of the density perturbation (δρ) field for smooth spherical cases across a range of l, m and k.

and G and H are given by (42).

As before, the four coefficients A, B, C, and D are fixed by the boundary conditions240

no-normal flow: ur =
1

r
Λ2P = 0 =⇒ P = 0, at r =R± (47)

where we use Λ2P =−l(l+ 1)P . The two no-normal flow conditions at r =R− and r =R+ are combined with two further

conditions

free slip: τrθ = τrϕ = 0 =⇒ 1

r
Λ2P − ∂2P

∂r2
+

2

r2
P = 0 =⇒ ∂2P

∂r2
= 0, at r =R±, or (48)

zero slip: uθ = uϕ = 0 =⇒ ∂(rP)

∂r
= 0 =⇒ ∂P

∂r
= 0, at r =R±. (49)245
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For free-slip conditions at both r =R− and r =R+, the solution coefficients are given by

A=
gR−l+3

+

ν

αk+3−α−l+1

2(αl−α−l+1)(k+ l+ 2)(k− l+ 3)(2l+ 1)

B =
gRl+4

+

ν

−αk+4 +αl+3

2(α−l−αl+3)(k+ l+ 4)(k− l+ 1)(2l+ 1)

C =
gR−l+1

+

ν

αk+4−α−l

2(α−l−αl+3)(k+ l+ 4)(k− l+ 1)(2l+ 1)

D =
gRl+2

+

ν

−αk+3 +αl

2(αl−α−l+1)(k+ l+ 2)(k− l+ 3)(2l+ 1)
.250

Zero-slip conditions at both boundaries lead to the following solution coefficients

A=
gR−l+3

+

ν

(
αk+2 +αl−1

)
(k+ l+ 2)(2l+ 3)−

(
αk +αl+1

)
(k+ l+ 4)(2l+ 1)− 2

(
αk+2l+3 +α−l−2

)
(k− l+ 1)

Γ

B =
gRl+4

+

ν

(
αk+2l+1 +αl+1

)
(k− l+ 3)(2l+ 1)−

(
αk+2l+3 +αl−1

)
(k− l+ 1)(2l− 1)− 2

(
αk+2 +α3l

)
(k+ l+ 2)

Γ

C =
gR−l+1

+

ν

−
(
αk+2 +αl−3

)
(k+ l+ 2)(2l+ 1) +

(
αk +αl−1

)
(k+ l+ 4)(2l− 1) + 2

(
αk+2l+1 +α−l−2

)
(k− l+ 3)

Γ

D =
gRl+2

+

ν

−
(
αk+2l+1 +αl−1

)
(k− l+ 3)(2l+ 3) +

(
αk+2l+3 +αl−3

)
(k− l+ 1)(2l+ 1) + 2

(
αk +α3l

)
(k+ l+ 4)

Γ
255

Γ =
((
αl+1 +αl−3

)
(2l+ 1)

2− 2αl−1 (2l+ 3)(2l− 1)− 4α3l− 4α−l−2
)

(k+ l+ 4)(k+ l+ 2)(k− l+ 3)(k− l+ 1) .

2.3.2 Green’s function solution – spherical

As in two dimensions, we find solutions for the case where

ρ′ = δ(r− r′)Ylm(θ,ϕ), (50)

by combining two homogeneous solutions260

P(r,θ,ϕ) =

P−(r,θ,ϕ) =
(
A−r

l +B−r
−l−1 +C−r

l+2 +D−r
−l+1

)
Ylm(θ,ϕ) for R− ≤ r < r′,

P+(r,θ,ϕ) =
(
A+r

l +B+r
−l−1 +C+r

l+2 +D+r
−l+1

)
Ylm(θ,ϕ) for r′ < r ≤R+.

(51)

The eight coefficients are found by imposing the same 4 constraints derived from the boundary conditions at r =R− and

r =R+ as in the previous section, and by imposing a further 4 conditions: continuity of all components of u, no shear force

between the two halves of the domain, and a normal force that is proportional to the density anomaly

continuity of ur: P−(r′,θ,ϕ) = P+(r′,θ,ϕ), (52)265

continuity of uθ and uϕ:
∂(rP−)

∂r
|r=r′ =

∂(rP+)

∂r
|r=r′ =⇒ ∂P−

∂r
(r′,θ,ϕ) =

∂P+

∂r
(r′,θ,ϕ), (53)

zero-shear condition:
∂2P−
∂r2

(r′,θ,ϕ) =
∂2P+

∂r2
(r′,θ,ϕ), (54)

normal-shear condition:
∂3P+

∂r3
(r′,θ,ϕ)− ∂3P−

∂r3
(r′,θ,ϕ) =

gYlm(θ,ϕ)

νr′
, (55)
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where (55) is derived from (37) in the same way as (26), and (53)–(55) assume (52).

The free-slip solution coefficients are given by270

A± =
gr′−l+2

ν

±
(
α2l−1
∓ − 1

)
2
(
α2l−1
± −α2l−1

∓
)

(2l− 1)(2l+ 1)

B± =
gr′l+3

ν

±
(
α−2l−3
∓ − 1

)
2
(
α−2l−3
± −α−2l−3

∓
)

(2l+ 1)(2l+ 3)

C± =
gr′−l

ν

±
(
−α2l+3
∓ + 1

)
2
(
α2l+3
± −α2l+3

∓
)

(2l+ 1)(2l+ 3)

D± =
gr′l+1

ν

±
(
−α−2l+1
∓ + 1

)
2
(
α−2l+1
± −α−2l+1

∓
)

(2l− 1)(2l+ 1)
.

The zero-slip solution coefficients are given by275

A± =
gr′−l+2

ν

α2
+−α2

−+ 2
2l+1

(
α−2l−1

+ −α−2l−1
−

)
± 2l+3

2l+1 + 2
2l−1

(
α2

+α
−2l−1
− −α−2l−1

+ α2
−
)
± 4γ±(2l+1)

(2l−1)(2l+1) ∓
γ∓2(2l+1)

2l−1

−8γ−2l−1− 8γ2l+1 + 2(γ2 + γ−2)(2l+ 1)
2− 4(2l− 1)(2l+ 3)

B± =
gr′l+3

ν

α2
+−α2

−− 2
2l+1

(
α2l+1

+ −α2l+1
−

)
± 2l−1

2l+1 −
2

2l+3

(
α2

+α
2l+1
− −α2l+1

+ α2
−
)
± 4γ∓(2l+1)

(2l+1)(2l+3) ∓
γ∓2(2l+1)

2l+3

−8γ−2l−1− 8γ2l+1 + 2(γ2 + γ−2)(2l+ 1)
2− 4(2l− 1)(2l+ 3)

C± =
gr′−l

ν

α−2
− −α−2

+ + 2
2l+1

(
α−2l−1

+ −α−2l−1
−

)
∓ 2l−1

2l+1 + 2
2l+3

(
α−2

+ α−2l−1
− −α−2l−1

+ α−2
−
)
∓ 4γ±(2l+1)

(2l+1)(2l+3) ±
γ±2(2l+1)

2l+3

−8γ−2l−1− 8γ2l+1 + 2(γ2 + γ−2)(2l+ 1)
2− 4(2l− 1)(2l+ 3)

D± =
gr′l+1

ν

α−2
− −α−2

+ − 2
2l+1

(
α2l+1

+ −α2l+1
−

)
∓ 2l+3

2l+1 −
2

2l−1

(
α−2

+ α2l+1
− −α2l+1

+ α−2
−
)
∓ 4γ∓(2l+1)

(2l−1)(2l+1) ±
γ±2(2l+1)

2l−1

−8γ−2l−1− 8γ2l+1 + 2(γ2 + γ−2)(2l+ 1)
2− 4(2l− 1)(2l+ 3)

.

3 Fluidity280

The test cases in the previous section have been examined using Fluidity, a finite element, control-volume computational

modelling framework (Davies et al., 2011; Kramer et al., 2012).

3.1 Discretisation

The numerical solutions for velocity and pressure, u and p, are written as a linear combination of basis functions Nj and Ml

u=
∑
j

ujNj , p=
∑
l

plMl. (56)285

We use either the P2-P1 (Taylor Hood) or P2bubble-P1DG element pairs. In both cases the velocity and pressure basis functions

Nj and Ml are piecewise quadratic and linear respectively on a triangular (2-D) or tetrahedral (3-D) mesh of the domain

Ω. Because the curved boundaries of the cylindrical and spherical-shell domains can only be approximated by the mesh, the

numerical domain is denoted by Ωh. When using the P2-P1 element pair the basis functions are continuous between cells.

For the P2bubble-P1DG element pair the piecewise linear pressure is treated as discontinuous between cells and the continuous290
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quadratic velocity basis functions are enriched by an extra cubic “bubble” function with a corresponding cell-centred degree

of freedom (Ern and Guermond, 2004; Boffi et al., 2013).

The Stokes equations are written in the weak form, using the same Nj and Ml basis as test-functions. After integrating by

parts (1) and (3) then become (omitting boundary terms)∫
Ωh

ν (∇Ni) ·
∑
j

[
∇NT

j uj +uTj ∇Nj
]

+Ni
∑
l

pl∇Ml =−
∫

Ωh

Nigρ
′r̂ for all Ni, (57)295

∫
Ωh

(∇Mk) ·
∑
j

ujNj = 0 for all Mk. (58)

Note that we apply strong Dirichlet boundary conditions, so that the boundary integrals can indeed be neglected. In the free-

slip case, a local rotation is applied to the velocity vectors, so that the degrees of freedom correspond to velocity components

in either the normal or tangential directions. This allows us to enforce a zero normal component, while leaving the tangential

components free. For additional details about Fluidity and its implementation see Davies et al. (2011).300

3.2 Isoparametric representation of the domain

For an accurate representation of the quadratic approximation of velocity, we need to also approximate the curved cylin-

drical/spherical domain quadratically. This means that rather than each cell in the mesh being described by a linear map

Xlin : ξ 7→Xlin(ξ) from local coordinates ξ in a reference element to physical coordinates X , we use a quadratic map Xquad(ξ),

which maps to a curved triangle/tetrahedron that better represents the domain. This map can be obtained from a linear mesh305

with coordinate mappings, Xlin, through quadratic interpolation

Xquad(ξ)
quad. interp.
≈ rlin(ξ)

‖Xlin(ξ)‖
Xlin(ξ), (59)

at the standard Lagrange nodes of the quadratic function space. Here rlin(ξ) is the linear interpolation of the radius, i.e. rlin =

‖Xlin‖ at the vertices of the linear mesh. This particular choice ensures that for an equal-radius boundary, with the boundary

vertices of the linear mesh exactly on the boundary, the quadratic Lagrange nodes also lie exactly on this boundary.310

3.3 Forcing term

The density perturbation ρ′ on the RHS of (57) is a prescribed analytical expression in each of the test cases. For the Green’s

function solutions in 2-D and 3-D, using (20) and (50) respectively, we get

−
∫

Ωh

Nigρ
′r̂ =−

∫
Ωh

Ni(r,θ)g cos(nθ)δ(r− r′)r̂ =−
∫
Γ′

Ni(r,θ)g cos(nθ)n, (60)

−
∫

Ωh

Ni(r,θ)gρ
′r̂ =−

∫
Ωh

Ni(r,θ,ϕ)gYlm(θ,ϕ)δ(r− r′)r̂ =−
∫
Γ′

Ni(r,θ,ϕ)gYlm(θ,ϕ)n, (61)315

where Γ′ is an internal boundary at r = r′ oriented such that its normal n= r̂ points outwards.
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3.4 Solving the linear system and dealing with nullspaces

Equations (57) and (58) form a saddle point linear system which is solved by applying a Schur decomposition technique

where the outer iteration, which solves for the pressure degrees of freedom, is solved with a flexible Krylov subspace method,

FGMRES. The inner solve associated with the velocity degrees of freedom, is solved with the Conjugate Gradient method320

preconditioned with an algebraic multigrid method (GAMG available through PETSc: Balay et al., 1997).

In all cases, the pressure solution is only defined up to an arbitrary constant. The analytical pressure solution has the property

that its mean is zero. For comparative purposes we therefore subtract the volume averaged pressure from the obtained numerical

pressure solution

p→ p−
∫

Ωh
p∫

Ωh
1
. (62)325

Similarly, for free-slip cases, in 2-D, we may add an arbitrary rotation of the form (−y,x) = rθ̂ to the velocity solution. We

therefore apply the following projection to the numerical solution

u→ u−
∫

Ωh
rθ̂ ·u∫

Ωh
r2

rθ̂, (63)

which ensures that the angular momentum
∫
rθ̂ ·u is zero, as it is for the analytical solutions. In the same way, in three

dimensions we subtract the three rotational (rigid body) modes.330

It should be noted that the same velocity and pressure modes lead to zero modes (eigenvectors) for the linear system based

on (57) and (58), rendering the resulting matrix singular. In preconditioned Krylov methods we typically need to subtract the

zero modes from the approximate solution at every iteration. With iterative approximation xi and zero eigenvector λ we get

xi→ xi−〈λ,xi〉λ. (64)

This l2-projection, based on the l2 inner product 〈·, ·〉, is analogous but not equivalent to the projections in (62) and (63) (which335

are L2-projections). Therefore, despite the l2 projections fixing the nullmodes during the iterative solve, the L2-projections

should be applied as an additional step after the iterative solvers have completed to ensure convergence to the analytical

solution.

4 Convergence Results

In this section we show the convergence of the numerical solutions obtained with Fluidity, using the P2-P1 element pair,340

towards the analytical solutions. For 2-D cylindrical cases, the series of meshes start at refinement level 1, where the mesh

consists of 128 divisions in the horizontal, and 16 layers, giving 128× 16× 2 = 4096 triangles. At each subsequent level the

mesh is refined, doubling the resolution in both directions. For the spherical cases, the mesh at refinement level 1 is obtained

from an icosahedron refined three times, starting with 1280 triangles in the horizontal, which is extruded radially to 16 layers,
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(a)

(d) (e)

(b) (c)
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(g) (h) (i)

( j) (k) (l)

Delta-Function Smooth (k=2) Smooth (k=8)

Delta-Function Smooth (k=2) Smooth (k=8)

Figure 3. Convergence for 2-D cylindrical cases with free-slip and zero-slip boundary conditions, at a series of different wavenumbers, n,

as indicated in the legend. Note that cases with a smooth forcing are run at k = 2 and k = 8, as indicated. Convergence rate is indicated by

dashed lines, with the order of convergence provided in the legend.
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Figure 4. Convergence of velocity and pressure for 3-D spherical cases with free-slip and zero-slip boundary conditions, at a range of degrees

l and orders m. Note that all cases with a smooth forcing are run at k = l+1.
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(a)

(d)

(b)

(c)

Free Slip Zero Slip

Figure 5. Convergence of velocity (a, b) and pressure (c, d), respectively, for smooth (k = 2) 2-D cylindrical cases with free-slip and zero-slip

boundary conditions. Note that these cases do not incorporate an isoparametric approximation of the domain, hence the reduced convergence

relative to comparable cases in Fig. 3.

giving a 3-D mesh consisting of 61440 tetrahedra. Again, resolution is doubled in all directions for subsequent refinement345

levels. In all cases non-dimensionalised coordinates were used with R− = 1.22 and R+ = 2.22, and the delta-function cases

used r′ = (R−+R+)/2. This choice of r′ ensures the density anomaly coincides with a grid layer at all mesh resolutions

considered herein.

In all figures, errors are given as relative errors, comparing the numerical solution, u and p, with the analytical solutions, u∗

and p∗ (interpolated into the P2 and P1 function spaces respectively) in the L2-norm350

‖u−u∗‖2
‖u∗‖2

=

√∫
Ωh
|u−u∗|2√∫

Ωh
|u∗|2

,
‖p− p∗‖2
‖p∗‖2

=

√∫
Ωh

(p− p∗)2√∫
Ωh

(p∗)2
. (65)

Convergence plots for the 2-D cylindrical cases are presented in Fig. 3. With a smooth density profile we see optimal

convergence for the P2-P1 element pair at third and second order for velocity and pressure respectively, with both free-slip and

zero-slip boundary conditions. Cases with lower wave-number n show smaller relative error than those at higher n, as expected.

The same observation holds for lower and higher polynomial order, k = 2 and k = 8, for the radial density profile. For the355
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free-slip and zero-slip delta-function cases however, convergence drops to 1.5 and 0.5 for velocity and pressure respectively.

Furthermore, cases with lower n do not consistently show smaller relative error than those at higher n.

We see similar results for the spherical results illustrated in Fig. 4: third and second order for velocity and pressure for the

cases with a smooth density profile, with smaller relative errors for lower wave numbers l and m. Note that here, the smooth

vertical profile for density uses k = l+ 1 in all cases. Again, for cases with a delta-function density anomaly, we observe a360

reduced order of convergence of 1.5 and 0.5 for velocity and pressure, respectively.

To examine the importance of an isoparametric approximation of the domain by a quadratic mesh, we ran the same cases

with a linear mesh. The results are shown in Fig. 5 which demonstrates that the order of convergence of velocity in the smooth

cylindrical cases is indeed limited to second order. The convergence of pressure remains at second order.

5 Discussion365

5.1 Existing analytical benchmarks in shell domains

As indicated in the introduction, spherical delta-function cases, like those presented herein, have previously been used to

validate global mantle convection codes (e.g. Zhong et al., 2008; Burstedde et al., 2013; Davies et al., 2013; Liu and King,

2019). These will be discussed in more detail in the following section.

The derivation for all 3-D cases in this paper rely on the Mie representation that decomposes the velocity solution into370

poloidal and toroidal components, through which, under the assumption of purely poloidal flow, the Stokes equations can

be reduced to a biharmonic equation (10). Any solution to the inhomogeneous solution can then be combined with four

linearly independent homogeneous solutions to this equation, the coefficients of which can be derived through the imposition

of boundary conditions. For the smooth case with a generic monomial forcing term, the same decomposition (i.e. (45) and (44)),

was used in Tosi and Martinec (2007) to derive the analytical solution for Stokes flow in two eccentrically nested spheres.375

In Horbach et al. (2020) similar techniques were employed to derive benchmarks in spherical-shell domains that satisfy zero-

slip and free-slip conditions and, in addition, a mixed zero-slip/free-slip case. Here the derivation starts by simply selecting

four, in principle arbitrary, linearly independent solutions for the radially-dependent part of the poloidal scalar function. Again

the imposition of boundary conditions fixes the coefficients of this linear combination. The corresponding right-hand side

forcing term is then obtained by substitution.380

The number of published benchmarks for 2-D cylindrical shell domains is more limited (e.g. Buffa et al., 2011; Blinova et al.,

2016; Hoang et al., 2017). The derivation of the equivalent cases in 2-D cylindrical shell domains is somewhat simpler, but

also ultimately relies on combining four independent homogeneous solutions and one inhomogeneous solution to a biharmonic

equation.

In Blinova et al. (2016) analytical solutions in both cylindrical and spherical domains are presented for the Stokes equations385

with a radially-dependent viscosity. Because these are solutions in cylindrical or spherical coordinates without reference to any

specific domain, they do not satisfy no-normal flow conditions on the boundary of a shell domain. They can be used in such

domains as a numerical benchmark by specifying all velocity components of the analytical solution as a Dirichlet condition
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for the model. Analytical solutions for radially-dependent viscosity were also presented in Thieulot (2017). Their solutions

(in 3-D only) do satisfy no-normal flow conditions in a spherical-shell domain, but the tangential components are non-zero390

at the boundary, and thus still require inhomogeneous Dirichlet conditions. Spatially varying viscosity is of course an import

aspect of mantle convection models for which these are effective benchmarks. The isoviscous solutions presented here, and

those in Horbach et al. (2020), however, allow for the testing of zero-slip and free-slip conditions, where in particular free-slip

conditions may pose various numerical challenges such as rotational modes, and, depending on the discretisation used, the

(non-)alignment of velocity components with normal and tangential directions at the boundary.395

5.2 Reduced order of convergence with discontinuous pressures

At first sight, the reduced order of convergence for the delta-function cases seems at odds with those expected for the P2-P1

element pair. However the mathematical proofs for the ideal order of convergence to solutions of the Stokes equations rely

on certain regularity assumptions of the right-hand side forcing term and, related to that, on the regularity of the velocity and

pressure solutions. The regularity of the delta function can be classified as being a member of the Sobolev space H−1(Ω) the400

dual of the Sobolev space H1(Ω), where for the sake of simplicity we assume Ω = Ωh in this section. This means that the delta

function can be thought of as a continuous function

δr′ : v 7→
∫
Ω

δ(r− r′)v(r,φ)rdrdφ=

∫
Ω

v(r′)r′dφ, (66)

which maps functions v ∈H1(Ω), the space of square integrable functions with square integrable weak derivatives, to R.

Girault and Raviart (2012) demonstrate that even with the very loose regularity condition that the right-hand side f is in405

Hm(Ω) with m≥−1, the Stokes equations in the weak form have a unique solution (given sufficient integral constraints) with

velocity inHm+2(Ω) and pressure inHm+1(Ω) . The analytical solutions derived here for the delta-case withm=−1, indeed

have a discontinuous pressure in H0(Ω) = L2(Ω), and a velocity with discontinuous normal derivative in H1(Ω).

For velocity-pressure finite element pairs that satisfy the standard inf-sup, or LBB condition

sup
v∈V

∫
Ω
v · ∇q
‖v‖1

≥ β‖q‖2 for all q ∈W, (67)410

where V and W are the discrete vector and scalar function spaces respectively, and β is a constant, it can be shown that the

method converges and in fact

|u∗−u|1 + ‖p∗− p‖2 ≤ C1

{
inf
v∈V
|u∗−v|1 + inf

q∈W
‖p∗− q‖2

}
, (68)

where C1 is a constant independent of h, u∗ and p∗ are the exact solutions, u and p the numerical solutions in the discrete

function spaces V and W based on a mesh with mesh distance h, and | · |1 is the semi-norm415

|u|1 =

√√√√√ dim∑
i=1

∫
Ω

‖∂iu‖2. (69)
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(a)

(d)

(b)

(c)

Free Slip Zero Slip

Figure 6. Convergence of velocity (a, b) and pressure (c, d), respectively, for delta-function 2-D cylindrical cases with free-slip and zero-slip

boundary conditions with the P2bubble-P1DG element pair.

In other words, the convergence of u and p to u∗ and p∗ is bounded by the best possible approximation of u∗ and p∗ in the

discrete spaces V and W . For bounded functions with a discontinuity along a smooth interface, such as our analytical pressure

solution p∗, the best approximation by continuous, piecewise-linear polynomials, i.e. W = P1, is bounded by

inf
q∈W
‖p∗− q‖2 ≤ C2h

1
2 ‖p∗‖2, (70)420

(this bound can be derived from the order of convergence results in Bernardi, 1989). This therefore limits the convergence of

the method.

A solution to this problem is found by allowing for discontinuities in the discrete pressure space. We demonstrate this

here by considering W = P1DG the space of piecewise linear but discontinuous functions. To satisfy the inf-sup condition this

requires enriching the quadratic function space P2 for velocity with a cubic bubble (Ern and Guermond, 2004; Boffi et al.,425

2013). Convergence results for this element pair are shown in Fig. 6. For the 2-D cylindrical delta-function cases, we observe

the expected orders of convergence: third order for velocity and second order for pressure.

Finally, we compare our results with those presented in Zhong et al. (2008), Davies et al. (2013), Burstedde et al. (2013)

and Liu and King (2019), who ran the same spherical cases with a delta function forcing, and found second order convergence

for velocity and second order convergence for pressure related diagnostics. It should be noted, however, that these studies only430
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(a)

(d)

(b)

(c)

Top Surface Bottom Surface

Figure 7. Convergence of velocity and radial stresses at top (a, c) top and (b, d) bottom surfaces (r =R±), respectively, for delta-function

3-D spherical cases with free-slip boundary conditions.

examined surface diagnostics, such as the velocity divergence and the normal stress. When we examine comparable diagnostics,

specifically, the relative error in velocity at the boundary and the boundary normal stress (illustrated in Fig. 7), we find velocity

convergence at third order and normal stress at second order. It therefore appears that the reduced order of accuracy in the

interior of the domain does not affect the surface response which still converges at the same order as for the smooth case.

The results of Zhong et al. (2008) (using CitcomS) and Davies et al. (2013) (using TERRA) were based on a Q1-P0 discreti-435

sation with a continuous piecewise trilinear velocity and piecewise constant, discontinuous pressure. Although our analysis

above limits the convergence of ‖p− p∗‖2 for a P0 pressure p to first order, second order super-convergence can be obtained

in some cases by evaluating the analytical solution only in the cell centre. In other words, by comparing to a filtered piecewise

constant analytical approximation p̄∗, second order convergence can sometimes be observed in ‖p− p̄∗‖2. For continuous pres-

sure approximations, such as the P2-P1 results in this paper, the Q1-Q1 discretisation of the Rhea model in Burstedde et al.440

(2013), and the Q2-Q1 discretisation of ASPECT in Liu and King (2019), reduced convergence in the interior of the domain is

to be expected.
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6 Conclusions

We have presented a series of 2-D cylindrical and 3-D spherical analytical solutions for the purpose of verifying mantle

dynamics codes. These solutions are based upon either a delta-function density perturbation or a smooth forcing term, and we445

provide solutions for both free-slip and zero-slip boundary conditions. The combinations of dimension, forcing and boundary

conditions, provide a series of eight analytical solutions that can be used as a basis for validating existing and future numerical

codes, in cylindrical and spherical geometries. To facilitate this, we provide solutions in the form of a python package, Assess

(Analytical Solutions for the Stokes Equations in Spherical Shells; Kramer, 2020).

We verify the convergence of the P2-P1 (Taylor Hood) finite element discretisation using Fluidity (Davies et al., 2011;450

Kramer et al., 2012). The continuous approximation of pressure can lead to a reduced order of convergence in the presence of

discontinuities, which can be overcome using a discontinuous numerical approximation of pressure. It is important to note that

this reduced order of convergence was only observed by comparing the numerical solution with the entire analytical solution

in the interior of the domain. A comparison based on surface response only failed to highlight this issue.

Code availability. The python package Assess, that implements the analytical solutions and evaluates them at arbitrary locations in the455

domain, is available from http://github.com/stephankramer/assess (see https://assess.readthedocs.io for documentation). An archived ver-

sion is available from https://doi.org/10.5281/zenodo.3891545. To ensure correctness, both in the manuscript as in the python package,

the coefficients for the various solutions are extracted from the LATEX-source automatically using SymPy (Meurer et al., 2017), veri-

fied to adhere to the equations using SageMath (The Sage Developers, 2019), and substituted in the python package. Assess has also

been used to compute the errors in the Fluidity results in this paper. The Fluidity model, including source code and documentation,460

is available from https://fluidityproject.github.io/. All cases in this paper have been run with tag version 4.1.17, which is archived at

https://doi.org/10.5281/zenodo.3988620.
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Appendix A: Equations in polar coordinates

In this appendix we work out the incompressible Stokes equations in polar coordinates in terms of a streamfunction ψ, where

the components of velocity are given by

ur =−1

r

∂ψ

∂ϕ
, uϕ =

∂ψ

∂r
, (A1)475

We make use of the following expressions for the derivatives of the unit vectors r̂ and ϕ̂ with respect to r and ϕ

r̂ · ∇r̂ =
∂r̂

∂r
= 0, ϕ̂ · ∇r̂ =

1

r

∂r̂

∂ϕ
=

1

r
ϕ̂, (A2)

r̂ · ∇ϕ̂=
∂ϕ̂

∂r
= 0, ϕ̂ · ∇ϕ̂=

1

r

∂ϕ̂

∂ϕ
=−1

r
r̂. (A3)

Using these we can work out the different components of stress

τrr = 2νr̂ · [∇u] · r̂ = 2νr̂ · ∇(r̂ ·u)− 2ν (r̂ · ∇r̂) ·u= 2ν
∂ur
∂r
− 0 =−2ν

∂

∂r

(
1

r

∂ψ

∂ϕ

)
, (A4)480

τϕϕ = 2νϕ̂ · [∇u] · ϕ̂= 2νϕ̂ · ∇(ϕ̂ ·u)− 2ν (ϕ̂ · ∇ϕ̂)u=
2ν

r

∂uϕ
∂ϕ

+
2ν

r
r̂ ·u

=
2ν

r

∂2ψ

∂r∂ϕ
− 2ν

r2

∂ψ

∂ϕ
= 2ν

∂

∂r

(
1

r

∂ψ

∂ϕ

)
, (A5)

τrϕ = νr̂ · [∇u] · ϕ̂+ νϕ̂ · [∇u] · r̂ = νr̂ · ∇(u · ϕ̂)− ν (r̂ · ∇ϕ̂) ·u+ νϕ̂ · ∇(u · r̂)− ν (ϕ̂ · ∇r̂) ·u

= ν
∂

∂r

(
∂ψ

∂r

)
− 0 +

ν

r

∂ur
∂ϕ
− ν

r
ϕ̂ ·u

= ν

(
∂2ψ

∂r2
− 1

r

∂

∂ϕ

(
1

r

∂ψ

∂ϕ

)
− 1

r

∂ψ

∂r

)
. (A6)

Note that as expected τrr+τϕϕ = 0. In the same way, we derive the following expression for the vorticity, or curl of the velocity

curl u= r̂ · [∇u] · ϕ̂− ϕ̂ · [∇u] · r̂ =
∂2ψ

∂r2
+

1

r

∂

∂ϕ

(
1

r

∂ψ

∂ϕ

)
+

1

r

∂ψ

∂r
=∇2ψ. (A7)485

The viscosity term in the Stokes equations can be written as

∇ · τ =∇ · (r̂τrrr̂+ r̂τrϕϕ̂+ ϕ̂τϕrr̂+ ϕ̂τϕϕϕ̂) (A8)

= (∇ · r̂)(τrrr̂+ τrϕϕ̂) + r̂ · ∇(τrrr̂+ τrϕϕ̂) + (∇ · ϕ̂)(τϕrr̂+ τϕϕϕ̂) + ϕ̂ · ∇(τϕrr̂+ τϕϕϕ̂) . (A9)

In addition to (A3), we use the following identities

∇ · r̂ =
1

r
, ∇ · ϕ̂= 0, (A10)490
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and the fact that τϕϕ =−τrr. After reordering to group the radial and transverse components this leads to

∇ · τ =

[
2

r
τrr +

∂τrr
∂r

+
1

r

∂

∂ϕ
τϕr

]
r̂+

[
2

r
τrϕ +

∂τrϕ
∂r
− 1

r

∂τrr
∂ϕ

]
ϕ̂ (A11)

=

[
−2ν

r

∂

∂ϕ

∂2ψ

∂r2
+

1

r

∂

∂ϕ
τϕr

]
r̂+

[
ν
∂3ψ

∂r3
+
ν

r

∂2ψ

∂r2
− ν

r2

∂ψ

∂r
+
ν

r2

∂3ψ

∂ϕ2∂r
− 2ν

r3

∂2ψ

∂ϕ2

]
ϕ̂ (A12)

=−ν
r

[
∂

∂ϕ
∇2ψ

]
r̂+ ν

[
∂

∂r
∇2ψ

]
ϕ̂. (A13)

In combination with the pressure gradient term in polar coordinates495

∇p=
∂p

∂r
r̂+

1

r

∂p

∂ϕ
ϕ̂, (A14)

we obtain the radial and transverse components of the Stokes momentum equation in (7) and (8).
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