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Thank you for your very thorough, careful and constructive review of our study. We
are pleased to know you enjoyed reading the paper. In response to your main point of
criticism, we agree that the paper should include some more (recent) references and a
discussion of other work containing analytical Stokes solutions. Most relevant here is
HMB20, your very nice paper with Andre Horbach and Hans-Peter Bunge, which came
out last year and we had not yet seen. The two papers (i.e. ours and yours) use similar
techniques to derive non-trivial free slip and no-slip analytical Stokes solutions in spher-
ical shells. In our paper, we derive the analytical Stokes solution for a simple (radially
monomial) forcing combined with spherical harmonics. This is achieved by decompos-
ing the solution using the Mie representation, and deriving a biharmonic equation for
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poloidal part. An inhomogeneous solution is combined with four solutions to the ho-
mogeneous equation, the coefficients of which are determined by imposing boundary
conditions. In contrast, HMB20 describes a procedure starting with the selection of four
arbitrarily chosen, linearly independent, solutions for the poloidal function, after which a
linear combination of these is determined through the boundary conditions. Finally the
necessary right-hand-side term is then constructed by substitution of the correspond-
ing velocity field into the Stokes equations. In a sense, this approach is more akin to
the method of manufactured solutions (MMS), but overcomes its usual problem of not
satisfying desired boundary conditions. Both approaches are fairly flexible in terms of
selecting solutions with desired physical properties, e.g. selecting high order polyno-
mial to obtain strong gradients near the top boundary. In addition, our paper provides
similar solutions in cylindrical shell domains, and a different set of solutions, both in
2D and 3D, based on an infinitely thin density anomaly. For the latter, for which the
spherical solutions have been used previously as benchmarks [Zhong’08 and others],
we discuss a particular issue with the continuous Galerkin finite element method. We
believe the two papers are therefore highly complementary.

In the revised version of the manuscript we have given more attention to this and other
references you mention, by referring to them in the introduction and by adding a dis-
cussion at the end of the manuscript that compares ours with previously published
analytical spherical Stokes solutions. In our response to Cedric Thieulot we already
indicated that we believe the analytical solution in Thi17 (isoviscous case) does not
satisfy no-slip or free slip boundary conditions and therefore does not overlap with
ours. The same appears to be true for the solutions in BMP16. PLP+14, which indeed
also deserves a mention, deals with Cartesian domains only.

Specific Comments

• Equation (65) for computing the relative error: You are working with two different
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domains, Ω being the physical problem domain, and Ωh the computational do-
main for the finite element method. I assume that the computation of the error
happens w.r.t. Ωh. In the isoparametric approach that does not make a signifi-
cant difference, but for the affine mapping approach, Figure 5, I guess it would
be better to make that distinction explicit.

As highlighted, we did not make a proper distinction between the (idealised) phys-
ical domain and the numerical domain. This has been corrected by introducing
the notation Ω and Ωh respectively, as suggested.

• You treat the case of both boundaries being either zero-slip or free-slip. However,
aren’t many simulations run as a ’mixed case’, i.e. with Dirichlet boundary con-
ditions for velocity (from plate reconstructions) on top and free-slip conditions at
the CMB? In that sense, would it make sense to add (maybe in an appendix) also
the coefficients for such a mixed case?

We agree that solutions with mixed boundary conditions, free slip at the bottom
and a prescribed, non-zero Dirichlet boundary condition for velocity at the top,
inspired by kinematically-driven models (from plate motion histories), are very
much of interest as well. The derivation of another such case would be fairly
straightforward in principle, but there is a non-trivial amount of practical work
involved. The procedure would be similar to the zero-slip and free-slip cases pre-
sented, albeit with some adjustments to the conditions imposed, where the solu-
tion can again be derived automatically using sympy or sage. What is far more
involved is to transform the often unwieldy sympy/sage solutions into something
that can be compactly expressed in a manuscript. The required hand-editing of
the solutions is the reason why we introduced automated tests that extract the
final latex expression of the solutions and checks their correctness. More impor-
tantly we think that adding just a single simple case, the most obvious would be
a rigid rotation around a single axis, would be of limited value. To properly test
the capability to simulate plate-driven models would require benchmarks that in-
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clude shear, convergence and divergence in the prescribed velocity. We would
be willing to consider, if the interest arises, to include such cases in the assess
python package (where readability is of less concern), but we believe adding an
appendix with the fully worked out solution would add little to the reader of the
manuscript.

• p. 6, line 9 and equation (21): Shouldn’t this read R− < r′ < R+ instead of
R− ≤ r′ ≤ R+ and the piecewise ψ be formulated for the two parts R− < r′ and
r′ < R+ only? Just to be mathematically more precise?

This has been corrected as suggested.

• Equations (25) and (26): To me the transition from (25) to (26) seemed mathe-
matically quite involved, e.g. if one was to evaluate the integral in the right-hand
side of (25) one would get a zero. Maybe you could add some additional details
on this transition?

The transition between (25) and (26) was indeed not entirely mathematically
sound. This was the consequence of a failed attempt to simplify the argument.
We have now corrected the derivation of (26) and inserted two additional steps.

• p. 7, line 16: You are making use of the Mie representation of the velocity
field.The necessary condition for this to have the form (27) is that the velocity
field is solenoidal. For R3 this is equivalent to u being divergence-free. However,
in the case of the target domain, the thick spherical shell, the two properties are
not the same. You get that u is solenoidal from u being divergence-free and the
fact the you have no outflow in the boundary conditions you consider. You might
want to reformulate the sentence in this respect.

We have clarified that the condition for Mie’s representation is a solenoidal ve-
locity which indeed follows from divergence freeness in combination with the no
normal flow conditions in our domains.
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• If I have not missed it, you do not explicitly specify how r′ was chosen in you
numerical tests. I assume that this is an interface between layers of the mesh
already for the coarses mesh resolution used, isn’t it? Could you please add that
detail from completeness.

Out of curiosity, would you expect to observe oscillations in the convergence
behaviour, if r′ was not a layer boundary on the meshes? I remember that in
dipole modelling (geoelectricity and EEG simulation) people sometimes resort to
special discretisation approaches for the δ-function, e.g. St. Venant’s principle,
to avoid such issues.

The value that was used for r′ (and in fact R− and R+) was indeed missing in
the paper. They were: R− = 1.22, r′ = 1.72, R+ = 2.22 following a standard
non-dimensionalisation in which the Mantle depth is one. In other words, r′ was
always halfway between top and bottom, and indeed always coinciding with a grid
level. This allows us to treat the contribution from the infinitely thin forcing as a
surface integral as explained in section 3.3. Other authors [e.g. Zhong et al. ’08]
have approximated the delta function with a finite element basis function with a
support over the two adjacent cells and a grid-dependent amplitude that goes to
infinity as h → 0. In local experiments I have seen similar convergence issues
with this kind of forcing, and I suspect the same would be true if the location
were not grid-aligned. It might be that other ways of smoothing the forcing would
improve the convergence. Fundamentally though, convergence at the ideal order
would not be guaranteed through the classical finite element analysis.

• Sec. 3.4: The problem matrix representing the discretised Stokes system is
singular independent of the type of boundary conditions due to the pressure only
being determined up to an additive constant, isn’t it? The free-slip conditions
enhance the kernel of the matrix significantly leading to higher numerical effort
(performing step (64) in each iteration seems required, while pressure needs only
be adapted following (62) once in the end); you might want to make that clearer
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in line 15.

The combined velocity pressure saddle point system is indeed singular in all
cases (see also line 6, page 14) The projections in equations (62) and (63) are
big L2-projections and are both only performed once after the entire solving pro-
cess has finished. To clarify lines 14-15 on page 14: ‘It should be noted that the
same modes...’; This sentence should really start a new paragraph and ‘these
modes’ refer to both the pressure and velocity modes described just before that.
The corresponding (little) l2-projections are performed in the iterative solution
process performed by PETSc, which consists of an outer (FGMRES) iteration
solving the Schur complement equation in which the required matrix vector multi-
plication with the inverse of the velocity block induces an inner (CG) iteration. The
little l2 projection corresponding to the velocity modes are subtracted every inner
iteration. The little l2 projection corresponding to constant pressure is subtracted
every outer iteration. We hope this clears up the final one of your comments. We
have tried to clarify this paragraph in revision. Without going into to much details
on the solver strategy (which is also described in Davies et al. ’11), the point
we try to bring across is that the null-modes you have to provide to ensure con-
vergence of the iterative solvers, which because of their abstraction are typically
formulated in an l2-inner product context, are insufficient to ensure convergence
to the analytical solution because of the difference between l2 and L2 projections
which in particular for non-uniform meshes can be significant.

Suggestions:

• p. 4, line 19 and p. 9, line 9: A reference for the biharmonic equation resp. its
solutions might be helpful for the general audience; it is not quite as common
knowledge as the harmonic equation and its solutions
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• p. 4, line 14: You might consider changing ’top’ and ’bottom’ to ’inner and outer’
for the cylindrical domain

• p. 6, line 18: Shouldn’t the strip be defined as (r′ − ε, r′ + ε)× (0, 2π)?

• p. 9, line 3: The standard definition of the term domain in calculus is an open and
connected set, so connected domain sounds like a pleonasm ;-)

• p. 4, equation (19) and line 19: I must admit that as I reader I very much behave
like a one-pass-compiler, as soon as I encounter something I cannot follow I
stumble. For the sake of people like me you might consider moving that sentence
which explains why there’s only a cos term in (19) up front. Also you might state
that you consciously neglect other harmonic functions (such as ln(r)), for similar
reasons as given in line 13.

• p. 1, line 2: IMHO ’within’ does not sound quite proper here?

• In your paper you are using the term ’natural’ boundary condition. If I understand
correctly, you mean ’inspired’ by nature? I am asking as in classical FE analysis
there is that distinction between ’natural’ and ’essential’ boundary conditions, so
I was at first glance a little confused. Maybe change it to ’physical’, if that still fully
expresses what you want to convey.

• p. 1, line 24: Aren’t 3D global mantle convection models being simulated routinely
today, and not only becoming more common? I mean, you site references from
the last 35 years ;-)

• equation (A7): Is there any specific motivation for defining the 2D polar curl in
this way? It seems to be just the negative of what one would obtain by constantly
extending a 2D field in z-direction and taking the z-component of the curl in 3D
cylindrical coordinates?
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Your list of suggestions are all very much to the point and have been incorporated in
the revised manuscript. Regarding, the sign in the 2D curl definition in the appendix
this is indeed not standard and not as we intended. What I think happened was that
I worked back from the curl of the streamfunction with a different sign convention for
the streamfunction in mind. In any case we have corrected this to follow the usual
definition. This does not affect the derivations in the rest of the paper.

Questions out of curiosity

• I found your discussion of the reason for the reduced convergence rates in the δ-
function case with the P2−P1 Taylor-Hood element very interesting. As (68) only
contains the H1 semi-norm of u, is there an easy way to see from (70) why we
get a similar 2

3 order reduction in the H0 norm of velocity as we do for pressure?
Maybe I am missing some standard FE-analysis argument?

I believe the next step, to derive an L2 error bound for u out of the H1 seminorm
bound, is the so called Aubin-Nitsche trick. The most compact write up that I
could find is (4.1)-(4.3) in Verfuehrt’84. Here, in turn, you need to find a bound
in the H1-norm for the solution z and numerical solution zh of an arbitrary right-
hand side v in L2 (rather thanH−1) for which, with a domain of the right regularity,
you can find a solution v in H2 (instead of H1). The H1-norm of the difference
between z and zh is then first order in h. This together with the h1/2 bound we
already had, gives you the expected h3/2 (see also Theorem 1.9 in Girault). Note
that this relies on having this h1/2 bound in the first place which I believe isn’t
guaranteed for arbitrary H−1 right-hand sides (hence Theorem 1.9 in Girault is
only valid for H2 velocity solutions, i.e. the original rhs should be L2). The bound
in (70) is based on the assumption of a single jump in pressure where the number
of simplices affected by this jump scales with 1/hdim−1 (i.e. occurs along a dim-1
"front" that can be well resolved).
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• Do you have any (speculative) idea why that convergence issue is not observed
when one only examines surface quantities?

I am speculating that a similar bound to (68) is possible where the numerical
error in the solution restricted to the boundary is related to the best possible
approximation on the boundary for the given discrete function space. Note that
the bound in (70) for the best possible approximation of the analytical solution p is
actually just bounded by the (worst) regularity of p in the triangles near the jump
(you can derive it from the generic finite element approximation error bounds in
Bernardi ’89). However this does not mean that the numerical solution of the
discretised PDE has its h1/2 error concentrated in these cells; this I’ve tried: even
if you restrict the L2 error integral to integrate only over parts of the domain well
away from the jump, the convergence is still h1/2. So I suspect this really only
works for an integral just over the boundary, or a volume integral at some limited
distance from the boundary where that distance scales to zero as h→ 0.

• In your 3D test cases you always select two similar combinations of degree and
order (l,m), which is m = l (sectoral) and m = l/2 (tesseral); I was a little
surprised that the errors seem to be fully identical for the two choices, because
the number and direction of nodal lines differs. Are the differences just too small
to be visible in the figures? Can you comment on that?

We believe this is just an artefact of the choice of k, the degree of the radial
dependence, where the combinations you mention that seems to have similar
error, also have the same degree k. So it seems that for the ratio of tangential
and radial resolution we have chosen the tangential variation is well resolved and
the error is probably more restricted by the vertical resolution.
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Technical Corrections

• equation (14): please check sign, I might have miscalculated, but I think it should
read Hn = + . . .

• p. 6, line 15: ’expect a continuity’→ ’expect continuity’

• p. 21, line 12: solution→ solution(s)

• equation (A3): ϕ̂ · ∇ϕ̂ = 1
r

∂r̂
∂ϕ → 1

r
∂ϕ̂
∂ϕ

• equation (A12): spurious + near end of equation

• reference Hernlund, Tackley, 2007: IMHO that should be 2008

I have double checked (14), and I must admit at first I came to the same conclusion of
a + in the Hn equation. This confused me a lot as we had been using a minus sign in
our convergence analysis. Luckily, after going through the derivation once more, and
more carefully, I am now convinced the original minus sign is correct.

For completeness let me include ‘my working’. Assume p = Hnr
−n cos(nϕ) and ψ =

Dnr
−n+2 sin(nϕ), then

∂p

∂r
= −nr−n−1Hn cos(nϕ),

1
r

∂p

∂ϕ
= −nr−n−1Hn sin(nϕ),

∇2ψ =
(
(−n+ 2)2 − n2

)
Dnr

−n sin(nϕ)
= −4(n− 1)Dnr

−n sin(nϕ),
ν

r

∂∇2ψ

∂ϕ
= −4νn(n− 1)Dnr

−n−1 cos(nϕ),
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−ν ∂∇
2ψ

∂r
= −4νn(n− 1)Dnr

−n−1 sin(nϕ).

So that equations (7) and (8) become respectively:

−n [4ν(n− 1)Dn +Hn] r−n−1 cos(nϕ) = 0,
−n [4ν(n− 1)Dn +Hn] r−n−1 sin(nϕ) = 0

which indeed implies that Hn = −4ν(n− 1)Dn as in equation (14).

We would like to thank the reviewer, once again, for their very thorough and construc-
tive review of our derivations and the manuscript. It was clearly a huge effort and we
are very grateful. The other technical corrections have been included in the revised
manuscript.
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