
Answer to referee 1

Thank you very much for your informative and detailed comments.

General comments

"The manuscript builds on the post-processing procedure DeFoReSt proposed by Pasternack et al 2018 and presents a boosted
recalibration of decadal climate predictions. The manuscript describes a well thought approach on handling drift corrections5
and present it reasonable well for an statistical audience. The comparison between the boosted and the non-boosted calibration
is excessive and described well, but lacks hypothesis testing to determine the actual differences between the two approaches
outside of the argument that it is obvious.While further work is required on the general presentation to make it more accessible
to a wider audience, the authors might reconsider the choice of the journal, as the extreme focus on the statistical approach
might be more appropriate for NPG. In its current shape the manuscript needs a much better illustration what has been done10
and why it matters. Therefore, I recommend major revisions for the manuscript and would expect a rework of the figures and
potentially the structure of the arguments."

Specific points:

1. 18: "Significant advances could be achieved by recent progress in model development,data assimilation and climate
observation."→ has been made15

Answer: Will be corrected

2. 25: "unconditional, and conditional"→ unnecessary comma

Answer: Will be corrected

3. 37: "third/second"→ why third before second?

Answer: third before second because the ensemble mean is corrected via a 3rd order polynomial and the ensemble20
spread via a second order polynomial, which is described a few sentences before (31ff).

4. 47: "objective function": objective has a specific meaning in statistics (see Jeffrey’s prior) and would have to be individ-
ually proven. It is an unfortunate choice of word as it plays into the idea that statistics might be objective. As such, the
word objective should be omitted in the manuscript completely.

Answer: If the name "objective function" is misleading, we will change it to "cost function".25

5. 87: "For the sake of completeness and readability these are presented in this section again." - Unnecessary sentence

Answer: Will be deleted.

6. 124: By introducing the normal distribution with an calligraphic N and then use for the standard normal distribution
greek letters, it gets quite confusing. As such this part needs to be rewritten. I would suggest to introduce NS or similar
for the standard normal distribution. As the authors work beforehand with large letters for CDFs, I would recommend to30
use a consistent approach for the nomenclature. I am aware that the equation for the CRPS is shown in this way often in
statistical leaning literature, but as GMD is not such a journal I strongly recommend intuitive naming of variables.

Answer: We will replace the symbols Φ and ϕ for the CDF and PDF of the standard normal distribution with NSC
and

NSP
.

7. 138ff: I would strongly recommend a schematic on which basis the authors explain the mechanism of DeFoRFeSt.35
Equations are fine, but as they become extremely lengthy and hard to understand for the general reader (like eq. 13), they
need support and motivation.

Answer: We will add such a schematic to the manuscript.
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8. 185: Figure 1: name it consistent with Fig. 1 or rename all Figs to Figures.

Answer: Will be corrected.40

9. 202ff: The problem at this point is that the boosting algorithm forms an essential part for the understanding of the
manuscript. I would strongly recommend the design of a schematic to make clear what exactly is done in the boosting
process (apart from the equation, but the algorithmic strategy). This part of the manuscript needs effort to make it better
understandable for the wider audience, especially as the authors do not publish here for a statistical, but a general model
related audience.45

Answer: We will add a schematic flow chart describing the boosting algorithm analogously to Messner et al. 2017.

10. 202: "R-function poly" please make it a proper reference

Answer: Will be corrected.

11. 205: "R-package crch" please make it a proper reference

Answer: Will be corrected.50

12. 206: "http://cran.r-project.org/" should go into the references

Answer: Will be corrected.

13. 218: The way it is written the choice of nu requires a sensitivity test. So either it requires the motivation for choosing nu
= 0.05 to be rewritten, or a demonstration and discussion of its effect.

Answer: We will add a better motivation to the manuscript.55

14. 226: The description of the cross-validation is not sufficient. A CV requires the statement on how the non-training data
is afterwards evaluated (without taking into account the training data, otherwise it is not a CV but a Jackknife). The
authors point to equation 21, but it is just the basis for the validation (which is described in line 216 with the Pearson
correlation). So it would be required to state exactly what process is used for validation, which data is used for this step
and which exact metric is applied to make the statement on a validated result.60

Answer: We will add a more detailed description.

15. 238ff: Again the authors try in this section to explain everything by equations without explaining to the readers what
consequences each of the decisions made have. The authors talk about extreme toy model experiments (l. 238), but do
not state in what manner it is extreme. Then the authors introduce 5 parameters determining the experiments, but fail
apart from short descriptions (like (un)conditional bias) to explain the reader what this actually means (and yes I am65
aware that most will know what it means in the direct community, but I think the authors should make the effort to
explain it better as it builds a foundation of their argument). So I would recommend here to create a figure explaining
the consequences of each of the parameters to give the modelling community an entry point to follow the experiments
to find analogues between the toy model and the usually used GCMs or similar (this has been done in Pasternack et al.
2018, but perhaps a even more simplified/schematic version of Figure like Fig. 1 there will help). Giving the reader only70
an entry point by table 1 is not enough

Answer: We will add a more detailed description and two figures showing the effect of the imposed systematic errors
of the toy model. Moreover we will change the phrase ’...we consider two extreme toy model experiments...’ to ’...we
consider two toy model experiments with different potential predictabilities...’

16. 267ff: The authors show a very large figure with many elements in 4 main colours for the different parameters, but just75
spend three sentences without putting it in context and give the plot any meaning (e.g. comparison, interpretation apart
from first three coefficients vs. last three). As such either the plot has not more information, then it is doubtful whether
the plot has any use for the manuscript, or the many different whisker plots are important and it is not represented in the
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text. Just showing them is not enough, especially as later it is not referenced back to the figure when similar coefficient
plots are made.80

Answer: Showing this Fig. 2 is relevant for the toy model construction since it supports the decision to use the same
magnitude for the coefficients of the start and lead time dependent systematic errors. However, since it is not used for
any further evaluations we will put it to the appendix related to the table A1 which shows the final coefficients for the
toy model construction.

17. 281: Estimating the 0.025 and 0.975 percentile from just 100 experiments is not a good way to demonstrate significances.85
The authors should either choose more experiments or go to alpha = 10. Or the description is so misunderstandable that
in fact more than 100 values to estimate the percentiles are used. In that case the section has to be rewritten.

Answer: Indeed, using 100 experiments is not enough for calculating the 0.025 and 0.975 percentile. We will repeat that
with 1000 experiments and update the corresponding text passages and figures in the manuscript.

18. 283: (see 4) : What is referenced here?90

Answer: Will be corrected

19. 285ff: Is there a reason, why in the DeFoReSt mode close to all metrics from Fig 3-10 show a U-shape over the lead
years?

Answer: Regarding Figs. 3-10, particularly the ESS and the intra-ensemble variance omit a certain inverse U-shape.
The reason might be, that DeFoReSt tends to be more underdispersive for the first and last lead year due to the missing95
additive correction term for the ensemble spread.

20. 288: It is not explained why the uncertainties of the ESS are not visible (either small or not calculable).

Answer: We have decided not to show any uncertainties for the ESS, since we just wanted to show the general effect of
boosted recalibration and DeFoReSt and to ensure a better visibility.

21. 330ff: Two consecutive sentences start with "Here,".100

Answer: Will be corrected.

22. 334 Why is there a bootstrapping in this section but not in the section above?

Answer: Unlike Sec. 4 we evaluate in Sec. 5 the CRPSS also w.r.t. a raw model. Thus, we decided to apply a bootstrap-
ping approach to avoid any advantages of the post-processed models.

23. 334 Why is there a bootstrapping in this section but not in the section above?105

Answer: Unlike Sec. 4 we evaluate in Sec. 5 the CRPSS also w.r.t. a raw model. Thus, we decided to apply a bootstrap-
ping approach to avoid any advantages of the post-processed models.

24. 340ff: Why is there no comparison to the coefficients in Fig. 2?

Answer: The coefficients in Fig. 2 were used to derive the scale of the coefficients associated to 4th to 6th polynomials
for the pseudo-forecasts. Here, unlike Fig. 11 and 13 no model selection was applied, i.e. a comparison is not very110
reasonable.

25. 348: "have also some impact." This should be analysed with a significance test and statements made accordingly

Answer: We will change the statement "have also some impact" to "have also been identified by the boosting algorithm
as relevant".

26. 376: Are there significant differences between global and NA 2m-Temperature? Why is North Atlantic framed here as115
independent compared to the global and the comparison between those kept so short? It seems like it is written currently
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that one example would be sufficient. So why are the two not conclusively compared with each other in one section? So
could there be a different story apart from just showing the statistical model applied to data?

Answer: DeFoReSt and boosted recalibration have been developed within MiKlip project. Here, the NA as well as
the global 2m-temperature are the key variables within this project. Moreover these regions distinguish themselves by120
their potential predictability. Thus analog to the toy model experiments we show the mechanisms of theses recalibration
approaches to MiKlip predictions with smaller and higher potential predictability. Furthermore, regarding the different
identified predictor variables for the NA and global 2m-temperature (Figs. 11 and 13) one can see that other processes
are relevant due to a different spatial scale of these examples.

27. Fig3-5 should be combined in one figure with 9 panels125

Answer: Will be corrected.

28. Fig7-9 should be combined in one figure with 9 panels

Answer: Will be corrected.

29. Fig 6+10 potentially better to have them in one plot with 2 panels

Answer: We would like to keep these plots separate, since they are discussed in different sections. Thus, to ensure a130
better readability it may be better to show these figures separately.

30. Fig11: MiKlipl→MiKlip

Answer: Will be corrected

31. Fig12+14: Even when it is a stylistic choice: Why have the authors chosen a different colour-scheme compared to all the
other figures in this manuscript?135

Answer: We wanted to distinguish the toy model results optically from the results based on MiKlip data.

Answer to referee 2

Thank you very much for your informative and detailed comments.

1. General comments

"The authors present an extension to their previously introduced recalibration approach for decadal climate forecasts. The140
existing method is extended with a model selection approach using boosting to infer a parsimonious model from the data.
Strengths and limitations of this approach are tested using synthetic data and an application to global mean and North Atlantic
temperature forecasts is presented. While the boosting method presents a welcome addition to make the approach more gener-
ally useful across a diversity of applications (not limited to decadal forecasting) and therefore certainly merits publication, the
article lacks in a few key aspects detailed below. Therefore, I suggest to accept the article subject to major revisions."145

1.1 Interpretation of the results

"The authors focus on descriptive verification measures to discuss the results from boosted recalibration. In addition, I suggest
the authors expand the discussion of the inner workings of the method and the configuration that is identified as optimal with
boosting. From a methods perspective, I wonder if the boosted recalibration models are of lower complexity compared with
DeFoReSt (i.e. if boosting actually manages to efficiently constrain the number of parameters). Also, the selected models appear150
still quite complex given the limited data at hand to train these. Have you explored early stopping rules for the boosting approach
(generally skill improves rapidly in the first iterations and levels out afterwards, potentially another criterion for stopping
provides better generalization ability through reduced models)? From an application perspective, some more discussion on the
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identified nature of the error that is corrected with boosted recalibration would be useful, boosted recalibration is less effective
if the systematic error has very simple structure as appears to be the case here."155

Answer: The basic feature of the boosting algorithm is to allow a priori for a complex structure of the model used for
recalibration but use the complexity only as needed. Thus our procedure is able to adjust complexity according to the problem
at hand based on out-of-sample prediction error. This is realized by the automatic selection of the most relevant predictor
variables by iteratively updating the log-likelihood. For each iteration step only one coefficient (the one that improves the fit
most) is updated and thus complexity is successively increased. Here, the maximum number of iteration steps must be specified160
beforehand. However, if the chosen iteration step is small enough certain model coefficients are remaining zero. In order to find
the best performing model an adequate iteration step has to be identified (model selection step) using a cross-validation setup.
For this purpose we split the data into 5 parts and for each part, recalibrated predictions are computed from boosting model at
the corresponding iteration step that were fitted on the remaining 4 parts. Afterwards the log-likelihood over all 5 recalibrated
parts were summed up. This procedure is repeated for every iteration step. The iteration step with the lowest log-likelihood is165
considered as the one which provides the statistical model with the best predictive performance. Due to this procedure predictor
variables of the statistical model that are not relevant are remaining zero. This can be seen in Figs. 11 and 13 which demonstrate
which predictor variables are identified as relevant. Here, one can see that both for the North Atlantic as well as for the global
2m-temperature the complexity of boosted recalibration is around 15 identified predictor variables whereas DeFoReSt uses 22
predictor variables. We will add a schematic overview of the boosting algorithm and further explanation of the cross-validation170
approach to the manuscript.

1.2 Link between the toy-model experiments and the application

"The authors quite clearly demonstrate the strengths and limitation of the boosted recalibration compared with the reference
approach (DeFoReSt) using their toy model experiments. There is, however, no direct link drawn to the application of boosted
recalibration with global mean and North Atlantic surface temperature forecasts. In particular, I would like to know if the lack175
of improvement from boosted recalibration compared with DeFoReSt is consistent with the adjustments that are applied (e.g.
what errors are generally corrected)."

Answer: With the toy model experiments we show that boosted recalibration outperforms DeFoReSt, if the polynomial
order of the systematic errors goes beyond the restrictions of the DeFoReSt design. If that is not the case, both recalibration
methods perform equally. Regarding the global mean and North Atlantic surface temperature forecasts one can see in Figs. 11180
and 13 that boosted recalibration mostly identified predictor variables with a polynomial order smaller than 3. Thus, the fact
that DeFoReSt and boosted recalibration perform equally for recalibrating MiKlip temperature forecasts is in accordance to
the toy model results. We will emphasize the connection between toy model and temperature results more in the manuscript.

1.3 Significance assessment

"The significance assessment introduced on L280 does not reflect that the scores between DeFoReSt and boosted recalibration185
may be highly correlated due to the same forecast observation pairs being used. The 2.5-97.5% interval on the mean scores
therefore likely underestimates the significance of the results. Instead, I propose to use a Diebold-Mariano test or a t-test
on the score differences. I expect that using such a more powerful test would allow you to demonstrate e.g. that DeFoReSt
significantly outperforms boosted recalibration when the error dependency matches the assumptions in DeFoReSt at least for
short lead times."190

Answer: Actually, we do not expected that DeFoReSt outperforms boosted recalibration, because the systematic error in
the Miklip data is unknown and therefore does not have to be equal to the DeFoReSt-scenario. Boosted recalibration is able
to cover systematic errors up to the 6th polynomial order, which also includes the the DeFoReSt-scenario, but is more flexible
due to boosting. One can see in Fig. 11 and 13 that the identified polynomials do not go beyond the 3rd order, which is caught
by DeFoReSt just as well. To compare these two post-processing methods we applied a bootstrapping approach. Within the195
applied bootstrapping approach, we calculate the score 1000 times, each with a different sample (replacements are allowed)
from the original time series. The corresponding samples for the scores of DeFoReSt and boosted recalibration are not the
same, i.e. a correlation between these scores is avoided. However, if these scores would base each in the same sample a high
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correlation between those is possible and a Diebold-Mariano test or a t-test would be meaningful, indeed. We will point this
out more clearly in the manuscript.200

2. Minor comments

1. L72: 1.5◦and 40

Answer: Will be corrected.

2. L74: The full-field initialization

Answer: Will be corrected.205

3. L151-2: the punctuation is somewhat weird, maybe this could be changed: "...drift adjusted ensemble mean forecast (i.e.
a deterministic forecast without specific uncertainty quantification)."

Answer: Will be corrected.

4. L192-4: now is used three times

Answer: Will be corrected.210

5. L209: Maybe mention that you chose maximum likelihood in the following for better readability.

Answer: Will be corrected.

6. L310: toy model setup with low potential predictability

Answer: Will be corrected.

7. L314: The ESS (see Fig. 8a-c) reveals that215

Answer: Will be corrected.

8. L325: Typo? Shouldn’t this read “the low predictability leads to a increased CRPS” (not reduced CRPSS)?

Answer: Actually not. In a setup with low potential predictability the benefit of boosted recalibration over DeFoReSt is
smaller compared to a setup with high potential predictability. Thus the CRPSS is reduced.

9. L332: Repetition, use “We discuss...” instead220

Answer: Will be corrected.

10. L337: Typo. 10-year validation period

Answer: Will be corrected.

11. L368: What fraction of the skill is due to the (linear) trend in global mean surface temperature?

Answer: This is a very interesting question, indeed. It not possible to answer this briefly. We are currently working on225
a study where we use a recalibrated climatology as reference for the skill evaluation. The purpose is to analyze to what
extent the predictive skill of recalibrated decadal predictions is superior to a statistical model with the same statistical
properties as the applied recalibration strategy.

12. L402: Pasternack et al. (2018) show that

Answer: Will be corrected.230

13. L402: DeFoReSt leads to improved ensemble...or DeFoReSt leads to an improvement in ensemble...

Answer: Will be corrected.
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14. L409-: Long sentence. Maybe start with “Common parameter estimation and model selection approaches such as step-
wise regression and LASSO are designed for predictions of mean values. Non-homogeneous boosting jointly adjusts
mean and variance and automatically...regression.”235

Answer: Will be corrected.

15. L423: this is not supported by your figure. Boosted recalibration is not (significantly)superior to DeFoReSt if errors are
‘simple’ according to Figure 6.

Answer: Will be corrected.

16. L438: equally240

Answer: Will be corrected.

17. Figure 1: Why not show all the initialization times? The figure would be easily readable even with many more lines and
the alignment of the differently colored blocks may become more apparent.

Answer: We will replace that figure with an new one showing all initialization times.

18. Fig. 3-5 and 7-9: Consider combining figures 3-5 and 7-9 each into one multi-panel plot to avoid splitting the figures245
across pages in the final publication. Also, the information shown is somewhat redundant and I encourage the authors to
drop the sharpness plot for simplicity and for the following reasons: i) the sharpness of the raw model is of no use as it is
not calibrated, ii) qualitative statements about the sharpness in DeFoReSt and boosted calibration can easily be derived
from a visual comparison of the MSE and ESS plots. The legend should be shown only once for all 6 (9) panels of the
multi-panel plot and axes should be labelled only once per row / column. Finally, consider using a square-root (or log)250
transform on the y-axis to take away the focus from large differences with large scores.

Answer: Will be corrected. However, we still would like to keep the sharpness figures. Indeed one could derive the
sharpness from the ESS and the MSE but we think that is may be more convenient to have a visual impression of the
sharpness.

19. Fig. 4: there is indication of extra overconfidence at the beginning and end of the forecast with DeFoReSt (with setups255
1-3 and DeFoReSt). This appears to be an artefact of the method. Could you please discuss this?

Answer: Regarding the ESS of the raw model, one can see that for lead year 1 and 10 particularly the setups 1-3 are
strongly over- or underconfident. Thus we would explain the inverse U-shape of the pseudo-forecasts after recalibration
with DeFoReSt with the fact that DeFoReSt tends to be more underdispersive for the first and last lead year due to the
missing additive correction term for the ensemble spread. This example shows that boosted recalibration can account260
better for forecasts which are either strongly overdispersive or strongly underdispersive.

20. Fig. 6, 10: Excessive white space. Please adjust the y-axis to better focus on the available data.

Answer: Will be corrected.
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List of relevant changes made in the manuscript

1. Page 8, Lines 508 – 510: Added a better motivation for choosing ν = 0.05.265

2. Page 9, Lines 522 – 523: Added a more detailed description which clarifies that we apply a CV and not a Jack Knife
approach.

3. Page 11, Lines 570 – 576, Page 21-22: Added a more detailed description and two figures showing the effect of the
imposed systematic errors of the toy model.

4. Page 11, Lines 581 – 583, Page 23-26: We repeated the toy model experiment 1000 times. For the original manuscript270
the toy model experiments were repeated only 100 times.

5. Page 13, Lines 639 – 644: Added a more detailed description about the estimation of the 95% confidence interval.

6. Page 16, Lines 750-752: Added a description of the connection between toy model and temperature results.

7. Page 18: Added a schematic which describes mechanism of DeFoRFeSt.

8. Page 19: Extended the original figure, which demonstrates the CV mechanism, by all applied start years.275

9. Page 20: Added a flow chart which describes mechanism of the applied boosting approach.

10. Page 23 25: We combined Figs. 3-5 and Figs- 7-9 into one figure with 9 panels.

11. Page 34: This figure was moved to the appendix.

Minor changes (e.g., typing errors, etc.) are not listed here.
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Recalibrating Decadal Climate Predictions
–
What is an adequate model for the drift?
Alexander Pasternack1, Jens Grieger1, Henning W. Rust1, and Uwe Ulbrich1

1Institute of Meteorology, Freie Universität Berlin, Berlin, Germany

Correspondence: A. Pasternack (alexander.pasternack@met.fu-berlin.de)

Abstract. Near-term climate predictions such as decadal climate forecasts are increasingly being used to guide adaptation280

measures. To ensure the applicability of these probabilistic predictions, inherent systematic errors of the prediction system must

be corrected. In this context, decadal climate predictions have further characteristic features, such as the long time horizon, the

lead-time dependent systematic errors (drift) and the errors in the representation of long-term changes and variability. These

features are compounded by small ensemble sizes to describe forecast uncertainty and a relatively short period for which

typically pairs of re-forecasts and observations are available to estimate calibration parameters. With DeFoReSt (Decadal285

Climate Forecast Recalibration Strategy), Pasternack et al. (2018) proposed a parametric post-processing approach to tackle

these problems. The original approach of DeFoReSt assumes third order polynomials in lead time to capture conditional and

unconditional biases, second order for dispersion, first order for start time dependency. In this study, we propose not to restrict

orders a priori but use a systematic model selection strategy to obtain model orders from the data based on non-homogeneous

boosting. The introduced boosted recalibration estimates the coefficients of the statistical model, while the most relevant290

predictors are selected automatically by keeping the coefficients of the less important predictors to zero. Through toy model

simulations with differently constructed systematic errors, we show the advantages of boosted recalibration over DeFoReSt.

Finally, we apply boosted recalibration and DeFoReSt to decadal surface temperature forecasts from the MiKlip Prototype

system. We show that boosted recalibration performs equally well as DeFoReSt and yet offers a greater flexibility.

1 Introduction295

Decadal climate predictions focus on describing the climate variability for the coming years. Significant advances
:::
have

:::::
been

::::
madecould be achieved by recent progress in model development, data assimilation and climate observation. A need for up-to-

date and reliable short-term climate information for adaptation and planning accompanies this progress (e.g., Meredith et al.,

2018). In this context, international (e.g., DCPP and WCRP grand challenge) and national projects like the German initiative

Mittelfristige Klimaprognosen (MiKlip) have developed model systems to produce a skillful decadal ensemble climate predic-300

tion (Pohlmann et al., 2013a; Marotzke et al., 2016). Typically, climate predictions are framed probabilistically to address the

inherent uncertainties caused by imperfectly known initial conditions and model errors (Palmer et al., 2006).
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Despite the progress being made in decadal climate forecasting, such forecasts still suffer from considerable systematic

errors like unconditional, and conditional biases and ensemble over- or underdispersion. Those errors generally depend on

forecast lead-time since models tend to drift from the initial state towards its own climatology. Furthermore, there can be a305

dependency on initialization time when long term trends of the forecast system and observations differ (Kharin et al., 2012).

In this regard, Pasternack et al. (2018) proposed a Decadal Forecast Recalibration Strategy (DeFoReSt) which accounts for

the three above mentioned systematic errors. While DCPP recommends to calculate and adjust model bias for each lead time

separately to take the drift into account, Pasternack et al. (2018) uses a parametric approach to describe systematic errors as

a function of lead time. DeFoReSt uses third order polynomials in lead time to capture conditional and unconditional biases,310

second order for dispersion and a first order polynomial to model initialisation time dependency. Third order polynomials for

the drift have been suggested by Gangstø et al. (2013) and have later been used by Kruschke et al. (2015). Hence, DeFoReSt

is an extension of the drift correction approach proposed by Kruschke et al. (2015), accounting also for conditional bias and

adjusting the ensemble spread. The associated DeFoReSt parameters are estimated by minimization of the CRPS, analog to

the nonhomogeneous Gaussian regression approach by Gneiting et al. (2005).315

Although DeFoReSt with third/second order polynomials turned out in past applications to be beneficial for both, full field

initialized decadal predictions (Pasternack et al., 2018) and anomaly initialized counterparts (Paxian et al., 2018), as well as

decadal regional predictions (Feldmann et al., 2019), it is worthwhile challenging the a priori assumption by using a systematic

model selection strategy. In this context, full field initializations show larger drifts in comparison to anomaly initializations

even though drift of the latter is not negligible, particularly when taking initialization time dependency into account (Kruschke320

et al., 2015).

For post-processing of probabilistic forecasts with non-homogeneous Gaussian regression Messner et al. (2017) proposed

the non-homogeneous boosting to automatically select the most relevant predictors. Originally, boosting has been developed

for automatic statistical classification (Freund and Schapire, 1997), but has been used as well for statistical regression (e.g.

Friedman et al., 2000; Bühlmann and Yu, 2003; Bühlmann et al., 2007).325

Unlike other parameter estimation strategies based on iterative minimization of a
:::
cost

:::::::
functionobjective function by simul-

taneously updating the full set of parameters, boosting only updates one parameter at a time; the one that leads to the largest

decrease in the
:::
cost

:::::::
functionobjective function. As all parameters are initialized to zero, those parameters corresponding to

terms which do not lead to a considerable decrease in the
:::
cost

::::::::
functionobjective function – hence are not relevant – will not

be updated and thus will not differ from zero; the associated term has thus no influence in the predictor. Here, we extend the330

underlying non-homogeneous regression model of DeFoReSt to higher order polynomials and use boosting for parameter esti-

mation. Additionally, cross-validation identifies the optimal number of boosting iteration and serves thus for model selection.

The resulting boosted non-homogeneous regression model is hereafter named boosted recalibration.

A toy model producing synthetic decadal forecasts-observation pairs is used to study the effect of using higher order polyno-

mials and boosting on recalibration. Moreover, we compare boosted recalibration and DeFoReSt to recalibrate forecasts from335

the MiKlip decadal prediction system.
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The paper is organized as follows: Sec. 2 introduces the MiKlip decadal climate prediction system and the corresponding

reference data used, Sec. 3 describes the decadal forecast recalibration strategy DeFoReSt and introduces boosted recalibration,

an extension to higher order polynomials, parameter estimation with non-homogeneous boosting and cross validation for model

selection. A toy model developed in Sec. 4 is the basis for assessing recalibration with boosted recalibration and DeFoReSt.340

The subsequent Section 5 uses both approaches to recalibrate decadal surface temperature predictions from the MiKlip system.

Analogously to Pasternack et al. (2018), we assess the forecast skill of global mean surface temperature and temperature over

the North Atlantic subpolar gyre region (60◦-10◦W, 50◦-65◦N). The latter has been identified as a key region for decadal

climate predictions (e.g. Pohlmann et al., 2009; van Oldenborgh et al., 2010; Matei et al., 2012; Mueller et al., 2012). Section 6

closes with a discussion.345

2 Data and methods

2.1 Decadal climate forecasts

Basis for this study are retrospective forecasts (hereafter called hindcast) of surface temperature from the Max-Planck-Institute

Earth System Model in a low-resolution configuration (MPI-ESM-LR). The atmospheric component of the coupled model is

ECHAM6 at a horizontal resolution of T63 with 47 vertical levels up to 0.01 hPa (Stevens et al., 2013). The ocean component350

is MPIOM with a nominal resolution of 1.5◦. and 40 vertical levels (Jungclaus et al., 2013). This setup together with a full-field

initialization of the atmosphere with ERA40 (Uppala et al., 2005) and ERA-Interim (Dee et al., 2011), as well as a full-field

initialization of the Ocean with the GECCO2 reanalysis (Köhl, 2015) is called the MiKlip Prototype System.
:::
TheThis full-field

initialization nudges the full atmospheric or oceanic fields from the corresponding reanalysis to the MPI-ESM, not just the

anomalies. A detailed description of the Prototype system is given in Kröger et al. (2018). In the following, we use a hindcast355

set from the MiKlip Prototype System with 50 hindcasts, each with 10 ensemble members integrated for 10 years started every

year in the period 1961 to 2010.

2.2 Reference data

The Met-Office’s Hadley Centre and the Climatic Research Unit at the University of East Anglia produced HadCRUT4 (Morice

et al., 2012), an observational product used here as a reference to verify the decadal hindcasts. The historical surface tempera-360

ture anomalies with respect to the reference period 1961-1990 are available on a global 5◦-by-5◦ grid on a monthly basis since

January 1850. HadCRUt4 is a composite of the CRUTEM4 (Jones et al., 2012) land-surface air temperature dataset and the

HadSST3 (Brohan et al., 2006) sea-surface temperature (SST) dataset.

2.3 Assessing reliability and sharpness

To assess the performance of boosted recalibration w.r.t. DeFoReSt, we use the same metrics as in Pasternack et al. (2018). For365

the sake of completeness and readability these are presented in this section again.
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Calibration or reliability refers to the statistical consistency between the forecast
:::::::::
probability

:::::::::::
distributions PDFs and the

verifying observations. Hence, it is a joint property of the predictions and the observations. A forecast is reliable if forecast

probabilities correspond to observed frequencies on average. Alternatively, a necessary condition for forecasts to be reliable is

given if the time mean intra-ensemble variance equals the mean squared error (MSE) between ensemble mean and observation370

(Palmer et al., 2006).

A common tool to evaluate the reliability and therefore the effect of a recalibration is the rank histogram or Talagrand

diagram which were separately proposed by Anderson (1996); Talagrand et al. (1997); Hamill and Colucci (1997). For a

detailed understanding, the rank histogram has to be evaluated by visual inspection. Analog to Pasternack et al. (2018), we

use the Ensemble Spread Score (ESS) as a summarizing measure. The ESS is the ratio between the time mean intra-ensemble375

variance σ̄2 and the mean squared error between ensemble mean and observation, MSE(µ,y) (Palmer et al., 2006; Keller and

Hense, 2011):

ESS =
σ̄2

MSE(µ,y)
, (1)

with

σ̄2 =
1

k

k∑
j=1

σ2
j , (2)380

and

MSE(µ,y) =
1

k

k∑
j=1

(yj −µj)2. (3)

Here, σ2
j ,µj and yj are the ensemble variance, the ensemble mean and the corresponding observation at time step j, with

j = 1, ...,k, where k is the number time steps.

Following Palmer et al. (2006), ESS = 1 indicates perfect reliability. The forecast is overconfident when ESS < 1, i.e., the385

ensemble spread underestimates forecast error. If the ensemble spread is greater than the model error (ESS > 1), the forecast

is overdispersive and the forecast spread overestimates forecast error. To better understand the components of the ESS, we

also analyze the mean squared error MSE of the forecast separately.

Sharpness, on the other hand, refers to the concentration or spread of a probabilistic forecast and is a property of the

forecast only. A forecast is sharp, when it is taking a risk, i.e., when it is frequently different from the climatology. The390

smaller the forecast spread, the sharper the forecast. Sharpness is indicative of forecast performance for calibrated and thus

reliable forecasts, as forecast uncertainty reduces with increasing sharpness (subject to calibration). To assess sharpness, we

use properties of the width of prediction intervals as in Gneiting and Raftery (2007). Analog to Pasternack et al. (2018), we use

the time mean intra-ensemble variance σ̄2 to asses the prediction width.

Scoring rules, like the Continuous Ranked Probability Score (CRPS), assign numerical scores to probabilistic forecasts395

and form attractive summary measures of predictive performance, since they address reliability and sharpness simultaneously

(Gneiting et al., 2005; Gneiting and Raftery, 2007; Gneiting and Katzfusss, 2014).
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Given, F is the predictive cumulative
:::::::::
probability distribution function (CDF) and

::
Fo is

::::::
denotes the

:::::::::
Heavyside

:::::::
function

:::
for

::
the

::::::::
verifying

:::::::::::
observations

:
o
::::
with

:::::::::
Fo(y) = 1

:::
for

:::::
y > o

:::
and

:::::::::
Fo(y) = 0

::::::::
otherwise verifying observation, the CRPS is defined as

CRPS(F,o) =

∞∫
−∞

(F (y)−F0(y))2dy. (4)400

where F0(y) is the Heaviside function and takes the values 0 or 1 if y is less than or greater equal than the observed value o.

Under the assumption that the predictive distribution F CDF is a normal distribution with mean µ and variance σ2 Gneiting

et al. (2005) showed that (4) can be written as

CRPS(F
:
N (µ,σ2),o) =

σ

{
o−µ
σ

[2NSC
:::

Φ

(
o−µ
σ

)
− 1] + 2NSP

:::
ϕ

(
o−µ
σ

)
− 1√

π

}
,

(5)

where
:::::
NSC

(·)Φ(·) and
::::::
NSP

(·)ϕ(·) denote the
:::::::::
probability

::::::::::
distribution

:::::::
function

::::::
(CDF) CDF and the PDF

::::::::
probability

:::::::
density405

:::::::
function

:::::
(PDF), respectively, of the standard normal distribution. The CRPS is negatively oriented. A lower CRPS indicates

more accurate forecasts; a CRPS of zero denotes a perfect (deterministic) forecast.

The Continuous Ranked Probability Skill Score (CRPSS) is, as the name implies, the corresponding skill score.
:::
It’s

::::
skill

::::
score

::::::::::
(CRPSS) A skill score relates the accuracy of the prediction system to the accuracy of a reference prediction (e.g.,

climatology). Thus, with
::::::
hindcast

::::::
scores a given CRPSF for the hindcast distribution and

::::::::
reference

:::::
scoresa given CRPSR410

for the reference distribution the CRPSS can be defined as

CRPSS = 1− CRPSF
CRPSR

. (6)

Positive values of the CRPSS imply that the prediction system outperforms the reference prediction. Furthermore, this skill

score is unbounded for negative values (because hindcasts can be arbitrarily bad) but bounded by 1 for a perfect forecast.

3 Model selection for DeFoReSt415

We first review the decadal climate forecast recalibration strategy (DeFoReSt) proposed by Pasternack et al. (2018) and illustrate

subsequently how a modelling strategy based on boosting and cross validation leads to an optimal selection of polynomial

orders in the non-homogeneous regression model used for recalibration.

3.1 Review of DeFoReSt

DeFoReSt assumes normality for the recalibrated predictive probability distribution function PDF fCal(X; t,τ) for a pre-420

dicted parameter
::::::
variable X for each initialization time t ∈ {1961,1962,1963, . . . ,2010} and lead time τ ∈ {1,2,3, . . . ,10}.

fCal(X; t,τ) thus describes the recalibrated forecast
::::
PDF uncertainty of a given parameter

:::::::
variable

::
XX ∼ fCal(X; t,τ) or –

expressed in terms of the ensemble – fCal(X; t,τ) the distribution of the recalibrated ensemble members around the recali-

brated ensemble mean as a function of initialization time t and forecast lead-year τ . Mean µCal(t,τ) and variance σ2
Cal(t,τ) of
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the recalibrated
:::
PDFdistribution fCal(X; t,τ) are now modelled as linear functions of the ensemble mean µ̂(t,τ) and ensemble425

variance σ̂2(t,τ) as

µCal(t,τ) = α(t,τ) +β(t,τ) µ̂(t,τ) (7)

ln(σ2
Cal(t,τ)) = γ(t,τ) σ̂2(t,τ). (8)

Note, different from Pasternack et al. (2018), the logarithm in Eq. (8) ensures positiv recalibrated variance σ2
Cal(t,τ) irrespec-

tively of the value of γ. Hence, the recalibrated parameter XCal is now
::::::::
conceived

::
as

:
a
:::::::
random

:::::::
variabledistributed according to430

XCal(t,τ)∼N (α(t,τ) +β(t,τ) µ̂(t,τ),exp(γ(t,τ)σ̂2(t,τ))). (9)

α(t,τ) accounts for the (unconditional) bias depending on lead year (i.e., the drift). Similarly, β(t,τ) accounts for the condi-

tional bias. Thus, the expectation of the recalibrated variable E(XCal(t,τ)) = α(t,τ) +β(t,τ) µ̂(t,τ) can be conceived as a

conditional and unconditional bias and
::::
drift

:::::::
adjusted

::::::::
ensemble

::::
mean

::::::::
forecast.drift adjusted ensemble mean (or "deterministic";435

we call a deterministic forecast a forecast without specifying uncertainty.) forecast. Moreover, DeFoReSt assumes that the en-

semble spread σ(t,τ) is sufficiently well related to the forecast uncertainty such that adequate adjustment can be realized by

multiplying γ(t,τ).
::::
Fig.

:
1
::::::
shows

:
a
:::::::::
schematic

:::::
which

::::::
shows

:::
the

:::::::::::
mechanisms

::
of

:::::::::
DeFoReSt

:::
for

::
an

:::::::::
exemplary

:::::::
decadal

:::::::
forecast

:::::
which

:::::::
exhibits

:
a
::::
lead

:::
and

::::
start

::::
time

:::::::::
dependent

::::::::::::
unconditional

::::
bias,

:::::::::
conditional

::::
bias

:::
and

::::::::::
dispersion.

The functional forms of α(t,τ), β(t,τ) and γ(t,τ) are motivated from Gangstø et al. (2013), Kharin et al. (2012), Kruschke440

et al. (2015), and Sansom et al. (2016). Gangstø et al. (2013) suggested a third order polynomial in τ as a good compromise

between flexibility and parameter uncertainty; the linear dependency on t was used in various previous studies (Kharin et al.,

2012; Kruschke et al., 2015; Sansom et al., 2016). A combination of both led to DeFoReSt as described in Pasternack et al.

(2018):

α(t,τ) =

3∑
l=0

(a2l + a(2l+1) t)τ
l , (10)445

β(t,τ) =

3∑
m=0

(b2m + b(2m+1) t)τ
m , (11)

γ(t,τ) =

2∑
n=0

(c2n + c(2n+1) t)τ
n . (12)

The ensemble inflation γ(t,τ) is, however, assumed to be quadratic at most. Pasternack et al. (2018) assumed that a higher

flexibility may not be necessary.

α(t,τ),β(t,τ) and γ(t,τ) are functions of t and τ , linear in the parameters al, bm and cn. The parameters are estimated by450

minimizing the average CRPS over the training period following Gneiting et al. (2005) using the associated scoring function

Γ(N (α(t,τ) +β(t,τ) µ̂(t,τ), exp(γ(t,τ) σ̂2(t,τ)),o) := CRPS =

1

k

k∑
j=1

√
exp(γ(t,τ)σ2

j )

{
Zj [2NSC

:::
Φ(Zj)− 1] + 2NSP

:::
ϕ(Zj)−

1√
π

}
,

(13)
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where

Zj =
Oj − (α(t,τ) +β(t,τ) µ̂j(t,τ))√

exp(γ(t,τ)2 σ̂2
j (t,τ))

(14)

is the standardized forecast error for the jth forecast in the training data set. Optimization is carried out using the algorithm of455

Nelder and Mead (1965) as implemented in R (R Core Team, 2018).

Initial guesses for parameters need to be carefully chosen to avoid convergence into local minima of the
::::
cost

:::::::
functionobjective

function. Here, we obtain initial guesses for al and bm from a standard linear model using the ensemble mean µ̂(t,τ) and poly-

nomials of t and τ as terms in the predictor according to Eqs. (7), (10) and (11). Initial guesses for c0, c1 and c2 are all

zero which yields unit inflation as ln(σ2
cal(t,τ)) = 0 leads to σ2

cal(t,τ) = 1. Convergence to the global minimum is facilitated,460

however, cannot be guaranteed.

An alternative to minimization of the CRPS is maximization of the likelihood. Here, CRPS grows linearly in the prediction

error, in contrast to the likelihood which grows quadratically (Gneiting et al., 2005). Thus a maximization of the likelihood is

more sensitive to outliers and extreme events (Weigend and Shi, 2000; Gneiting and Raftery, 2007). This implies a prediction

recalibrated using likelihood maximization is more likely to be underconfident than a prediction recalibrated using CRPS465

minimization (Gneiting et al., 2005).

We use cross-validation with a 10-year moving validation period as proposed by Pasternack et al. (2018) to ensure fair con-

ditions for assessing the benefit of DeFoReSt. This means, the parameters al, bm and cn needed for recalibrating one hindcast

experiment with 10 lead years (e.g. initialization 1963, forecasting years 1964 to 1973) are estimated via those hindcasts which

are initialized outside that period (e.g. here hindcasts initialized 1962; 1974; 1975,...). This procedure is repeated for every470

initialization year z ∈ {1960,1961,1962, . . . ,2010}.
:::
Fig.Figure. 2 shows an illustration of this setting.

3.2 Boosted recalibration and cross-validation

In Eq. 8, we followed Pasternack et al. (2018) with a multiplicative term γ(t,τ) to adjust the spread. From now on, we follow

the suggestion and notation from Messner et al. (2017) and include an additive term (γ(t,τ)) and multiplicative term (δ(t,τ)).

The model for the calibrated ensemble variance (Eq. (8)) changes to475

ln(σ2
Cal,boost(t,τ)) = γ(t,τ) + δ(t,τ) σ̂2(t,τ) . (15)

Note the change in definition for γ(t,τ)!

α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ) are modelled using a similar approach as in Eqs. 10–12 where we now use orthogonalized

polynomials to address for the lead time dependency of these corrections terms. In light of a model selection, this has the ad-

vantage that the individual predictors are now uncorrelated. Moreover,
:::
for

:::::::::::::::::
boosted recalibration

:::
wewe now use orthogonalized480

polynomials of order 6 in lead time τ , assuming that this is sufficiently large to capture all features of lead time dependent drift

(α(t,τ)), conditional bias (β(t,τ)) and ensemble dispersion (γ(t,τ) and δ(t,τ)); the dependence on initialization time t is kept
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linear:

α(t,τ) =

6∑
l=0

(a2l + a(2l+1)t)Pl(τ) , (16)

β(t,τ) =

6∑
m=0

(b2m + b(2m+1)t)Pm(τ) , (17)485

γ(t,τ) =

6∑
n=0

(c2n + c(2n+1)t)Pn(τ) , (18)

δ(t,τ) =

6∑
p=0

(d2p + d(2p+1)t)Pp(τ) . (19)

Here, Pl(τ),Pm(τ),Pn(τ) and Pp(τ) are orthogonalized polynomials of order l,m,n and p, which are provided by the R-

function poly
:::::::::::::::::
(R Core Team, 2018).

We apply boosting for non-homogeneous regression problems as proposed by Messner et al. (2017) for estimating al, bm, cn490

and dp. The algorithm iteratively seeks the minimum of a loss function (negative log-likelihood or CRPS) by identifying and

updating only the most relevant terms in the predictor. This is realized with the R-package crch for non-homogeneous boosting

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Messner et al., 2016, 2017) available from http://cran.r-project.org/ (CRAN) which uses a minimization of the negative log-

likelihood by default instead of minimizing the CRPS. Judging from our experience, for the problem at hand, the difference in

using one or the other loss functions appears to be small. The above mentioned effect of outliers and extremes on dispersivity495

described by Gneiting et al. (2005) should be rather small here, since annual aggregated values are recalibrated.
:::::
Thus,

:::
we

:::
use

::
the

::::::::
negative

:::::::::::
log-likelihood

:::
as

:::
cost

:::::::
function

:::
in

::
the

:::::::::
following.

In each iteration, the negative partial derivatives

r =−∂l(µ,σ)

∂µ
; s=−∂l(µ,σ)

∂σ
, (20)

of the negative log-likelihood for a single observation y500

l(α+βµ,γ+ δσ;y) =− log

(
1

γ+ δσ
NSP
:::

ϕ

(
y−α+βµ

γ+ δσ

))
, (21)

is obtained. Where
:::
NSP

ϕφ is the
::::
PDFprobability density function of the normal distribution, µ the ensemble mean and σ the

ensemble standard deviation corresponding to the initialization time t and lead time τ of the observation y. Pearsons correlation

coefficient between each predictor term (e.g., t or tτ2) and the partial derivatives r and s (Eq. (20)) estimated over every

available t ∈ {1961,1962,1963, . . . ,2010} and τ ∈ {1,2,3, . . . ,10} is used to identify and update the most influential term505

in the predictor. The parameter associated to the term with the highest correlation is updated by their correlation coefficient

multiplied with a predefined stepsize ν. Schmid and Hothorn (2008) showed that the choice of ν is only of minor importance

and suggested a value of 0.1.
:
A
:::::::
smaller

::::
value

:::
for

::
ν
:::::
leads

::
to

::
an

:::::::
increase

::
in

::::::::
precision

::
in

:::
the

:::::::
updated

::::::::::
coefficients

::
at

:::
the

:::::::
expense

::
of

:::::::::
computing

::::
time.

:::::
This

:::::
allows

::
a
:::::
more

::::::
detailed

::::::::
analysis

::
of

:::
the

::::::
relative

::::::::::
importance

::
of

::::::::
predictor

::::::::
variables.

::::::::
ν = 0.05

:::::
turns

:::
out

::
to

::
be

::
a

:::::::::
reasonable

::::::::::
compromise

:::::::
between

::::::::
precision

::::
and

:::::::::
computing

::::
time

::
in
::::
this

::::::
setting.Nonetheless, from personal experience510

8
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we use ν = 0.05, which turns out to be more appropriate for our study. A distinct feature of boosting for non-homogeneous

regression is, that both mean and standard deviation of a forecast distribution are taken into account, but for each iteration step

only one parameter (either associated to the mean µCal,boost or variance σCal,boost) is updated: the one leading to the largest

improvement of the
:::
cost

::::::::
functionobjective function. Only those parameters associated to the most relevant predictor terms are

updated; parameters of less relevant terms remain zero. The algorithm is described in more detail in Messner et al. (2017).
:::
The515

::::::::
algorithm

::
is

::::::::
originally

::::::::
described

:::
in

::::::::::::::::::
Messner et al. (2017);

:::
for

::::::
reasons

:::
of

::::::::::
convenience

:::
we

:::::
show

::::
with

::::
Fig.

:
3
::

a
:::::::::
schematic

::::
flow

::::
chart

::
of

:::
the

:::::::
boosting

:::::::::
algorithm

:::::::
adopted

::
to

:::::
means

::
of

:::::::::::::::::::
boosted recalibration.

:
If
:::

the
:::::::

chosen
:::::::
iteration

:::::
steps

::
is

:::::
small

:::::::
enough,

:
a
::::::

certain
:::::::

number
:::
of

:::
less

:::::::
relevant

::::::::
predictor

:::::
terms

:::::
have

:::::::::
coefficients

:::::
equal

:::
to

::::
zero,

:::::
which

::::::::
prevents

::
the

::::::
model

::::
from

::::::::::
overfitting. A cross-validation (CV) approach is used to identify the iteration with the set

of parameter estimates with maximum predictive performance. Currently, CV is carried out after each boosting iteration. The520

data is split into 5 parts, each part consist of approx. 10 years in order to reflect conditions of decadal prediction. For each part,

a recalibrated prediction is computed, with the model trained on the remaining 4 parts.
:::::::::
Afterwards

:::::
these

:
5
::::::::::
recalibrated

:::::
parts

::
are

:::::
used

::
to

:::::::
calculate

:::
the

::::
full

:::::::
negative

::::::::::::
log-likelihood.

:::::
Here, the full negative log-likelihood results from summing Eq. (21) for

all available t and τ and the associated observations y. The iteration step with minimum negative log-likelihood is considered

best. We allow a maximum number of 500 iterations.525

Analog to standard DeFoReSt, the previously described modelling procedure (boosting and CV for iteration selection) is

carried out in a cross-validation setting (second level of CV) for model validation. A 10-year moving validation period (see

Sec. 3.1) leads to cross-validation. For example, to recalibrate the hindcast initialized 1963 including lead years 1964 to 1973,

all hindcasts which are not initialized within that period (e.g. t ∈ {1960,1974,1975,1976, . . . ,2010}) are used for boosting

DeFoReSt.530

4 Calibrating toy model experiments

To assess the model selection approach for DeFoReSt
:::
we

:::::::
consider

:::
two

:::
toy

:::::
model

:::::::::::
experiments

:::
with

::::::::
different

:::::::
potential

::::::::::::
predictabilitieswe

consider two extreme toy model experiments to generate pseudo-forecasts, as introduced by Pasternack et al. (2018). They are

designed as follows

1. the predictable signal is stronger than the unpredictable noise,535

2. the predictable signal is weaker than the unpredictable noise.

These experiments are controlled by five further parameters:

η determines the ratio between the variance of the predictable signal and the variance of the unpredictable noise, it controls

potential predictability, see Pasternack et al. (2018). We investigate two cases: η = 0.2 (low potential predictability) and

η = 0.8 (high potential predictability).540

χ(t,τ ) specifies the unconditional bias added to the predictable signal,
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ψ(t,τ ) specifies analogously the conditional bias, and

ω(t,τ ) specifies the conditional dispersion of the forecast ensemble.

ζ(t,τ ) controls analogously the unconditional dispersion and has not been used in Pasternack et al. (2018).

The coefficients for Bias (drift), conditional bias and effects in the ensemble dispersion are
:::::
chosen

::::
such

::::
that

::::
they

:::
are

:::::
close

::
to545

::::
those

:::::::
obtained

:::::
from calculated by calibrating Prototype surface temperature data with HadCrut4 observations. Thus χ(t,τ),ψ(t,τ),ω(t,τ)

and ζ(t,τ) based on the same polynomial structure as used for the calibration parameters α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ)

(see (16) -(19)) (a detailed description of the toy model design is given in Appendix A). In the following, when we discuss

the polynomial lead time dependency of the toy models systematic errors we refer to the polynomial order of α(t,τ), β(t,τ),

γ(t,τ) and δ(t,τ). Note that the corresponding polynomials are also orthogonalized as in (16) -(19).550

For an assessment of the model selection approach, we are using seven different toy-model setups per value of η. Each

setup uses different orders of polynomial lead time dependency for imposing the above mentioned systematic deviations on

the predictable signal. One toy model setup is designed such that the corresponding systematic deviations could be perfectly

addressed by DeFoReSt. Additionally, there are other setups with systematic deviations based on a lower/higher polynomial

order than what is used for DeFoReSt. Thus we compare pseudo-forecasts from setups which require model structures for555

recalibration given in Tab. 1.

Setup α(t,τ) = β(t,τ) = γ(t,τ) = δ(t,τ) =

(a0 + a1t)P0(τ)+ ... (b0 + b1t)P0(τ)+ ... (c0 + c1t)P0(τ)+ ... (d0 + d1t)P0(τ)+ ...

1 (a2 + a3t)P1(τ) (b2 + b3t)P1(τ) (c2 + c3t)P1(τ) (d2 + d3t)P1(τ)

2 (a4 + a5t)P2(τ) (b4 + b5t)P2(τ) (c4 + c5t)P2(τ) (d4 + d5t)P2(τ)

3 (a6 + a7t)P3(τ) (b6 + b7t)P3(τ) (c6 + c7t)P3(τ) (d6 + d7t)P3(τ)

DeFoReSt
3∑

l=1

(a2l + a(2l+1)t)Pl(τ)
3∑

m=1

(b2m + b(2m+1)t)Pm(τ) γ(t,τ) = 0
2∑

p=1

(d2p + d(2p+1)t)Pp(τ)

4 (a8 + a9t)P4(τ) (b8 + b9t)P4(τ) (c8 + c9t)P4(τ) (d8 + d9t)P4(τ)

5 (a10 + a11t)P5(τ) (b10 + b11t)P5(τ) (c10 + c11t)P5(τ) (d10 + d11t)P5(τ)

6 (a12 + a13t)P6(τ) (b12 + b13t)P6(τ) (c12 + c13t)P6(τ) (d12 + d13t)P6(τ)

unconditional conditional unconditional conditional

bias bias dispersion dispersion
Table 1. Overview of the different toy model setups and the corresponding polynomial lead time dependencies.

As mentioned before, the functions χ(t,τ), ψ(t,τ), ζ(t,τ) and ω(t,τ) in the toy model experiments are based on the

parameters estimated for calibrating the MiKlip Prototype ensemble global mean surface temperature against HadCRUT4

observations. Here, χ(t,τ), ψ(t,τ), ζ(t,τ) and ω(t,τ) are based on ratios of polynomials up to 3rd order w.r.t. lead time. Based
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on our experience we assume that systematic errors with higher than 3rd order polynomials could not be detected sufficiently560

well within the MiKlip Prototype experiments. Therefore, the coefficients for the 4th to 6th order polynomials are deduced

from the coefficient magnitude of the 1st to 3rd order polynomial. Here, Fig. A1 shows the coefficients which were obtained

from calibrating the MiKlip Prototype global mean surface temperature with cross-validation (see Pasternack et al. (2018)),

assuming a 3rd order polynomial dependency in lead years for α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ).
::::
Here,

::
it

:::::
turns

:::
out

:::
that

::
t

Those coefficients associated with terms describing the lead time dependence exhibit roughly the same order of magnitude
:::
(see565

:::
Fig.

::::
A1). Thus, we assume the coefficients associated to 4th to 6th order polynomials being of the same order of magnitude.

An overview of the applied coefficient values is given in Appendix A.

Analogously to the MiKlip experiment, the toy model uses 50 start years, each with 10 lead years, and 15 ensemble mem-

bers. The corresponding pseudo-observations run over a period of 59 years in order to cover lead year 10 of start year 50.

:::
The

::::::::::::
corresponding

::::::::
imposed

:::::::::
systematic

::::::
errors

:::
for

:::
the

::::::::::::
unconditional

::::
and

::::::::::
conditional

::::
bias

:::::::
(related

::
to

::::::
χ(t,τ)

::::
and

::::::::
ψ(t,τ)),570

:::::::::::
unconditional

::::
and

:::::::::
conditional

:::::::::
dispersion

:::::::
(related

::
to

::::::
ζ(t,τ)

:::
and

:::::::
ω(t,τ))

:::
are

::::::
shown

:::::::::
exemplary

:::
for

::::
start

::::
year

::
1
::::
and

::::
start

::::
year

::
50

::
in

::::
Figs.

::
4
:::
and

::
5.

:::::
Here,

:::
the

:::::
effect

::
of

:::
an

::::::::
increasing

::::::::::
polynomial

::::::::::
dependency

::
in

:::
the

::::
lead

::::
time

::
in

:::
the

:::::
setups

::
1

::
to

:
6
:::
can

:::
be

::::
seen

::
in

::::
form

::
of

:::
an

::::::::
increased

:::::::::
variability.

:::
For

:::
the

:::::::::
DeFoReSt

:::::
setup,

:::
the

:::::::::
systematic

::::
error

:::::::::
manifests

::::
itself

::
as

::
a
:::::::::::
superposition

::
of

:::::
setup

::
1

::
to

:
3
:::
for

::::::
χ(t,τ)

:::
and

::::::
ψ(t,τ)

::::
and

::
of

:::::
setup

:
1
::
to

::
2

:::
for

::::::
ω(t,τ)

::::::
(ζ(t,τ)

::
is

:::::
equal

::::
zero

:::
for

:::
the

::::::::
DeFoReSt

::::::
setup).

:::::::::
Regarding

:::
the

::::::::
influence

::
of

:::
the

:::
start

::::
year

::::
this

:::::
effect

::::::::
amplifies

::
for

::::::
χ(t,τ)

::::
and

:::::
ζ(t,τ)

::::
with

:::::::::
increasing

::::
start

::::
time

:::
and

:::::::::
diminishes

:::
for

::::::
χ(t,τ)

:::
and

::::::
ω(t,τ)

::::
due575

::
to

::::
their

::::::
inverse

::::::::
definition

::::
(see

:::
eqs.

::::
A10

::::
and

:::::
A12).

For each toy model setup we calculated the Ensemble Spread Score ESS, the Mean Squared Error MSE, time mean intra-

ensemble variance and the Continuous Ranked Probability Skill Score CRPSS of pseudo-forecasts recalibrated with boosting.

Reference for the skill-score are forecasts recalibrated with DeFoReSt. All scores have been calculated using cross-validation

with an annually moving calibration window with a width of 10 years (see Pasternack et al. (2018)).580

To ensure a certain consistency 100
:
0 pseudo-forecasts are generated from the toy model and evaluated as described above.

The scores presented are all mean values over these 100
:
0 experiments. In particular, to assess a significant improvement

of boosted recalibration over DeFoReSt w.r.t. CRPSS the 2.5% and 97.5% percentiles are also estimated from this 100
:
0

experiments.

4.1 Toy model
::::
setup with high potential predictability (η = 0.8)585

Figs. 6a-c show theMSE for 7 different setups (see Sec. 4). Panel 6a shows the result without any post-processing (raw pseudo-

forecasts), panel 6b with DeFoReSt and panel 6c with boosted recalibration. Here, the performance of both post processing

methods is strongly superior to the raw pseudo-forecast output. As DeFoReSt uses third order polynomials in lead time to

capture conditional and unconditional biases, it performs equally well as the boosted calibration for the first four setups; for

setups using higher order polynomials boosted calibration is superior.590

Regarding the ESS (Figs. 6d-f) shows that the raw pseudo-forecasts are widely fluctuating between under- and overdis-

persiveness (ESS-values from 0.1 to 1.7), depending on the
::::::::
associatedcorresponding complexity of the imposed systematic

errors (different setups). Corresponding to this the post processed pseudo-forecasts are more reliable with ESS-values close to
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1. The boosted recalibration approach is superior to the recalibration with DeFoReSt for every lead year. The improvement is

largest for setups 4-6, because DeFoReSt is limited to third order polynomials and cannot account for higher polynomial orders595

of these setups.

The post-processing methods are further compared by calculating the time mean intra-ensemble variance (see Figs. 6g-i). For

every setup the intra-ensemble variance of the raw pseudo-forecasts is higher than the intra-ensemble variance of corresponding

post-processed forecasts. Comparing DeFoReSt with the boosted recalibration reveals that the sharpness of the first approach

is larger for setups 1 to 3 and the ’DeFoReSt setup’, leading particularly for the first 3 setups to an overconfidence (see 6e).600

However for setups 4 to 6 DeFoReSt exhibits a smaller sharpness, which still results in combination with the increased MSE

(see 6b) to underdispersiveness.

A joint measure for sharpness and reliability is the CRPS and its skill-score, the CRPSS. Fig. 7 shows the CRPSS

of the different pseudo-forecasts with boosted recalibration, where pseudo-forecasts recalibrated with DeFoReSt are used

as reference, i.e. positive values imply that boosted recalibration is superior to DeFoReSt. Colored dots in Fig. 7 denote605

significance in the sense that the 0.025 and 0.975 quantiles from the 100
:
0 experiments do not include 0. Regarding setups 1 to

3 and the ’DeFoReSt setup’, the CRPSS is neither significantly positive nor negative for all lead years, except lead year 1 of

setup 3. On the other hand, for setups 4 to 6 the boosted recalibration outperforms the recalibration with DeFoReSt with values

of the CRPSS between 0.1 and 0.4. Again, this is likely due to DeFoReSt assuming third order polynomials in lead time to

capture conditional and unconditional biases, second order for dispersion and therefore does not account for systemetic errors610

based on higher orders. However, Fig. 7 suggests that boosted recalibration can account for systematic errors with various

levels of complexities.

4.2 Toy model
::::
setup with low potential predictability (η = 0.2)

Figs. 8a-c show the MSE of the different pseudo-forecasts for a toy model setup with a low potential predictability. One can

see that both post processing approaches lead to a strong improvement compared to the raw pseudo-forecasts; both approaches615

work roughly equally well for all setups. Compared to the previous section (η = 0.8), the MSE of the pseudo-forecasts has

increased due to a smaller signal-to-noise-ratio.

:
TRegarding the ESS (see Fig. 8d-f), reveals that compared to the pseudo-forecasts with high predictability the raw simula-

tions from different toy models are underdispersive for almost all lead years (ESS-values smaller than 1). The pseudo-forecasts

show again an increased reliability after recalibration, with ESS-values close to 1. For every lead year, boosted recalibration620

is superior to DeFoReSt; the latter leads to slightly overconfident recalibrated forecasts.

Figs. 8g-i show the time mean intra-ensemble variance of the raw and recalibrated pseudo-forecasts. For every setup the intra-

ensemble variance of the different pseudo-forecasts has decreased due to recalibration (with and without boosting). Comparing

DeFoReSt with boosted recalibration reveals a smaller intra-ensemble variance for every setup, leading to an overconfidence

for every lead year as observed in Fig 8e.625

In the low potential predictability setting (η = 0.2) the ensemble variance is larger as the total variance in the toy model is

constrained to one. Thus reducing η leads to an increase in ensemble spread.
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Fig. 9 shows the CRPSS of the pseudo-forecasts with boosted recalibration with DeFoReSt as reference. The low potential

predictability leads to a reduced CRPSS compared to the setting with η = 0.8. The improvement due to boosted recalibra-

tion is also smaller. Only the first two lead years of setups 4-6
:
isare significantly different from zero. This suggests that the630

improvement due to boosted recalibration decreases with a decreasing potential predictability of the forecasts.

5 Calibrating decadal climate surface temperature forecasts

While in Sec. 4 DeFoReSt and boosted recalibration were compared by the use of different toy model data, in this section these

two approaches will be applied to surface temperature of MiKlip Prototype runs with MPI-ESM-LR. Here, global mean and

spatial mean values over the North Atlantic subpolar gyre (60◦-10◦W, 50◦-65◦N) region will be analyzed.635

::
WHere, we discuss which predictors are identified by boosted recalibration as most relevant and we compute the ESS,

the MSE the intra-ensemble variance and the CRPSS with respect to climatology for both recalibration approaches. The

scores have been calculated for a period from 1960 to 2010. In this section, a 95% confidence interval was additionally

calculated for these metrics using a bootstrapping approach with 1000 replicates. For bootstrapping we
::::::::
randomly draw a new

:::::::::::::::::
forecast-observation-pair of dummy time series with replacement from the original validation period and calculate these scores640

again. This procedure has been repeated 1000 times.
:::::
Please

::::
note

:::
that

:::
we

::::
draw

:::
for

::::
each

::::::
model

:
a
::::
new

::::::::::::::::::::::::::::::::::::::
forecast-observation-pair

::
of

::::::
dummy

::::
time

::::::
series

::
to

:::::
avoid

:::
that

:::
the

:::::::
metrics

::
of

:::::
these

::::::
models

:::
are

:::::::::
calculated

::
on

:::
the

:::::
basis

::
of

:::
the

:::::
same

:::::::
sample. Furthermore,

all scores have been calculated using cross-validation with a yearly moving calibration window with a
::::::
10-year

:::::::::
validation

:::::
periodwidth of 10 years (see Sec-3.1)

5.1 Global mean surface temperature645

Fig. 10 shows the coefficients estimated by boosted recalibration for global mean surface temperature. The predictors are

standardized, i.e. larger coefficients imply larger relevance of the corresponding predictors for the recalibration. Model selection

is based on negative log-likelihood minimization in a cross-validation setup, as proposed by Pasternack et al. (2018). Thus for

every training period different coefficients are obtained. The resulting distributions are represented in a box-and-whisker-plot,

which also allows an assessment of the variability in coefficient estimates.650

Most relevant are the coefficients a0 and a1, associated with unconditional bias (a0) and the linear dependence on the start

year (a1). This is followed by b0 in the conditional bias. In general, coefficients associated with first and second order terms

in the lead time dependence (a2, a4, b2, b4) are dominating. Those coefficients describing the interaction between linear start

year and first or second order lead year dependency (e.g., a3, b3, c3, b5, c5)
::::
have

:::
also

:::::
been

::::::::
identified

::
by

:::
the

:::::::
boosting

:::::::::
algorithm

::
as

:::::::
relevanthave also some impact.655

The recalibration of ensemble dispersion is mostly influenced by a linear start year dependence in the unconditional term

(c1) and in the conditional term d0. Higher terms are of minor relevance.

The performance of the ensemble mean of the raw forecast (black), recalibrated with DeFoReSt (blue) and with boosted

recalibration is measured with the MSE shown in Fig. 11a. While a strong drift (lead-year dependence) influences the MSE
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for the raw forecasts, both recalibrated variants exhibit a smaller and roughly constant MSE across all τ . This decrease in660

MSE is a result of adjusting the unconditional and conditional bias (α(t,τ) and β(t,τ)).

Fig. 11b evaluates the ensemble spread and shows the ESS. The raw pseudo-forecast is underdispersive (ESS< 1) for all

lead years and needs recalibration. The recalibrated forecasts show an adequate ensemble spread in both cases (ESS close to

1) for all lead years. Boosted recalibration (red) outperforms DeFoReSt which becomes slightly under-/overdispersive for the

first/last lead years. However, the differences in ESS between boosted recalibration and DeFoReSt are not significant.665

Fig. 11c shows the intra-ensemble variance (temporal average) across lead-years τ . The ensemble variances of the raw

forecast and DeFoReSt are roughly equal, while boosted recalibration adjust the ensemble variance.

Compared to raw and DeFoReSt, the intra-ensemble variance of boosted recalibration is larger for lead year 1 and smaller

for lead years 3 to 10. Boosted recalibration is sufficiently flexible to adjust the ensemble variance to a value close to the MSE.

This consistent behaviour is roughly constant over lead years.670

Although, boosted recalibration shows mostly a smaller ensemble variance (lead years 3-10) than DeFoReSt, both recalibra-

tion approaches are roughly equal when the performance is assessed with theCRPSS with climatological reference (Fig. 11d).

Thus, the different time mean intra-ensemble variances resulting from recalibration with and without boosting have a minor

impact on the CRPSS.

Here, the CRPSS of both models is around 0.8 for all lead years w.r.t. climatological forecast. In contrast, the raw forecast675

is inferior to the climatological forecast for most lead years, except lead years 3-6, where the raw forecast has positive skill,

which could be attributed to the fact that temperature anomalies are considered. This implies that the observations and the raw

forecast have the same mean value 0. This mean value seems to be crossed by the raw forecast mainly between lead 4 and 5.

5.2 North Atlantic mean surface temperature

Fig. 12 shows the coefficients of the corresponding standardized predictors which were estimated using boosted recalibration680

for North Atlantic surface temperature. Analogously to the global mean surface temperature, model selection is used within

a cross-validation setup and the resulting coefficient distributions are shown in a box-and-whisker-plot. Here, the terms for

the unconditional (ai) and conditional bias (bj) for the linear start year dependency (ai t and bj t) and the first polynomial

order lead time dependency (aiP1(τ) and bj P1(τ)) are most relevant. Moreover, the linear interaction between lead time

and initialization time (a3 tP1(τ)) was identified as a relevant factor for the unconditional bias. Regarding the coefficients685

corresponding to the unconditional (ck) and conditional (dl) ensemble dispersion, one can see that the linear start and lead year

dependencies (c1 t, c2P1(τ) and d1 t, d2P1(τ)), as well as the interaction (d3 tP1(τ)) between these two coefficients have the

most impact.

Fig. 13a shows theMSE of the raw forecast (black), DeFoReSt and boosted recalibration, where both recalibrated forecasts

perform roughly equal. The raw forecast is inferior to both post processed forecast, mostly due to missing correction of uncon-690

ditional and conditional biases. Compared to global mean temperature (Fig. 11a), MSE for the North Atlantic temperature is

generally larger. Thus potential predictability for the North Atlantic surface temperature is smaller than in the global case.
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Regarding the reliability both recalibrated forecasts show also an ESS close to one for all lead years for the North Atlantic

surface temperature (Fig. 13b), which is similar to the outcome of the global mean temperature (Fig. 11b). Again bossted

recalibration outperforms DeFoReSt, the latter becomes slightly underdispersive for later lead years. However, the differences695

in ESS for both recalibration approaches are not significant. The raw forecast’s reliability is obviously inferior here, as it is

significantly underdispersive for lead years 1 to 3 and overdispersive for lead years 5 to 6.

The mentioned lower potential predictability for the North Atlantic manifests also in a 10-times larger ensemble variance,

cf. Fig. 13c. Noteworthy is here, that due to the smaller potential predictability in this region, the ensemble variance of both

recalibrated forecasts is similar across the lead time and different from the raw forecast. A lower predictability of the North700

Atlantic surface temperature yields also a smaller CRPSS w.r.t. climatology for both recalibrated forecasts, Fig. 13d. Again,

both recalibrated forecasts perform roughly equal for all lead years and are also significantly to the raw forecast.

6 Conclusions

Pasternack et al. (2018) proposed the recalibration strategy for decadal prediction (DeFoReSt) which adjusts non-homogeneous

regression (Gneiting et al., 2005) to problems of decadal predictions. Characteristic problems here are a lead time and initial-705

ization time dependency of unconditional, conditional biases and ensemble dispersion. DeFoReSt assumes third order poly-

nomials in lead time to capture conditional and unconditional biases, second order for dispersion, first order for initialization

time dependency. Although, Pasternack et al. (2018) shows that DeFoReSt leads to
::
an improvement of ensemble mean and

probabilistic decadal predictions, it is not clear whether these polynomials with predefined orders are optimal. This calls for

a model selection approach to obtain a recalibration model as simple as possible and as complex as needed. We thus propose710

here not to restrict orders a priori to such a low order but use a systematic model selection strategy to determine optimal model

orders. We use the non-homogeneous boosting strategy proposed by Messner et al. (2017) to identify the most relevant terms

for recalibration. The recalibration approach with boosting (called boosted recalibration) starts with order six polynomials in

lead time and first order in initialization time to account for the unconditional and conditional bias, as well as for ensemble

dispersion.715

:::::::
Common

:::::::::
parameter

:::::::::
estimation

::::
and

::::::
model

::::::::
selection

::::::::::
approaches

::::
such

:::
as

::::::::
stepwise

:::::::::
regression

:::
and

:::::::
LASSO

::::
are

::::::::
designed

::
for

::::::::::
predictions

::
of

:::::
mean

::::::
values.

::::::::::::::::
Non-homogeneous

::::::::
boosting

::::::
jointly

::::::
adjusts

:::::
mean

:::
and

::::::::
variance

:::
and

::::::::::::
automatically

::::::
selects

:::
the

::::
most

:::::::
relevant

::::
input

:::::
terms

:::
for

:::::::::::::
post-processing

::::::::
ensemble

::::::::::
predictions

::::
with

:::::::::::::::
non-homogeneous

::::
(i.e.

:::::::
varying

:::::::
variance)

::::::::::
regression.

Besides other common parameter estimation and model selection approaches like stepwise regression or LASSO (Tibshirani, 1996),

which are designed for predictions of mean values, non-homogeneous boosting adjusts mean and variance, it automatically720

selects the most relevant input terms for post-processing ensemble predictions with non-homogeneous (i.e. varying variance)

regression. Boosting iteratively seeks the minimum of a
:::
costloss function (here the log-likelihood) and updates only the one

coefficient with the largest improvement of the fit; if the iteration is stopped before a convergence criterion is fulfilled those

coefficients not considered until then are kept at zero. Thus, boosting is able to handle statistical models with a large number

of variables.725
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We investigated boosted recalibration using toy model simulations with high (η = 0.8) and low potential predictability

(η = 0.2) and errors with different complexities in terms of polynomial orders in lead time were imposed. Boosted recalibration

is compared to DeFoReSt. The CRPSS, the ESS, the time mean intra-ensemble variance (a measure for sharpness) and the

MSE assess the performance of the recalibration approaches. Scores are calculated with 10 year block-wise cross-validation

(Pasternack et al., 2018) and with 100 pseudo-forecasts for each toy model simulation.730

Irrespective of the complexity of systematic errors and the potential predictability, both recalibration approaches lead to an

improved reliability with ESS close to one. Sharpness and MSE can also be improved with both recalibration approaches.

Given a high potential predictability (η = 0.8), boosted recalibration
:
–

:::::::
although

::::::::
allowing

::
for

:::::
much

:::::
more

:::::::
complex

::::::::::
adjustment

::::
terms

::
–
::::::::
performs

::::
euqal to DeFoReSt if systematic errors are less complex than a 3rd order polynomial in lead time, implied by

theCRPSS of the pseudo-forecasts recalibrated with boosted recalibration and DeFoReSt as reference. Moreover, a significant735

improvement for almost all lead years can be observed if the complexity of systematic errors is larger than 3rd order order

polynomials in lead time. The gain w.r.t. DeFoReSt can hardly be observed for a low potential predictability (η = 0.2), as the

CRPSS shows only for two lead years a significant improvement for the above mentioned complexities. This is due to a

generally weaker predictable signal, and thus a weaker impact of systematic error terms in higher order of the polynomial. The

improvement due boosting increases with the imposed predictability. However, the presented toy model experiments suggest740

the use of boosted recalibration due to higher flexibility without loss of skill.

Analogously to Pasternack et al. (2018), we recalibrated mean surface temperature of the MiKlip Prototype decadal climate

forecasts, spatially averaged over the North Atlantic subpolar gyre region and a global mean. Pronounced predictability for

these cases has been identified by previous studies (e.g., Pohlmann et al., 2009; van Oldenborgh et al., 2010; Matei et al.,

2012; Mueller et al., 2012). Nonetheless, both regions are also affected by a strong model drift (Kröger et al., 2018). For the745

global mean surface temperature, we could identify the linear start year dependency of the unconditional bias as a major factor.

Moreover, it turns out that polynomials of lead year dependencies with order greater than 2 are of minor relevance.

Regarding the probabilistic forecast skill (CRPSS), DeFoReSt and boosted recalibration perform roughly equally, implying

that the polynomial structure of DeFoReSt, chosen originally from personal experience, turns out to be quite appropriate. Both

recalibration approaches are reliable and outperforming the climatological forecast with a CRPSS near 0.8.
:::
This

::
in

::::
line

::::
with750

::
the

::::::
results

::::
from

:::
the

:::
toy

::::::
model

::::::::::
experiments

:::::
which

::::::
shows

:::
that

::::::::
DeFoReSt

::::
and

:::::::::::::::::
boosted recalibration

:::::::
perform

::::::
similar

::
if

:::::::::
systematic

:::::
errors

:::
are

:::
less

:::::::
complex

::::
than

::
a
:::
3rd

:::::
order

::::::::::
polynomial

::
in

:::
lead

:::::
time.

For the North Atlantic region, the linear start year and lead year dependencies of the unconditional and conditional biases

show the largest relevance; also the linear interaction between lead time and initialization time of the unconditional bias has

a certain impact. The coefficients corresponding to the unconditional and conditional ensemble dispersion, show a minor755

relevance compared to the errors related to the ensemble mean.

Also for the North Atlantic surface temperature both post-processing approaches are performing roughly equal; they are

reliable and superior to climatology w.r.t. CRPSS. However, the CRPSS for the North Atlantic case is generally smaller

than for the global mean.
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This study shows that boosted recalibration, i.e. recalibration model selection with nonhomogeneous boosting allows a760

parametric decadal recalibration strategy with an increased flexibility to account for lead time dependent systematic errors.

However, while we increased the polynomial order to capture
:::::::
complex lead time dependent features, we still assumed a linear

dependency in initialization time. As this model selection approach reduces parameters by eliminating irrelevant terms, this

opens up the possibility to increase flexibility (polynomial orders) also in terms related to the start year.

Based on simulations from a toy model and the MiKlip decadal climate forecast system we could demonstrate the benefit765

of model selection with boosting (boosted recalibration) for recalibrating decadal predictions, as it decreases the number of

:::::::::
parameters

::
to

:::::::
estimatepredictors without being inferior to the state-of-the-art recalibration approach DeFoReSt.

Code and data availability. The HadCRUT4 global temperature data set used in this study is freely accessible through the Climatic Re-

search Unit at the University of East Anglia (http://www.cru.uea.ac.uk). The MiKlip Prototype data used for this paper are from the

BMBF-funded project MiKlip and are available on request. The post-processing, toy model and cross-validation algorithms are imple-770

mented using GNU licensed free software from the R Project for Statistical Computing (http://www.r-project.org) and can be found under

https://doi.org/10.5281/zenodo.3975758 (Pasternack et al., 2020).
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𝛾: adjusts ens. spread.𝛼: bias and drift. 𝛽: variability of  𝜇.

𝛾 𝑡, 𝜏𝛼 𝑡, 𝜏 𝛽 𝑡, 𝜏𝑋𝐶𝑎𝑙 = 𝒩( +  𝜇 𝑡, 𝜏 ,  𝜎 𝑡, 𝜏 2))exp(

Before recalibration

After recalibration with DeFoReSt

Figure 1.
::::::::
Schematic

:::::::
overview

::
of

::
the

:::::
effect

::
of

::::::::
DeFoReSt

::
for

::
an

::::::::
exemplary

::::::
decadal

:::
toy

:::::
model

::::
with

:::::::
ensemble

::::
mean

:::::::
(colored

::::
lines),

::::::::
ensemble

:::::::::::::::
minimum/maximum

:::::::
(colored

:::::
dotted

::::
lines)

::::
and

::::::::
associated

:::::::::::::::
pseudo-observations

:::::
(black

:::::
line).

::::
Note

::::
that

::::::
different

:::::
colors

:::::::
indicate

:::::::
different

:::::::::
initialization

:::::
times.

::::::
Before

:::::::::
recalibration

::::
(top

:::::
figure)

:::
the

::::::::
ensemble

::::
mean

:::::
shows

::
a

:::
lead

::::
time

::::::::
dependent

:::::
mean

::
or

::::::::::
unconditional

::::
bias

:::::
(drift)

::::
which

::
is
::::::
tackled

::
by

::::::
α(t,τ).

:::::::
Moreover

:::
the

:::::::
ensemble

::::
mean

::̂
µ

::::::
exhibits

:
a
:::::::::
conditional

:::
bias,

:::
i.e.

:::
that

:::
the

:::::::
variances

::
of

:̂
µ
:::
and

::::::::::
observations

:::::::
disagree.

:::
This

::
is

::::::
tackled

:::
with

::::::
β(t,τ).

:::::::
Decadal

::::::::
predictions

:::
can

:::
also

:::
be

::::
over-

::
or

::::::::::::
underdispersive,

:::
i.e.

:::
that

:::
the

:::::::
ensemble

:::::
spread

::::
over-

::
or
::::::::::::

underestimates

::
the

::::
error

:::::::
between

:::::::::
observations

:::
and

:::::::
ensemble

:::::
mean.

::::
This

::::::
example

:::::
shows

::
an

:::::::::::
overdispersive

:::::::
forecast.

:::::
Within

::::::::
DeFoReSt

::
the

::::::::
coefficient

::::::
γ(t,τ)

::::::
accounts

:::
for

::
the

:::::::::::
dispersiveness

::
of

:::
the

::::::
forecast

:::::::
ensemble.

::::
The

:::::
bottom

:::::
figure

:::::
shows

::
the

::::::::
exemplary

::::::
decadal

:::
toy

:::::
model

:::
after

:::::::
applying

::::::::
DeFoReSt

:::
with

:::
the

::::::
inherent

:::::::::
corrections

::
of

:::
lead

:::
and

::::
start

:::
time

::::::::
dependent

::::::::::
unconditional

::::
bias,

:::::::::
conditional

:::
bias

:::
and

:::::::::
dispersion.
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Figure 2. addedSchematic overview of the cross-validation setting for a decadal climate prediction, initialized in 1964 (red dotted line). All

hindcasts which are initialized outside the prediction period are used as training data (black dotted lines). A hindcast which is initialized

inside the prediction period is not used for training (gray dotted lines).

19



Initialize coefficients:
𝚲 = 𝟎 and 𝚵 = 𝟎

Compute negative partial derivatives of l(μ,σ) w.r.t. to μ and σ 
(see Eq. 20)

Find the predictor variable Xj with the highest correlation to r and Zk with the highest 

correlation to s:

𝑗∗ = argmax
𝑗

𝜌 Xj, 𝑟 and

𝑘∗ = argmax
𝑘

𝜌 Zk, s

Tentatively update coefficients:
𝚲∗ = 𝚲 and 𝚵∗ = 𝚵, with

Λ𝑗∗
∗ = Λ𝑗∗

∗ + 𝜈𝜌 X𝑗∗ , r and 

Ξ𝑘∗
∗ = Ξ𝑘∗

∗ + 𝜈𝜌 Z𝑘∗ , s

Set 𝚲 = 𝚲∗ Set 𝚵 = 𝚵∗

𝑖𝑓 𝑙 𝐗𝑇𝚲∗, 𝜎 < 𝑙(𝜇, 𝐙𝑇𝚵∗)

I < mstop
yes

Stop
no

Really update the coefficient that improves the current fit most.

Figure 3.
::::::::
Schematic

:::
flow

::::
chart

:::
for

::::::
boosting

::::::::
algorithm

:::::::
proposed

::
by

:::::::::::::::::
(Messner et al., 2016).

::
For

:::
the

:::::::
ensemble

::::
mean

:::
and

:::
the

:::::::
ensemble

:::::::
variance

::
we

:::
use

::
the

:::::::::
expressions

:::::::::::::::::::
µCal,boost(t,τ) = XT Λ

:::
and

:::::::::::::::::::::
ln(σ2

Cal,boost)(t,τ) = ZT Ξ,
:::::
where

::::::::::::::::
X = (1,X1,X2, ...)

T
:::
and

:::::::::::::::
Z = (1,Z1,Z2, ...)

T
:::
are

:::::
vectors

::
of

:::::::
predictor

:::::
terms

:::
and

:::::::::::::::::
Λ = (a0, b0,a1, b1, ...):::

and
:::::::::::::::::
Ξ = (c0,d0, c1,d1, ...)::

are
::::::
vectors

::
of

:::
the

:::::::::::
corresponding

:::::::::
coefficients.

::::
Here,

::
0

:
is
::

a

::::
vector

::
of
:::::
zeros,

:::::
mstop

::
is

::
the

:
a
::::::::
predefined

::::::::
maximum

::::::
number

::
of

:::::::
boosting

::::::
iteration

::::
steps

:
I
::::

and
::::::
ρ(Xj , r)::

as
::::
well

::
as

::::::
ρ(Zk,s):::

are
::
the

:::::::::
correlation

::::::::
coefficients

::::::::
calculated

::
by

::::::
Xj × r

:::
and

::::::
Zk × s

:::
over

:::
the

:::::::
respective

:::::::
training

:::
data.
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a) χ b) ψ

c) ζ d) ω

Figure 4.
:::::
χ(t,τ)

:::
(a)

:::
and

:::::
ψ(t,τ)

:::
(b)

::::
which

:::
are

:::::
related

::
to

:::
the

:::::::::
uncondtional

:::
and

:::::::::
conditional

::::
bias,

:
as
::::
well

::
as

:::::
ζ(t,τ)

::
(c)

:::
and

::::::
ω(t,τ)

::
(d)

:::::
which

:::
are

:::::
related

::
to

::
the

:::::::::::
unconditional

:::
and

::::::::
conditional

::::::::
dispersion

::
of

:::
the

:::::::
ensemble

:::::
spread

:::
for

::
the

:::::::
different

::
toy

:::::
model

:::::
setups

:::::::
(colored

::::
lines)

::
as

:
a
:::::::
function

:
of
::::

lead
:::
year

::
τ
::::
with

:::::
respect

::
to

::::
start

:::
year

:::::
t= 1.
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a) χ b) ψ

c) ζ d) ω

Figure 5.
:::::
χ(t,τ)

:::
(a)

:::
and

:::::
ψ(t,τ)

:::
(b)

::::
which

:::
are

:::::
related

::
to

:::
the

:::::::::
uncondtional

:::
and

:::::::::
conditional

::::
bias,

:
as
::::
well

::
as

:::::
ζ(t,τ)

::
(c)

:::
and

::::::
ω(t,τ)

::
(d)

:::::
which

:::
are

:::::
related

::
to

::
the

:::::::::::
unconditional

:::
and

::::::::
conditional

::::::::
dispersion

::
of

:::
the

:::::::
ensemble

:::::
spread

:::
for

::
the

:::::::
different

::
toy

:::::
model

:::::
setups

:::::::
(colored

::::
lines)

::
as

:
a
:::::::
function

:
of
::::

lead
:::
year

::
τ
::::
with

:::::
respect

::
to

::::
start

:::
year

::::::
t= 50.
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a) raw b) DeFoReSt c) boosted recalibration

d) e) f)

g) h) i)

Figure 6. Mean squared error (MSE) of different toy model setups with high potential predictability (η = 0.8, colored lines). a) raw

pseudo-forecast, b) post-processing with DeFoReSt and c) post-processing with boosted recalibration. Analog to that order show d) to f) the

Ensemble spread score (ESS) and g) to i) the Intra-ensemble variance (temporal average).
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Figure 7. CRPSS of different toy model setups with high potential predictability (η = 0.8, colored lines) post-processed with boosted

recalibration. The associated toy model setups post-processed with DeFoReSt are used as reference for the skill-score. CRPSS larger zero

implies boosted recalibration performing better than DeFoReSt. Colored dots in Fig. 7 denote significance in the sense that the 0.025 and

0.975 quantiles from the 100 experiments do not include 0.
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a) raw b) DeFoReSt c) boosted recalibration

d) e) f)

g) h) i)

Figure 8. Mean squared error (MSE) of different toy model setups with high potential predictability (η = 0.2, colored lines). a) raw

pseudo-forecast, b) post-processing with DeFoReSt and c) post-processing with boosted recalibration. Analog to that order show d) to f) the

Ensemble spread score (ESS) and g) to i) the Intra-ensemble variance (temporal average).
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Figure 9. CRPSS of different toy model setups with low potential predictability (η = 0.2, colored lines) post-processed with boosted

recalibration. The associated toy model setups post-processed with DeFoReSt are used as reference for the skill-score. CRPSS larger zero

implies boosted recalibration performing better than DeFoReSt. Colored dots indicate lead years with either significant positive or negative

values based on a 95% confidence interval from bootstrapping (100 repititions).
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Figure 10. Coefficient estimates for recalibrating global mean 2m-Temperature of the
:::::
MiKlipMiKlipl Prototype System. Colored boxes

represent the inter-quartile range (IQR) around the median (central, bold and black line) for coefficient estimates from the cross-validation

setup; Whiskers denote maximum 1.5IQR. Coefficients are grouped accorting to correcting unconditional bias (blue), conditional bias (red),

unconditional dispersion (orange) and conditional dispersion (green). Values refer to coefficients a0, b0, c0,d0, ...,a6, b6, c6,d6 and not to the

product between these coefficients and the corresponding predictors (e.g. a2P1(τ) refers to a2). Please note, the value c0 is around -2.5, but

for a better overview the vertical axis is limited to the values range between -1 and 1. Vertical dashed bars highlight coefficients related to

lead time dependent terms.
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a) b)

c) d)

Figure 11. a) MSE, b) Reliability, c) Ensemble Variance and d) CRPSS of global mean surface temperature without any correction (black

line), after recalibration with DeFoReSt (blue line) and boosted recalibration (red line). The CRPSS for the raw forecasts (black line) is for

lead year 1 smaller than -1 and therefore not shown. The vertical bars show the 95% confidence interval due 1000-wise bootstrapping.
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Figure 12. Identified coefficients for recalibrating the mean 2m-Temperature over the North Atlantic of prototype. Here, the coefficients are

grouped by correcting uncond. bias (blue bars), cond. bias (red bars), uncond. dispersion (orange bars) and cond. dispersion (green bars).

The coefficients are standardized, i.e. higher values implying a higher relevance. Values refer to coefficients a0, b0, c0,d0, ...,a6, b6, c6,d6

and not to the product between these coefficients and the corresponding predictors (e.g. a2P1(τ) refers to a2).
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a) b)

c) d)

Figure 13. a) MSE, b) Reliability, c) Ensemble Variance and d) CRPSS of surface temperature over the North Atlantic without any correction

(black line), after recalibration with DeFoReSt (blue line) and boosted recalibration (red line). The CRPSS for the raw forecasts (black line)

is for lead year 1 smaller than -1 and therefore not shown. The vertical bars show the 95% confidence interval due 1000-wise bootstrapping.
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Appendix A: Toy model construction

The toy model proposed by Pasternack et al. (2018) consists of pseudo-observations x(t+ τ) and associated ensemble predic-

tions, hereafter named pseudo-forecasts f(t,τ).775

Both are based on an arbitrary but predictable signal µx. Although almost identical to Pasternack et al. (2018), we quote the

construction of pseudo-observations in the following for purposes of overview.

The pseudo-observations x is the sum of this predictable signal µx and an unpredictable noise term εx,

x(t+ τ) = µx(t+ τ) + εx(t+ τ) . (A1)

Following Kharin et al. (2012) µx can be interpreted as the atmospheric response to slowly varying and predictable boundary780

conditions, while εx represents the unpredictable chaotic components of the observed dynamical system. µx and εx are assumed

to be stochastic Gaussian processes

µx(t+ τ)∼N (0,σ2
µx

) with σ2
µx

= η2 ≤ 1 (A2)

and

εx(t+ τ)∼N (0,σ2
εx) with σ2

εx = 1− η2. (A3)785

The variation of µx around a slowly varying climate signal can be interpreted as the predictable part of decadal variability, its

amplitude is given by the variance var(µx(t+τ)) = σ2
µx

. The total variance of the pseudo-observations is thus Var(x) = σ2
x =

σ2
µx

+σ2
εx . Here, the relation of the latter two is uniquely controlled by the parameter η ∈ [0,1], which can be interpreted as

potential predictability (η2 = σ2
µx
/σ2

x).

In this toy model setup, the concrete form of this variability is not considered and thus taken as random. A potential climate790

trend could be superimposed as a time varying mean µ(t) = E[x(t)]. As for the recalibration strategy only a difference in

trends is important, we use µ(t) = 0 and α(t,τ) addressing this difference in trends of forecast and observations.

The pseudo-forecast with ensemble members fi(t,τ) for observations x(t+ τ) is specified as:

fi(t,τ) = µens(t,τ) + εi(t,τ) , (A4)

where µens(t,τ) is the ensemble mean and795

εi(t,τ)∼N (0,σ2
ens(t,τ)) (A5)

is the deviation of ensemble member i from the ensemble mean; σ2
ens is the ensemble variance. In general, ensemble mean

and ensemble variance both can be dependent on lead time τ and initialization time t. We relate the ensemble mean µens(t,τ)

to the predictable signal in the observations µx(t,τ) by assuming a) a systematic deviation characterized by an unconditional

bias χ(t,τ) (accounting also for a drift and difference in climate trends), a conditional bias ψ(t,τ) and b) a random deviation800

ε(t,τ):

µens(t,τ) = χ(t,τ) +ψ(t,τ)(µx(t,τ) + εf (t,τ)) , (A6)
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with εf (t,τ)∼N (0,σεf (t,τ)) being a random forecast error with variance σ2
εf

(t,τ)< σ2
εx . Although the variance of the

random forecast error can in principle be dependent on lead time τ and initialization time t, we assume for simplicity a

constant variance σ2
εf

(t,τ) = σ2
εf

.805

In contrast to the original toy model design, proposed by Pasternack et al. (2018), we assume an ensemble dispersion related

to the variability of the unpredictable noise term εx with an unconditional and a conditional inflation factor (ζ(t,τ) and ω(t,τ))

σ2
ens(t,τ) = (ζ(t,τ) +ω(t,τ)(σεx −σεf ))2 . (A7)

According to Eq. A6 the forecast ensemble mean µens is simply a function of the predictable signal µx. In this toy model810

formulation, an explicit formulation of µx is not required, hence a random signal might be used for simplicity and it would

be legitimate to assume E[µx] = µ(t+ τ) = 0 without restricting generality. Here, we propose a linear trend in time E[µx] =

µ(t+τ) =m0+m1 t to emphasize a typical problem encountered in decadal climate prediction: different trends in observations

and predictions (Kruschke et al., 2015).

Given this setup, a choice of χ(t,τ)≡ 0, ψ(t,τ)≡ 1, ζ(t,τ)≡ 0 and ω(t,τ)≡ 1 would yield a perfectly calibrated ensemble815

forecast:

f perf(t,τ)∼N (µx(t,τ),σ2
εx(t,τ)). (A8)

The ensemble mean µx(t,τ) of f perf(t,τ) is equal to the predictable signal of the pseudo-observations. The ensemble variance

σ2
εx(t,τ) is equal to the variance of the unpredictable noise term representing the error between the ensemble mean of f perf(t,τ)

and the pseudo-observations. Hence, f perf(t,τ) is perfectly reliable.820

As mentioned in 4 this toy model setup is controlled on the one hand by η characterizing the potential predictability and

on the other hand by χ(t,τ), ψ(t,τ), ζ(t,τ) and ω(t,τ), which control the unconditional and the conditional bias and the

dispersion of the ensemble spread.

Here, χ(t,τ), ψ(t,τ), ζ(t,τ) and ω(t,τ) are obtained from α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ) as follows:

χ(t,τ) =−α(t,τ)

β(t,τ)
(A9)825

ψ(t,τ) =
1

β(t,τ)
(A10)

ζ(t,τ) =−γ(t,τ)

δ(t,τ)
(A11)

ω(t,τ) =
1

δ(t,τ)
. (A12)

The parameters χ(t,τ), ψ(t,τ), ζ(t,τ) and ω(t,τ) are defined such that a perfectly recalibrated toy model forecast fCal would

have the following form:830

fCali (t,τ)∼N (α(t,τ) +β(t,τ)µens(t,τ),(exp(γ(t,τ) + δ(t,τ)σens(t,τ)))2), (A13)
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Applying the definitions of µens (Eq. A6) and σens (Eq. A7) leads to

fCali (t,τ)∼N (α(t,τ) +β(t,τ)(χ(t,τ) +ψ(t,τ)µx(t,τ)),(exp(γ(t,τ) + δ(t,τ)(ζ(t,τ) +ω(t,τ)σεx(t,τ))))2), (A14)

and applying the definitions of χ(t,τ), ψ(t,τ) and ω(t,τ) (Eqs. A9-A12) to (A14) would further lead to:

fCali (t,τ)∼N (α(t,τ)−β(t,τ)
α(t,τ)

β(t,τ)
+
β(t,τ)

β(t,τ)
µx(t,τ),

γ(t,τ)

γ(t,τ)
σ2
εx(t,τ)), (A15)835

This shows that fCal is equal to the perfect toy model fPerf(t,τ) (A8) :

fCal(t,τ)∼N (µx(t,τ),σ2
εx(t,τ)). (A16)

This setting has the advantage that the perfect estimation of α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ) is already known prior to

calibration with minimization of the logarithmic likelihood.

As described in 3.2, a 6th order polynomial approach was chosen for unconditional α(t,τ), β(t,τ), γ(t,τ) and δ(t,τ),840

yielding

α(t,τ) =

6∑
l=0

(a2l + a(2l+1)t)Pl(τ) , (A17)

β(t,τ) =

6∑
l=0

(b2l + b(2l+1)t)Pl(τ) , (A18)

γ(t,τ) =

6∑
l=0

(c2l + c(2l+1)t)Pl(τ) , (A19)

δ(t,τ) =

6∑
l=0

(d2l + d(2l+1)t)Pl(τ) . (A20)845

For the current toy model experiment, we exemplarily specify values for ai, bi, ci and di as obtained from calibrating the

MiKlip Prototype surface temperature over the North Atlantic against HadCRUT4 (Tobs):

E[Tobs]∼N (α(t,τ) +β(t,τ) f̄Prot(t,τ),(exp(γ(t,τ) + δ(t,τ)σfProt(t,τ)))2), (A21)

where f̄Prot and σfProt specifying the corresponding ensemble mean and ensemble spread.
::::
Here,

:::::::
χ(t,τ),

::::::
ψ(t,τ),

::::::
ζ(t,τ)

::::
and

:::::
ω(t,τ)

:::
are

::::::
based

::
on

:::::
ratios

::
of

:::::::::::
polynomials

::
up

::
to
::::

3rd
:::::
order

::::
w.r.t.

::::
lead

:::::
time.

:::::
Since

:::::::::
systematic

:::::
errors

::::
with

::::::
higher

::::
than

:::
3rd

:::::
order850

::::::::::
polynomials

:::::
could

:::
not

:::
be

:::::::
detected

::::::::::
sufficiently

::::
well

:::::
within

:::
the

:::::::
MiKlip

::::::::
Prototype

:::::::::::
experiments

:::
we

::::::
deduce

:::
the

::::::::::
coefficients

:::
for

::
the

::::
4th

::
to

:::
6th

:::::
order

::::::::::
polynomials

:::::
from

:::
the

:::::::::
coefficient

:::::::::
magnitude

::
of

:::
the

:::
1st

::
to

:::
3rd

:::::
order

::::::::::
polynomial.

:::::
Here,

::::
Fig.

:::
A1

::::::
shows

:::
the

:::::::::
coefficients

::::::
which

::::
were

:::::::
obtained

:::::
from

:::::::::
calibrating

::
the

:::::::
MiKlip

::::::::
Prototype

::::::
global

::::
mean

:::::::
surface

::::::::::
temperature

::::
with

:::::::::::::
cross-validation

:::
(see

:::::::::::::::::::::
Pasternack et al. (2018)),

::::::::
assuming

:
a
:::
3rd

:::::
order

:::::::::
polynomial

::::::::::
dependency

::
in

::::
lead

::::
years

:::
for

::::::
α(t,τ),

:::::::
β(t,τ),

:::::
γ(t,τ)

::::
and

::::::
δ(t,τ).

:::::
Those

::::::::::
coefficients

::::::::
associated

:::::
with

:::::
terms

:::::::::
describing

:::
the

::::
lead

::::
time

::::::::::
dependence

::::::
exhibit

:::::::
roughly

:::
the

::::
same

:::::
order

:::
of

:::::::::
magnitude

:
.855

:::::
Thus,

::
we

:::::::
assume

:::
the

:::::::::
coefficients

:::::::::
associated

::
to

:::
4th

::
to

:::
6th

:::::
order

:::::::::::
polynomials

:::::
being

::
of

:::
the

::::
same

:::::
order

::
of

::::::::::
magnitude. The values

of the coefficients are given in Tab. A1.
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Figure A1.
::::::::
Coefficient

:::::::
estimates

:::
for

:::::::::
recalibrating

:::::
global

::::
mean

:::::::::::::
2m-Temperature

::
of

::
the

:::::::::::::::::::
MiKlip Prototype System

:::
with

:
a
::::
third

::::
order

:::::::::
polynomial

:::
lead

::::
time

:::
time

:::::::::
dependency

:::
for

::
the

:::::::::::
unconditional

:::
and

::::::::
conditional

::::
bias

::
ans

:::::::::
dispersion.

::::
Here,

::::::::::::::
non-homogeneous

::::::
boosting

::
is
:::
not

:::::
applied

:::
and

:::
all

:::::::::
polynomials

:::
are

:::::::::::
orthogonalized,

:::
i.e.

::::::::::::::::
P1(τ),P2(τ),P3(τ) ::::

refers
::
to

:::
the

::::
order

::
of

:::
the

:::::::::::
corresponding

:::::::::
polynomial.

::::::
Colored

:::::
boxes

:::::::
represent

:::
the

:::::::::
inter-quartile

:::::
range

:::::
(IQR)

:::::
around

:::
the

::::::
median

::::::
(central,

:::
bold

:::
and

:::::
black

:::
line)

:::
for

::::::::
coefficient

:::::::
estimates

::::
from

::
the

::::::::::::
cross-validation

:::::
setup;

:::::::
Whiskers

:::::
denote

::::::::
maximum

::::::
1.5IQR.

:::::::::
Coefficients

:::
are

::::::
grouped

::::::::
according

::
to

::::::::
correcting

::::::::::
unconditional

::::
bias

:::::
(blue),

::::::::
conditional

::::
bias

::::
(red),

:::::::::::
unconditional

:::::::
dispersion

:::::::
(orange)

::::
and

::::::::
conditional

::::::::
dispersion

:::::::
(green).

:::::
Values

::::
refer

::
to
:::::::::

coefficients
::::::::::::::::::::::
a0, b0, c0,d0, ...,a6, b6, c6,d6:::

and
::::

not
::
to

:::
the

::::::
product

::::::
between

::::
these

:::::::::
coefficients

:::
and

::
the

:::::::::::
corresponding

::::::::
predictors

:::
(e.g.

:::::::
a2P1(τ):::::

refers
::
to

:::
a2).

::::::
Vertical

::::::
dashed

:::
bars

:::::::
highlight

:::::::::
coefficients

:::::
related

::
to

:::
lead

::::
time

:::::::
dependent

:::::
terms.

:

l=0 l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10 l=11 l=12 l=13

al -0.75 0.03 10.2 0.15 -1.54 -0.13 5.4 -0.08 -5 0.5 -5 0.5 -5 0.5

bl 0.67 -0.0004 0.35 -0.12 0.94 0.008 3.27 -0.028 5 -0.05 5 -0.05 5 -0.05

cl -0.79 0.03 9.62 0.18 -0.93 -0.16 5.74 -0.08 5 0.5 5 0.5 5 0.5

dl 6.4 0.004 -1.88 -1.19 16.8 0.03 35.8 -0.33 5 0.5 5 0.5 5 0.5
Table A1. Overview of the values

::
for

:::
the

::::::::
coefficients al, bl :

cl:::
and

::
dland wl.
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