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Abstract. Near-term climate predictions such as multi-year to decadal forecasts are increasingly being used to guide adapta-

tion measures and building of resilience. To ensure the utility of multi-member probabilistic predictions, inherent systematic

errors of the prediction system must be corrected or at least reduced. In this context, decadal climate predictions have further

characteristic features, such as the long-term horizon, the lead-time dependent systematic errors (drift) and the errors in the

representation of long-term changes and variability. These features are compounded by small ensemble sizes to describe fore-5

cast uncertainty and a relatively short period for which typical pairs of hindcasts and observations are available to estimate

calibration parameters. With DeFoReSt (Decadal Climate Forecast Recalibration Strategy), Pasternack et al. (2018) proposed

a parametric post-processing approach to tackle these problems. The original approach of DeFoReSt assumes third order poly-

nomials in lead time to capture conditional and unconditional biases, second order for dispersion, first order for start time

dependency. In this study, we propose not to restrict orders a priori but use a systematic model selection strategy to obtain10

model orders from the data based on non-homogeneous boosting. The introduced boosted recalibration estimates the coef-

ficients of the statistical model, while the most relevant predictors are selected automatically by keeping the coefficients of

the less important predictors to zero. Through toy model simulations with differently constructed systematic errors, we show

the advantages of boosted recalibration over DeFoReSt. Finally, we apply boosted recalibration and DeFoReSt to decadal sur-

face temperature forecasts from the MiKlip Prototype system. We show that boosted recalibration performs equally well as15

DeFoReSt and yet offers a greater flexibility.

1 Introduction

Decadal climate predictions of initialized forecasts focus on describing the climate variability for the coming years. Significant

advances have been made by recent progress in model development, data assimilation for initialization and climate observation.

A need for up-to-date and reliable near-term climate information and services for adaptation and planning accompanies this20

progress (e.g., Meredith et al., 2018). In this context, international (e.g., DCPP and WCRP Grand Challenge on Near-Term

Climate Prediction) and national projects like the German initiative Mittelfristige Klimaprognosen (MiKlip) have developed

model systems to produce a skillful decadal ensemble climate prediction (Pohlmann et al., 2013a; Marotzke et al., 2016).
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Typically, ensemble climate predictions are framed probabilistically to address the inherent uncertainties caused by imperfectly

known initial conditions and model errors (Palmer et al., 2006).25

Despite the progress being made in decadal climate forecasting, such forecasts still suffer from considerable systematic

errors like unconditional and conditional biases and ensemble over- or underdispersion. Those errors generally depend on

forecast lead-time since models tend to drift from the initial state towards its own climatology (Fučkar et al., 2014; Maraun,

2016). Furthermore, there can be a dependency on initialization time when long term trends of the forecast system and obser-

vations differ (Kharin et al., 2012). In this regard, Pasternack et al. (2018) proposed a Decadal Forecast Recalibration Strategy30

(DeFoReSt) which accounts for the three above mentioned systematic errors. While DCPP recommends to calculate and adjust

model bias for each lead time separately to take the drift into account, Pasternack et al. (2018) uses a parametric approach to

describe systematic errors as a function of lead time. DeFoReSt uses third order polynomials in lead time to capture conditional

and unconditional biases, second order for dispersion and a first order polynomial to model initialisation time dependency.

Third order polynomials for the drift have been suggested by Gangstø et al. (2013) and have later been used by Kruschke et al.35

(2015). Hence, DeFoReSt is an extension of the drift correction approach proposed by Kruschke et al. (2015), accounting also

for conditional bias and adjusting the ensemble spread. The associated DeFoReSt parameters are estimated by minimization of

the CRPS, analog to the nonhomogeneous Gaussian regression approach by Gneiting et al. (2005).

Although DeFoReSt with third/second order polynomials turned out in past applications to be beneficial for both, full field

initialized decadal predictions (Pasternack et al., 2018) and anomaly initialized counterparts (Paxian et al., 2018), as well as40

decadal regional predictions (Feldmann et al., 2019), it is worthwhile challenging the a priori assumption by using a systematic

model selection strategy. In this context, full field initializations show larger drifts in comparison to anomaly initializations

even though drift of the latter is not negligible, particularly when taking initialization time dependency into account (Kruschke

et al., 2015).

For post-processing of probabilistic forecasts with non-homogeneous Gaussian regression Messner et al. (2017) proposed45

the non-homogeneous boosting to automatically select the most relevant predictors. Originally, boosting has been developed

for automatic statistical classification (Freund and Schapire, 1997), but has been used as well for statistical regression (e.g.

Friedman et al., 2000; Bühlmann and Yu, 2003; Bühlmann et al., 2007).

Unlike other parameter estimation strategies based on iterative minimization of a cost function by simultaneously updating

the full set of parameters, boosting only updates one parameter at a time; the one that leads to the largest decrease in the cost50

function. As all parameters are initialized to zero, those parameters corresponding to terms which do not lead to a considerable

decrease in the cost function – hence are not relevant – will not be updated and thus will not differ from zero; the associated

term has thus no influence in the predictor. Here, we extend the underlying non-homogeneous regression model of DeFoReSt

to higher order polynomials and use boosting for parameter estimation. Additionally, cross-validation identifies the optimal

number of boosting iteration and serves thus for model selection. The resulting boosted non-homogeneous regression model is55

hereafter named boosted recalibration.
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A toy model producing synthetic decadal forecasts-observation pairs is used to study the effect of using higher order polyno-

mials and boosting on recalibration. Moreover, we compare boosted recalibration and DeFoReSt to recalibrate forecasts from

the MiKlip decadal prediction system.

The paper is organized as follows: Sec. 2 introduces the MiKlip decadal climate prediction system and the corresponding60

reference data used, Sec. 3 describes the decadal forecast recalibration strategy DeFoReSt and introduces boosted recalibration,

an extension to higher order polynomials, parameter estimation with non-homogeneous boosting and cross validation for model

selection. A toy model developed in Sec. 4 is the basis for assessing recalibration with boosted recalibration and DeFoReSt.

The subsequent Section 5 uses both approaches to recalibrate decadal surface temperature predictions from the MiKlip system.

Analogously to Pasternack et al. (2018), we assess the forecast skill of global mean surface temperature and temperature over65

the North Atlantic subpolar gyre region (60◦-10◦W, 50◦-65◦N). The latter has been identified as a key region for decadal

climate predictions (e.g. Pohlmann et al., 2009; van Oldenborgh et al., 2010; Matei et al., 2012; Mueller et al., 2012). Section 6

closes with a discussion.

2 Data and methods

2.1 Decadal climate forecasts70

Basis for this study are retrospective forecasts (hereafter called hindcast) of surface temperature from the Max-Planck-Institute

Earth System Model in a low-resolution configuration (MPI-ESM-LR). The atmospheric component of the coupled model is

ECHAM6 at a horizontal resolution of T63 with 47 vertical levels up to 0.01 hPa (Stevens et al., 2013). The ocean component

is MPIOM with a nominal resolution of 1.5◦ and 40 vertical levels (Jungclaus et al., 2013). This setup together with a full-field

initialization of the atmosphere with ERA40 (Uppala et al., 2005) and ERA-Interim (Dee et al., 2011), as well as a full-field75

initialization of the Ocean with the GECCO2 reanalysis (Köhl, 2015) is called the MiKlip Prototype System. The full-field

initialization nudges the full atmospheric or oceanic fields from the corresponding reanalysis to the MPI-ESM, not just the

anomalies. A detailed description of the Prototype system is given in Kröger et al. (2018). In the following, we use a hindcast

set from the MiKlip Prototype System with 50 hindcasts, each with 10 ensemble members integrated for 10 years started every

year in the period 1961 to 2010.80

2.2 Reference data

The Met-Office’s Hadley Centre and the Climatic Research Unit at the University of East Anglia produced HadCRUT4 (Morice

et al., 2012), an observational product used here as a reference to verify the decadal hindcasts. The historical surface tempera-

ture anomalies with respect to the reference period 1961-1990 are available on a global 5◦-by-5◦ grid on a monthly basis since

January 1850. HadCRUt4 is a composite of the CRUTEM4 (Jones et al., 2012) land-surface air temperature dataset and the85

HadSST3 (Brohan et al., 2006) sea-surface temperature (SST) dataset.
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2.3 Assessing reliability and sharpness

To assess the performance of boosted recalibration w.r.t. DeFoReSt, we use the same metrics as in Pasternack et al. (2018).

Calibration or reliability refers to the statistical consistency between the forecast probability distributions and the verifying

observations90

citepjolliffe2012forecast. A forecast is reliable if forecast probabilities correspond to observed frequencies on average. Alter-

natively, a necessary condition for forecasts to be reliable is given if the time mean intra-ensemble variance equals the mean

squared error (MSE) between ensemble mean and observation (Palmer et al., 2006).

A common tool to evaluate the reliability and therefore the effect of a recalibration is the rank histogram or Talagrand

diagram which were separately proposed by Anderson (1996); Talagrand et al. (1997); Hamill and Colucci (1997). For a95

detailed understanding, the rank histogram has to be evaluated by visual inspection. Analog to Pasternack et al. (2018), we

use the Ensemble Spread Score (ESS) as a summarizing measure. The ESS is the ratio between the time mean intra-ensemble

variance σ̄2 and the mean squared error between ensemble mean and observation, MSE(µ,y) (Palmer et al., 2006; Keller and

Hense, 2011):

ESS =
σ̄2

MSE(µ,y)
, (1)100

with

σ̄2 =
1

k

k∑
j=1

σ2
j , (2)

and

MSE(µ,y) =
1

k

k∑
j=1

(yj −µj)2. (3)

Here, σ2
j ,µj and yj are the ensemble variance, the ensemble mean and the corresponding observation at time step j, with105

j = 1, ...,k, where k is the number time steps.

Following Palmer et al. (2006), ESS = 1 indicates perfect reliability. The forecast is overconfident when ESS < 1, i.e., the

ensemble spread underestimates forecast error. If the ensemble spread is greater than the model error (ESS > 1), the forecast

is overdispersive and the forecast spread overestimates forecast error. To better understand the components of the ESS, we

also analyze the mean squared error MSE of the forecast separately.110

Sharpness, on the other hand, refers to the concentration or spread of a probabilistic forecast and is a property of the

forecast only. A forecast is sharp, when it is taking a risk, i.e., when it is frequently different from the climatology. The

smaller the forecast spread, the sharper the forecast. Sharpness is indicative of forecast performance for calibrated and thus

reliable forecasts, as forecast uncertainty reduces with increasing sharpness (subject to calibration). To assess sharpness, we

use properties of the width of prediction intervals as in Gneiting and Raftery (2007). Analog to Pasternack et al. (2018), we use115

the time mean intra-ensemble variance σ̄2 to asses the prediction width.
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Scoring rules, like the Continuous Ranked Probability Score (CRPS), assign numerical scores to probabilistic forecasts

and form attractive summary measures of predictive performance, since they address reliability and sharpness simultaneously

(Gneiting et al., 2005; Gneiting and Raftery, 2007; Gneiting and Katzfusss, 2014).

Given, F is the predictive probability distribution function and Fo denotes the Heavyside function for the verifying observa-120

tions o with Fo(y) = 1 for y > o and Fo(y) = 0 otherwise, the CRPS is defined as

CRPS(F,o) =

∞∫
−∞

(F (y)−Fo(y))2dy. (4)

Under the assumption that the predictive distribution F is a normal distribution with mean µ and variance σ2 Gneiting et al.

(2005) showed that (4) can be written as

CRPS(F,o) =

σ

{
o−µ
σ

[2NSC

(
o−µ
σ

)
− 1] + 2NSP

(
o−µ
σ

)
− 1√

π

}
,

(5)125

where NSC
(·) and NSP

(·) denote the probability distribution function (CDF) and the probability density function (PDF),

respectively, of the standard normal distribution. The CRPS is negatively oriented. A lower CRPS indicates more accurate

forecasts; a CRPS of zero denotes a perfect (deterministic) forecast.

It’s skill score (CRPSS) relates the accuracy of the prediction system to the accuracy of a reference prediction (e.g.,

climatology). Thus, with hindcast scores CRPSF and reference scores CRPSR the CRPSS can be defined as130

CRPSS = 1− CRPSF
CRPSR

. (6)

Positive values of the CRPSS imply that the prediction system outperforms the reference prediction. Furthermore, this skill

score is unbounded for negative values (because hindcasts can be arbitrarily bad) but bounded by 1 for a perfect forecast.

3 Model selection for DeFoReSt

We first review the decadal climate forecast recalibration strategy (DeFoReSt) proposed by Pasternack et al. (2018) and illustrate135

subsequently how a modelling strategy based on boosting and cross validation leads to an optimal selection of polynomial

orders in the non-homogeneous regression model used for recalibration.

3.1 Review of DeFoReSt

DeFoReSt assumes normality for the PDF fCal(X; t,τ) for a predicted variableX for each initialization time t ∈ {1961,1962,1963, . . . ,2010}
and lead time τ ∈ {1,2,3, . . . ,10}. fCal(X; t,τ) thus describes the recalibrated forecast PDF of a given variable X or – ex-140

pressed in terms of the ensemble – the distribution of the recalibrated ensemble members around the recalibrated ensemble

mean as a function of initialization time t and forecast lead-year τ . Mean µCal(t,τ) and variance σ2
Cal(t,τ) of the recalibrated
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PDF fCal(X; t,τ) are now modelled as linear functions of the ensemble mean µ̂(t,τ) and ensemble variance σ̂2(t,τ) as

µCal(t,τ) = α(t,τ) +β(t,τ) µ̂(t,τ) (7)

ln(σ2
Cal(t,τ)) = γ(t,τ) σ̂2(t,τ). (8)145

Note, different from Pasternack et al. (2018), the logarithm in Eq. (8) ensures positiv recalibrated variance σ2
Cal(t,τ) irrespec-

tively of the value of γ. Hence, the recalibrated XCal is now conceived as a random variable

XCal(t,τ)∼N (α(t,τ) +β(t,τ) µ̂(t,τ),exp(γ(t,τ)σ̂2(t,τ))). (9)

α(t,τ) accounts for the (unconditional) bias depending on lead year (i.e., the drift). Similarly, β(t,τ) accounts for the condi-

tional bias. Thus, the expectation of the recalibrated variable E(XCal(t,τ)) = α(t,τ) +β(t,τ) µ̂(t,τ) can be conceived as a150

conditional and unconditional bias and drift adjusted ensemble mean forecast. Moreover, DeFoReSt assumes that the ensemble

spread σ(t,τ) is sufficiently well related to the forecast uncertainty such that adequate adjustment can be realized by multi-

plying γ(t,τ). Fig. 1 shows a schematic which shows the mechanisms of DeFoReSt for an exemplary decadal forecast which

exhibits a lead and start time dependent unconditional bias, conditional bias and dispersion.

The functional forms of α(t,τ), β(t,τ) and γ(t,τ) are motivated from Gangstø et al. (2013), Kharin et al. (2012), Kruschke155

et al. (2015), and Sansom et al. (2016). Gangstø et al. (2013) suggested a third order polynomial in τ as a good compromise

between flexibility and parameter uncertainty; the linear dependency on t was used in various previous studies (Kharin et al.,

2012; Kruschke et al., 2015; Sansom et al., 2016). A combination of both led to DeFoReSt as described in Pasternack et al.

(2018):

α(t,τ) =

3∑
l=0

(a2l + a(2l+1) t)τ
l , (10)160

β(t,τ) =

3∑
m=0

(b2m + b(2m+1) t)τ
m , (11)

γ(t,τ) =

2∑
n=0

(c2n + c(2n+1) t)τ
n . (12)

The ensemble inflation γ(t,τ) is, however, assumed to be quadratic at most. Pasternack et al. (2018) assumed that a higher

flexibility may not be necessary.

α(t,τ),β(t,τ) and γ(t,τ) are functions of t and τ , linear in the parameters al, bm and cn. The parameters are estimated by165

minimizing the average CRPS over the training period following Gneiting et al. (2005) using the associated scoring function

Γ(N (α(t,τ) +β(t,τ) µ̂(t,τ), exp(γ(t,τ) σ̂2(t,τ)),o) := CRPS =

1

k

k∑
j=1

√
exp(γ(t,τ)σ2

j )

{
Zj [2NSC

(Zj)− 1] + 2NSP
(Zj)−

1√
π

}
,

(13)
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where

Zj =
Oj − (α(t,τ) +β(t,τ) µ̂j(t,τ))√

exp(γ(t,τ) σ̂2
j (t,τ))

(14)

is the standardized forecast error for the jth forecast in the training data set. Optimization is carried out using the algorithm of170

Nelder and Mead (1965) as implemented in R (R Core Team, 2018).

Initial guesses for parameters need to be carefully chosen to avoid convergence into local minima of the cost function. Here,

we obtain initial guesses for al and bm from a standard linear model using the ensemble mean µ̂(t,τ) and polynomials of t and

τ as terms in the predictor according to Eqs. (7), (10) and (11).

Initial guesses for c0, c1 and c2 are all zero which yields unit inflation as ln(σ2
cal(t,τ)) = 0 leads to σ2

cal(t,τ) = 1. Conver-175

gence to the global minimum is facilitated, however, cannot be guaranteed.

An alternative to minimization of the CRPS is maximization of the likelihood. Here, CRPS grows linearly in the prediction

error, in contrast to the likelihood which grows quadratically (Gneiting et al., 2005). Thus a maximization of the likelihood is

more sensitive to outliers and extreme events (Weigend and Shi, 2000; Gneiting and Raftery, 2007). This implies a prediction

recalibrated using likelihood maximization is more likely to be underconfident than a prediction recalibrated using CRPS180

minimization (Gneiting et al., 2005).

We use cross-validation with a 10-year moving validation period as proposed by Pasternack et al. (2018) to ensure fair con-

ditions for assessing the benefit of DeFoReSt. This means, the parameters al, bm and cn needed for recalibrating one hindcast

experiment with 10 lead years (e.g. initialization 1963, forecasting years 1964 to 1973) are estimated via those hindcasts which

are initialized outside that period (e.g. here hindcasts initialized 1962; 1974; 1975,...). This procedure is repeated for every185

initialization year z ∈ {1960,1961,1962, . . . ,2010}. Fig. 2 shows an illustration of this setting.

3.2 Boosted recalibration and cross-validation

In Eq. 8, we followed Pasternack et al. (2018) with a multiplicative term γ(t,τ) to adjust the spread. From now on, we follow

the suggestion and notation from Messner et al. (2017) and include an additive term (γ(t,τ)) and multiplicative term (δ(t,τ)).

The model for the calibrated ensemble variance (Eq. (8)) changes to190

ln(σ2
Cal,boost(t,τ)) = γ(t,τ) + δ(t,τ) σ̂2(t,τ) . (15)

Note the change in definition for γ(t,τ)!

α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ) are modelled using a similar approach as in Eqs. 10–12 where we now use orthogonalized

polynomials to address for the lead time dependency of these corrections terms. In light of a model selection, this has the ad-

vantage that the individual predictors are uncorrelated. Moreover, for boosted recalibration we use orthogonalized polynomials195

of order 6 in lead time τ , assuming that this is sufficiently large to capture all features of lead time dependent drift (α(t,τ)),

7



conditional bias (β(t,τ)) and ensemble dispersion (γ(t,τ) and δ(t,τ)); the dependence on initialization time t is kept linear:

α(t,τ) =

6∑
l=0

(a2l + a(2l+1)t)Pl(τ) , (16)

β(t,τ) =

6∑
m=0

(b2m + b(2m+1)t)Pm(τ) , (17)

γ(t,τ) =

6∑
n=0

(c2n + c(2n+1)t)Pn(τ) , (18)200

δ(t,τ) =

6∑
p=0

(d2p + d(2p+1)t)Pp(τ) . (19)

Here, Pl(τ),Pm(τ),Pn(τ) and Pp(τ) are orthogonalized polynomials of order l,m,n and p, which are provided by the R-

function poly (R Core Team, 2018).

We apply boosting for non-homogeneous regression problems as proposed by Messner et al. (2017) for estimating al, bm,

cn and dp. The algorithm iteratively seeks the minimum of a loss function (negative log-likelihood or CRPS) by identifying205

and updating only the most relevant terms in the predictor.

This is realized with the R-package crch for non-homogeneous boosting (Messner et al., 2016, 2017) which uses a min-

imization of the negative log-likelihood by default instead of minimizing the CRPS. Judging from our experience, for the

problem at hand, the difference in using one or the other loss functions appears to be small.

The above mentioned effect of outliers and extremes on dispersivity described by Gneiting et al. (2005) should be rather210

small here, since annual aggregated values are recalibrated. Thus, we use the negative log-likelihood as cost function in the

following.

In each iteration, the negative partial derivatives

r =−∂l(µ,σ)

∂µ
; s=−∂l(µ,σ)

∂σ
, (20)

of the negative log-likelihood for a single observation y215

l(α+βµ,γ+ δσ;y) =− log

(
1

γ+ δσ
NSP

(
y−α−βµ
γ+ δσ

))
, (21)

is obtained. Where NSP
(·) is the PDF of the normal distribution, µ the ensemble mean and σ the ensemble standard de-

viation corresponding to the initialization time t and lead time τ of the observation y. Pearsons correlation coefficient be-

tween each predictor term (e.g., t or tτ2) and the partial derivatives r and s (Eq. (20)) estimated over every available

t ∈ {1961,1962,1963, . . . ,2010} and τ ∈ {1,2,3, . . . ,10} is used to identify and update the most influential term in the predic-220

tor. The parameter associated to the term with the highest correlation is updated by their correlation coefficient multiplied with

a predefined stepsize ν. Schmid and Hothorn (2008) showed that the choice of ν is only of minor importance and suggested

a value of 0.1. A smaller value for ν leads to an increase in precision in the updated coefficients at the expense of computing

time. This allows a more detailed analysis of the relative importance of predictor variables. ν = 0.05 turns out to be a reason-

able compromise between precision and computing time in this setting. A distinct feature of boosting for non-homogeneous225
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regression is, that both mean and standard deviation of a forecast distribution are taken into account, but for each iteration

step only one parameter (either associated to the mean µCal,boost or variance σCal,boost) is updated: the one leading to the

largest improvement of the cost function. Only those parameters associated to the most relevant predictor terms are updated;

parameters of less relevant terms remain zero. The algorithm is originally described in Messner et al. (2017); for reasons of

convenience we show with Fig. 3 a schematic flow chart of the boosting algorithm adopted to means of boosted recalibration.230

If the chosen iteration steps is small enough, a certain number of less relevant predictor terms have coefficients equal to

zero, which prevents the model from overfitting. A cross-validation (CV) approach is used to identify the iteration with the set

of parameter estimates with maximum predictive performance. Currently, CV is carried out after each boosting iteration. The

data is split into 5 parts, each part consist of approx. 10 years in order to reflect conditions of decadal prediction. For each part,

a recalibrated prediction is computed, with the model trained on the remaining 4 parts. Afterwards these 5 recalibrated parts235

are used to calculate the full negative log-likelihood. Here, the full negative log-likelihood results from summing Eq. (21) for

all available t and τ and the associated observations y. The iteration step with minimum negative log-likelihood is considered

best. We allow a maximum number of 500 iterations.

Analog to standard DeFoReSt, the previously described modelling procedure (boosting and CV for iteration selection) is

carried out in a cross-validation setting (second level of CV) for model validation. A 10-year moving validation period (see240

Sec. 3.1) leads to cross-validation. For example, to recalibrate the hindcast initialized 1963 including lead years 1964 to 1973,

all hindcasts which are not initialized within that period (e.g. t ∈ {1960,1974,1975,1976, . . . ,2010}) are used for boosting

DeFoReSt.

4 Calibrating toy model experiments

To assess the model selection approach for DeFoReSt we consider two toy model experiments with different potential pre-245

dictabilities to generate pseudo-forecasts, as introduced by Pasternack et al. (2018). They are designed as follows

1. the predictable signal is stronger than the unpredictable noise,

2. the predictable signal is weaker than the unpredictable noise.

These experiments are controlled by five further parameters:

η determines the ratio between the variance of the predictable signal and the variance of the unpredictable noise, it controls250

potential predictability, see Pasternack et al. (2018). We investigate two cases: η = 0.2 (low potential predictability) and

η = 0.8 (high potential predictability).

χ(t,τ ) specifies the unconditional bias added to the predictable signal,

ψ(t,τ ) specifies analogously the conditional bias, and

ω(t,τ ) specifies the conditional dispersion of the forecast ensemble.255
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ζ(t,τ ) controls analogously the unconditional dispersion and has not been used in Pasternack et al. (2018).

The coefficients for Bias (drift), conditional bias and effects in the ensemble dispersion are chosen such that they are close

to those obtained from calibrating Prototype surface temperature with HadCrut4 observations. Thus χ(t,τ),ψ(t,τ),ω(t,τ)

and ζ(t,τ) based on the same polynomial structure as used for the calibration parameters α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ)

(see (16) -(19)) (a detailed description of the toy model design is given in Appendix A). In the following, when we discuss260

the polynomial lead time dependency of the toy models systematic errors we refer to the polynomial order of α(t,τ), β(t,τ),

γ(t,τ) and δ(t,τ). Note that the corresponding polynomials are also orthogonalized as in (16) -(19).

For an assessment of the model selection approach, we are using seven different toy-model setups per value of η. Each

setup uses different orders of polynomial lead time dependency for imposing the above mentioned systematic deviations on

the predictable signal. One toy model setup is designed such that the corresponding systematic deviations could be perfectly265

addressed by DeFoReSt. Additionally, there are other setups with systematic deviations based on a lower/higher polynomial

order than what is used for DeFoReSt. Thus we compare pseudo-forecasts from setups which require model structures for

recalibration given in Tab. 1.

Setup α(t,τ) = β(t,τ) = γ(t,τ) = δ(t,τ) =

(a0 + a1t)P0(τ)+ ... (b0 + b1t)P0(τ)+ ... (c0 + c1t)P0(τ)+ ... (d0 + d1t)P0(τ)+ ...

1 (a2 + a3t)P1(τ) (b2 + b3t)P1(τ) (c2 + c3t)P1(τ) (d2 + d3t)P1(τ)

2 (a4 + a5t)P2(τ) (b4 + b5t)P2(τ) (c4 + c5t)P2(τ) (d4 + d5t)P2(τ)

3 (a6 + a7t)P3(τ) (b6 + b7t)P3(τ) (c6 + c7t)P3(τ) (d6 + d7t)P3(τ)

DeFoReSt
3∑

l=1

(a2l + a(2l+1)t)Pl(τ)
3∑

m=1

(b2m + b(2m+1)t)Pm(τ) γ(t,τ) = 0
2∑

p=1

(d2p + d(2p+1)t)Pp(τ)

4 (a8 + a9t)P4(τ) (b8 + b9t)P4(τ) (c8 + c9t)P4(τ) (d8 + d9t)P4(τ)

5 (a10 + a11t)P5(τ) (b10 + b11t)P5(τ) (c10 + c11t)P5(τ) (d10 + d11t)P5(τ)

6 (a12 + a13t)P6(τ) (b12 + b13t)P6(τ) (c12 + c13t)P6(τ) (d12 + d13t)P6(τ)

unconditional conditional unconditional conditional

bias bias dispersion dispersion
Table 1. Overview of the different toy model setups and the corresponding polynomial lead time dependencies.

As mentioned before, the functions χ(t,τ), ψ(t,τ), ζ(t,τ) and ω(t,τ) in the toy model experiments are based on the

parameters estimated for calibrating the MiKlip Prototype ensemble global mean surface temperature against HadCRUT4270

observations. Here, χ(t,τ), ψ(t,τ), ζ(t,τ) and ω(t,τ) are based on ratios of polynomials up to 3rd order w.r.t. lead time.

Based on our experience we assume that systematic errors with higher than 3rd order polynomials could not be detected

sufficiently well within the MiKlip Prototype experiments. Therefore, the coefficients for the 4th to 6th order polynomials are

deduced from the coefficient magnitude of the 1st to 3rd order polynomial. Here, it turns out that those coefficients associated
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with terms describing the lead time dependence exhibit roughly the same order of magnitude (see Fig. A1). Thus, we assume275

the coefficients associated to 4th to 6th order polynomials being of the same order of magnitude. An overview of the applied

coefficient values is given in Appendix A.

Analogously to the MiKlip experiment, the toy model uses 50 start years, each with 10 lead years, and 15 ensemble mem-

bers. The corresponding pseudo-observations run over a period of 59 years in order to cover lead year 10 of start year 50. The

corresponding imposed systematic errors for the unconditional and conditional bias (related to χ(t,τ) and ψ(t,τ)), uncondi-280

tional and conditional dispersion (related to ζ(t,τ) and ω(t,τ)) are shown exemplary for start year 1 and start year 50 in Figs. 4

and 5. Here, the effect of an increasing polynomial dependency in the lead time in the setups 1 to 6 can be seen in form of an

increased variability. For the DeFoReSt setup, the systematic error manifests itself as a superposition of setup 1 to 3 for χ(t,τ)

and ψ(t,τ) and of setup 1 to 2 for ω(t,τ) (ζ(t,τ) is equal zero for the DeFoReSt setup). Regarding the influence of the start

year this effect amplifies for χ(t,τ) and ζ(t,τ) with increasing start time and diminishes for χ(t,τ) and ω(t,τ) due to their285

inverse definition (see eqs. A10 and A12).

For each toy model setup we calculated the Ensemble Spread Score ESS, the Mean Squared Error MSE, time mean intra-

ensemble variance and the Continuous Ranked Probability Skill ScoreCRPSS of pseudo-forecasts recalibrated with boosting.

Reference for the skill-score are forecasts recalibrated with DeFoReSt. All scores have been calculated using cross-validation

with an annually moving calibration window with a width of 10 years (see Pasternack et al. (2018)).290

To ensure a certain consistency 1000 pseudo-forecasts are generated from the toy model and evaluated as described above.

The scores presented are all mean values over these 1000 experiments. In particular, to assess a significant improvement

of boosted recalibration over DeFoReSt w.r.t. CRPSS the 2.5% and 97.5% percentiles are also estimated from this 1000

experiments.

4.1 Toy model setup with high potential predictability (η = 0.8)295

Figs. 6a-c show theMSE for 7 different setups (see Sec. 4). Panel 6a shows the result without any post-processing (raw pseudo-

forecasts), panel 6b with DeFoReSt and panel 6c with boosted recalibration. Here, the performance of both post processing

methods is strongly superior to the raw pseudo-forecast output. As DeFoReSt uses third order polynomials in lead time to

capture conditional and unconditional biases, it performs equally well as the boosted calibration for the first four setups; for

setups using higher order polynomials boosted calibration is superior.300

Regarding the ESS (Figs. 6d-f) shows that the raw pseudo-forecasts are widely fluctuating between under- and overdisper-

siveness (ESS-values from 0.1 to 1.7), depending on the associated complexity of the imposed systematic errors (different

setups). Corresponding to this the post processed pseudo-forecasts are more reliable with ESS-values close to 1. The boosted

recalibration approach is superior to the recalibration with DeFoReSt for every lead year. The improvement is largest for setups

4-6, because DeFoReSt is limited to third order polynomials and cannot account for higher polynomial orders of these setups.305

The post-processing methods are further compared by calculating the time mean intra-ensemble variance (see Figs. 6g-i). For

every setup the intra-ensemble variance of the raw pseudo-forecasts is higher than the intra-ensemble variance of corresponding

post-processed forecasts. Comparing DeFoReSt with the boosted recalibration reveals that the sharpness of the first approach
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is larger for setups 1 to 3 and the ’DeFoReSt setup’, leading particularly for the first 3 setups to an overconfidence (see 6e).

However for setups 4 to 6 DeFoReSt exhibits a smaller sharpness, which still results in combination with the increased MSE310

(see 6b) to underdispersiveness.

A joint measure for sharpness and reliability is the CRPS and its skill-score, the CRPSS. Fig. 7 shows the CRPSS

of the different pseudo-forecasts with boosted recalibration, where pseudo-forecasts recalibrated with DeFoReSt are used

as reference, i.e. positive values imply that boosted recalibration is superior to DeFoReSt. Colored dots in Fig. 7 denote

significance in the sense that the 0.025 and 0.975 quantiles from the 1000 experiments do not include 0. Regarding setups 1315

to 3 and the ’DeFoReSt setup’, the CRPSS is neither significantly positive nor negative for all lead years. On the other hand,

for setups 4 to 6 the boosted recalibration outperforms the recalibration with DeFoReSt with values of the CRPSS between

0.1 and 0.4. Again, this is likely due to DeFoReSt assuming third order polynomials in lead time to capture conditional and

unconditional biases, second order for dispersion and therefore does not account for systemetic errors based on higher orders.

However, Fig. 7 suggests that boosted recalibration can account for systematic errors with various levels of complexities.320

4.2 Toy model setup with low potential predictability (η = 0.2)

Figs. 8a-c show the MSE of the different pseudo-forecasts for a toy model setup with a low potential predictability. One can

see that both post processing approaches lead to a strong improvement compared to the raw pseudo-forecasts; both approaches

work roughly equally well for all setups. Compared to the previous section (η = 0.8), the MSE of the pseudo-forecasts has

increased due to a smaller signal-to-noise-ratio.325

The ESS (see Fig. 8d-f), reveals that compared to the pseudo-forecasts with high predictability the raw simulations from

different toy models are underdispersive for almost all lead years (ESS-values smaller than 1). The pseudo-forecasts show

again an increased reliability after recalibration, with ESS-values close to 1. For every lead year, boosted recalibration is

superior to DeFoReSt; the latter leads to slightly overconfident recalibrated forecasts.

Figs. 8g-i show the time mean intra-ensemble variance of the raw and recalibrated pseudo-forecasts. For every setup the intra-330

ensemble variance of the different pseudo-forecasts has decreased due to recalibration (with and without boosting). Comparing

DeFoReSt with boosted recalibration reveals a smaller intra-ensemble variance for every setup, leading to an overconfidence

for every lead year as observed in Fig 8e.

In the low potential predictability setting (η = 0.2) the ensemble variance is larger as the total variance in the toy model is

constrained to one. Thus reducing η leads to an increase in ensemble spread.335

Fig. 9 shows the CRPSS of the pseudo-forecasts with boosted recalibration with DeFoReSt as reference. The low potential

predictability leads to a reduced CRPSS compared to the setting with η = 0.8. The improvement due to boosted recalibration

is also smaller. Only the first lead year of setups 4-6 is significantly different from zero. This suggests that the improvement

due to boosted recalibration decreases with a decreasing potential predictability of the forecasts.
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5 Calibrating decadal climate surface temperature forecasts340

While in Sec. 4 DeFoReSt and boosted recalibration were compared by the use of different toy model data, in this section these

two approaches will be applied to surface temperature of MiKlip Prototype runs with MPI-ESM-LR. Here, global mean and

spatial mean values over the North Atlantic subpolar gyre (60◦-10◦W, 50◦-65◦N) region will be analyzed.

We discuss which predictors are identified by boosted recalibration as most relevant and we compute the ESS, the MSE

the intra-ensemble variance and the CRPSS with respect to climatology for both recalibration approaches. The scores have345

been calculated for a period from 1960 to 2010. In this section, a 95% confidence interval was additionally calculated for these

metrics using a bootstrapping approach with 1000 replicates. For bootstrapping we randomly draw a new forecast-observation-

pair of dummy time series with replacement from the original validation period and calculate these scores again. This procedure

has been repeated 1000 times. Please note that we draw for each model a new forecast-observation-pair of dummy time series

to avoid that the metrics of these models are calculated on the basis of the same sample. Furthermore, all scores have been350

calculated using cross-validation with a yearly moving calibration window with a 10-year validation period (see Sec-3.1)

5.1 Global mean surface temperature

Fig. 10 shows the coefficients estimated by boosted recalibration for global mean surface temperature. The predictors are

standardized, i.e. larger coefficients imply larger relevance of the corresponding predictors for the recalibration. Model selection

is based on negative log-likelihood minimization in a cross-validation setup, as proposed by Pasternack et al. (2018). Thus for355

every training period different coefficients are obtained. The resulting distributions are represented in a box-and-whisker-plot,

which also allows an assessment of the variability in coefficient estimates.

Most relevant are the coefficients a0 and a1, associated with unconditional bias (a0) and the linear dependence on the start

year (a1). This is followed by b0 in the conditional bias. In general, coefficients associated with first and second order terms

in the lead time dependence (a2, a4, b2, b4) are dominating. Those coefficients describing the interaction between linear start360

year and first or second order lead year dependency (e.g., a3, b3, c3, b5, c5) have also been identified by the boosting algorithm

as relevant.

The recalibration of ensemble dispersion is mostly influenced by a linear start year dependence in the unconditional term

(c1) and in the conditional term d0. Higher terms are of minor relevance.

The performance of the ensemble mean of the raw forecast (black), recalibrated with DeFoReSt (blue) and with boosted365

recalibration is measured with the MSE shown in Fig. 11a. While a strong drift (lead-year dependence) influences the MSE

for the raw forecasts, both recalibrated variants exhibit a smaller and roughly constant MSE across all τ . This decrease in

MSE is a result of adjusting the unconditional and conditional bias (α(t,τ) and β(t,τ)).

Fig. 11b evaluates the ensemble spread and shows the ESS. The raw pseudo-forecast is underdispersive (ESS< 1) for all

lead years and needs recalibration. The recalibrated forecasts show an adequate ensemble spread in both cases (ESS close to370

1) for all lead years. Boosted recalibration (red) outperforms DeFoReSt which becomes slightly under-/overdispersive for the

first/last lead years. However, the differences in ESS between boosted recalibration and DeFoReSt are not significant.
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Fig. 11c shows the intra-ensemble variance (temporal average) across lead-years τ . The ensemble variances of the raw

forecast and DeFoReSt are roughly equal, while boosted recalibration adjust the ensemble variance.

Compared to raw and DeFoReSt, the intra-ensemble variance of boosted recalibration is larger for lead year 1 and smaller375

for lead years 3 to 10. Boosted recalibration is sufficiently flexible to adjust the ensemble variance to a value close to the MSE.

This consistent behaviour is roughly constant over lead years.

Although, boosted recalibration shows mostly a smaller ensemble variance (lead years 3-10) than DeFoReSt, both recalibra-

tion approaches are roughly equal when the performance is assessed with theCRPSS with climatological reference (Fig. 11d).

Thus, the different time mean intra-ensemble variances resulting from recalibration with and without boosting have a minor380

impact on the CRPSS.

Here, the CRPSS of both models is around 0.8 for all lead years w.r.t. climatological forecast. In contrast, the raw forecast

is inferior to the climatological forecast for most lead years, except lead years 3-6, where the raw forecast has positive skill,

which could be attributed to the fact that temperature anomalies are considered. This implies that the observations and the raw

forecast have the same mean value 0. This mean value seems to be crossed by the raw forecast mainly between lead 4 and 5.385

5.2 North Atlantic mean surface temperature

Fig. 12 shows the coefficients of the corresponding standardized predictors which were estimated using boosted recalibration

for North Atlantic surface temperature. Analogously to the global mean surface temperature, model selection is used within

a cross-validation setup and the resulting coefficient distributions are shown in a box-and-whisker-plot. Here, the terms for

the unconditional (ai) and conditional bias (bj) for the linear start year dependency (ai t and bj t) and the first polynomial390

order lead time dependency (aiP1(τ) and bj P1(τ)) are most relevant. Moreover, the linear interaction between lead time

and initialization time (a3 tP1(τ)) was identified as a relevant factor for the unconditional bias. Regarding the coefficients

corresponding to the unconditional (ck) and conditional (dl) ensemble dispersion, one can see that the linear start and lead year

dependencies (c1 t, c2P1(τ) and d1 t, d2P1(τ)), as well as the interaction (d3 tP1(τ)) between these two coefficients have the

most impact.395

Fig. 13a shows theMSE of the raw forecast (black), DeFoReSt and boosted recalibration, where both recalibrated forecasts

perform roughly equal. The raw forecast is inferior to both post processed forecast, mostly due to missing correction of uncon-

ditional and conditional biases. Compared to global mean temperature (Fig. 11a), MSE for the North Atlantic temperature is

generally larger. Thus potential predictability for the North Atlantic surface temperature is smaller than in the global case.

Regarding the reliability both recalibrated forecasts show also an ESS close to one for all lead years for the North Atlantic400

surface temperature (Fig. 13b), which is similar to the outcome of the global mean temperature (Fig. 11b). Again bossted

recalibration outperforms DeFoReSt, the latter becomes slightly underdispersive for later lead years. However, the differences

in ESS for both recalibration approaches are not significant. The raw forecast’s reliability is obviously inferior here, as it is

significantly underdispersive for lead years 1 to 3 and overdispersive for lead years 5 to 6.

The mentioned lower potential predictability for the North Atlantic manifests also in a 10-times larger ensemble variance,405

cf. Fig. 13c. Noteworthy is here, that due to the smaller potential predictability in this region, the ensemble variance of both
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recalibrated forecasts is similar across the lead time and different from the raw forecast. A lower predictability of the North

Atlantic surface temperature yields also a smaller CRPSS w.r.t. climatology for both recalibrated forecasts, Fig. 13d. Again,

both recalibrated forecasts perform roughly equal for all lead years and are also significantly to the raw forecast.

6 Conclusions410

Pasternack et al. (2018) proposed the recalibration strategy for decadal prediction (DeFoReSt) which adjusts non-homogeneous

regression (Gneiting et al., 2005) to problems of decadal predictions. Characteristic problems here are a lead time and initializa-

tion time dependency of unconditional, conditional biases and ensemble dispersion. DeFoReSt assumes third order polynomials

in lead time to capture conditional and unconditional biases, second order for dispersion, first order for initialization time de-

pendency. Although, Pasternack et al. (2018) show that DeFoReSt leads to an improvement of ensemble mean and probabilistic415

decadal predictions, it is not clear whether these polynomials with predefined orders are optimal. This calls for a model se-

lection approach to obtain a recalibration model as simple as possible and as complex as needed. We thus propose here not to

restrict orders a priori to such a low order but use a systematic model selection strategy to determine optimal model orders. We

use the non-homogeneous boosting strategy proposed by Messner et al. (2017) to identify the most relevant terms for recali-

bration. The recalibration approach with boosting (called boosted recalibration) starts with order six polynomials in lead time420

and first order in initialization time to account for the unconditional and conditional bias, as well as for ensemble dispersion.

Common parameter estimation and model selection approaches such as stepwise regression and LASSO are designed for

predictions of mean values. Non-homogeneous boosting jointly adjusts mean and variance and automatically selects the most

relevant input terms for post-processing ensemble predictions with non-homogeneous (i.e. varying variance) regression. Boost-

ing iteratively seeks the minimum of a cost function (here the log-likelihood) and updates only the one coefficient with the425

largest improvement of the fit; if the iteration is stopped before a convergence criterion is fulfilled those coefficients not con-

sidered until then are kept at zero. Thus, boosting is able to handle statistical models with a large number of variables.

We investigated boosted recalibration using toy model simulations with high (η = 0.8) and low potential predictability

(η = 0.2) and errors with different complexities in terms of polynomial orders in lead time were imposed. Boosted recalibration

is compared to DeFoReSt. The CRPSS, the ESS, the time mean intra-ensemble variance (a measure for sharpness) and the430

MSE assess the performance of the recalibration approaches. Scores are calculated with 10 year block-wise cross-validation

(Pasternack et al., 2018) and with 100 pseudo-forecasts for each toy model simulation.

Irrespective of the complexity of systematic errors and the potential predictability, both recalibration approaches lead to an

improved reliability with ESS close to one. Sharpness and MSE can also be improved with both recalibration approaches.

Given a high potential predictability (η = 0.8), boosted recalibration – although allowing for much more complex adjustment435

terms – performs euqal to DeFoReSt if systematic errors are less complex than a 3rd order polynomial in lead time, implied by

theCRPSS of the pseudo-forecasts recalibrated with boosted recalibration and DeFoReSt as reference. Moreover, a significant

improvement for almost all lead years can be observed if the complexity of systematic errors is larger than 3rd order order

polynomials in lead time. The gain w.r.t. DeFoReSt can hardly be observed for a low potential predictability (η = 0.2), as the
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CRPSS shows only for two lead years a significant improvement for the above mentioned complexities. This is due to a440

generally weaker predictable signal, and thus a weaker impact of systematic error terms in higher order of the polynomial. The

improvement due boosting increases with the imposed predictability. However, the presented toy model experiments suggest

the use of boosted recalibration due to higher flexibility without loss of skill.

Analogously to Pasternack et al. (2018), we recalibrated mean surface temperature of the MiKlip Prototype decadal climate

forecasts, spatially averaged over the North Atlantic subpolar gyre region and a global mean. Pronounced predictability for445

these cases has been identified by previous studies (e.g., Pohlmann et al., 2009; van Oldenborgh et al., 2010; Matei et al.,

2012; Mueller et al., 2012). Nonetheless, both regions are also affected by a strong model drift (Kröger et al., 2018). For the

global mean surface temperature, we could identify the linear start year dependency of the unconditional bias as a major factor.

Moreover, it turns out that polynomials of lead year dependencies with order greater than 2 are of minor relevance.

Regarding the probabilistic forecast skill (CRPSS), DeFoReSt and boosted recalibration perform roughly equally, implying450

that the polynomial structure of DeFoReSt, chosen originally from personal experience, turns out to be quite appropriate. Both

recalibration approaches are reliable and outperforming the climatological forecast with a CRPSS near 0.8. This in line with

the results from the toy model experiments which shows that DeFoReSt and boosted recalibration perform similar if systematic

errors are less complex than a 3rd order polynomial in lead time.

For the North Atlantic region, the linear start year and lead year dependencies of the unconditional and conditional biases455

show the largest relevance; also the linear interaction between lead time and initialization time of the unconditional bias has

a certain impact. The coefficients corresponding to the unconditional and conditional ensemble dispersion, show a minor

relevance compared to the errors related to the ensemble mean.

Also for the North Atlantic surface temperature both post-processing approaches are performing roughly equal; they are

reliable and superior to climatology w.r.t. CRPSS. However, the CRPSS for the North Atlantic case is generally smaller460

than for the global mean.

This study shows that boosted recalibration, i.e. recalibration model selection with nonhomogeneous boosting allows a

parametric decadal recalibration strategy with an increased flexibility to account for lead time dependent systematic errors.

However, while we increased the polynomial order to capture complex lead time dependent features, we still assumed a linear

dependency in initialization time. As this model selection approach reduces parameters by eliminating irrelevant terms, this465

opens up the possibility to increase flexibility (polynomial orders) also in terms related to the start year.

Based on simulations from a toy model and the MiKlip decadal climate forecast system we could demonstrate the benefit

of model selection with boosting (boosted recalibration) for recalibrating decadal predictions, as it decreases the number of

parameters to estimate without being inferior to the state-of-the-art recalibration approach DeFoReSt.

Code and data availability. The HadCRUT4 global temperature data set used in this study is freely accessible through the Climatic Re-470

search Unit at the University of East Anglia (http://www.cru.uea.ac.uk). The MiKlip Prototype data used for this paper are from the

BMBF-funded project MiKlip and are available on request. The post-processing, toy model and cross-validation algorithms are imple-
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mented using GNU licensed free software from the R Project for Statistical Computing (http://www.r-project.org) and can be found under

https://doi.org/10.5281/zenodo.3975758 (Pasternack et al., 2020).
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𝛾: adjusts ens. spread.𝛼: bias and drift. 𝛽: variability of  𝜇.

𝛾 𝑡, 𝜏𝛼 𝑡, 𝜏 𝛽 𝑡, 𝜏𝑋𝐶𝑎𝑙 = 𝒩( +  𝜇 𝑡, 𝜏 ,  𝜎 𝑡, 𝜏 2))exp(

Before recalibration

After recalibration with DeFoReSt

Figure 1. Schematic overview of the effect of DeFoReSt for an exemplary decadal toy model with ensemble mean (colored lines), ensemble

minimum/maximum (colored dotted lines) and associated pseudo-observations (black line). Note that different colors indicate different

initialization times. Before recalibration (top figure) the ensemble mean shows a lead time dependent mean or unconditional bias (drift)

which is tackled by α(t,τ). Moreover the ensemble mean µ̂ exhibits a conditional bias, i.e. that the variances of µ̂ and observations disagree.

This is tackled with β(t,τ). Decadal predictions can also be over- or underdispersive, i.e. that the ensemble spread over- or underestimates

the error between observations and ensemble mean. This example shows an overdispersive forecast. Within DeFoReSt the coefficient γ(t,τ)

accounts for the dispersiveness of the forecast ensemble. The bottom figure shows the exemplary decadal toy model after applying DeFoReSt

with the inherent corrections of lead and start time dependent unconditional bias, conditional bias and dispersion.
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Figure 2. addedSchematic overview of the cross-validation setting for a decadal climate prediction, initialized in 1964 (red dotted line). All

hindcasts which are initialized outside the prediction period are used as training data (black dotted lines). A hindcast which is initialized

inside the prediction period is not used for training (gray dotted lines).
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Initialize coefficients:
𝚲 = 𝟎 and 𝚵 = 𝟎

Compute negative partial derivatives of l(μ,σ) w.r.t. to μ and σ 
(see Eq. 20)

Find the predictor variable Xj with the highest correlation to r and Zk with the highest 

correlation to s:

𝑗∗ = argmax
𝑗

𝜌 Xj, 𝑟 and

𝑘∗ = argmax
𝑘

𝜌 Zk, s

Tentatively update coefficients:
𝚲∗ = 𝚲 and 𝚵∗ = 𝚵, with

Λ𝑗∗
∗ = Λ𝑗∗

∗ + 𝜈𝜌 X𝑗∗ , r and 

Ξ𝑘∗
∗ = Ξ𝑘∗

∗ + 𝜈𝜌 Z𝑘∗ , s

Set 𝚲 = 𝚲∗ Set 𝚵 = 𝚵∗

𝑖𝑓 𝑙 𝐗𝑇𝚲∗, 𝜎 < 𝑙(𝜇, 𝐙𝑇𝚵∗)

I < mstop
yes

Stop
no

Really update the coefficient that improves the current fit most.

Figure 3. Schematic flow chart for boosting algorithm proposed by (Messner et al., 2016). For the ensemble mean and the ensemble variance

we use the expressions µCal,boost(t,τ) = XT Λ and ln(σ2
Cal,boost)(t,τ) = ZT Ξ, where X = (1,X1,X2, ...)

T and Z = (1,Z1,Z2, ...)
T are

vectors of predictor terms and Λ = (a0, b0,a1, b1, ...) and Ξ = (c0,d0, c1,d1, ...) are vectors of the corresponding coefficients. Here, 0 is a

vector of zeros, mstop is the a predefined maximum number of boosting iteration steps I and ρ(Xj , r) as well as ρ(Zk,s) are the correlation

coefficients calculated by Xj × r and Zk × s over the respective training data.
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a) χ b) ψ

c) ζ d) ω

Figure 4. χ(t,τ) (a) and ψ(t,τ) (b) which are related to the uncondtional and conditional bias, as well as ζ(t,τ) (c) and ω(t,τ) (d) which are

related to the unconditional and conditional dispersion of the ensemble spread for the different toy model setups (colored lines) as a function

of lead year τ with respect to start year t= 1.

21



a) χ b) ψ

c) ζ d) ω

Figure 5. χ(t,τ) (a) and ψ(t,τ) (b) which are related to the uncondtional and conditional bias, as well as ζ(t,τ) (c) and ω(t,τ) (d) which are

related to the unconditional and conditional dispersion of the ensemble spread for the different toy model setups (colored lines) as a function

of lead year τ with respect to start year t= 50.
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a) raw b) DeFoReSt c) boosted recalibration

d) e) f)

g) h) i)

Figure 6. Mean squared error (MSE) of different toy model setups with high potential predictability (η = 0.8, colored lines). a) raw

pseudo-forecast, b) post-processing with DeFoReSt and c) post-processing with boosted recalibration. Analog to that order show d) to f) the

Ensemble spread score (ESS) and g) to i) the Intra-ensemble variance (temporal average).
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Figure 7. CRPSS of different toy model setups with high potential predictability (η = 0.8, colored lines) post-processed with boosted

recalibration. The associated toy model setups post-processed with DeFoReSt are used as reference for the skill-score. CRPSS larger zero

implies boosted recalibration performing better than DeFoReSt. Colored dots in Fig. 7 denote significance in the sense that the 0.025 and

0.975 quantiles from the 100 experiments do not include 0.
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a) raw b) DeFoReSt c) boosted recalibration

d) e) f)

g) h) i)

Figure 8. Mean squared error (MSE) of different toy model setups with high potential predictability (η = 0.2, colored lines). a) raw

pseudo-forecast, b) post-processing with DeFoReSt and c) post-processing with boosted recalibration. Analog to that order show d) to f) the

Ensemble spread score (ESS) and g) to i) the Intra-ensemble variance (temporal average).
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Figure 9. CRPSS of different toy model setups with low potential predictability (η = 0.2, colored lines) post-processed with boosted

recalibration. The associated toy model setups post-processed with DeFoReSt are used as reference for the skill-score. CRPSS larger zero

implies boosted recalibration performing better than DeFoReSt. Colored dots indicate lead years with either significant positive or negative

values based on a 95% confidence interval from bootstrapping (100 repititions).
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Figure 10. Coefficient estimates for recalibrating global mean 2m-Temperature of the MiKlip Prototype System. Colored boxes represent the

inter-quartile range (IQR) around the median (central, bold and black line) for coefficient estimates from the cross-validation setup; Whiskers

denote maximum 1.5IQR. Coefficients are grouped accorting to correcting unconditional bias (blue), conditional bias (red), unconditional

dispersion (orange) and conditional dispersion (green). Values refer to coefficients a0, b0, c0,d0, ...,a6, b6, c6,d6 and not to the product

between these coefficients and the corresponding predictors (e.g. a2P1(τ) refers to a2). Please note, the value c0 is around -2.5, but for a

better overview the vertical axis is limited to the values range between -1 and 1. Vertical dashed bars highlight coefficients related to lead

time dependent terms.
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a) b)

c) d)

Figure 11. a) MSE, b) Reliability, c) Ensemble Variance and d) CRPSS of global mean surface temperature without any correction (black

line), after recalibration with DeFoReSt (blue line) and boosted recalibration (red line). The CRPSS for the raw forecasts (black line) is for

lead year 1 smaller than -1 and therefore not shown. The vertical bars show the 95% confidence interval due 1000-wise bootstrapping.
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Figure 12. Identified coefficients for recalibrating the mean 2m-Temperature over the North Atlantic of prototype. Here, the coefficients are

grouped by correcting uncond. bias (blue bars), cond. bias (red bars), uncond. dispersion (orange bars) and cond. dispersion (green bars).

The coefficients are standardized, i.e. higher values implying a higher relevance. Values refer to coefficients a0, b0, c0,d0, ...,a6, b6, c6,d6

and not to the product between these coefficients and the corresponding predictors (e.g. a2P1(τ) refers to a2).
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a) b)

c) d)

Figure 13. a) MSE, b) Reliability, c) Ensemble Variance and d) CRPSS of surface temperature over the North Atlantic without any correction

(black line), after recalibration with DeFoReSt (blue line) and boosted recalibration (red line). The CRPSS for the raw forecasts (black line)

is for lead year 1 smaller than -1 and therefore not shown. The vertical bars show the 95% confidence interval due 1000-wise bootstrapping.

Appendix A: Toy model construction475

The toy model proposed by Pasternack et al. (2018) consists of pseudo-observations x(t+ τ) and associated ensemble predic-

tions, hereafter named pseudo-forecasts f(t,τ).
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Both are based on an arbitrary but predictable signal µx. Although almost identical to Pasternack et al. (2018), we quote the

construction of pseudo-observations in the following for purposes of overview.

The pseudo-observations x is the sum of this predictable signal µx and an unpredictable noise term εx,480

x(t+ τ) = µx(t+ τ) + εx(t+ τ) . (A1)

Following Kharin et al. (2012) µx can be interpreted as the atmospheric response to slowly varying and predictable boundary

conditions, while εx represents the unpredictable chaotic components of the observed dynamical system. µx and εx are assumed

to be stochastic Gaussian processes

µx(t+ τ)∼N (0,σ2
µx

) with σ2
µx

= η2 ≤ 1 (A2)485

and

εx(t+ τ)∼N (0,σ2
εx) with σ2

εx = 1− η2. (A3)

The variation of µx around a slowly varying climate signal can be interpreted as the predictable part of decadal variability, its

amplitude is given by the variance var(µx(t+τ)) = σ2
µx

. The total variance of the pseudo-observations is thus Var(x) = σ2
x =

σ2
µx

+σ2
εx . Here, the relation of the latter two is uniquely controlled by the parameter η ∈ [0,1], which can be interpreted as490

potential predictability (η2 = σ2
µx
/σ2

x).

In this toy model setup, the concrete form of this variability is not considered and thus taken as random. A potential climate

trend could be superimposed as a time varying mean µ(t) = E[x(t)]. As for the recalibration strategy only a difference in

trends is important, we use µ(t) = 0 and α(t,τ) addressing this difference in trends of forecast and observations.

The pseudo-forecast with ensemble members fi(t,τ) for observations x(t+ τ) is specified as:495

fi(t,τ) = µens(t,τ) + εi(t,τ) , (A4)

where µens(t,τ) is the ensemble mean and

εi(t,τ)∼N (0,σ2
ens(t,τ)) (A5)

is the deviation of ensemble member i from the ensemble mean; σ2
ens is the ensemble variance. In general, ensemble mean

and ensemble variance both can be dependent on lead time τ and initialization time t. We relate the ensemble mean µens(t,τ)500

to the predictable signal in the observations µx(t,τ) by assuming a) a systematic deviation characterized by an unconditional

bias χ(t,τ) (accounting also for a drift and difference in climate trends), a conditional bias ψ(t,τ) and b) a random deviation

ε(t,τ):

µens(t,τ) = χ(t,τ) +ψ(t,τ)(µx(t,τ) + εf (t,τ)) , (A6)

with εf (t,τ)∼N (0,σεf (t,τ)) being a random forecast error with variance σ2
εf

(t,τ)< σ2
εx . Although the variance of the505

random forecast error can in principle be dependent on lead time τ and initialization time t, we assume for simplicity a

constant variance σ2
εf

(t,τ) = σ2
εf

.
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In contrast to the original toy model design, proposed by Pasternack et al. (2018), we assume an ensemble dispersion related

to the variability of the unpredictable noise term εx with an unconditional and a conditional inflation factor (ζ(t,τ) and ω(t,τ))

510

σ2
ens(t,τ) = ζ(t,τ) +ω(t,τ)(σεx −σεf )2 . (A7)

According to Eq. A6 the forecast ensemble mean µens is simply a function of the predictable signal µx. In this toy model

formulation, an explicit formulation of µx is not required, hence a random signal might be used for simplicity and it would

be legitimate to assume E[µx] = µ(t+ τ) = 0 without restricting generality. Here, we propose a linear trend in time E[µx] =

µ(t+τ) =m0+m1 t to emphasize a typical problem encountered in decadal climate prediction: different trends in observations515

and predictions (Kruschke et al., 2015).

Given this setup, a choice of χ(t,τ)≡ 0, ψ(t,τ)≡ 1, ζ(t,τ)≡ 0 and ω(t,τ)≡ 1 would yield a perfectly calibrated ensemble

forecast:

f perf(t,τ)∼N (µx(t,τ),σ2
εx(t,τ)). (A8)

The ensemble mean µx(t,τ) of f perf(t,τ) is equal to the predictable signal of the pseudo-observations. The ensemble variance520

σ2
εx(t,τ) is equal to the variance of the unpredictable noise term representing the error between the ensemble mean of f perf(t,τ)

and the pseudo-observations. Hence, f perf(t,τ) is perfectly reliable.

As mentioned in 4 this toy model setup is controlled on the one hand by η characterizing the potential predictability and

on the other hand by χ(t,τ), ψ(t,τ), ζ(t,τ) and ω(t,τ), which control the unconditional and the conditional bias and the

dispersion of the ensemble spread.525

Here, χ(t,τ), ψ(t,τ), ζ(t,τ) and ω(t,τ) are obtained from α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ) as follows:

χ(t,τ) =−α(t,τ)

β(t,τ)
(A9)

ψ(t,τ) =
1

β(t,τ)
(A10)

ζ(t,τ) =−γ(t,τ)

δ(t,τ)
(A11)

ω(t,τ) =
1

δ(t,τ)
. (A12)530

The parameters χ(t,τ), ψ(t,τ), ζ(t,τ) and ω(t,τ) are defined such that a perfectly recalibrated toy model forecast fCal would

have the following form:

fCali (t,τ)∼N (α(t,τ) +β(t,τ)µens(t,τ),exp(γ(t,τ) + δ(t,τ)σens(t,τ)2)), (A13)

Applying the definitions of µens (Eq. A6) and σens (Eq. A7) leads to

fCali (t,τ)∼N (α(t,τ) +β(t,τ)(χ(t,τ) +ψ(t,τ)µx(t,τ)),(exp(γ(t,τ) + δ(t,τ)(ζ(t,τ) +ω(t,τ)σεx(t,τ))))2), (A14)535
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and applying the definitions of χ(t,τ), ψ(t,τ) and ω(t,τ) (Eqs. A9-A12) to (A14) would further lead to:

fCali (t,τ)∼N (α(t,τ)−β(t,τ)
α(t,τ)

β(t,τ)
+
β(t,τ)

β(t,τ)
µx(t,τ),

γ(t,τ)

γ(t,τ)
σ2
εx(t,τ)), (A15)

This shows that fCal is equal to the perfect toy model fPerf(t,τ) (A8) :

fCal(t,τ)∼N (µx(t,τ),σ2
εx(t,τ)). (A16)

This setting has the advantage that the perfect estimation of α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ) is already known prior to540

calibration with minimization of the logarithmic likelihood.

As described in 3.2, a 6th order polynomial approach was chosen for unconditional α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ),

yielding

α(t,τ) =

6∑
l=0

(a2l + a(2l+1)t)Pl(τ) , (A17)

β(t,τ) =

6∑
l=0

(b2l + b(2l+1)t)Pl(τ) , (A18)545

γ(t,τ) =

6∑
l=0

(c2l + c(2l+1)t)Pl(τ) , (A19)

δ(t,τ) =

6∑
l=0

(d2l + d(2l+1)t)Pl(τ) . (A20)

For the current toy model experiment, we exemplarily specify values for ai, bi, ci and di as obtained from calibrating the

MiKlip Prototype surface temperature over the North Atlantic against HadCRUT4 (Tobs):

E[Tobs]∼N (α(t,τ) +β(t,τ) f̄Prot(t,τ),exp(γ(t,τ) + δ(t,τ)σfProt(t,τ)2)), (A21)550

where f̄Prot and σfProt specifying the corresponding ensemble mean and ensemble spread. Here, χ(t,τ), ψ(t,τ), ζ(t,τ) and

ω(t,τ) are based on ratios of polynomials up to 3rd order w.r.t. lead time. Since systematic errors with higher than 3rd order

polynomials could not be detected sufficiently well within the MiKlip Prototype experiments we deduce the coefficients for

the 4th to 6th order polynomials from the coefficient magnitude of the 1st to 3rd order polynomial. Here, Fig. A1 shows the

coefficients which were obtained from calibrating the MiKlip Prototype global mean surface temperature with cross-validation555

(see Pasternack et al. (2018)), assuming a 3rd order polynomial dependency in lead years for α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ).

Those coefficients associated with terms describing the lead time dependence exhibit roughly the same order of magnitude .

Thus, we assume the coefficients associated to 4th to 6th order polynomials being of the same order of magnitude. The values

of the coefficients are given in Tab. A1.
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Figure A1. Coefficient estimates for recalibrating global mean 2m-Temperature of the MiKlip Prototype System with a third order polynomial

lead time time dependency for the unconditional and conditional bias ans dispersion. Here, non-homogeneous boosting is not applied and all

polynomials are orthogonalized, i.e. P1(τ),P2(τ),P3(τ) refers to the order of the corresponding polynomial. Colored boxes represent the

inter-quartile range (IQR) around the median (central, bold and black line) for coefficient estimates from the cross-validation setup; Whiskers

denote maximum 1.5IQR. Coefficients are grouped according to correcting unconditional bias (blue), conditional bias (red), unconditional

dispersion (orange) and conditional dispersion (green). Values refer to coefficients a0, b0, c0,d0, ...,a6, b6, c6,d6 and not to the product

between these coefficients and the corresponding predictors (e.g. a2P1(τ) refers to a2). Vertical dashed bars highlight coefficients related to

lead time dependent terms.

l=0 l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10 l=11 l=12 l=13

al -0.75 0.03 10.2 0.15 -1.54 -0.13 5.4 -0.08 -5 0.5 -5 0.5 -5 0.5

bl 0.67 -0.0004 0.35 -0.12 0.94 0.008 3.27 -0.028 5 -0.05 5 -0.05 5 -0.05

cl -0.79 0.03 9.62 0.18 -0.93 -0.16 5.74 -0.08 5 0.5 5 0.5 5 0.5

dl 6.4 0.004 -1.88 -1.19 16.8 0.03 35.8 -0.33 5 0.5 5 0.5 5 0.5
Table A1. Overview of the values for the coefficients al, bl, cl and dl.
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