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Abstract. Land use and land cover change (LULCC) impacts local and regional climates through various biogeophysical 10 

processes. Accurate representation of land surface parameters in land surface models (LSMs) is essential to accurately predict 

these LULCC-induced climate signals. In this work, we test the applicability of the default Noah, Noah-MP, and CLM LSMs 

in the Weather Research and Forecasting Model (WRF) over Sub-Saharan Africa. We find that the default WRF LSMs do not 

accurately represent surface albedo, leaf area index, and surface roughness in this region due to various flawed assumptions, 

including the treatment of the MODIS woody savanna LULC category as closed shrubland. Consequently, we developed a 15 

WRF CLM version with more accurate African land surface parameters (CLM-AF), designed such that it can be used to 

evaluate the influence of LULCC. We evaluate meteorological performance for the default LSMs and CLM-AF against 

observational datasets, gridded products, and satellite estimates. Further, we conduct LULCC experiments with each LSM to 

determine if differences in land surface parameters impact the LULCC-induced climate responses. Despite clear deficiencies 

in surface parameters, all LSMs reasonably capture the spatial pattern and magnitude of near surface temperature and 20 

precipitation. However in the LULCC experiments, inaccuracies in the default LSMs result in illogical localized temperature 

and precipitation changes. Differences in thermal changes between Noah-MP and CLM-AF indicate that the temperature 

impacts from LULCC are dependent on the sensitivity of evapotranspiration to LULCC in Sub-Saharan Africa. Errors in land 

surface parameters indicate that the default WRF LSMs considered are not suitable for LULCC experiments in tropical or 

Southern Hemisphere regions, and that proficient meteorological model performance can mask these issues. We find CLM-25 

AF to be suitable for use in Sub-Saharan Africa LULCC studies, but more work is needed by the WRF community to improve 

its applicability to other tropical and Southern Hemisphere climates. 

1 Introduction 

Land use and land cover change (LULCC)  has various biogeophysical impacts on climate by altering land surface albedo, 

evapotranspiration, and surface roughness that in turn alter atmospheric circulations, energy budgets, and hydrologic cycles 30 
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(Pielke et al., 2011; Mahmood et al., 2014; Bright 2015; Smith et al., 2016; Quesada et al., 2017). Results from global modeling 

studies indicate a global reduction in surface temperatures due to deforestation, but the impacts of LULCC vary by region and 

season (e.g., Zhao and Pitman 2002; Lamptey et al., 2005; Lejune et al., 2017). Such studies have shown a latitudinal difference 

in the temperature response to deforestation, where higher latitudes experience cooling in winter as less tree cover brightens 

the surface when snow is present, and lower latitude tropical regions experience warming in response to a reduction in 35 

evaporation (e.g., Longobardi et al., 2016; Quesada et al., 2017). This LULCC latitudinal dependence has been shown to occur 

in observations as well (Zhang et al., 2014).  

Impacts of LULCC are simulated in climate and numerical weather prediction models through a land surface model (LSM). 

Differences in LSM parameterizations can lead to significantly different simulated climate responses to LULCC in both 

magnitude and sign (e.g., Olsen et al., 2004; Boisier et al., 2012; Burakowski et al., 2016), even when little difference exists 40 

in the mean simulated climate (Crossly et al., 2000). Errors and uncertainties in LSMs occur in response to errors in LULC 

classification maps and in the prescription of land use properties, such as vegetation distributions and surface albedo (e.g., Lu 

and Shuttleworth, 2002; Olsen et al., 2004; Ge et al., 2007; Boisier et al., 2012; Boisier et al., 2013; Boysen et al., 2014; Meng 

et al., 2014; Hartley et al., 2017; Bright et al., 2018). As a result, improving LULC maps and LSM parameters has been shown 

to significantly reduce biases and errors within global and regional climate models (RCMs) (e.g., Tian et al., 2004b; Kang et 45 

al., 2007; Lawrence and Chase, 2007; Lawrence and Chase, 2009; Moore et al., 2010; Karri et al., 2016; Thackeray et al., 

2019). Having accurate representations of these parameters is especially important in regions with widespread surface 

heterogeneity, such as East Africa (Ge et al., 2008).  

Sub-Saharan Africa is a region of particular interest for simulating LULCC because it has already experienced dramatic 

LULCC (e.g., Collier et al., 2008), which has been shown to alter the West African monsoon system (e.g., Charney, 1975; Xue 50 

and Shakula, 1993; Abiodun et al., 2008; Wang et al., 2017).  Various ensembles of RCMs have been applied to study the 

climate of Africa as part of both the COordinated Regional climate Downscaling Experiment (CORDEX) (e.g., Nikulin et al., 

2012; Gbobaniyi et al., 2014; Kim et al., 2014; Mounkaila et al, 2015; Endris et al., 2016; Diasso and Abiodun, 2017; Adeniyi 

and Dialu, 2018; Odoulami et al., 2019) and the West African Monsoon Modeling and Evaluation Project Experiments 

(WAMME) (e.g., Wang et al., 2016; Xue et al., 2016). Included as part of these ensemble modeling projects is the Weather 55 

Research and Forecasting (WRF) Model (e.g., Xue et al., 2016; Fita et al., 2019).  

The WRF model is a state-of-the-art numerical weather prediction model designed to be applicable in multiple world regions, 

across multiple spatial scales, and for short-term forecasting to longer term regional climate simulations (Skamarock and 

Klemp, 2008). Multiple studies have tested the sensitivity of the African climate to different ensembles of WRF physics 

parameterizations, including LSMs (e.g., Pohl et al., 2011; Hagos et al., 2014; Noble et al., 2014; Alaka and Maloney, 2017; 60 

Noble et al., 2017; Igri et al., 2018). Results from these WRF simulations are somewhat contradictory as some studies found 

the National Centers for Environmental Prediction, Oregon State University, Air Force and Hydrology Lab (Noah) LSM (Chen 

and Dudhia, 2001; Ek et al., 2003) to have superior performance compared to observations and reanalyses (Pohl et al., 2011; 

Igri et al., 2018), while others found no unambiguous difference in model performance between different LSMs (Noble et al., 
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2014; 2017). In terms of LULCC applications, Hagos et al. (2014) found that WRF model configurations that simulate a 65 

climate which is too wet or too dry compared to observations and reanalysis do not produce a strong climate signal from 

LULCC over Africa. This weak signal is a result of the model falling into erroneous moisture or energy limited regimes. 

Despite these uncertainties, the Noah LSM is by far the most common LSM configuration applied in WRF studies over Africa 

(e.g., Vigaud et al., 2011; Cretat et al., 2012; Boulard et al., 2013; Ratna et al., 2014; Argent et al., 2015; Diaz et al., 2015; 

Klein et al., 2015; Schepanski et al., 2015; Zheng et al., 2015; Arnault et al., 2016; Kerandi et al., 2017; Klein et al., 2017). 70 

In this work, we expand upon the current literature by testing five different LSM configurations within the WRF model for the 

purpose of evaluating the effects of LULCC over time on regional climate in Sub-Saharan Africa.  First, we review four 

commonly used LSMs to determine if the LSM configurations reasonably represent land surface parameters such as albedo 

and leaf area index (LAI).  As shown below, we find that these four LSMs have significant deficiencies which limit their 

capabilities in applications to LULCC in this region.  Consequently, we then detail how we modify one LSM for use in this 75 

study.  We then evaluate the five WRF LSM configurations against available meteorological observations, reanalysis, and 

satellite estimates to determine how well they simulate the current climate of Sub-Saharan Africa.  To the authors’ knowledge, 

this is the first time the surface parameters of these LSMs have been robustly assessed is Sub-Saharan Africa. Finally, we 

simulate the effects of LULCC over time on the simulated regional climate, and how these climate responses differ when using 

different LSMs.  Understanding the deficiencies in how LSMs represent LULCC is key to accurately representing regional 80 

climate signals that impact not only climate change investigations, but also coupled natural and human system research 

regarding human decision making, air quality, and human/ecosystem health interactions.  

2 WRF description and configurations 

This study uses the WRF model version 3.9.1.1 (WRFv3.9.1.1), configured as shown in Table 1, to simulate the regional 

meteorology and climate within Sub-Saharan Africa. We define a Sub-Saharan Africa domain that ranges from ~19º N – 35º 85 

S latitude and ~19º W – 64º E longitude (Fig. 1) with a horizontal grid spacing of 36 km and 30 vertical layers from the surface 

to 50 hPa. Physics parameterizations common to all simulations include: the New Tiedtke cumulus parameterization scheme 

(Zhang et al., 2011), the aerosol-aware Thompson microphysics scheme (Thompson and Eidhammer, 2014), the RRTMG long 

and shortwave radiation schemes (Clough et al., 2005; Iacono et al., 2008), and the MYNN surface/ planetary boundary layer 

physics (Nakanishi and Niino, 2004; 2006). These physics combinations were selected because they represent some of the 90 

most advanced science within the WRF model, and these physics options performed the best when validated against 

observations/satellite estimates relative to other physics options tested (not shown). All simulations also take advantage of the 

CLM4.5 lake model, which is calibrated to prognostically simulate lake conditions for the African Great Lakes by adjusting 

the lower bound lake temperature from 4℃ to 24℃ consistent with Lake Victoria temperature profiles (Nyamweya et al., 

2016). Meteorological initial and boundary conditions for the simulations are obtained from the European Centre for Medium-95 

Range Weather Forecasts Interim reanalysis (ERA-Interim), with the variables used listed in Table S1 (Dee et al., 2011). 
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Because LULC inputs change each year, every model year is simulated individually, preceded by a three-month spin-up period 

that is discarded to allow the model to reach equilibrium and minimize the impact of initial conditions on the simulations. 

2.1 WRF land surface model descriptions 

Here we briefly describe four commonly-used WRF LSM configurations used in this study and differences between them: the 100 

Noah LSM; the Noah LSM using satellite derived albedo and LAI (Noah-Sat); the Noah Multi-Parameterization LSM (Noah-

MP) (Niu et al., 2011); and the default Community Land Surface model (CLM-D) (Subin et al., 2011; Jin and Wen, 2012; Lu 

and Kueppers, 2012). We focus on the different ways in which the LSMs prescribe and treat surface parameters such as LAI, 

albedo, and surface roughness length (RL) based on the Moderate Resolution Imaging Spectroradiometer (MODIS) 21 land 

category data. In addition to the LSMs used in this work, four other LSMs exist in WRF including: the five layer thermal 105 

diffusion scheme (Skamarock et al., 2008), the Rapid Update Cycle (RUC) LSM (Smirnova et al., 2016), the Pleim-Xiu (PX) 

LSM (Pleim and Xiu, 2003; Gilliam et al., 2007), and the Simplified Single Biosphere Model (SSiB) (Xue et al. 1991; Sun 

and Xue, 2001). The five layer thermal diffusion scheme is omitted from these experiments because it is overly simplistic and 

not appropriate for climate scale studies. The RUC and PX LSMs are primarily designed for weather forecasting and for 

retrospective meteorological simulations commonly used as input for downstream air quality simulations, respectively. 110 

Although RUC and PX can be used for other applications, they require extensive detailed input data or data assimilation for 

peak performance (http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.9/users_guide_chap5.htm#Phys). Since this 

detailed level of observational data is not available in Sub-Saharan Africa, both the RUC and PX scheme were excluded. The 

SSiB LSM is designed for climate applications, however it is also excluded both because its best performance occurs using its 

own LULC dataset and because it is not currently compatible with the MYNN surface/boundary layer parameterizations. 115 

2.1.1 Noah LSM and Noah-Sat 

Noah and Noah-Sat are the same LSM with different configurations for how surface albedo and LAI are prescribed. Within 

the Noah LSM, surface parameters including surface albedo, RL, and LAI are prescribed based on the dominant MODIS 

LULC category in each grid cell with temporal interpolation between maximum and minimum values depending on the time 

of year. The Noah-Sat configuration uses a monthly average satellite derived climatology of surface albedo and LAI supplied 120 

from the WRF preprocessing system (WPS), as a more detailed replacement of the LULC based prescribed values. Noah and 

Noah-Sat have no explicit canopy layer, and instead simulate evapotranspiration using a satellite derived green fraction 

variable from WPS to weight the contribution of direct soil evaporation and evapotranspiration from vegetation in each grid 

cell. The land surface and underlying soil is simulated using 4 soil layers 0.1, 0.3, 0.6, and 1.0 meters thick centered at 0.05, 

0.25, 0.7, and 1.5 meters below the ground surface, respectively.  125 

Noah-Sat is limited in its ability to simulate LULCC because LAI and surface albedo are decoupled from changes in the LULC 

categories, and temporally varying satellite LAI and albedo products are influenced by other climate variations or changes 

apart from effects of LULCC. Noah is also preferable to Noah-Sat for future climate simulations because the albedo and LAI 
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products Noah-Sat requires would have to be generated as separate independently varying fields from the future LULC 

projection. However, Noah-Sat is useful for meteorological evaluation, because it has the most accurate surface parameters in 130 

the current WRF modeling system. Therefore, Noah-Sat can be used as pseudo-observations to understand deficiencies in the 

surface parameter methodologies of the other WRF LSMs.   

Additionally, the Noah LSM can be configured using a mosaic tile approach to represent the influence of sub-grid scale 

variations in LULC. The representation of sub-grid LULC variability can significantly alter the responses of climate models 

to LULCC (e.g., Boone et al., 2016), but this functionality is not considered in these experiments since any underlying errors 135 

in albedo, LAI, and RL within Noah would be present in both the mosaic tile and dominant LULC configurations. Also, this 

approach has been shown to primarily impact urban regions (Mallard and Spero, 2019), which are not resolved well at the grid 

spacing of this study. 

2.1.2 Noah-MP 

The Noah-MP model is an updated version of the Noah LSM with multiple-parameterization options utilizing the same soil 140 

level structure as the default Noah LSM. The major updates in Noah-MP include: the addition of an explicit one-layer 

vegetation canopy and three layer snowpack, a tiling scheme that separates vegetation and bare soil to better calculate the 

surface energy balance, separating permeable and impermeable frozen soils, new runoff and groundwater schemes, and new 

dynamic vegetation model options (Niu et al., 2011; Xia et al., 2017 and references therein). In this study, Noah-MP is 

configured with the default settings, which are the most similar to the default Noah LSM. With these default settings, dynamic 145 

vegetation is disabled and LAI is prescribed based on the dominant MODIS LULC category in each grid cell using monthly 

profile values. Noah-MP simulates surface reflectance using a modified two stream radiation scheme that accounts for gaps 

within the vegetation canopy and between canopy crowns (Yang and Friedl, 2003; Niu and Yang, 2004);  however, in 

WRFv3.9.1.1 Noah-MP uses a simplification that assumes all bare soil albedos are comparable to loam soil. As a result, surface 

albedo within Noah-MP is solely a function of soil moisture and vegetation cover. 150 

2.1.3 Default CLM (CLM-D) 

The default configuration of CLM in WRF divides the land surface into five types: glacier, lake, wetland, urban, and vegetated. 

Vegetated land is further split into up to four patches of 16 plant functional types (PFTs) with distinct physiological parameters. 

Calculations within each vegetated grid are done at the PFT level and then aggregated for atmosphere interactions. CLM 

contains a single-layer vegetation parametrization with a sunlit and shaded canopy and uses the two stream approximation 155 

(Sellers, 1985) to calculate the energy balance within the canopy. Temperature and humidity varies between the ground surface, 

the canopy, and the leaf surface (Subin et al., 2001 and references therein). The land surface and soil properties in CLM are 

simulated using 10 layers ~0.018, 0.028, 0.045, 0.075, 0.124, 0.204, 0.336, 0.554, 0.913, and 1.134 meters thick centered at 

~0.007, 0.028, 0.062, 0.119, 0.212, 0.367, 0.620, 1.038, 1.728, and 2.86 meters below the ground surface. 
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In the version of CLM available in WRF, each dominant MODIS land use category is assigned a distribution of PFTs with 160 

distinct monthly profiles for LAI that do not vary geographically. A list of the CLM PFTs with the percentages for each 

vegetated MODIS land use category is shown in Table S2 of the Supplementary Material. Bare soil albedos in CLM are not 

constrained like within Noah-MP and therefore a broader range of surface soil albedos is considered.  

Some simplifications in WRF-CLM lead to difficulties applying the default version for the Sub-Saharan Africa domain. For 

example, Table S3 of the Supplementary Material shows the monthly LAI profiles used for each PFT within the default CLM 165 

configuration. These profiles clearly show Northern Hemisphere growing cycles, which is problematic for Sub-Saharan Africa 

because it contains regions with bimodal tropical growing cycles and Southern Hemisphere growing cycles. Additionally, the 

visible spectrum dry soil albedo for the sandiest soils in the default CLM treatment is 0.24, considerably less than the 0.25–

0.45 albedo from MODIS satellite estimates over most the Sahara (Wang et al., 2004). 

3 Updated CLM for Sub-Saharan Africa (CLM-AF) 170 

To address these limitations with CLM-D, and deficiencies of other LSMs described in the results section, the WRF-CLM 

LSM has been modified to include PFT distributions more representative of the Sub-Saharan Africa domain, regionally varying 

monthly profiles for LAI and stem area index (SAI), minor improvements in vegetation optical properties (e.g., leaf 

reflectance), and scaled surface albedos for sandy soils to better match satellite estimates.  Each of these modifications is 

described in detail below. 175 

3.1 CLM-AF PFT distributions 

Updated PFT distributions are derived from a global 3 arc minute PFT dataset for the year 2001 generated by the National 

Center for Atmospheric Research for the Model of Emission of Gases and Aerosols from Nature version 2.1 

(https://bai.ess.uci.edu/megan/versions/megan21).  To determine the percentages of each PFT representative of the various 

MODIS land use categories in Sub-Saharan Africa, the global PFT dataset is regridded to the 36 km WRF domain, and the 180 

average coverage of each PFT within each WRF-MODIS 2001 dominant land use category is calculated. Updated PFT 

distributions were generated for broad leaf evergreen/deciduous forests, mixed forests, closed and open shrublands, woody 

savannas/savannas, grasslands, and cropland/mosaic croplands (i.e., MODIS categories 2, 4–10, 12, and 14). This limited 

subset of categories is used because the remaining MODIS categories did not cover a large enough area to be the dominant 

land use at 36 km resolution. Since CLM allows for up to four PFT patches, the top four most abundant PFTs within each 185 

MODIS land use category are scaled to represent 100% of the land use category, with an exception for some inconsistencies 

that occurred between the PFT and the evergreen broad leaf forest, savanna, and mosaic cropland MODIS categories (see 

Supplementary Material ST1). The resulting updated PFT distribution for these CLM vegetated land use categories is shown 

in Table 2.     
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Most of the updated PFT distributions in Table 2 are consistent with the MODIS International Geosphere-Biosphere 190 

Programme (IGBP) category descriptions from Friedl et al. (2002) (Table S4, Supplementary Material). However, there are 

two minor inconsistencies with the closed shrubland and grassland categories. The closed shrubland category contains slightly 

less than 60% shrubs and 8% deciduous tropical trees, indicating there is some sub-grid scale overlap with nearby woody 

savannas or forests. The grasslands category contains 18% shrubs, which is higher than the 10% from the description in Table 

S4, indicating some overlap with sub-grid scale shrublands. Overall, compared to the CLM-D PFT distributions in Table S2, 195 

the updated values in CLM-AF have greater heterogeneity in plant types and contain more herbaceous cover. The largest 

deviations from the CLM-D distribution occur with shrublands and woody savanna. CLM-D prescribes all shrublands as broad 

leaf evergreen shrubs, while the global PFT dataset indicates that shrublands in Sub-Saharan Africa contain broad leaf 

deciduous temperate shrubs. Additionally, the woody savanna category PFT distribution in CLM-D is identical to closed 

shrubland. This is potentially a large source of error as woody savanna should have forest cover between 30–60% (Table S4, 200 

Supplementary Material). This error is removed in the CLM-AF PFT distribution with the woody savanna category containing 

38% tree cover. 

3.2 CLM-AF LAI and SAI profiles 

Since the Sub-Saharan Africa domain covers a wide range of tropical and sub-tropical latitudes, a single domain-wide LAI 

and SAI monthly profile for each PFT is not appropriate. Here, geographically varying monthly LAI profiles are generated by 205 

using 17 distinct regions based on bioclimate characteristics used in LULCC modeling of Sub-Saharan Africa (Fig. 1 and 

Table 3). These bioclimate regions are constructed for land use modeling purposes as discussed in Section 4.3, because 

landscape dynamics are known to be different between broad climatic zones, needing separate modeling parameterizations  

(Soares-Filho et al 2006).  These same bioclimate regions are ideal for parameterizing LAI and SAI profiles because they 

divide the region based on climate characteristics that impact vegetation.  However, the central wet (CW), central moist (CM), 210 

and northeast semi-dry (NESD) bioclimate regions used in the land use modeling span a large latitudinal range and are 

subdivided based on latitude to generate more meaningful LAI seasonal profiles (Supplementary Material ST2).   

The updated LAI profiles within each bioclimate region are derived from both the 36 km regridded global PFT dataset and the 

monthly LAI climatology data, provided by WPS, used in the Noah-Sat configuration. LAI profiles are calculated only from 

a subset of grid cells within the WPS Sub-Saharan Africa LAI climatology, where the 36 km regridded PFT data indicates that 215 

a given PFT comprises 80% or more of the grid cell (PFT80). For the broad leaf evergreen tree PFTs, the median monthly LAI 

value of the PFT80 grid cells within each bioclimate or sub-bioclimate region is used as the monthly prescribed LAI value for 

that PFT. Median values are used in place of mean values for the broad leaf evergreen tree PFTs because several small LAI 

values near the edges of forested regions lead to unrealistically small LAI values for the Congo and other forests compared to 

the WPS LAI satellite derived climatology.  For the remaining PFTs, the mean monthly LAI value of the PFT80 grid cells 220 

within each bioclimate or sub-bioclimate region is used as the monthly prescribed LAI value for that PFT. The monthly LAI 

profiles for each PFT within each bioclimate and sub-bioclimate region are listed in Tables S5–S11 of the Supplementary 
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Material. If no grid cells within a bioclimate or sub-bioclimate region meet the PFT80 criteria for a required PFT, then a 

reduced threshold of 60% of the grid cell is utilized to calculate the monthly LAI profile for that PFT. If no grid cells meet the 

60% criteria, the LAI profile for that PFT within the bioclimate or sub-bioclimate region is assumed to be the same as a nearby 225 

comparable bioclimate region. These comparable “alternative” bioclimate regions are listed in Table 4. The first nearby 

alternative bioclimate region used to generate LAI profiles for the missing PFTs is listed as “First Region” in Table 4. If the 

“First Region” does not have all the missing PFT LAI profiles then these profiles are obtained from a second nearby bioclimate 

region (“Second Region”). Some additional adjustments were also required for the broad leaf evergreen tree PFTs to make 

these areas more consistent with the satellite-derived climatology (Supplementary Material ST3). 230 

SAI represents the area of stems and dead leaves. The values of SAI are poorly known, but SAI is generally parameterized to 

have a minimum in winter and maximum in autumn for each land cover type (Tian et al., 2004a). Since no readily available 

data on SAI exists, SAI within CLM-AF is based on relating decreases in LAI (ΔLAI) from month to month to the SAI values 

in the CLM-D configuration. This is done by fitting a simple linear regression between ΔLAI and the SAI value in CLM-D. If 

the LAI is not decreasing from the previous month then the SAI value is assumed to be the minimum value from CLM-D. 235 

These assumptions are consistent with the definition of SAI as dead leaves/litter will only increase when LAI is decreasing. 

However, it was not possible to generate linear regressions for evergreen trees and corn from CLM-D because the evergreen 

tree LAI profiles in CLM-D do not change from month to month and the corn SAI profile is equivalent to the corn LAI profile. 

These assumptions are not appropriate for Sub-Saharan Africa because of the longer tropical growing season and small 

seasonal fluctuations in evergreen tree LAI in the satellite climatology. Therefore, corn within CLM-AF is assumed to have 240 

the same SAI profile as C4 grass, and evergreen trees follow a similar equation as C4 grass with an intercept equivalent to the 

appropriate evergreen tree minimum SAI value of 0.5. A list of the SAI profile equations and minimum SAI values in the 

CLM-AF configuration for the updated PFTs are listed in Table 5. 

3.3 CLM-AF sandy soil albedo 

CLM-D sandy soil albedos and updated values for CLM-AF are listed in Table 6. CLM simulates surface albedo using a look-245 

up table for different soil color classes with two different radiation streams that differentiate between saturated and dry soils.  

Albedo values in the sandy soils of the Sahara range from 0.25–0.45 (Wang et al., 2004), which is larger than the 0.24 dry 

sandy soil albedo in CLM-D. Accordingly, we increased the albedo values for sand and sand-loam combination soil types by 

0.1 and 0.02, respectively. This puts the sandy soil albedos inside the range expected for the Sahara, while not leading to 

excessively large albedos in the deserts of southern and eastern Africa. 250 

3.4 CLM-AF vegetation property adjustments 

In order to bring the albedo of vegetated areas into better agreement with the satellite climatology from WPS, several 

adjustments are made to leaf/vegetation optical properties in CLM-AF. In CLM-D, shrubs in Sub-Saharan Africa are 

erroneously classified as broad leaf evergreen shrubs rather than temperate deciduous shrubs. In order to maintain a lower 
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albedo for these African shrubs, the leaf transmittance, leaf angle, and leaf reflectance properties of the deciduous temperate 255 

shrubs are adjusted to match those of broad leaf evergreen shrubs. Additionally, the near-infrared leaf reflectance of all broad 

leaf tree species is lowered from 0.45 to 0.35 in CLM-AF, which is in better agreement with near-infrared leaf reflectance 

measured by unmanned aerial vehicle mounted hyperspectral imaging instruments over African forest canopies (Thomson et 

al., 2018). 

4 Experimental design 260 

This study consists of two experiments (Table 7). The first is a meteorological evaluation experiment to compare differences 

between the WRF LSM configurations and assess the impact of their prescribed surface parameters on meteorological model 

performance. The second is a LULCC experiment to determine if the errors and uncertainties of each LSM lead to differences 

in their climate responses to LULCC. 

4.1 Meteorological evaluation experiment 265 

The meteorological evaluation experiment consists of five simulations conducted for the year 2013, each using one of the five 

LSM configurations discussed above.  The year 2013 is selected because it is a neutral year for the El Niño Southern Oscillation 

(ENSO) and thus should be representative of the mean state of Sub-Saharan Africa’s ENSO climate variability. While a single 

year comparison does not yield climate relevant statistics, it is sufficient to demonstrate differences in the meteorology between 

the five LSM configurations and the mechanisms responsible for these differences. This is because the prescribed surface 270 

parameters from the LSM do not vary between years and thus the impact from these parameters on the simulated meteorology 

will be similar (or at least the impact from each LSM will remain similar relative to the others) regardless of the model’s 

overall meteorological state. The meteorological evaluation simulations are conducted with default greenhouse gas 

concentrations and MODIS 21 class land use data. These default settings are chosen to illustrate the performance that can be 

expected from the publicly available WRF model.  275 

4.2 Land use and land cover change experiment 

The LULCC experiment simulates recent climate responses from LULCC since the year 2001 by comparing simulations with 

static LULC from 2001 with dynamic LULC representing 2010–2015.  In both cases, meteorology is simulated for the six-

year period of 2010–2015. These two simulations differing in LULCC are conducted for each LSM configuration, using the 

Noah, Noah-MP, CLM-D, and CLM-AF LSMs. The first simulation for each LSM uses static LULC from MODIS 280 

representing the year 2001 for each simulated year (i.e., 2010–2015), hereafter referred to as LU01. The second uses dynamic 

LULC from the MODIS 21 class land use dataset that is processed by the Dinamica EGO land use modeling framework 

(Soares-Filho et al.,  2002 – described in more detail below) for each simulated year in the 2010–2015 period, hereafter referred 

to as LUD. The six-year average differences between the LU01 and LUD simulations delineate the climate response to 
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LULCC. The time period 2010–2015 is selected because it is far enough away from the year 2001 to show significant impacts 285 

from LULCC and because it contains a full ENSO cycle. Noah-Sat is excluded because LAI and albedo parameters derived 

from satellite data could be impacted by climatological variability, and therefore do not only represent LULCC. The LULCC 

simulations also utilize global average greenhouse gas concentrations for each simulation year (2010–2015) from the National 

Oceanic and Atmospheric Administration’s (NOAA) Earth System Research Laboratory (ESRL) Global Monitoring Division. 

In the LULCC experiment, each year is a discreet simulation with a 3-month spin-up in which the model LULC is updated at 290 

the start of each year. This is necessary because the WRF modeling framework treats LULC as a static field. 

There are several non-trivial differences between the WRF default LULC used in the evaluation experiments and the MODIS 

data used in the LU01 simulation (Fig. S1), even though the WRF default LULC is intended to represent 2001. Overall, the 

default WRF LULC data has more area classified as grassland, savanna, and forest, with less areas classified as cropland, 

woody savanna, and barren land compared to the LU01 dataset. Spatially, the areas classified as cropland in LU01 are primarily 295 

classified as the nearest natural LULC type in the default dataset. In Central Africa, some areas classified as forests and 

savannas in the default LULC dataset have been assigned as woody savanna in LU01. In southern Africa, some areas assigned 

as grasslands in the default LULC dataset are classified as open shrubland and in arid regions some areas classified as open 

shrubland in the default dataset are assigned as barren land in LU01. 

4.3 LULC data 300 

The LULC dataset for the LULCC experiment are created by means of prospective landscape modeling techniques and while 

simulations contain some level of model error, this approach is used to reduce the impact of potential LULC misclassification 

errors and uncertainties in the MODIS product that could propagate into the WRF model leading to “noisy” and inconclusive 

climate signals. To the authors’ knowledge, this is a novel practice as many LULC studies in Africa do not simulate year to 

year changes (e.g., Otieno and Anyah, 2012) from the LULC datasets or use idealized LULC datasets (e.g., Abiodun et al., 305 

2008; Wang et al., 2016). The use of a simulated LULC product is sufficient to support the goals of the LULCC experiment, 

which aims to determine if the climate signals from realistic LULCC simulated by the different LSMs make logical sense.    

LULC is simulated using the Dinamica EGO environmental modeling platform (Soares-Filho et al., 2002). Dinamica EGO is 

a modeling tool designed to construct spatiotemporal models involving multiple transitions and iterations, dynamic feedbacks, 

sub-region approaches, and several spatial algorithms for the analysis and simulation of a wide variety of dynamic LULCC 310 

phenomena. Dinamica EGO has been used for many applications (Soares-Filho et al., 2002; De Almeida et al., 2005; Soares-

Filho et al., 2006; Merry et al., 2009; Nepstad et al., 2009; Soares-Filho et al., 2010; Silvestrini et al., 2011; Thapa and 

Murayama, 2011; Bowman et al., 2012; Ghilardi et al., 2016; Oliveira et al., 2019; Cheng et al., 2020). 

For input to our LULCC simulations, we use the MODIS Land Cover Type product (MCD12Q1) consisting of a suite of 

datasets that provides global land cover maps at 500 m spatial resolution and annual temporal coverage from 2001 to 2013, 315 

and includes six different land cover classification schemes (Friedl et al., 2010; Friedl and Sulla-Menashe, 2015). This product 

is generated using an ensemble of supervised classification algorithms that uses MODIS Nadir BRDF-Adjusted Reflectance 
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data as input (Schaaf et al., 2002). Specifically, we use the IGBP classification legend since the land cover data used by the 

WRF model (Skamarock, 2008) is based on MODIS-IGBP classification scheme. The MODIS Land Cover product has a post-

process overall accuracy of 75% (Friedl et al., 2010). 320 

Using this approach, we detected spurious changes that toggle yearly between classes such as woody savannas, savannas, or 

grasslands. To reduce this temporal noise, we apply a cell-based temporal mode filter that replaces cell values with the most 

frequently occurring LULC class selected from a moving but non-overlapping 3-year window; or alternatively, a 6-year 

window when no mode is found, and assigning No Data to the entire 12-year time series if still inconclusive. This filter 

preserves long lasting changes while drastically reducing short term changes between LULC classes. There is no edge 325 

preservation because windows do not overlap in time, i.e. LULC classes can change for 2001 or 2012. Consequently, the year 

of a “true” LULC change can be shifted forwards or backwards by one year. 

Prospective landscape models covering very large areas need to be regionalized, meaning that during the calibration period, 

explanatory variables and their spatial relationships with observed changes can be tuned separately to capture the heterogeneity 

of landscape dynamics. Regions do not represent “hard borders” in modeling results, as the amount of projected change and 330 

the probability of change occurrences are not boxed-in within regions, but the proximate causes of observed change can be 

analysed separately. 

For Dinamica EGO, Africa is regionalized into 18 regions based on climatic zones, demographic factors, and anthropogenic 

activity (Fig. S2) consisting of three overlapping layers: 1) United Nations geographic regions for Africa: Northern, Eastern, 

Southern, Western and Central (UNSD, 1999); 2) a bioclimate layer from the modified version of the Global Environmental 335 

Stratification (GEnS) dataset (Metzger et  al. 2013); and 3) residential sector emissions hotspots using DICE-Africa emissions 

(Marais and Wiedinmyer, 2016). The resulting 67 categories are generalized into the final 18 based on neighborhood. The 

process of generalization is done by comparing major change trends among regions, trying to avoid as far as possible the 

presence of separate regions with similar LULC dynamics. Of these 18 regions, 17 are used in the WRF modeling and for the 

generation of LAI and SAI profiles as described in Section 3.2 because the North Semi-dry region is outside the Sub-Saharan 340 

Africa domain. 

LULC change rates by region are analysed by means of transition probability matrices, in order to quantify the amount of 

change in km2 for each LULC change transition during the calibration period (2001 – 2007). Matrices are annualized and used 

to simulate expected annual LULC changes up to 2013 for validation purposes. 

While transition matrices project the expected amount of LULC change into the future, they say nothing about where this 345 

change is likely to occur. For each meaningful transition, a map depicting the probability of that transition happening in the 

future is built by means of analysing the spatial relationship between observed changes and a set of explanatory variables 

(Table S12, Fig. S3). Static and dynamic explanatory variables were related by means of conditional probabilities with the 

spatial occurrence of observed LULC changes for a subset of meaningful transitions during the calibration period. All maps 

were resampled to 1 km2 resolution and projected to the Africa Albers Equal Area Conic coordinate system.  Annual transition 350 
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matrices (how much change is expected at each year) are integrated with annual probability maps (also generated for each 

year) to produce simulated land cover maps. 

To evaluate the accuracy of simulations within the present time, simulated annual maps outside the calibration period (2008–

2013) are compared with the MODIS product for the same year, using a fuzzy-logic method (Hagen, 2003) (Fig S4). This 

approach incorporates a moving window neighborhood context, since predicting the location of LULC transition at a pixel 355 

level is virtually impossible. The comparison is done between simulated and observed cells undergoing a certain LULC change 

within the windows. To measure the spatial agreement between maps we used window sizes ranging from 1 to 9 cells 

(corresponding to spatial resolutions between 500 x 500 m and 4,500 x 4,500 m). For most transitions and regions, simulations 

correctly predict change within 4,500 x 4,500 m windows 50% and 75% of cases, which is among the range of reported results 

in other prospective modeling studies (e.g. Soares-Filho et al., 2006; Soares-Filho et al., 2010; Thapa and Murayama, 2011; 360 

Carlson et al., 2012; Yi et al., 2012). 

4.4 Model evaluation datasets and protocol 

A list of data used to evaluate WRF’s meteorological performance is shown in Table 8, and the WRF model variables evaluated 

against these datasets are listed in Table 9. Surface meteorological and climate quantities are validated against both hourly 

surface observations from the National Climate Data Center’s Integrated Surface Dataset (NDCD-ISD) and monthly average 365 

gridded estimates from the University of East Anglia’s Climate Research Unit version 4.02 (CRU TS4.02) dataset (Harris et 

al., 2014). Precipitation (PRE) is evaluated against CRU TS4.02, monthly average Global Precipitation Climatology Project 

(GPCP) estimates, and three-hour average Tropical Rainfall Measurement Mission (TRMM) estimates. Cloud fraction (CF) 

and precipitable water vapor (PWV) are compared against estimates from the MODIS Terra Aerosol Cloud Water Vapor 

Ozone level three product (MOD08_M3). Additionally, radiation balance variables are compared against satellite estimates 370 

from the Clouds and Earth’s Radiant Energy System – Energy Balanced and Filled (CERES-EBAF) dataset. 

To compare WRF to the gridded datasets, the WRF output is averaged to the appropriate temporal resolution and regridded to 

the native horizontal resolution of the gridded products to calculate performance statistics. Comparisons against NCDC-ISD 

are made for each hour by pairing the monitoring station values to the value of the WRF 36 km grid cell containing the 

monitoring station. All comparisons with MOD08_M3 are done by averaging the WRF data during the daytime MODIS Terra 375 

overpass times of Sub-Saharan Africa (i.e., 600 – 1200 UTC). Model performance is determined by calculating the mean bias 

(MB) and normalized mean bias (NMB). Statistical quantities are calculated for the domain as a whole and each bioclimate 

region to show regional variability in model performance. Additionally, spatial patterns for the simulations and observations 

are shown. 
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5 Results - surface parameters 380 

It is important to illustrate the different surface properties from each LSM, within WRF, using the same LULC because these 

surface properties differences will drive simulated changes in the meteorology. Figures 2–4 depict the surface properties for 

each of the five LSM configurations from the 2013 evaluation simulations. Since the albedo and LAI of Noah-Sat are generated 

from satellite estimates, these values can be considered similar to observations. 

In general, all of the LSM configurations that prescribe albedo overpredict surface albedo in vegetated areas. However, the 385 

Noah LSM severely overpredicts surface albedo throughout the entirety of the domain with albedo values ranging from ~20–

28% for regions containing woody savanna, savanna, and shrubland (Fig. 2), compared to 10–20% over the same areas in 

Noah-Sat. This is because Noah’s prescribed albedo values for many of the MODIS-IGBP categories are significantly larger 

than those derived from satellites (Table S13, Supplementary Material).  The annual average surface albedos prescribed by 

Noah-MP and CLM-D are similar in magnitude and spatial pattern, with overpredicted albedo in vegetated areas and 390 

underpredicted albedo in arid regions. However, Noah-MP underpredicts surface albedo in the Sahara to a greater extent due 

to the loam soil simplification (Sect. 2.2.2). The Noah, Noah-MP, and CLM-D LSM configurations all contain errors where 

woody savanna and closed shrubland are treated as either identical or similar. In the Noah LSM, this leads erroneously to the 

woody savanna regions having greater surface albedos than nearby savanna regions. In Noah-MP and CLM-D, this leads to 

woody savannas erroneously having lower albedos than nearby broad leaf evergreen forests, because shrubs are assumed to 395 

have a lower leaf reflectance than broad leaf trees.  In general, CLM-AF is the closest match to the satellite spatial pattern, 

despite differences in magnitude. The prescribed albedo values in CLM-AF improve the representation of surface albedo in 

the arid regions of northern and eastern Africa, but the scaled values lead to overpredictions in southern Africa. Vegetated 

regions also contain higher albedo values than the satellite estimates. These errors suggest that better representations of soil 

color and leaf reflectance are needed in WRF-CLM. 400 

In general, all of the LSM configurations that prescribe LAI overpredict the LAI of arid regions compared to satellite estimates 

(Fig. 3). Due to the lack of geographically varying LAI in CLM-D, the seasonality of LAI in Sub-Saharan Africa in this 

configuration is incorrect with elevated LAI values throughout the entire domain for June, July, and August (JJA) and 

minimum LAI values throughout the domain in December, January, and February (DJF).  Additionally, woody savanna LAI 

in CLM-D is significantly underpredicted because it has the same LAI profile as closed shrubland. 405 

Unlike CLM-D, the Noah and Noah-MP configurations account for differences in seasonality in the northern and southern 

hemispheres by shifting the northern hemisphere LAI profiles by six months for the southern hemisphere. This approach leads 

to differentiated northern and southern hemisphere LAI values in Noah and Noah-MP (Fig. 3); however, distinct discontinuities 

occur in LAI at the equator. In Noah-MP this LAI discontinuity only impacts East Africa due to the presence of broad leaf 

evergreen forest with a time invariant LAI profile (category 2 in Table S14) in Central Africa. This issue is more apparent in 410 

the Noah LSM as the LAI discontinuity occurs in both eastern and central Africa, since all the LULC categories in this region 

have time variable maximum and minimum LAI values (Table S15 of Supplementary Material). Additionally, the LAI profiles 
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in Noah-MP (Table S14) have a stronger seasonality than the Noah values due to many LULC categories having much lower 

minimum values of ~0.0–0.5 during the winter months. This leads to an overall underpredicted LAI during the winter periods 

in both hemispheres and overpredicted LAI during the summer periods. The net effect of this error is an overall underprediction 415 

in the annual average LAI of tropical heavily vegetated regions and slightly overpredicted annual LAI in sub-tropical arid 

regions. The generally higher minimum and maximum LAI values in the Noah LSM lead to generally accurate annual average 

LAI values in tropical regions, but significantly overpredicted annual LAI values in sub-tropical arid regions. The errors in the 

LAI profiles of Noah and Noah-MP likely occur because they have been developed mainly for application in the Northern 

Hemisphere Mid-Latitudes. 420 

CLM-AF, generates annual and seasonal average LAI spatial patterns that largely mimic the satellite estimates (Noah-Sat). 

The use of LAI profiles prescribed in smaller regions has eliminated any large and obvious discontinuities and better represents 

the latitudinal variability and seasonality in LAI compared to the other LSM configurations. CLM-AF slightly underpredicts 

LAI values in the south-eastern portion of the domain and slightly overpredicts LAI near the Sahara. These errors likely result 

from the lack of spatial heterogeneity that can be expected from a look-up table methodology. 425 

An observational RL dataset is not available for comparison with model estimated RL.  However, a comparison of the modelled 

RL (Fig. 4) reveals several critical issues with the default representations. Despite having accurate LAI and surface albedo 

from satellite estimates, the Noah-Sat configuration uses the same methodology as Noah to prescribe RL and therefore both 

LSMs possess the same limitations. The values of RL in Noah and Noah-Sat are very low in comparison to other LSMs, with 

a maximum value over forested regions of 0.5 m. This is inconsistent with the MODIS-IGBP evergreen broad-leaf forest 430 

definition of canopies larger than 2 m (Table S4), indicating that both of these configurations likely underestimate RL. 

Additionally, the spatial patterns in Noah, Noah-Sat, and CLM-D are all incorrect due to prescribing woody savanna regions 

as having shrubland RL values. The Noah-MP and CLM-AF LSMs have the most realistic spatial patterns and magnitudes of 

RL. The key differences are higher RL values for herbaceous land cover types in Noah-MP and larger maximum RL values 

over forested regions in CLM-AF. 435 

For both latent (LH) and sensible (HFX) heat fluxes (Fig. 5 and Fig. 6), all LSMs produce similar annual average spatial 

distributions.  LH are more similar amongst LSMs (Fig. 5), with the key difference being larger LH (~10–20 W m-2) in the 

most heavily vegetated portions of the domain for the CLM-D and CLM-AF configurations.  The similar LH for CLM-D and 

CLM-AF suggests a mechanistic difference that may be related to the vegetation canopy approximation in CLM that does not 

account for gaps within the canopy or between vegetation crowns. However, the values are the largest for CLM-AF in regions 440 

containing savanna, likely due to the larger values of LAI in these regions during the drier seasons (Fig. 3).  

For HFX (Fig. 6), the Noat-Sat LSM produces the largest fluxes, especially in the semi-dry regions of eastern and southern 

Africa. This is likely a combination of Noah-Sat having the lowest albedo in vegetated regions leading to more surface energy 

absorption and Noah-Sat having consistently low LAI values in these regions throughout the year compared to other LSMs 

(Fig. 2 and Fig. 3). Both CLM-D and CLM-AF have lower HFX compared to the other LSMs in vegetated areas, again likely 445 

due to the vegetation canopy assumptions. However, CLM-D has higher HFX in southern Africa comparable to those of Noah 



15 
 

and Noah-MP. This is likely the result of Noah, Noah-MP, and CLM-D having much larger than realistic fluctuations in LAI 

between the wetter and drier seasons in this region (Fig. 3).    

6 Results - 2013 meteorological evaluation 

The primary meteorological variable impacted by surface albedo is the upwelling surface shortwave radiation flux at the 450 

Earth’s surface (USRS). Annual average spatial plots of USRS compared with CERES-EBAF estimates are shown in Fig. 7, 

with seasonal average spatial plots shown in Fig. S5 of the supplementary material. Additionally, annual average difference 

plots with CERES-EBAF for each LSM are shown in Fig. S6. All plots illustrate that the Noah-Sat configuration, with satellite 

albedo estimates, has the best agreement between simulated USRS and CERES-EBAF. The performance of the remaining 

LSMs follows their agreement with the satellite albedo climatology (Fig. 2), where CLM-AF has the best performance and 455 

Noah the worst.  Model performance is further quantified using soccer plots (Fig. 8) of domain-wide and African bioclimate 

region NMB and NME statistics for simulated USRS and 2-m Temperature (T2) compared to CERES-EBAF and CRU/NCDC-

ISD observations. These statistics confirm that Noah-Sat has the best overall USRS performance and that Noah significantly 

overpredicts USRS in nearly all regions with overpredicted surface albedo. The statistical performance of CLM-D, Noah-MP, 

and CLM-AF are similar in many African bio-climate regions, with CLM-AF generally having the best overall agreement. In 460 

particular, CLM-AF simulates USRS more accurately in the arid ND and ED regions than both Noah-MP and CLM-D, which 

indicates that the increased sandy soil albedos in CLM-AF improve model performance. Additional radiative budget variables 

are evaluated against CERES-EBAF estimates in the supplementary material (Figs. S7–S9). We find that most other radiative 

parameters have minimal differences between LSMs, with most errors resulting from underestimated cloud radiative forcing 

consistent with other WRF experiments in Africa (e.g., Diaz et al., 2015). The underestimated cloud radiative forcing seems 465 

to indicate the model is not generating clouds of sufficient optical thickness, since cloud fractions are overestimated compared 

to satellite estimates (Fig. 10, Fig. S15). 

To understand the impact of surface parameters on near surface temperatures, the spatial plots of annual average T2 compared 

with CRU estimates are shown in Fig. 9, with seasonal spatial plots shown in Fig. S10 of the supplementary material. Annual 

average differences between CRU and the LSMs are also shown in Fig. S11. Interestingly, despite clear deficiencies in surface 470 

parameters and USRS in many of the LSMs, all LSMs reasonably capture the spatial distribution and magnitude of annual 

(Fig. 9) and seasonal (Fig. S10) T2 as compared to CRU estimates. The only clear impact of surface albedo inaccuracy on 

annual average T2 is the relatively stronger cold bias in the Noah LSM (Fig. 9, Fig. S11). A closer inspection of T2 within 

Fig. 8 for the CRU dataset indicates that Noah-Sat, Noah, and Noah-MP all contain a domain-wide cold bias in annual average 

T2, while CLM-D and CLM-AF have minimal domain-wide T2 biases due to offsetting warm and cold biases in various 475 

regions. Several prior studies illustrate similar simulated T2 biases for African regions using WRF (e.g., Kerandi et al., 2017; 

Li et al., 2015). The evaluation differences above indicate that the mean T2 bias/errors likely result from differences in the 

way radiative and surface energy fluxes are parameterized in the LSMs, since the patterns in T2 predictions do not follow 
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differences in surface parameters and incoming solar radiation is roughly equivalent for all LSMs. This is further illustrated 

by the evaluation of daily maximum temperature (T2MAX) and daily minimum temperature (T2MIN) (Fig. S12). T2MAX is 480 

generally similar amongst all LSMs, except for Noah which contains a cold bias from the albedo overpredictions. The cold 

bias in Noah propagates to T2MIN, likely due to thermal inertia from underestimated daytime heating. Both Noah-Sat and 

Noah-MP have various offsetting cold and warm T2MIN biases in the African-bioclimate regions, but CLM-D and CLM-AF 

both distinctly overpredict T2MIN. The overprediction of T2MIN in CLM-D and CLM-AF likely arises from the larger LH 

(Fig. 5) and upward surface long wave fluxes (not shown) predicted by these LSMs, which may be related to the vegetation 485 

canopy approximation in CLM, previously discussed. These T2MIN overpredictions for CLM-D and CLM-AF also account 

for the lack of annual average cold bias in these simulations. Additionally, the underpredicted T2MAX in the Noah LSM and 

overpredicted T2MIN in CLM-D and CLM-AF result in underpredicted diurnal temperature range (DTR) for these three 

LSMs. 

The WRF comparison with the hourly NCDC-ISD dataset confirms the presence of a cold bias for the Noah LSM, and provides 490 

more insight into regional model performance. Across all the LSMs the wettest regions (e.g., MAD, WW, WWN, CW, LVW, 

EW) contain the strongest cold biases, while the semi-arid regions (e.g., SESD, WSD, NESD, SSD) contain the strongest warm 

biases. This would appear to indicate that hourly temperature biases are modulated by inaccuracies in cloud radiative forcing 

or evaporative cooling. 

The evaluation of the moisture variables PWV, CF, and PRE against MODIS and TRMM estimates (Fig. 10) and the spatial 495 

comparison of WRF PRE to observations (Fig. 11) show a reduced impact from LSM differences compared to temperature 

variables. Most regions have reasonable agreement in moisture variables with observations and satellite estimates, with a few 

regions experiencing poor agreement (Fig 10). All LSM simulations overpredict PWV and CF, while underpredicting PRE. 

This indicates a possible underrepresentation of moisture recycling in this WRF configuration, whereby insufficient moisture 

convergence or insufficient activation of the cumulus parameterization fails to trigger precipitation, leading to excess water 500 

vapor that forms cloud cover. These findings are consistent with underpredictions in precipitation from the modified Tiedtke 

cumulus parametrization found by Igri et al. (2018), indicating that this cumulus scheme may be less efficient at removing 

moisture from the atmosphere. The evaluation of 2-m dewpoint temperature (Td2) and 2-m vapor pressure (E2) against NCDC-

ISD and CRU (supplementary Figs. S14 and S15) provide further evidence to support the possibility of insufficient moisture 

recycling as surface humidity is underpredicted, likely as a result of underpredicted PRE.   505 

For a more detailed look at PRE, annual average spatial plots of PRE compared with CRU, GPCP, and TRMM estimates are 

shown in Fig. 11. Additionally, seasonal spatial plots of PRE compared with TRMM and annual average differences between 

TRMM and the LSMs and shown in Fig. S16 and Fig. S17, respectively. All LSM simulations reasonably capture the annual 

(Fig. 11) and seasonal (Fig. S16) spatial patterns and magnitude of PRE. Across all LSMs, PRE is better simulated in the wet 

regions of West and Central Africa. The greatest underpredictions occur in arid regions (ND, ED, SD, NESD, and WSD) and 510 

portions of East Africa (EM, CM, and LVW), while regions in South Africa (SSD and SM) and EW typically experience the 

strongest overprediction across the LSMs (Fig. 10, Fig. S13, Fig. S17). Similar regional model biases have been reported in 
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other studies (Alaka and Maloney, 2017; Argent et al., 2015; Cretat et al., 2012; Ratnam et al., 2018), indicating that our results 

are comparable to the large body of work utilizing WRF to study African precipitation. More details regarding moisture 

variable evaluation can be found in the Supplementary Material ST4. 515 

Lastly, comparisons of 10-m wind speed (WSP10) to NCDC-ISD observations (Fig. S14 supplementary material) show a few 

key differences in WSP10 performance between LSMs. Noah and Noah-Sat have nearly identical overpredictions in the 

magnitude of WSP10, associated with an underestimation of RL. CLM-D also underpredicts the magnitude of WSP10, 

associated with the underrepresentation of RL in woody savannas and the inaccurate seasonal profile of RL. Both Noah-MP 

and CLM-AF have offsetting overpredictions and underpredictions in various regions, but both LSMs underpredict WSP10 in 520 

equatorial forested areas, moderately underpredict or overpredict WSP10 in most moist vegetated regions, and largely 

overpredict WSP10 in more arid regions. The LSM regional model performance distribution may indicate that RL values in 

the forested regions are too large and the RL values in more semi-arid regions are too small in the Noah-MP and CLM-AF 

configurations. 

Overall, the meteorological evaluation experiments reveal little impact from inaccurate surface parameters on most 525 

meteorological parameters. The lack of poor meteorological performance may indicate that errors in surface parameters have 

minimal impacts on African meteorology for certain applications. However, these errors can impact the trajectory of LULCC-

induced climate signals as demonstrated in Sect. 7. 

7 Results - impact of LULCC on regional climate using different LSMs 

Changes in land use and land cover, as represented by Dinamica EGO, between 2001 and 2015 are shown in Fig. 12. Broadly, 530 

the LULC changes can be broken down into three categories: agricultural expansion, deforestation/degradation, and greening. 

Agricultural expansion is defined here as the change in the LULC category from a natural vegetation type to either the MODIS 

cropland or cropland/natural mosaic category. This LULCC is most prevalent across the northern and central portions of the 

domain. In West Africa, a loss of evergreen broadleaf forest is found along the coasts of Ghana and Côte d'Ivoire, with woody 

savanna significantly lost in Nigeria to cropland/natural vegetation mosaic. There are losses of savanna and grasslands to 535 

cropland in Ethiopia, Sudan, and South Sudan, while losses of woody savanna to cropland/natural vegetation occur in the 

western Republic of the Congo, western Democratic Republic of the Congo, and northwestern Angola. 

Deforestation/degradation, defined here as the transition from a more forested MODIS natural vegetation type to a less forested 

natural vegetation type, is commonly found in the southern and eastern portions of the domain.  Major 

deforestation/degradation transitions include: a loss of woody savanna to savanna (e.g., central Angola, Mozambique, Zambia, 540 

and Tanzania), loss of savanna to grasslands (e.g., Somalia and Kenya), and loss of savanna to open shrubland (e.g., Namibia, 

Botswana, and Madagascar). Finally, greening, defined here as the reclamation of the barren MODIS category by a vegetated 

category or a transition from a less forested vegetation category to a more forested vegetation category, is found along the 

Saharan border, the boundary of the Namib Desert, within the Horn of Africa, and along the eastern coast of Madagascar. 
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While it is difficult to compare the LULCC predicted by Dinamica EGO to other African LULCC studies because these studies 545 

either use idealized LULCC (e.g., Abiodun et al., 2008; Wang et al., 2016) or do not simulate year-to-year changes, the 

increased agricultural expansion and deforestation/degradation are consistent with the LULCC seen in Otieno and Anyah 

(2012) for the period of 1986–2000. 

7.1 LULCC impact on surface properties 

A comparison of surface albedo changes between the LU01 and LUD simulations using the Noah, Noah-MP, CLM-D, and 550 

CLM-AF LSMs is shown in Fig. 13. The CLM-AF LSM is consistent with expected changes.  Regions with a loss in vegetation 

from either agricultural expansion or deforestation/degradation experience surface albedo increases, while areas with greening 

experience albedo decreases. However, Noah, Noah-MP, and CLM-D all deviate from expected changes because of errors and 

differences in their treatment of surface albedo. Additionally, due to the increased PFTs per LULC category in the CLM-AF 

treatment there is greater overlap in PFTs between LULC categories, which results in albedo changes between vegetation 555 

categories that are less extreme than the other LSMs. 

The LULCC-induced albedo changes in Noah deviate the most from the other LSMs. This is largely because of the erroneous 

treatment of woody savanna albedo as higher than croplands, cropland/natural vegetation mosaic, and savanna (Table S13). 

The result of this flawed treatment is an erroneous albedo decrease in areas where woody savanna is lost to agricultural 

expansion or deforested/degraded to savanna. While both CLM-D and Noah-MP also have inaccurate treatments for woody 560 

savanna, these LSMs do not have erroneous albedo responses. For Noah-MP, this is because the savanna and cropland 

categories are prescribed albedos less than woody savanna. In CLM-D, this is a result of the shrub leaf reflectance being less 

than that of grass and broad leaf deciduous trees. Noah-MP and CLM-D predict reductions in surface albedo for savanna to 

open shrubland transitions because both LSMs prescribe shrubs as having much lower leaf reflectance than grasses. In CLM-

AF, the impact of lower shrub leaf reflectance is not as strong on the savanna to open shrubland transitions because open 565 

shrublands contain more bare soil than savannas (Table 2), leading to albedo increases for savanna to open shrubland 

transitions. Noah-MP also does not show a change in albedo from the greening around the Sahara because its flawed soil color 

treatment does not simulate a significant difference in the albedo of grasslands and bare soil in that region (Fig. 2). 

Among LSMs, there is greater similarity in LAI (Fig. 14) than for surface albedo (Fig. 13). The LAI projections from LULCC 

for CLM-AF and Noah-MP have the same spatial pattern and direction with slightly different magnitudes. The projected LAI 570 

changes from CLM-D are also very similar to CLM-AF and Noah-MP across the northern half of the domain, but CLM-D has 

erroneous increases in LAI for woody savanna to savanna transitions. Again, these LAI errors are caused by erroneously 

treating woody savanna as a closed shrubland with a temporally uniform 1.0 m2 m-2 LAI (Table S3).  The Noah LSM shows 

the greatest deviations from the other LSMs. This is mostly a result of erroneous increases in prescribed LAI values associated 

with agricultural expansion because croplands are prescribed higher LAI values than most natural vegetation. Additionally, 575 

the LAI of the woody savanna and savanna categories in Noah have the same prescribed values, hence this transition shows 

no change (see Table S15). 
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7.2 LULCC impact on 2 m temperature 

Changes in T2 between the LU01 and LUD simulations for each LSM are shown in Fig. 15. Locations that have the largest 

magnitude differences in T2 align with the more localized changes in LAI and albedo.  Similar T2 patterns occur across the 580 

northern half of the domain when comparing Noah-MP, CLM-D, and CLM-AF simulations, while Noah predicts the most 

unique changes.  To further investigate the LULCC impacts, annual average T2 differences are calculated for grid cells with 

different LULC transitions (see Table 10). Additionally, we generate annual average differences of the surface energy budget 

and near surface temperature profiles for these grid cells, separately for daytime (SWDOWN > 0 W m-2) and nighttime 

(SWDOWN = 0 W m-2) conditions.  The diurnally split radiative flux differences for USRS, SWDOWN, upwelling longwave 585 

radiation at the earth’s surface (ULRS), and GLW for each LSM are listed in Tables S16–S19. Additionally, the diurnally split 

surface heat flux differences for HFX, LH, and the ground fluxes (GRDFLX) are listed in Tables S20–S23. Lastly, the diurnally 

split surface temperature profile differences for surface skin temperature (TSK), T2, lowest model layer temperature (TATM), 

and the surface to lowest model layer vertical temperature gradient (TGSATM) for each LSM are listed in Tables S24–S27.   

Agricultural expansion induces annual average localized warming of ~0.1–0.2 ℃ using Noah-MP, CLM-D, and CLM-AF, but 590 

a localized cooling of -0.12 ℃ using Noah. The cooling from Noah for most agricultural expansion transitions occurs in 

response to erroneous increases in LAI (Fig. 14) that result in erroneous daytime LH increases and evaporative cooling (Table 

S23). However, in the transition of evergreen broad leaf forest to mosaic cropland along the coasts of Ghana and Côte d'Ivoire 

the LAI transition follows the other LSMs (Fig. 14), indicating that this cooling is the result of excessive daytime average 

USRS increases of 37.3 W m-2 (Table S19) from surface albedo increases (Fig. 13). In the other LSMs, this evergreen broad 595 

leaf forest to mosaic cropland transition results in the strongest warming response from agricultural expansion, with an average 

0.6 ℃ warming using Noah-MP and ~1.3–1.4 ℃ of warming using CLM-D and CLM-AF.  This warming is the result of 

reduced daytime evaporative cooling, as evidenced by the largest daytime LH reductions of any LULC transition (Tables S20–

S22). However, this warming is somewhat indirect as the greatest T2 increases occur during the nighttime. This is because the 

reduced daytime LH leads to greater land surface heat storage via the GRDFLX, which is then released at night heating the 600 

atmosphere.  For most other agricultural expansion transitions, CLM-AF predicts nighttime warming consistent with reduced 

daytime LH and increased daytime GRDFLX, as described above. The exception is the grassland to mosaic cropland transition, 

where most warming occurs during the daytime due to reductions in USRS from albedo increases that increase TSK and HFX 

warming the atmosphere (Tables S16, S20, and S24). Noah-MP predicts less warming with no clear signal as to the mechanism 

behind the warming. This is caused by the relative insensitivity of LH (Table S21) to agricultural expansion in Noah-MP, 605 

which allows other processes such as surface albedo changes, biogeophysical effects of RL changes (Winckler et al., 2019; 

Breil et al., 2020), and other secondary feedbacks to compensate each other resulting in a weaker climate signal. The behavior 

of CLM-AF is consistent with the global remote sensing work of Duveiller et al. (2018), which indicates losses in latent heat 

flux for all natural vegetation to cropland transitions. CLM-D has many T2 changes similar to CLM-AF with some exceptions.  

The erroneous treatment of albedo for woody savanna in CLM-D, being too high, leads to excessive daytime increases in 610 
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USRS of 29.8 W m-2 (Table S18) for the transitions from woody savanna to mosaic cropland, which cools the surface (Table 

S26), reduces the HFX (Table S22), and results in minor cooling. In the other transitions from grasslands to different types of 

cropland, CLM-D does not have as strong a daytime LH reduction as CLM-AF, leading to either similar or weaker T2 warming 

that may be affected more by feedbacks from other model processes.   

Deforestation/degradation grid cells experience an average 0.22 ℃ warming using CLM-AF, while the remaining LSMs 615 

predict almost no change in T2 for these grid cells (e.g., -0.03 – 0.04 ℃). The strong warming signal in CLM-AF can potentially 

come from multiple mechanisms, but in all deforestation transitions the reduced daytime LH and increased daytime GRDFLX 

that leads to nighttime T2 warming appears to dominate (Tables S20 and S24). Unlike agricultural expansion, deforestation in 

CLM-AF causes decreases in daytime HFX. This could potentially be the result of biogeophysical effects of reduced RL 

making surface heating less efficient, or it may be related to the relatively larger increases in USRS from deforestation reducing 620 

energy input. In Noah-MP, smaller changes in evapotranspiration coupled with greater enhancements in surface reflectance 

for the woody savanna to savanna transition lead to little to no climate signal in T2. For the other deforestation transitions, 

Noah-MP predicts daytime TSK increases unlike CLM-AF (Tables S24 and S25), but little to no change in annual average T2. 

This may be related to the effects of RL reductions reducing daytime HFX (Table S21) and increasing TGSATM (Table S25). 

The reduced heating efficiency coupled with reduced available energy from either increased daytime USRS or reduced daytime 625 

SWDOWN leads to small daytime T2 cooling in these transitions that compensates any nighttime warming from reduced 

evapotranspiration. In CLM-D, the overall small change in annual average T2 from deforestation/degradation is due to 

offsetting changes in different LULC transitions. This offsetting behavior is primarily related to the woody savanna albedo 

and LAI errors that when combined do not substantially reduce the daytime LH (-0.1 W m-2) and excessively enhance daytime 

USRS (18.9 W m-2) in grid cells with woody savanna to savanna transitions (Tables S22 and S26). Since woody savanna to 630 

savanna transitions comprise a substantial portion of the total deforestation/degradation grid cells, this signal cancels the 

warming from other transitions.  The warming from CLM-D in the other deforestation transitions appears somewhat similar 

to CLM-AF. The daytime LH reduction / nightime T2 increase mechanism appears to be responsible for the warming in the 

savanna to grassland transition. However, the nightime warming in the savanna to open shrubland transition appears to be 

related to reduced daytime HFX that increases the daytime GRDFLX, which could be related to either reductions in USRS 635 

from albedo reductions or biogeophysical impacts from reduced RL.  Noah also experiences offsetting impacts from different 

deforestation/degradation transitions. Noah predicts annual average warming for the woody savanna to savanna transitions. 

This is caused primarily by large daytime decreases in USRS (-35.0 W m-2) and increases in HFX (23.9 W m-2), which increases 

daytime T2 despite decreases in daytime TSK (Tables S19, S23, and S27). This suggests that the warming in this transition 

for Noah is primarily related to either excessive surface albedo changes or the erroneous increase in RL in this transition that 640 

increases the heating efficiency of the atmosphere. Noah predicts cooling T2 for the other dominant deforestation/degradation 

transitions, primarily due to albedo reductions that are not countered by any substantial reduction in LH. 

Grid cells that experience greening have annual average cooling using Noah-MP, CLM-D, and CLM-AF (Table 10). CLM-

AF and CLM-D predict similar cooling (-0.41℃ and -0.33℃, respectively). In the transitions from barren lands to vegetation, 
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the primary mechanism responsible for the cooling in both LSMs is enhanced daytime LH that reduces the daytime GRDFLX, 645 

which reduces nighttime heat release. In the grassland to savanna transition, the cooling for both LSMs results from reduced 

daytime GRDFLX that appears to be related to either other model feedbacks that reduce daytime SWDOWN or enhanced 

daytime HFX via the biogeophysical impacts of increased RL. In CLM-AF, the savanna to woody savanna transition 

experiences cooling via the increased daytime LH / nighttime cooling mechanism discussed above. However, CLM-D predicts 

slight annual average warming due to the erroneously large reduction in daytime USRS of -18.7 W m-2 (Table S18) due to the 650 

treatment of woody savanna as closed shrubland in CLM-D. This large reduction in USRS overwhelms the daytime LH 

increases and increases the daytime GRDFLX, causing nighttime warming.  Noah-MP predicts slightly weaker annual average 

cooling (-0.13 ℃) from greening. The mechanisms responsible for the cooling in Noah-MP for most transitions are similar to 

CLM-AF with similar daytime LH increases, except the daytime GRDFLX reductions are not as large (Tables S20–S21). 

However, because Noah-MP does not predict any change in LAI between savanna and woody savanna, this transition has little 655 

change in LH and a negligible change in T2.  Finally, the Noah simulations continue to be an outlier with almost no change 

(0.02 ℃) due to offsetting inaccurate surface property changes in different greening LULC transitions. 

The three types of transition-based changes discussed above lead to very different spatial T2 changes (Fig. 15). The T2 changes 

using the Noah LSM are largely incoherent due to various surface parameter errors. The T2 changes using Noah-MP  are much 

weaker than CLM-D or CLM-AF because only the starkest LULC transitions using Noah-MP impact local temperatures (i.e., 660 

transition from broad leaf evergreen forest to mosaic cropland within West Africa, transition from grassland to cropland in 

northeastern Africa, and transition from barren soil to grassland along the Sahara border). The simulated T2 changes associated 

with LULCC in CLM-D and CLM-AF are largely the same above the equator, but improper treatment of woody savannas and 

southern hemisphere growing cycles result in erroneous cooling in southern Africa using CLM-D. CLM-AF is the only LSM 

that captures warming from agricultural expansion in Nigeria, as well as the large-scale annual average warming associated 665 

with deforestation/degradation in south-western Africa (e.g., Angola, Namibia, and Botswana). 

7.3 LULCC impact on precipitation 

In general, PRE changes between the LU01 and LUD simulations for each LSM (Fig. 16, Table 11) are more regional and 

much more chaotic than changes in temperature. However, there are a few localized changes in PRE from LULCC. Along the 

coast of Ghana and Côte d'Ivoire, the lost broad leaf evergreen forest decreases PRE in all four LSMs by 0.12–0.45 mm day-1 670 

on average. This is in response to reduced moisture availability due to reduced evapotranspiration, enhanced stability from 

increased surface albedo, and possible reduced moisture convergence from reduced surface roughness. Additionally, both 

Noah-MP and CLM-D also predict reduced PRE for grid cells that experience woody savanna to mosaic cropland transitions 

(e.g., Nigeria), due to enhanced atmospheric stability from erroneous reductions in surface albedo. 

The most significant regional PRE changes occur within southern Africa. During the southern Africa rainy season (October – 675 

March), the Angola Low is assumed to form in response to dry convection processes associated with surface heating in Angola 

(Mulenga 1998), however, the exact processes responsible for the Angola Low’s formation are poorly understood (Munday 
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and Washington, 2017). The strength and position of the Angola Low have been shown to significantly alter the gradients and 

magnitude of precipitation over southern Africa (e.g., Cook et al., 2004; Cretat et al., 2019). All LSMs predict excess heating 

from deforestation/degradation between the LU01 and LUD simulations in Angola.  This heating results in a persistent 680 

reduction of surface sea level pressure (Fig. S18), during southern Africa’s rainy season (DJF), within Angola and nearby 

countries. The sea level pressure changes strengthens either the Angola Low or the associated Kalahari thermal low, which 

induces a stronger cyclonic circulation (Fig. S19) over southern Africa that opposes moist on-shore flow over Mozambique. 

This reduces moisture transport into south-western Africa, leads to drying in Angola and surrounding areas, and enhances 

moisture convergence in south-eastern Africa increasing PRE in Mozambique and surrounding areas. The exact location and 685 

strength of this LULCC-induced PRE climate signal varies between LSMs due to differences in the strength and spatial location 

of maximum heating, but this feature appears robust. 

8 Summary and conclusions 

In this work the applicability of commonly used WRF LSMs (i.e., Noah, Noah-MP, and CLM-D) with WRF’s default MODIS 

LULC data are explored in Sub-Saharan Africa. Each default WRF LSM is found to have unique deficiencies in representing 690 

African surface parameters including: 1) significantly overestimated surface albedo and underestimated RL using the Noah 

LSM, 2) the same underestimated RL as Noah using Noah-Sat, 3) significantly underestimated surface albedo in arid areas 

due to inaccurate soil albedo treatments using Noah-MP, and 4) geographically invariable surface parameters using CLM-D 

that make it unsuitable for use outside the Northern Hemisphere Mid-Latitudes. Additionally, all default WRF LSMs 

inaccurately treat the MODIS woody savanna land use category as closed shrubland. These deficiencies likely have a minimal 695 

impact on simulations in middle or high latitudes of the Northern Hemisphere, but lead to substantial inaccuracies in Africa. 

Consequently, we developed a version of the CLM LSM in WRF that more accurately represents these properties in Africa 

(CLM-AF). 

Despite clear deficiencies in surface parameters, all WRF LSMs reasonably capture the spatial pattern and magnitudes of 

precipitation and T2. The only detectable impact of inaccurate surface parameters is the slightly stronger cold and dry bias 700 

using the Noah LSM that occurs because of its overestimated albedo. The WRF model with each LSM reasonably captures 

the climate of Sub-Saharan Africa, despite errors with cloud parameters and radiative forcing that are common to most climate 

models (e.g., Lauer and Hamilton 2013). 

Regardless of the similar meteorological performance, the land surface parameter errors amongst the default WRF LSMs 

substantially impact the magnitude and direction of LULCC-induced changes in temperature and to a lesser extent localized 705 

changes in precipitation. The surface parameters in the Noah LSM and CLM-D are the most flawed, and as a result neither 

LSM is suitable for LULCC experiments in Africa. Additionally, great care should be taken when utilizing these LSMs for 

other scientific applications in these regions. Noah-MP is least flawed of the default LSMs and with several updates may also 

be suitable for use in tropical regions (e.g., Spera et al., 2018). 
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Although several of the default LSMs produced erroneous LULCC-induced climate signals, there are several common features 710 

that stand out as potentially robust. Losses of broad leaf evergreen forest along the coasts of Ghana and Côte d'Ivoire to 

agricultural expansion between 2001 and 2015 appear to have caused warming and drying in this region for LSMs that 

accurately treat this transition. Additionally, warming from deforestation in Angola, Namibia, and Botswana are modelled to 

have altered the DJF average atmospheric circulations in this region, decreasing precipitation in south-western Africa and 

increasing precipitation in south-eastern Africa. Important mechanistic differences also stand out between the Noah-MP and 715 

CLM-AF LSMs. Noah-MP predicts little change in LH between vegetated to vegetated LULC transitions unless they are 

particularly stark (e.g., broad leaf evergreen forest to mosaic cropland), while CLM-AF consistently predicts LH change 

between vegetation transitions resulting in stronger thermal changes from gains or losses in evaporative cooling. This indicates 

that the accuracy of LH sensitivity in LSMs to LULCC is crucial to the accuracy of LULCC climate signal predictions in the 

tropics. Additionally, the incoherent temperature and moisture climate signals in the Noah LSM indicate that albedo accuracy 720 

may play a role in determining whether evapotranspiration, RL change, or shortwave radiative effects will dominate LULCC 

climate signals. 

Overall, this study serves as a cautionary tale to illustrate that proficient meteorological performance can mask severe flaws in 

model treatments, and that special care is needed to evaluate LSM parameters when conducting LULCC studies in Africa.  

While this study focuses on Africa, we expect that these LSMs would encounter similar problems in applications to other 725 

regions of the tropics or Southern Hemisphere.  More work is required by the scientific and model development communities 

to not only improve meteorological model processes, but to ensure that these scientific improvements are applicable to as many 

climate regimes and localities as possible. Additionally, this work documents the development of the WRF CLM-AF 

configuration for use in LULCC studies of Sub-Saharan Africa. Future companion manuscripts will explore the climate change 

signals attributable to LULCC in Sub-Saharan Africa, their statistical significance, and their impact on air quality. This 730 

development is a first step towards better global LULC representations in WRF, but additional improvements are needed to 

accurately represent land surface and vegetation parameters across the various global climate regimes. 
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shown here, the African bio-climate region data, the Dinamica EGO generated land use and land cover data, and instructions 

for using these codes and input data are all available on the UNC Dataverse Archive (https://dataverse.unc.edu/dataverse/CLM-

AF1). The ERA-Interim reanalysis data for meteorological initial and boundary conditions can be found on the NCAR 

Research Data Archive website (https://rda.ucar.edu/datasets/ds627.0/). All observational data used to evaluate the WRF 

model are publically available from the websites listed in Table 8.  740 
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Figure 1: African bioclimate and sub-bioclimate regions defined in this study within the Sub-Saharan domain.
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Figure 3: Comparison of annual, summer (JJA), and winter (DJF) average LAI (m2 m-2) between LSM configurations.  Since Noah-
Sat is based on satellite observations, it can be treated as observations.  
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Figure 11: Year 2013 annual average precipitation rate (mm day-1) from CRU, GPCP, TRMM, and the five WRF LSM simulations.
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Figure 12: Processed MODIS land use and land cover categories for 2001, simulated categories for 2015, and grid cells that 
experience transitions due to agricultural expansion, deforestation/degradation, and greening.
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Figure 13: Differences in albedo (%) between LUD and LU01 (LUD-LU01) simulations using Noah, Noah-MP, CLM-D, and CLM-1125 
AF.
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Figure 14: Differences in leaf area index (m2 m-2) between the LUD and LU01 (LUD-LU01) simulations using Noah, Noah-MP, 
CLM-D, and CLM-AF.
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 1140 
Figure 15: Differences in 2 m Temperature (℃) between the LUD and LU01 (LUD-LU01) simulations using Noah, Noah-MP, CLM-
D, and CLM-AF.
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Figure 16: Differences in precipitation rate (mm day-1) between the LUD and LU01 (LUD-LU01) simulations using Noah, Noah-MP, 
CLM-D, and CLM-AF.
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Table 1: Model Configurations 1150 
Simulation Configuration Setting 

Domain Sub-Saharan Africa 
Horizontal Resolution 36 km 

Vertical Layers 30 Layers from the Surface to 50 mb 
Initial/Boundary Conditions ERA-Interim (D11) 
Physics Parameterization Option 

Cumulus  New Tiedtke Scheme (Z11) 
Cloud Microphysics  Aerosol-Aware Thompson Scheme (TE14) 

Radiation RRTMG (C05; I08) 
Planetary Boundary Layer MYNN (NN04; NN06) 

Surface Layer MYNN (NN04; NN06) 
Land Surface Models Noah (CD01; E03)  

 Noah-MP (N11) 
 CLM 4.5 (S11; JW12; LK12) 

Lake Model CLM 4.5 (S12; G13) 
Acronyms: ERA-Interim – European Centre for Medium-Range Weather Forecasting Interim 
reanalysis; RRTMG – Rapid Radiative Transfer Model for General Circulation Models; MYNN – 
Mellor Yamada Nakanishi Niino; Noah - National Centers for Environmental Prediction, Oregon State 
University, Air Force, Hydrology Lab; Noah-MP – Noah Multi-patameterization options; CLM 4.5 – 
Community Land Model version 4.5. 1155 
 
References: D11 – Dee et al., (2011); Z11 – Zhang et al., (2011); TE14 – Thompson and Eidhammer, 

(2014); C05- Clough et al., (2005); I08 – Iacono et al., (2008); NN04 – Nakanishi and Niino, 
(2004); NN06 – Nakanishi and Niino, (2006);  CD01 – Chen and Dudhia (2001); E03 – Ek et 
al., (2003); N11 – Niu et al., (2011); S11 – Subin et al., (2011); JW12 – Jin and Wen, (2012); 1160 
LK12 – Lu and Kueppers, (2012); S12 – Subin et al., (2012); G13 – Gu et al., (2013). 
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 1175 
Table 2: Percentage of Plant Functional Types Assigned to MODIS Land Use Categories in the Updated 

CLM-AF 
MODIS Land Use Category 2 4 5 6 7 8 9 10 12 14 

Bare Soil - 3 - 14 48 - - 21 10 - 
Broad Leaf Evergreen Tropical Tree 82 - 20 - - 12 - - - - 

Broad Leaf Evergreen Temperate Tree 18 - 15 - - - - - - - 
Broad Leaf Deciduous Tropical Tree - 55 - 8 - 26 21 - - 24 

Broad Leaf Deciduous Temperate Shrub - 18 - 57 31 - - 18 - - 
C3 Non-Artic Grass - - 40 - 8 27 31 36 24 17 

C4 Grass - 24 25 21 13 35 48 25 15 33 
Corn - - - - - - - - 51 26 

MODIS Land Use Categories: 2 – Evergreen Broad Leaf Forest; 4 – Deciduous Broad Leaf Forest; 5 – 
Mixed Forest; 6 – Closed Shrublands; 7 – Open Shrublands; 8 – Woody Savanna; 9 – Savannas; 10 – 
Grasslands; 12 – Croplands; 14 –Cropland/Natural Mosaic.  1180 
 
 
Table 3: Dominant MODIS-IGBP Land Use Categories within African Bioclimate Regions at 36 km 
Resolution 

Region MODIS-IGBP Category 
Name Acronym 2 4 5 6 7 8 9 10 12 14 

North Dry ND - - - - Y - - Y Y Y 
East Dry ED - Y - - Y - - Y - Y 

Northeast Semi-Dry*  NESD - - - Y Y Y Y Y Y Y 
West Semi-Dry WSD - - - - Y - Y Y Y Y 

East Wet EW Y - - - - Y Y Y Y Y 
West Moist WM - - - - - Y Y - Y Y 
West Wet WW Y - - - - Y Y Y - Y 

Central Wet*  CW Y - - - Y Y Y Y - Y 
West Wet Nigeria WWN Y - - - - Y Y - Y Y 

Central Moist*  CM Y - - - - Y Y Y Y Y 
Lake Victoria Wet LVW Y - - - - Y Y Y Y Y 

East Moist EM Y - Y - - Y Y Y - Y 
Southeast Semi-Dry SESD - - - - Y Y Y - - - 

Madagascar MAD Y Y - - Y Y Y Y - Y 
South Dry SD - - - - Y - - - - - 

South Semi-Dry SSD Y - - Y Y Y Y Y Y - 
South Moist SM Y - - - Y Y Y Y Y Y 

*: Indicates bioclimate regions that are subdivided into a north, a south, or other sub-bioclimate regions 1185 
for better LAI geographical distributions.  
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 1190 
Table 4: Regional Interpolation of Missing PFT data 

Region First Region PFTs Second Region PFTs 
ND WW 4,5 WSD 6,10,11 
ED EW 4,5 NESD-N 13,14,15 

NESD-N EW 4,5 - - 
NESD-S EW 4,5 - - 

NESD-SH EW 4,5 NESD-S 6,15 
WSD WW 4,5 - - 
EW NESD-N 10 - - 
WM WW 4,5 WSD 10,13 
WW WSD 10 - - 

CW-N WSD 10 - - 
CW-S SESD 15 - - 

CW-SA CW-S 6 SESD 15 
WWN WW 6 WSD 10 
CM-N CW-N 4,5,6 NESD-S 10 
CM-S CW-S 6,10 - - 
LVW NESD-S 6,10 - - 
EM CW-S 6 SESD 10 

SESD EM 4,5 - - 
MAD SESD 15 - - 

SD SSD 4,5,6,14,15 - - 
SSD - - - - 
SM SSD 14 - - 

 
 
 
Table 5: Equations for Calculating SAI for Each PFT in CLM-AF 1195 

PFT SAI Equation SAI Minimum 
Broad Leaf Evergreen Trees 𝑆𝑆𝑆𝑆𝑆𝑆 =  −∆𝐿𝐿𝑆𝑆𝑆𝑆 + 0.5 0.5 

Broad Leaf Deciduous Tropical Trees 𝑆𝑆𝑆𝑆𝑆𝑆 =  −1.0385(∆𝐿𝐿𝑆𝑆𝑆𝑆) + 0.2 0.3 
Broad Leaf Deciduous Shrubs 𝑆𝑆𝑆𝑆𝑆𝑆 =  −0.8(∆𝐿𝐿𝑆𝑆𝑆𝑆) + 0.12 0.1 

C3 Non-Arctic Grass 𝑆𝑆𝑆𝑆𝑆𝑆 =  −0.9(∆𝐿𝐿𝑆𝑆𝑆𝑆) + 0.32 0.1 
C4 Grass and Corn 𝑆𝑆𝑆𝑆𝑆𝑆 =  −∆𝐿𝐿𝑆𝑆𝑆𝑆 + 0.3 0.3 

SAI: Stem Area Index; ΔLAI: Difference between the LAI of the current and previous month. 
 
 
 
 1200 
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Table 6: Sandy Soil CLM Albedo Values 

 
 1205 
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Table 7: Model Experiments and Simulations 
Experiment Period Land Use LSM 
Meteorological Evaluation 2013 Default Noah 
   Noah-Sat 
   Noah-MP 
   CLM-D 
   CLM-AF 
Land Use Land Cover Change 2010–2015 MODIS 2001 (LU01) Noah 
   Noah-MP 
   CLM-D 
   CLM-AF 
  Dinamica EGO 2010–2015 (LUD) Noah 
   Noah-MP 
   CLM-D 
   CLM-AF 

 

 
 1220 
 
 
 
 
 1225 
 

Moisture Radiation Band CLM-D CLM-AF 
  Sand Sand-Loam Sand Sand-Loam 

Saturated Visible 0.12 0.11 0.22 0.13 
 Infrared 0.24 0.22 0.34 0.24 

Dry Visible 0.24 0.22 0.34 0.24 
 Infrared 0.48 0.44 0.58 0.46 
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Table 8: Datasets for Meteorological Evaluation 

Datasets Temporal 
Resolution 

Spatial 
Resolution 

Website 

CRU TS4.02a Monthly 0.5º×0.5º https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/ 

NCDC-ISDb Hourly n/a https://www.ncdc.noaa.gov/land-based-station-data/integrated-surface-database-isd 

CERES-EBAFc Monthly 1º×1º https://ceres.larc.nasa.gov/ 

GPCPd Monthly 2.5º×2.5º http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html 

TRMMe 3-Hour 0.25º×0.25º https://pmm.nasa.gov/data-access/downloads/trmm 

MOD08_M3f Monthly 1º×1º https://modaps.modaps.eosdis.nasa.gov/services/about/products/c61/MOD08_M3.h
tml 

a: University of East Anglia, Climate Research Gridded Climate Data version 4.02; b: National Climate 
Data Center – Integrated Surface Data; c: Clouds and Earth’s Radiant Energy System – Energy Balanced 1230 
and Filled; d: Global Precipitation Climatology Project; e: Tropical Rainfall Measuring Mission; f: 
MODIS/Terra Aerosol Cloud Water Vapor Ozone Monthly L3 Global 1Deg CMG. 
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Table 9: Evaluated Variables and Evaluation Datasets 

Variable Acronym Evaluation Dataset 
2-m Temperature T2 CRU TS4.02 and NCDC-ISD 

Daily Maximum Temperature T2MAX CRU TS4.02 
Daily Minimum Temperature T2MIN CRU TS4.02 
Diurnal Temperature Range DTR CRU TS4.02 

2-m Vapor Pressure E2 CRU TS4.02 
2-m Dew point Temperature Td2 NCDC-ISD 

Precipitable Water Vapor PWV MOD08_M3 
Cloud Fraction CF CRU TS4.02 and MOD08_M3 
Precipitation PRE CRU TS4.02, GPCP, and TRMM 

10 m Wind Speed WSP10 NCDC-ISD 
Downwelling Shortwave Radiation (Surface) SWDOWN CERES-EBAF 
Downwelling Longwave Radiation (Surface) GLW CERES-EBAF 

Upwelling Shortwave Radiation (TOA*) SWUPT CERES-EBAF 
Upwelling Shortwave Radiation (Surface) USRS CERES-EBAF 
Upwelling Longwave Radiation (TOA*) OLR CERES-EBAF 

Shortwave Cloud Forcing SWCF CERES-EBAF 
Longwave Cloud Forcing LWCF CERES-EBAF 

*: Top of the Atmosphere. 
 
 1240 
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Table 10: Annual Average 2 m Temperature Change (℃) in WRF Grid Cells that experience LULCCs 
between 2001 and 2010–2015 1250 

Transition Noah Noah-MP CLM-D CLM-AF 
Agricultural Expansion* -0.12 0.1 0.1 0.17 

10 to 12 -0.09 0.16 0.18 0.17 
2 to 14  -0.3 0.6 1.34 1.38 
8 to 14 -0.06 0.01 -0.12 0.15 
10 to 14 -0.1 0.06 0.03 0.07 

Deforestation/Degradation* 0.04 -0.01 -0.03 0.22 
8 to 9 0.17 -0.03 -0.22 0.18 
9 to 7 -0.16 -0.04 0.12 0.36 
9 to 10 -0.11 -0.05 0.1 0.11 

Greening* 0.02 -0.13 -0.33 -0.41 
9 to 8 -0.12 0.0 0.08 -0.13 
10 to 9 0.18 -0.02 -0.28 -0.26 
16 to 7 -0.01 -0.13 -0.39 -0.40 
16 to 10 0.09 -0.2 -0.81 -0.8 

*: Shows average difference for a broad class of LULCC followed by the average difference in the 
major MODIS LULC transitions that comprise that class.  MODIS Land Use Categories: 2 – Evergreen 
Broad Leaf Forest; 7 – Open Shrublands; 8 – Woody Savanna; 9 – Savannas; 10 – Grasslands; 12 – 
Croplands; 14 –Cropland/Natural Mosaic; 16 – Barren/ Sparsely Vegetated. 
 1255 
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Table 11: Annual Average Precipitation Rate Change (mm day-1) in WRF Grid Cells that experience 
LULCCs between 2001 and 2015 

Transition Noah Noah-MP CLM-D CLM-AF 
Agricultural Expansion* 0.02 -0.13 -0.08 -0.03 

10 to 12 0.02 -0.04 0.05 -0.02 
2 to 14  -0.12 -0.25 -0.45 -0.38 
8 to 14 0.07 -0.18 -0.10 0.00 
10 to 14 0.04 -0.01 0.04 -0.02 

Deforestation/Degradation* 0.02 -0.01 -0.04 -0.08 
8 to 9 0.07 -0.03 -0.01 -0.04 
9 to 7 -0.05 0.05 0.12 -0.05 
9 to 10 -0.01 -0.01 -0.02 -0.04 

Greening* 0.00 0.03 0.15 0.05 
9 to 8 -0.02 0.03 0.14 -0.03 
10 to 9 -0.03 0.06 0.01 0.02 
16 to 7 -0.01 0.02 0.05 0.00 
16 to 10 0.05 -0.01 0.02 0.02 

*: Shows average difference for a broad class of LULCC followed by the average difference in the 
major MODIS LULC transitions that comprise that class.  MODIS Land Use Categories: 2 – Evergreen 
Broad Leaf Forest; 7 – Open Shrublands; 8 – Woody Savanna; 9 – Savannas; 10 – Grasslands; 12 – 1280 
Croplands; 14 –Cropland/Natural Mosaic; 16 – Barren/ Sparsely Vegetated. 
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