
Response to Reviewer 1 (Dr Frank Engel)

General Comments

Reviewer Point P 1.1 — The author reports on a new software for computing river surface
velocity and discharge from the use of video captured by fixed or mobile platforms, including
webcameras installed at river gauges, and UAS. The software, KLT-IV v1.0, presents a complete
processing package that would enable users to go from raw video to discharge results. KLT-IV uses
a combination of feature tracking algorithms (in this case Good Feature to Track) and Optical Flow
to compute trajectories of the objects of interest. Among other novel aspects of the software, this
approach allows not just only for the tracking of water surface velocity features, but also for ground
control features. By incorporating this tracking functionality, the author has created a software
package that can enable some new approaches to managing scene and camera orthorectification.
In my opinion, this is an excellent addition to the growing suite of surface velocity tools which
have appeared in the scientific literature over the past 5 or so years. The potential is there with
KLT-IV to begin to standardize reach-based UAS surface velocity surveys, and yet the software
also provides the necessary functions for standard fixed or mobile platform camera gaging. Well
done. This paper is well organized and coherent. It clearly states the aims of the work, and the
author adequately anchors this work into the body of literature. The functionality and workflow of
the KLT-IV software is clearly presented. The style and clarity of prose is excellent. Overall, this
is an excellent paper that is nearly ready for publication.

Reply: I would like to extend my thanks to Dr Engel for the detailed comments and suggestions made
within the review provided. In this document I will respond to each comment individually, and outline
the changes that are made in the revised submission.

Specific Comments

Reviewer Point P 1.2 — I would like to see some more discussion included in the paper
about how well the KLT-IV flow trajectory algorithms perform compared to other algorithms and
independent measurement techniques. At the least, a little discussion of the results from the cited
work by Pearce et al. (2020) would be well received. Has the author collected independent flow
velocity and/or discharge measurements and compared them with the output from KLT-IV since
the seminal technical note published in 2016? It would be very good to address any new findings
here, even if only briefly, or by citing associated literature.

Reply: At the locations of the two case studies presented in this article, I have not been able to acquire
velocity measurements using standard methods whilst also capturing footage for image velocimetry
analysis. Within the Method section (Lines 163–165) and in the newly introduced Section 5: ’Challenges
and Future Development’ (Lines 485–487), the findings presented in the Pearce et al (2020) study are
introduced. These are the only published inter-comparisons between KLT-IV and other approaches at
this time. This lack of formal assessment will be addressed in further works.
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Reviewer Point P 1.3 — I would also like to see some text added in the discussion indicating
known and common method failure points (more generically, rather than just specifically associated
with the two case studies presented). What are the common minimum seeding or velocity thresholds
in which the method begins to struggle? Are there strategies on balancing the input/processing
frame rate and anticipated flow velocity? Any guidance or insights on these factors may help ensure
the KLT-IV software is used for its intended purpose, and that results are as accurate as possible.

Reply: Guidance about the key limitations of KLT-IV software have been highlighted in Section 5:
’Challenges and Future Development’. Here I present guidance related to the minimum required image
resolution, requirements related to the presence and distribution of features to track, considerations
relating to image illumination, and I also note a key limitation of the software, namely the lack of post-
processing options for filtering spurious trajectories. Presented in Appendix C is a sensitivity analysis to
determine how the software’s performance varies with changes to the user-defined ‘frame extract rate’
and the ‘block size’. This is also discussed in Lines 396–402. An objective of future works will be to
assess the sensitivity of the software to varying levels of seeding densities, particle clustering, image
illumination, etc. across a range of flow conditions.

Reviewer Point P 1.4 — Finally, I would like to see some information about the processing
times and expectations for compute hours for use of the KLT-IV software under certain conditions.
What computer hardware was used to compute the case study results? What sort of processing time
did it take to do these case studies? Have any formal bench testing experiments been undertaken
(in addition to the work by Pearce et al., 2020)? Although the hardware requirements section
addresses the basic needs in order to run the software, should a user plan to use cluster computers
for more extensive use of KLT-IV? What about the ability to port the software to operate on edge
computing devices? Perhaps, if not at least mentioned in this paper, there may be a reason to
write another paper discussing these things.

Reply: Within Appendix B I now provide a Table which documents the processing times, and memory
utilisation for each of the videos presented in this article. This is also referred to in Section 2.3 (Lines
312–313).

The current version of the software can only be used on PCs running Windows operating systems,
and is also limited by the processor unit (e.g. it will not run on ARM CPUs). Whilst beyond the scope
of this initial release, in future releases I am hopeful of being able to provide support for edge processing
on devices where the KLT-IV application does not run (e.g. on a Raspberry Pi in conjunction with
MATLAB Online), in addition to batch processing using the Newcastle University high performance
computing (HPC) service.

Technical Corrections

Reviewer Point P 1.5 — Line 33: The Despax et al. (2019) paper was really about determining
the interlaboratory uncertainty between how we do direct streamflow measurements with ADCP. I
wouldn’t necessarily say it is about remotely operated streamflow monitoring, as is implied by line
31.
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Reply: This reference has been replaced with a more appropriate one: Le Coz, J., Pierrefeu, G., Paquier,
A. (2008) Evaluation of river discharges monitored by a fixed side-looking Doppler profiler. Water
Resources Research, 44(4), 10.1029/2008WR006967.

Reviewer Point P 1.6 — Line 60: It is my hope that soon, we will be able to capture topo-
graphic and bathymetric observations at the same time, in a non-contact fashion, as we capture
surface velocities with image velocimetry techniques. Much promise and development seems to
be happening now with the use of tuned, multi-phased ground penetrating radar to capture the
channel bottom characteristics (by drone or cable way). This is an exciting time for non-contact
hydraulic remote sensing.

Reply: I share your optimism here and look forward to seeing how these technologies can be fused.

Reviewer Point P 1.7 — Line 120: You can also cite RIVeR here as well. The RIVeR typi-
cal workflow rectifies the results from PIV conducted on non-transformed image pairs: Patalano,
Garćıa, and Rodŕıguez, “Rectification of Image Velocity Results (RIVeR): A Simple and User-
Friendly Toolbox for Large Scale Water Surface Particle Image Velocimetry (PIV) and Particle
Tracking Velocimetry (PTV)”, 10.1016/j.cageo.2017.07.009

Reply: This reference has now been added to the manuscript at this location.

Reviewer Point P 1.8 — Line 171: Does this imply that if a UAS or fixed image scene with
excessive motion is not completely corrected, the error detection result would censor data which
may be valid? Or, in a more positive view, censor data which still show motion contamination?

Reply: The error detection should not be affected by residual motion after stabilisation as the forward
tracking and backward tracking are based on the same image sequence, albeit in reverse order. Features
would only be removed from the analysis if during the backward propagation the location of a tracked
feature appears to differ from the initial solution.

Reviewer Point P 1.9 — Line 207: Any particular reason why the camera positions inputs are
required as radians, rather than degrees? Use of atan2 in the conversion process within KLT-IV
would easily handle any typical issues that arise from converting from a world geometry convention
(degrees) to a polar geometry convention (radians), and would be much simpler for the end user.

Reply: There is no good reason for the input being in radians rather than degrees and you make a good
point about degrees being more user friendly. This change will be implemented in the next release of
the software.

Reviewer Point P 1.10 — Line 310: Please either define that mAOD is Ordinance Datum, or
consider converting to some other widely recognized reference. Your international readers may not
be familiar with mAOD.

Reply: This sentence has now been reworked to read: ‘The headwaters originate in the Cairngorm
National Park at an elevation of 1263m above the Newlyn Ordnance Datum (AOD) before joining the
River Spey at an elevation of 220mAOD.’ (Lines 315–318).
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Reviewer Point P 1.11 — Line 445: A useful point here could be made for UAS terrain-following
flight planning. This functionality is capable with more sophisticated ground control stations, such
as Mission Planner. Moreover, some of the newer consumer-grade UAS on the market now are
beginning to incorporate Terrain-following functionality.

Reply: Thanks for this suggestion. This option has been incorporated into the text at Lines 469–474,
which reads: ‘An alternative solution for ensuring that the distance between the UAS and water surface
remains constant over time may be to use flight planning software (e.g. fly litchi mission planner). This
would enable the user to define the altitude of the flight above the earth surface (as defined by a digital
elevation model), rather than above the elevation at take-off. However, in this instance, the GPS log
would need to be modified to ensure the recorded GPS height was constant and that this value minus
the specified WSE corresponds with the known flight height above the water surface’.
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Response to Reviewer 2

General Comments

Reviewer Point P 2.1 — The author presents a new software for the determination of river
surface flow velocities and river discharge using videos. It is based on a combination of optical flow
and automated corner point detection algorithms. The underlaying detection algorithm used is
the Good Features To Track and the tracking is done by using the Kanade Lucas Tomasi method.
The software is freely available, it has a clean and intuitive graphical interface. It has a very good
set of options for camera calibration / stabilization. To my knowledge there is no freely available
software which uses the same method, hence it is a good addition to the already available tools.
The author has also done a good work on keeping the amount of parameters to a minimum and
giving default values for them. The paper is clearly written, with a good description of the software
functionalities.

Reply: I would like to extend my thanks to the reviewer for the detailed comments and suggestions
made, all of which have enabled the improvement of this manuscript. In this document I will respond
to each comment individually, and outline the changes made to the revised submission.

Specific Comments

Reviewer Point P 2.2 — My main comments are related to the validation and limitations of
the software and of the algorithms implemented in it.

The author presents two case studies, the first one, the River Feshie where 10 videos taken from
a fix camera and 4 videos from UAS were processed. The results are used to fit a rating curve, the
deviations between the reconstructed rating curve and the measurements is mentioned to be 4%.
However, it would be desirable to have a comparison against a different methodology e.g. ADCP.
Has the author performed such comparison?

Reply: At the locations of the two case studies presented in this article, I have not been able to
acquire velocity measurements using standard methods whilst concurrently capturing footage for image
velocimetry analysis. Within the Methods sections (Lines 163–166) and in the newly introduced Sec-
tion 5: ’Challenges and Future Development’ (Lines 485–487), findings presented by the Pearce et al
(2020) study are introduced. These are the only published inter-comparisons between KLT-IV and other
approaches at this time. This lack of formal assessment will be addressed in further works.

Reviewer Point P 2.3 — In Figure 4 it can be observed that the measured discharges deviate the
most from the rating curve at low flows. It seems that the implemented method gets less accurate
results for lower velocities. This brings me to my second comment. The paper is missing a section
where the software limitations are explained, for example what are the minimum velocities? Are
there a minimum set of characteristics to be fulfilled, e.g shadows, glare, type of flow, minimum
camera angle, minimum video duration, etc.?
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Reply: As a complete assessment of KLT-IV’s performance at this site relative to standard techniques
has yet to be completed, it is difficult at this point to draw conclusions about its performance. This is
currently the subject of further assessment and research. I have now added a section which goes into
some detail about the limitation of the software. In Section 5: ’Challenges and Future Development’
(lines 475–504). I present guidance related to the minimum required image resolution, requirements
related to the presence and distribution of features to track, considerations relating to image illumination,
and I also note a key limitation of the software, namely the lack of post-processing options for filtering
spurious trajectories. An objective of future works will be to assess the sensitivity of the software to
varying levels of seeding densities, clustering, image illumination, etc. across a range of flow conditions.

Reviewer Point P 2.4 — The results from processing a video recorded with a fixed camera
and with an UAV at the same river stage are shown in Figure 5. The trajectories are qualitatively
different, what is the reason for that? Is it because of the angle of view of the fix camera? Is it
related to the orthorectification process? What are the limitations?

Reply: The dataset from the fixed camera is certainly noisier than that acquired from the UAS and this
is likely to be due to several factors, not least the short duration fixed camera video (10-s) relative to the
UAS (60-s). Furthermore, at this site, under the high-flow conditions presented in Figure 5, the water
surface deviates from the planar assumption that is required for the analysis. The UAS footage will be
less sensitive to these local changes in water surface elevations than the fixed camera. Therefore, the
oblique camera angle of the fixed camera is likely to produce less favourable results. This information
has been incorporated into the manuscript text at Lines 387–395).

Reviewer Point P 2.5 — It would also be nice to see some insights on the uncertainty of the
model and sensitivity of the parameters. This would help to chose the right value for them.

Reply: Analysis of the sensitivity of KLT-IV to the two main user defined parameters has been un-
dertaken for three of the fixed camera videos acquired at the River Feshie. Results are presented in
Appendix C, and a discussion of this is presented at lines 396–402. The text reads: ‘An illustration
of how the generated outputs vary with changes to user-defined settings of extract rate (s) and block
size (px) are demonstrated for a selection of the fixed videos acquired at the Feshie monitoring station
(Appendix C). Generally, varying these two parameters results in relatively small changes to the velocity
profile, with the mean values of the reconstructed velocity profile ranging from 0.89–0.94 m s−1 (Video
8), 1.18–1.29 m s−1 (Video 2), and 1.68–1.80 m s−1 (Video 6). In each of these examples, the selection
of a broad range of input settings resulted the cross-sectional average velocity varying by less than
10%. Of note however, is that deviations in the velocity profile are most sensitive to changes in these
parameters in the near-field where features may transit the scene rapidly, and the far field where features
are difficult to resolve.’

Technical Corrections

Reviewer Point P 2.6 — In line 140 it is mentioned that the free-surface image velocity measure-
ments must be translated into a depth-averaged velocity, however it is never explicitly mentioned
that the Alpha value in the GUI is meant for that.
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Reply: This was accidentally omitted from the original submission and has been added at Lines306–308.
The newly inserted text reads: ‘ Finally, an Alpha value needs to be provided. This is the ratio used to
convert the measured surface velocities to depth-averaged velocity, which is then used in the calculation
of discharge. A default value of 0.85 is generally appropriate if no supplementary data is available to
inform the user (see Section 1.3 for more information).’

Reviewer Point P 2.7 — Line 188. It is mentioned that the mode ’Single video’ is the default
one, but there no other modes. This should be mentioned here or, if possible, change this field in
the GUI until another mode is implemented.

Reply: To ensure that the user interface does not vary too much from version-to-version, the video
mode was inserted into v1.0 despite no other alternative. In v1.1 ’Multiple videos’ will be enabled. The
text at Line 190–193 has been modified to read: ‘The first section: Video Inputs, is where the video
acquisition details are provided. Within v1.0 of the software, only ‘Single Video’ mode can be selected,
meaning that only one video at a time can be analysed, and this video may be selected using the file
selection dialog box.’

Reviewer Point P 2.8 — Lines 410-455 (discussion section) I think it would be better to focus
this section on the limitations and accuracy of the software, or to add that to the discussion.

Reply: Please see response to P 2.3.

Reviewer Point P 2.9 — Line 479. Add the word ”software”

Reply: This has been modified to read ‘Software and Hardware Requirements’ (Line 527).

Reviewer Point P 2.10 — I tried to ran some cases but I could only process one: /Feshie/
FixedCam/Video 02, for all the other cases that I tried, the software crashed, without much infor-
mation about the source of the crash. For the case that I was able to process, I got a value which
was out of the reconstructed rating curve, probably one of the provided files is not correct.

Reply: I hope to be able to understand the nature of the issues encountered more fully to hopefully
resolve this. If possible, please could you provide more information as a comment, or post to the software
forum at: https://groups.google.com/forum/#!forum/klt-iv-image-velocimetry-software

with more information.
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KLT-IV v1.0: Image velocimetry software for use with fixed and
mobile platforms
Matthew. T. Perks1

1School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, United Kingdom.

Abstract. Accurately monitoring river flows can be challenging, particularly under high-flow conditions. In recent years,

there has been considerable development of remote sensing techniques for the determination of river flow dynamics. Image

velocimetry is one particular approach which has been shown to accurately reconstruct surface velocities under a range of

hydro-geomorphic conditions. Building on these advances, a new software package, KLT-IV v1.0 has been designed to offer

a user-friendly graphical interface for the determination of river flow velocity and river discharge using videos acquired from5

a variety of fixed and mobile platforms. Platform movement can be accounted for when ground control points and/or stable

features are present, or where the platform is equipped with a differential GPS device and inertial measurement unit (IMU)

sensor. The application of KLT-IV v1.0 is demonstrated using two case studies at sites in the UK: (i) River Feshie; and (ii)

River Coquet. At these sites, footage is acquired from unmanned aerial systems (UAS) and fixed cameras. Using a combination

of ground control points (GCPs), and differential GPS and IMU data to account for platform movement, image coordinates10

are converted to real world
:::::::::
real-world distances and displacements. Flow measurements made with a UAS and fixed camera

are used to generate a well-defined flow rating curve for the River Feshie. Concurrent measurements made by UAS and fixed

camera are shown to deviate by < 4% under high-flow conditions where maximum velocities exceed 3ms−1. The acquisition

of footage on the River Coquet using a UAS equipped with differential GPS and IMU sensors enabled flow velocities to be

precisely reconstructed along a 180m river reach. In-channel velocities of between 0.2 and 1ms−1 are produced. Check points15

indicated that unaccounted for motion in the UAS platform is in the region of 6 cm. These examples are provided to illustrate

the potential for KLT-IV to be used for quantifying flow rates using videos collected from fixed, or mobile camera systems.

1 Introduction

1.1 Challenges in hydrometry

Observed flow rates in rivers represent the integration of water basin input, storage and water transfer processes. Accurate20

long-term records are essential to understand variability in hydrological processes such as the rainfall-runoff response (Hannah

et al., 2011; Borga et al., 2011). This information provides the foundation for accurate predictions of hydrological response to

catchment perturbations, and is the basis of informed water resources planning and the production of effective catchment-based

management plans.
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Current approaches for the quantification of river flow are generally applied at strategic locations along river networks25

through the installation of fixed monitoring stations. Many of these stations are reliant on the development of an empirical

stage-discharge rating curve, which is often achieved by developing an empirical function between paired measurements of

river flow (combining measurements of velocity and cross-section area) and river stage measurements. This empirical function

is then applied to a continuous record of stage measurements to predict flow discharge (Coxon et al., 2015). Obtaining accurate

flow gaugings using traditional approaches can be challenging, often costly and time consuming, with flow observations during30

flood conditions being hazardous to operatives. Resultantly, considerable progress being
:::
has

::::
been made in the development of

remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged

flow characteristics. Examples of successful developments include acoustic doppler current profilers (?)
:::::::::::::::::
(Le Coz et al., 2008)

and microwave radar sensors (Welber et al., 2016). Whilst advances in technology have led to more accurate, and safer flow

gaugings in some areas, these devices can be costly thereby limiting their adoption to locations of high priority. In contrast to35

the investment required to implement these new techniques and technologies, continued funding and resource pressures faced

by competent authorities in Europe and North America has led to a decline in investment in recent years, with reductions in

the number of monitoring stations (Stokstad, 1999). This poses a real threat to the continuity of river flow data archives and

has the potential to compromise our ability to detect future hydrological change.

As a consequence, innovative solutions are required to reduce the cost and time-intensive nature of generating river discharge40

data in order to ensure the long-term sustainability of hydrometric infrastructure and hydrological records. With the develop-

ment and implementation of new solutions, improvements in monitoring from ground-based and remotely operated platforms

may ensue, with hydrometric monitoring networks becoming tailored to meet the demands of modern water resources man-

agement (Cosgrove and Loucks, 2015).

1.2 Aim45

Taking into consideration the aforementioned challenges to monitoring hydrological processes, KLT-IV aims to provide the

user with an easy to use, graphical interface for the determination of flow rates using videos acquired from fixed, or mobile

platforms. In this article, the following sections are presented: (i) an overview of existing image-based hydrometric solutions;

(ii) details of the underlying methodology of KLT-IV and the features that are supported; (iii) examples demonstrating several

KLT-IV work-flows including the associated outputs generated by the software; and (iv) perspectives on the challenges relating50

to further development of image velocimetry software.

1.3 Image-based hydrometric solutions: Existing work-flows and limitations

Amongst the recently developed approaches offering a great deal of promise for monitoring surface flows is image velocimetry.

The fundamental basis of the image velocimetry approach to flow gauging is that the detection and subsequent rate at which

optically visible, or thermally distinct surface features, e.g. materials floating on the water surface (foam, seeds, etc.) and water55

surface patterns (ripples, turbulent structures), are displaced downstream can be used to estimate the surface velocity of the

water-body. The surface velocity may then be converted to a depth-averaged velocity by fitting a power or logarithmic law to
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vertical velocity profile observations (Welber et al., 2016), or this may be theoretically derived assuming a logarithmic velocity

profile (Wilcock, 1996). Image velocimetry is an innovative solution for measuring stream-wise velocities, understanding flow

patterns and hydrodynamic features. This information can later be supplemented with topographic and bathymetric observa-60

tions to determine the discharge of surface water-bodies.

The first step in any large-scale image velocimetry work-flow is obtaining image sequences for subsequent analysis. Due

to technological advancements, this is commonly achieved through the recording of videos in high-definition and at a consis-

tent frame rate. Camera sensors also have a range of sizes and focal lengths, which offers the opportunity for the choice of

instrument to be defined based on the conditions of operation (e.g. distance to area of interest, required angle of view, etc.).65

Following video capture, images are extracted for subsequent analysis along with meta-data (e.g. video duration, frame rate,

number of frames).

Following image acquisition, image pre-processing can be performed to alter the color properties of the images. Example

operations include histogram equalization, contrast stretching, application of a high-pass filter, and binariazation. Image pre-

processing is usually applied to enhance the visibility of surface water features against the background, eliminate the presence70

of the river-bed, or to reduce glare. These options are present within some existing image velocimetry software packages (e.g.,

Thielicke and Stamhuis, 2014), and also open source image processing software packages (e.g., ImageJ, Fiji, 2020; Schindelin

et al., 2012).

Following image enhancement, the choice of image-pairs used to determine displacement needs to be carefully considered

in most work-flows and this is a function of the sensor resolution, acquisition frame rate, ground sampling distance, and flow75

conditions (Legleiter and Kinzel, 2020). Image pairings must be selected to ensure that the displacement of surface features is

sufficient to be captured by the sensor, but short enough to minimise the potential for surface structures to transform, degrade, or

disappear altogether, or for external factors to influence the measurement (e.g. camera movement in the case of unmanned aerial

system (UAS) deployments; Lewis and Rhoads, 2018). Therefore, the optimum image sampling rate needs to be established

on a case-by-case basis and requires the operator to have a level of experience and expertise (Meselhe et al., 2004). These80

considerations also feed into the selection of an appropriate size of interrogation area (or equivalent). This needs to be large

enough for sufficient surface features to form a coherent pattern for cross-correlation algorithms to be applied. However as

this area increases, so does the the uncertainty in valid vector detection as a result of the size the correlation peak decreasing

(Raffel et al., 2018). Whilst recommendations have been made over the determination of these settings (e.g., Raffel et al.,

2018; Pearce et al., 2020) they have the potential to significantly alter the quality of the velocity computations. The recent85

application of multiple-pass, or ensemble correlation approaches, has however been shown to improve the analysis accuracy

and the production of results in closer agreement better agreement to reference values than single-pass approaches (Strelnikova

et al., 2020).

Prior to the application of image velocimetry algorithms, a series of image processing steps may be required. In some cases,

small-scale vibrations (e.g. by wind, traffic) can result in random movement of a fixed camera, or alternatively, if the camera is90

attached to a UAS or helicopter the camera may drift over time (Lewis and Rhoads, 2018). This can result in image sequences

that are not stable with apparent ground movement in parts of the image where there is none. Many image velocimetry software
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packages currently neglect this stage, with the notable exception of Fudaa, RiVER, and FlowVeloTool. These software packages

are able to account for small amounts of camera movement through the application of projective or similarity transformations

based on automated selection and tracking of features within stable parts of the image. However, these approaches require95

significant elements within the image field-of-view to be static, which may not always be possible. Furthermore, this approach

does not allow for the complete translation of a scene (e.g., Detert et al., 2017)
:::::::::::::::::::
(e.g., Detert et al., 2017).

Upon the compilation of a sequence of stabilised images, pixel coordinates of the image are usually scaled to represent

real-world distance. This can be applied using a direct scaling function where the relationship between pixel and metric coor-

dinates is already known, and is stable across the image and throughout the image sequence (i.e. the lens is rectilinear (or the100

distortion has been removed), lens is positioned orthogonal to the water surface and stable). Alternatively, in instances where

these assumptions do not hold true, image orthorectification can be conducted. In this process, ground control points (GCPs)

may be used to establish the conversion coefficients, which are then used to transform the images. In this approach the transfor-

mation matrix implicitly incorporates both the external camera parameters (e.g. camera perspective), and the internal camera

parameters (e.g. focal length, sensor size, and lens distortion coefficients). Where ground control points are located planar to105

the water surface, a minimum of four GCPs is required (Fujita et al., 1998; Fujita and Kunita, 2011), or in the case of a three-

dimensional plan-to-plan perspective projection a minimum of six GCPs distributed across the region of interest, are required

for the determination of orthorectification coefficients (Jodeau et al., 2008; Muste et al., 2008). Alternatively, the sources of

image distortion may be explicitly modelled (e.g., Heikkilä and Silvén, 2014), enabling intrinsic parameters to be determined

through calibration, and applied to alternative scenes (e.g., Perks et al., 2016). This reduces the dependency on ground control110

points provided that intrinsic parameters are known and optimisation is limited to the external camera parameters (i.e. camera

location, view direction). More recently, the integration of supplementary sensors (e.g. differential GPS, inertial measurement

unit (IMU)), and associated measurements for determining orthorectification parameters has been advocated for (e.g., Legleiter

and Kinzel, 2020), but this approach has yet to be embedded into image velocimetry software.

Upon the determination, or optimisation of the transformation matrix, which is used to map pixel coordinates to ground115

coordinates, there are two divergent approaches of how to use this information to generate velocity information in real-world

distances. The most widely used approach is to use the transformation coefficients to generate a new sequence of images

where ground distances are equivalent across all pixels across the image. Image velocimetry analysis is then conducted on this

orthorectified imagery. However, some work-flows neglect this stage, instead conducting image velocimetry analysis on the

raw images, and applying a vector correction factor to the velocity vectors (e.g., Fujita and Kunita, 2011; Perks et al., 2016)120

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Fujita and Kunita, 2011; Perks et al., 2016; Patalano et al., 2017). The benefit of the latter approach is that image ve-

locimetry analysis is conducted on footage that has not been manipulated or transformed and therefore there is no opportunity

for image processing artefacts to influence the velocity outputs. Conversely, an advantage of direct image transformation is

that the parameters being applied by the image velocimetry algorithms are consistent throughout the image (e.g. 32 x 32 px

represents the same ground sampling area across the entirety of the image).125

Following image pre-processing, stabilisation, and orthorectification (when required), a range of image velocimetry ap-

proaches may be used to detect motion of the free-surface. Large-scale Particle Image Velocimetry (LSPIV) is built upon the
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Particle Image Velocimetry (PIV) approach commonly employed in laboratory settings. This approach applies two-dimensional

cross correlation between image-pairs to determine motion. The first image is broken into cells (search areas) within a grid

of pre-defined dimensions and these search areas are used as the template for the two-dimensional cross correlation. In the130

second image, an area around each search area is defined and the highest value in the two-dimensional cross-correlation plane

is extracted and is used as an estimate of fluid movement. Space–time Image Velocimetry (STIV) was inspired by LSPIV

and searches for gradients between sequences of images by stacking sequential frames and searching for linear patterns of

image intensity (Fujita et al., 2007, 2019). Similarly to PIV, Particle Tracking Velocimetry (PTV) can also be based on cross-

correlation, but rather than utilising an aggregation of surface features (patterns) to determine movement, individual surface135

features are selected, and their likely displacement determined. Upon acquisition of displacement estimates, post-processing in

the form of vector filtering can be applied. This may take the form of correlation thresholds, manual vector removal, a standard

deviation filter, local median filter (Westerweel and Scarano, 2005; Strelnikova et al., 2020), trajectory-based filtering (Tauro

et al., 2019), or imposing limits to the velocity detection thresholds.

A final element in image velocimetry work-flows for the determination of river discharge involves the incorporation of ex-140

ternal data. Firstly, the free-surface image velocity measurements must be translated into a depth-averaged velocity. Buchanan

and Somers (1969) and Creutin et al. (2003) provided estimates of 0.85 – 0.90 as an adequate ratio between surface and depth-

averaged velocities under the condition of a logarithmic profile. This has been found to hold true for a number of environmental

conditions (e.g., Le Coz et al., 2007; Kim et al., 2008), with maximal deviations from these default values of less than 10%

(Le Coz et al., 2010). However, this should ideally be informed by direct measurements made in the area of interest. It may also145

be the case that determining the displacement across the entire cross-section is not possible (e.g. due to lack of visible surface

features). Therefore, interpolation and extrapolation may need to be undertaken. This may be achieved using the assumption

that the Froude number varies linearly or is constant within a cross-section (Le Coz et al., 2010), or based on theoretical flow

field distributions (Leitão et al., 2018). Upon a complete profile, unit discharge can be calculated based on the specified water

depth at a number of locations in the cross-section and this is then aggregated to provide the total river flow.150

Building on the existing image velocimetry software packages that are currently available, and seeking to address some

of their limitations, KLT-IV v1.0 seeks to offer a novel, flexible approach to acquiring hydrometric data using image-based

techniques. The specific details of this approach are introduced in Section 2.

2 Methods

2.1 Software Background155

A new branch of PTV has recently been explored, whereby features are detected based on two-dimensional gradients in pixel

intensity across the image using one of a range of automated corner point detection algorithms (e.g. SIFT, GFTT, FAST).

These features are subsequently tracked from frame to frame using optical flow techniques. This approach has only recently

been used for the characterisation of hydrological processes with examples including monitoring of a fluvial flash flood using

a UAS (Perks et al., 2016), application of optical tracking velocimetry (OTV) on the Tiber and Brenta rivers using fixed gauge160
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cams (Tauro et al., 2018), benchmarking exercises using a range of image velocimetry approaches including KLT-IV and OTV

(Pearce et al., 2020), and
:::
and in the development of FlowVeloTool (Eltner et al., 2020). Optical flow-based approaches have

the benefit of being computationally efficient whilst being capable of automatically extracting and tracking many thousands

of visible features within the field of view.
::
In

:
a
::::::
recent

::::::::::::
benchmarking

:::::::
exercise

::::::
where

:::
the

:::::::::::
performance

::
of

::
a

:::::
range

::
of

::::::
image

::::::::::
velocimetry

:::::::::
techniques

::::
were

:::::::::
compared

:::::
under

::::::::
low-flow

:::::::::
conditions

::::
and

::::
high

:::::::
seeding

::::::::
densities,

:::::::
KLT-IV

::::
was

::::::
shown

::
to

:::::
have165

:::::::::
comparable

::::::::::
performace

::::
with

:::::
other,

:::::
more

::::::::::
established

:::::::::
techniques

::::::::
including

::::::
PIVlab

::::
and

:::::::
PTVlab,

::::
with

:::::::::::
performance

:::::
being

::::
less

:::::::
sensitive

::
to

:::
the

::::::::::
user-defined

::::::::::
parameters

::::::::::::::::
(Pearce et al., 2020)

:
.

The underlying approach of KLT-IV is the detection of features using the Good Features To Track (GFTT) algorithm (Shi

and Tomasi, 1994), and subsequent tracking using the pyramidal Kanade Lucas Tomasi tracking scheme (Lucas et al., 1981;

Tomasi and Kanade, 1991). The three level pyramid scheme allows for a degree of flexibility in the user specified interrogation170

area (block size). The interrogation area is refined between pyramid levels by down-sampling the width and height of the

interrogation areas of the previous level by a factor of two. An initial solution is found for the lowest resolution level and this is

then propagated through to the highest resolution. This enables features to be tracked that extend beyond the initial interrogation

area. A total of thirty search iterations are completed for the new location of each point until convergence. Error detection is

established by calculating the bidirectional error in the feature tracking (Kalal et al., 2010). If the difference between the175

forward and backward tracking between image pairs produces values that differ by more than 1 px, the feature is discarded.

Depending on the configuration adopted (see Section 2.2.2), feature tracking is conducted on either orthorectified imagery with

the resultant feature displacement in metric units, or on the raw imagery with vector scaling occurring after analysis. When

pixel size is not explicitly known in advance, the transformation between pixel and physical coordinates is achieved through the

generation and optimisation of a distorted camera model (Messerli and Grinsted, 2015; Perks et al., 2016), which in the case180

of moving platforms, is updated iteratively based upon GCPs, or differential GPS data. KLT-IV is a standalone graphical user

interface (GUI) developed in MATLAB 2019, with the incorporation of Cascading Style Sheets (CSS) to enable flexibility of

interface design (StackOverflowMATLABchat, 2016). The application is compiled as a standalone executable and is packaged

with ffmpeg (version N-93726-g7eba264513) (see Software Availability).

2.2 Interface185

The interface is split up into five sections: (i) Video Inputs; (ii) Settings; (iii) Ground Control; (iv) Analysis; and (v) Discharge

(Figure 1). Within each of these categories are a number of options which automatically activate and deactivate depending on

the type of orientation selected. Consequently, there are a number of potential work-flows, and these will be outlined in this

section. All inputs are in units of meters unless specified otherwise.

2.2.1 Video Inputs190

The first section: Video Inputs, is where the video acquisition details are provided. The default mode in this version is
::::::
Within

::::
v1.0

::
of

:::
the

::::::::
software,

::::
only

:
‘Single Video’

::::
mode

::::
can

::
be

:::::::
selected, meaning that only one video at a time can be analysed, and

this video may be selected using the file selection dialog box. There is flexibility in the video formats that may be used within
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Figure 1. Graphical User Interface (GUI) of KLT-IV version 1.0

the software as outlined in Appendix A. Upon selecting a video, the user is provided with the option to re-encode the footage.

Under most instances this is not required. However, on some occasions Internet Protocol (IP) cameras may fail to embed195

the correct meta-data (e.g. image resolution, frame rate) within the video. Accurate meta-data are an essential pre-requisite to

accurate analysis and re-encoding the video can restore this information. If re-encoding is selected this process is automatically

undertaken using using the libx264 encoder. This results in the generation of a new video within the same folder as the input

with the suffix ‘_KLT’ appended to the input file name.
::
It

:::::
should

:::
be

:::::
noted

:::::::
however

:::
that

::::::
videos

::::::
cannot

::
be

::::::::::
re-encoded

:
if
:::
the

::::
text

:::::
‘KLT’

::
is

::::::
present

::::::
within

:::
the

::::
input

:::
file

::::::
name.200

The next option allows the user to specify the camera type used to acquire the footage. A number of IP, hand-held, and UAS-

mounted cameras are available for selection. If the user selects a camera, the calibrated internal camera parameters will be used

during the orthorectification process. This enables fewer parameters to be solved for in the optimisation process. However, if the

‘Not listed’ option is chosen then the internal camera parameters are optimised during orthorectification process. If orientation

[A] or [F] is selected (Table 1), the camera model is a required input, otherwise it is optional. The camera models used in205

KLT-IV
::::
have been developed through the use of a checkerboard pattern and the Camera Calibrator App within MATLAB.

Next, one of six camera orientations can be chosen and these are outlined in Table 1. Each of the chosen options has different

input requirements from this point forwards (Figure 2). Some work-flows require the input of the camera location [X, Y, Z]

and camera view direction [yaw, pitch, roll]. If the orientation uses GCPs, this positioning information is used as the starting

point for the development of the camera model. If ‘Stationary: Nadir’ is selected as the orientation, the camera [z] coordinate210

should be precisely defined relative to the water surface elevation (see Section 2.2.3), as the distance between camera and water

surface is used to define the conversion between pixel size and metric coordinates. The camera yaw, pitch, and roll settings
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should be provided in radians. In the case of the yaw angle, 0 equates to East, 1.57 equates to North, 3.14 equates to West,

and 4.71 equates to South. These bearings are provided relative to the GCP coordinate system. A pitch of 1.57 equates to the

camera oriented at nadir with each degree of inclination subtracting 0.017 from this value. Generally, camera roll is negligible215

and the default value (zero) can be adopted.

2.2.2 Settings

The Settings section provides the user with the opportunity to customise the settings used in the feature tracking process

and therefore the determination of velocities. The feature tracking procedure is designed to identify and track visible features

between each frame of the video. However, the user may define the length of time that features are tracked for before their220

displacement is calculated. If for example, the extract rate is defined as 1 s and the video frame rate is 20Hz, features would

be detected in frame one, and tracked until frame 21, at which point, the displacement of the features are stored. The sequence

would then be restarted at frame 21 and continue until 41, etc. The smaller the value given as the extraction rate, the greater

the number of trajectories that will be produced, and any areas of unsteady flow elements will be well characterised. However,

small feature displacements can be adversely affected by residual camera movement. Higher extract rates provide a smoothing225

of the trajectories, averaging particle motion over a greater distance. This makes the process more robust and greater confidence

can be placed on the resultant values. However, trajectory numbers will be reduced, and a higher degree of spatial averaging will

occur. In most instances, values of between 0.5 and 2 s are generally appropriate. The block size determines the interrogation

area during the feature tracking process. As KLT-IV employs a pyramidal scheme, and tracks features frame-by-frame, analysis

is relatively insensitive to this value provided the frame rate is sufficiently high (i.e.<5 fps), and pixel ground sampling distance230

in the order of decimetres or less. The minimum block size value is 5 px and a default value of 31 px proves sufficient for most

deployments. During the determination of features to track, features present close to the edges of the video (outer 10%) can

either be ignored or included in the analysis. If using a camera with significant levels of distortion (e.g. DJI Phantom 2 Vision+),

it is recommended that the edges are ignored as residual distortion may persist thereby negatively affect the results (Perks et al.,

2016). In the present version of the software the velocity magnitude is provided in ms−1, along with the X and Y components235

as defined by spatial orientation of the GCPs.

2.2.3 Ground Control

Ground control points may be used to transform the information within the imagery from pixel scale to metric scale i.e. to

establish how distances between pixels relate to real-world distance. To achieve this, the physical location [X, Y, Z] of ground

control points (GCPs) within the image are required. The locations of the GCPs can be input in one of several ways. If the pixel240

coordinates are known, these can be manually input into the table within the GUI, ensuring that pixel indices are appropriately

referenced with [0, 0] corresponding to the upper left corner of the image. Alternatively, if the data are already saved in a

spreadsheet (.csv format), this can be loaded directly using the file selection dialog box. The format should match that of the

GUI table (including headers). Finally, if the pixel locations are not yet known, these can be selected directly from the image. If

‘Dynamic: GCPs’ is selected as the orientation, GCPs are tracked iteratively between frames. If GCPs are difficult to visually245
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Table 1. A summary of the assumptions, requirements, advantages, and limitations of the different orientation options found with Section 1:

Video Inputs of KLT-IV v1.0.

Orientation Assumptions Requirements Advantages Limitations

Stationary:

Nadir [A]

The camera is

stationary and view is

nadir

Defined camera location and

camera model, camera oriented

at nadir, known water surface

elevation

No GCPs required Assumption of stable and

nadir camera

Stationary:

GCPs [B]

The camera is

stationary and GCPs

are present

Estimated camera location,

estimated view direction,

GCPs, water surface elevation

Camera calibration

leading to accurate

trajectories

Assumption of stable

camera

Dynamic:

GCPs [C]

The camera may be

mobile and GCPs are

present

Estimated camera starting

location, estimated view

direction, GCPs, water surface

elevation

Camera calibration

using GCPs tracked

between frames, scene

can be dynamic with

addition of GCPs over

time

GCPs should be clearly

visible

Dynamic:

GCPs &

Stabilisation

[D]

The camera may be

mobile, and GCPs are

present but may be

difficult to track

Estimated camera starting

location, estimated view

direction, GCPs, water surface

elevation

Frames are stabilised

relative to the first

frame to account for

movement, GCPs do

not need to be clearly

visible

Assumption that the area

outside of the defined ROI

is stable, camera

perspective (i.e. pitch) does

not alter significantly,

bank-side features are at

similar elevations

Dynamic:

Stabilisation

[E]

The camera may be

mobile, GCPs are not

present but pixel size is

known

Pixel scaling (px/m), water

surface elevation

Frames are stabilised

relative to the first

frame to account for

movement, GCPs are

not required

Assumption that pixel

scaling is constant across

image, the area outside of

the defined ROI is stable,

camera perspective does

not alter significantly

Dynamic: GPS

& IMU [F]

The camera may be

mobile, differential

GPS and IMU data are

used to define the

camera model and

sequential images are

stabilised

High rate PPK/RTK GPS and

IMU data, water surface

elevation, camera at nadir

No GCPs are required

and the platform can be

mobile

Precision is dependent on

GPS and IMU quality and

sample rate, stable features

must be visible
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Video input

Re-
encode?

Encode using ffmpeg

Frames from video

no

yes

Camera type

Orientation

Camera location

[A, B, C, D]

View angle

[B, C, D]

Extract rate

[A]

Block size

Ignore
edges?

Velocity
compo-
nent

yes

no

Settings stored
magnitude

GCP data

[B
,C

,D
]

Check
GCPs?

Export
GCPs?

yes

no

GCP buffer[1]

no

yes

Custom FOV[2]

Water surface
elevation

[A]

Parts 1-3 complete

Image resolution

[E]

Extract rate

Block size

Ignore
edges?

Velocity
compo-
nent

yes

no

magnitude

GPS data

[F]

Video start time

Water surface
elevation

Number of
seconds to skip

IMU data

Extract rate

Block size

Figure 2. Workflow for Section 1 - 3 of KLT-IV v1.0. Different work-flow scenarios are provided based on the choice of camera orientation.

Letters correspond to the orientation defined in Table 1. Grey, yellow, and green colors relate to items within the: (1) Video Inputs, (2)

Settings, and (3) Ground Control sections respectively. Notes: Either the GCP buffer [1], or Custom FOV [2] should be provided.
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identify (and therefore difficult to track), it may be beneficial to enable the ‘Check GCPs’ option. This enables the user to

manually check the location of the GCPs and offers the option to add additional GCPs should they come into view during the

video. The GCP data can also be exported as a .csv file for easy import in future. It is recommended that a minimum of 6

GCPs are defined in this process. Next the user defines the spatial extent (field-of-view; FOV) of the images. This can either be

defined as a buffer around the initial GCPs or can be defined explicitly. For example, if a GCP buffer of 10m is used (default),250

orthophotos will be generated that extend 10m beyond the GCP network. Conversely, if a custom FOV is defined, orthophotos

will be generated for this specified area. This input is required even if orthophotos are not exported (see Section 2.2.4). Finally,

the user is required to provide the Water Surface Elevation (WSE) in meters. This should be provided in the same coordinate

system as the camera and the GCPs. For example, if the camera is located at an elevation of 10m and the imaged water surface

is located 7m below, the water surface elevation would be defined as 3m.255

2.2.4 Analysis

The configuration of the outputs is specified in the ‘Analysis’ section (Figure 3). The location where the outputs are to be

stored is defined using the pop-up dialog box. The region-of-interest (ROI) is manually provided by drawing a polygon around

the area which defines areas within the image where velocity measurements will be calculated. Features tracked outside of

the ROI are not stored during the analysis. This is an optional input and if this is not provided then the extent will match the260

area defined by the GCP buffer, or Custom FOV, as specified in Ground Control. The exception to this is if ‘Dynamic GCPs +

Stabilisation’, or ‘Dynamic Stabilisation’ is selected, in which case the ROI is required. For these two configurations, the area

defined as being outside of the ROI (outside of the polygon) is used to stabilise the image sequence. It is therefore important

that there is no actual movement outside of the polygon when using these configurations. There is an option to export the

velocities of the tracked particles as a .csv file. Orthophotos may also be generated for the frames at the beginning and end265

of the tracking sequence. The user can define the resolution of the orthophotos that are generated (upto a maximum of 180

million cells, equivalent to an area of 134×134m2 at a resolution of 0.01 m/px). If this area is exceeded, the resolution will

automatically be scaled by a factor of two (or multiples thereof) until below this threshold. The user can also specify whether

they wish to visualise the estimated movement of the platform (when ‘Dynamic: GCPs’ is selected), and whether they would

like to plot the particle trajectories. Finally, it is possible to export and load the application settings for future use and these are270

saved to the Output Location.

Upon selecting ‘RUN’, the analysis begins. Firstly, in the case of configurations using GCPs, a camera model is created and

optimised using the GCP information provided. An RMSE of the GCP re-projection error is provided along with a visualisation

of the precision of the orthorectification process. If the solution is poorly defined the user may halt the process at this stage

and provide inputs that better describe the camera [X, Y, Z, view direction] and/or GCPs before re-running. The user is also275

provided with the opportunity to limit the analysis to a specific number of seconds of the video. Processing is undertaken on

the video, and updates on the progress are provided within the GUI. A complete overview of the processes undertaken for each

configuration is provided in (Figure 3)
:::::
Figure

:
3. Any exports that the user chooses will be saved in the defined output location.

Orthophotos are exported as greyscale .jpg at the defined pixel resolution, and velocity outputs are exported as a .csv file. The
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[1] Orthophoto output is not configurable for orientation [F];

[2] Resolution of orthophoto output is not configurable for orientation
[E];

[3] Plotting camera movement is only available for orientation [C];

[4] If orthorectification results are poor, check inputs defined in Sec-
tions 1-3 and retry;

[5] GFTT = Good Features To Track algorithm;

[6] nFrames = FrameRate
1/Extraction Rate ;

[7] Coordinates are stored in metric units using the pixel scaling factor
(for orientation E), or camera model (A-D, F);

[8] totFrames = FrameRate× length of video analysed;

[9] Success = Accurate stabilisation achieved;

[10] Unsuccessful = Insufficient number of matched features success-
fully detected in the frame to be stabilised. In this instance the last
frame to be successfully stabilised becomes the reference frame.

Figure 3. Work-flow for Section 4 of KLT-IV (shown in blue), and an outline of the image processing routine used in the determination of

velocity magnitudes. Capitalised letters in square brackets correspond to the orientation defined in Table 1. Dashed icons represent optional

inputs/outputs, which are dependent on the settings provided in Sections 1-4. Red icons represent user inputs which are prompted once the

‘Run’ button has been pushed.
12



velocity output includes the starting location of tracking (X, Y), the velocity magnitude, and the X and Y flow components280

which are within the same orientation as the GCP survey. The estimated movement [X, Y, Z] of the platform is also shown if

selected. Successfully tracked features, and their trajectories are displayed within the specified ROI and the user may choose

how many features to plot. For an overview, 10,000 features is usually sufficient, but this may be increased to 100,000+ if more

detail is required. However, as the number of features selected to display increases, so does the demand on the PCs memory

(RAM). Following successful completion of the analysis and export of the selected outputs, the user may continue through to285

Section 4 and determine the river discharge.

2.2.5 Discharge

The input of a known cross-section is required in order to compute the river discharge. This can be provided in one of two ways.

Firstly, if the cross-section data has the same spatial reference as the camera location/GCP data then a ‘Referenced survey’ can

be selected. This method enables the user to input the known locations of each survey point in the cross-section. This is most290

likely to be appropriate when the same method is used for surveying the GCPs and cross-section (e.g. survey conducted using

a differential GPS device exported into a local coordinate system). Secondly, if measurements of the cross-section were made

at known intervals from a known starting and finishing position that can be identified from within the video footage, the option

‘Relative distances’ may be selected. In selecting the latter option, the first frame of the video is displayed, and the user is

instructed to choose the start and stop of the surveyed cross-section. Next, the user may define the survey data as being either:295

(i) true bed elevation; or (ii) water depth. In the former, the actual bed elevation is provided, whereas in the latter the absolute

water depth is provided. The user is then instructed to load the .csv file containing the survey data. In the case of a referenced

survey, the columns should be [X, Y, Z/Depth] (including a header in the first row), whereas in the case of relative distances

the .csv should be in the format [Chainage, Z/Depth]. Each measurement along the transect is treated as a node for which a

paired velocity measurement is assigned. The user provides a ‘Search Distance’ which is a search radius around each node.300

Using the velocities found within this search radius, the median is stored. In parts of the channel where no features are tracked,

or visible, it may be necessary to interpolate between, or extrapolate beyond measurements. This can be achieved in one of

three ways: (i) quadratic (second order) polynomial - This works well where peak velocities occur in the centre of the channel

and decrease symmetrically towards both banks; (ii) cubic (third order) polynomial - This works well where flow distribution

is asymmetrical or secondary peaks are present; (iii) constant Froude method - The Froude number (Fr = V/
√
gD) (Le Coz305

et al., 2008; Fulford and Sauer, 1986) is calculated for each velocity and depth pairing, with this function being used to predict

velocities in areas where no features are tracked. This approach may be particularly beneficial when the flow distribution does

not conform to (i), or (ii).
::::::
Finally,

:::
an

:::::
Alpha

:::::
value

:::::
needs

::
to

::
be

::::::::
provided.

:::::
This

:
is
:::
the

:::::
ratio

::::
used

::
to

::::::
convert

:::
the

::::::::
measured

:::::::
surface

::::::::
velocities

::
to

:::::::::::::
depth-averaged

:::::::
velocity,

::::::
which

:
is
::::

then
:::::

used
::
in

:::
the

:::::::::
calculation

:::
of

::::::::
discharge.

::
A
:::::::
default

::::
value

:::
of

::::
0.85

::
is

::::::::
generally

:::::::::
appropriate

::
if

::
no

:::::::::::::
supplementary

:::
data

::
is
::::::::
available

::
to

::::::
inform

:::
the

::::
user

:::
(see

:::::::
Section

:::
1.3

:::
for

::::
more

:::::::::::
information).

:
310
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2.3 Case Study Descriptions

Within the following sections, descriptions are provided of two example case studies where footage has been acquired for image

velocimetry purposes. These field sites are located in the UK with footage acquired during low- and high-flow conditions using

fixed cameras and mobile platforms (UAS).
::
A

::::::::::
presentation

::
of

:::
the

::::::::::
processing

:::::
times

:::
for

:::::::
analysis

::
of

:::
the

::::::
videos

::
is

::::::::
provided

::
in

::::::::
Appendix

::
B.

:
315

2.3.1 Case Study 1: River Feshie, Scotland

The River Feshie, in the Highlands of Scotland, is one of the most geomorphologically active rivers in the UK. The headwaters

originate in the Cairngorm National Park at an elevation of 1263m AOD
:::::
above

:::
the

::::::
Newlyn

:::::::::
Ordnance

::::::
Datum

::::::
(AOD)

:
before

joining the River Spey at an elevation of 220mAOD. Approximately 1 km upstream of this confluence is a Scottish Environ-

mental Protection Agency (SEPA) gauging station (Feshie Bridge). This monitoring station at the outlet of the 231 km2 Feshie320

catchment is a critical, but challenging location for the measurement of river flows. The channel is liable to scour and fill during

high-flow events and the natural control is prone to movement in moderate to extreme spates.

At this location, a Hikvision DS-2CD2646G1-IZS AcuSense 4MP IR Varifocal Bullet Network Camera has been installed

for the primary purpose of using the acquired footage to compute surface velocities using image velocimetry techniques. The

camera has a varifocal lens, which was adjusted to optimise the field-of-view captured by the camera. Camera calibration was325

therefore undertaken at the site following installation. The camera captures a 10 s video at a frame rate of 20Hz and resolution

of 2688 x 1520 pixels every 15min. Ground control points and river cross-sections have been surveyed using a Riegl VZ4000

terrestrial laser scanner and Leica GS14 GPS. Between 30th August and 2nd September 2019, a high-flow event occurred on

the River Feshie and the footage acquired from the fixed camera is used here to illustrate the functionality of KLT-IV. The

processing work-flow for this footage acquired from a fixed monitoring station follows the ‘Stationary: GCPs’ approach.330

In addition to the fixed camera footage, a DJI Phantom 4 Pro UAS was flown at an elevation of approximately 20m above the

water surface during the rising limb of the hydrograph and at the peak river stage. These videos were acquired at a resolution

of 4096 x 2160 pixels at a frame rate of 29.97 fps. The footage was acquired with the camera at 21 – 31° from nadir and video

durations of between 30 s and 2min are selected for analysis. Two processing options could be considered for the specific

site/flight characteristics: (i) Dynamic: GCPs + Stabilisation; or (ii) Dynamic: GCPs. In using (i), image stabilisation would335

first be carried out before orthorectification, under the assumption that stabilisation results in a consistent image sequence,

whereas in (ii): ground control points would be identified and tracked throughout the image sequence, enabling platform

movement to be accounted for. The main limitation for option (i) is that the banks of the channel are heavily vegetated with

variations in elevations of up to 10m. The use of features at different elevations for stabilisation negates the assumption of

a planar perspective (Dale et al., 2005), and features may appear to move at different rates, or directions, and this may be340

enhanced by the off-nadir perspective of the camera (Schowengerdt, 2006). However, in the case of (ii): GCPs are clearly

visible, and distinctive, across both sides of the channel for the duration of the video. Therefore, these GCPs may be selected

and automatically tracked throughout the image sequence. This information would then be used to automatically correct the
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displacement of features on the water surface for movement of the UAS platform. For the reasons outlined above, option (ii)

was chosen for analysis of this case study.345

2.3.2 Case Study 2: River Coquet, England

The middle reaches of the River Coquet at Holystone in the north-east of England, UK are located 25 km downstream from

the river’s source in the Cheviot Hills, draining a catchment area of 225 km2. This is a wandering gravel-bed river with a

well-documented history of lateral instability (Charlton et al., 2003). On 22nd March 2020, during a period of low-flow, a DJI

Phantom 4 Pro UAS undertook a flight to acquire imagery along the long-profile of the river. The video footage was acquired350

at a resolution of 2720 x 1530 pixels and a frame rate of 29.97 fps. Prior to the flight, an Emlid Reach RS+ GPS module

was set-up nearby to obtain baseline GPS data, and the UAS was equipped with an Emlid M+ GPS sensor. Both the base and

UAS-mounted GPS acquired L1 GPS data at 14Hz and the base station data was used to correct the UAS-mounted GPS logs

(i.e. providing a Post-Processed Kinematic (PPK) solution). This enabled the precise position of the UAS to be determined

throughout the flight. Taking advantage of this approach, the platform was used to traverse the river corridor at a height of 46m355

above the water surface. The way-points of the pre-planned route were uploaded to the drone using flight management software

and the route automatically flown at a speed of 5 kmh−1. Given the GPS sampling rate and flight speed, the UAS location was

logged ten times for every 1m travelled. Synchronisation between the video and GPS was ensured through the mounting of

additional hardware. Each time a video begins recording on the DJI Phantom 4 Pro, the front LEDs blink and this was detected

using a phototransistor. This event was then logged by the GPS providing a known time that recording began. Timing offsets360

are also accounted for in this process. Following the flight, inertial measurement unit (IMU) data was downloaded from the

UAS. In the case of the DJI Phantom 4 Pro, this is logged at 30Hz and is used to determine the camera orientation during the

flight. The process is based upon the assumption that the camera is focussed at nadir, and that the camera gimball accounts for

deviation in the platforms pitch.

3 Results365

3.1 Case Study 1: River Feshie, Scotland

Upon analysis of ten videos acquired from the fixed camera, and four videos acquired from the UAS, flows are reconstructed

for a river stage ranging from 0.785–1.762m, on both the rising and falling-limb of the hydrograph. Analysis of the footage

acquired from the UAS and fixed camera enable the generation of a well-defined rating curve relating river stage to flow, with

deviations between reconstructed discharge of 4% and 1% in the case of a river stage of 1.762 and 1.518m respectively.370

Analysis of each UAS video generated over one-million within-channel trajectories, of which, 20% are shown in the exam-

ples within Figure 5. Velocity magnitudes of individual trajectories are presented using a linear colormap with points falling

outside of the lower 99th percentile being plotted in black. The plots in Figure 5 are examples of KLT-IV outputs for videos

acquired at the peak stage in the observed high flow event on 30th August. At this time, peak surface velocities approximated
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Figure 4. Stage-discharge rating curve developed for the River Feshie following image velocimetry analysis using KLT-IV v1.0. The rating

curve (grey solid line) is an empirical function with least-squares optimisation of two-parameters with the value of 0.2780 representing the

the stage of zero flow. The dashed lines represent the 95% confidence intervals of the rating curve coefficients. River discharge observations

produced using the fixed camera are indicated by black circles, whereas the UAS-derived observations are indicated by red crosses.
::::
Note:

::
the

::::
stage

:
[
::
m]

::::
values

:::
are

::::::::
consistent

:::
with

:::
the

::::
WSE

::::
input

:::::
when

::::
using

:::
the

:::::
videos

::::::
acquired

::::
with

:::
the

::::
UAS,

::::::
whereas

:::
the

::::
WSE

:::::
inputs

::::::
assiated

::::
with

::
the

::::
fixed

::::::
camera

:::
are

::::
offset

::
by

:::::::::::
+232.1755m

:::::
relative

::
to

:::
the

::::
stage

:::::::
presented

::::
here.

4ms−1 across the central portion of the channel, decreasing asymmetrically towards the banks. Figure 5 A–B represent the375

outputs generated from the UAS, whereas C-D represent those from the fixed camera. Due to the vegetated channel boundaries,

the UAS was unable to image the flow on the right bank, resulting in approximately 6.5m of the water surface requiring ex-

trapolation. However, the main body of flow was successfully captured with no interpolation required. The cubic extrapolation

replicates the cross-section flow dynamics well, resulting in just a slight step between the observed and predicted velocities.

The computed discharge using the UAS was 82.11m3 s−1 at a stage of 1.762m.380

At the same time, the fixed camera recorded a 10 s video with the results illustrated in Figure 5 C–D. In contrast to the

one-million within-channel trajectories obtained using the UAS (over 60-seconds), 7433 within-channel trajectories were re-

constructed, with the vast majority being detected in the central, fastest flowing part of the channel. As a result of the reduced

number of trajectories, some interpolation, and extrapolation to both banks is required. However, the cubic function again

clearly replicates the general flow distribution. The lack of trajectories obtained on the left bank may be caused by the camera385

poorly resolving the features in the near-field, proximal of the camera. Conversely, at the far (right) bank, there are few de-

tectable features in the video and the ground sampling distance of the camera pixels will be relatively low. The peak surface

velocities are in excess of 4ms−1, which are converted to a maximum depth averaged velocity of approximately 3.5ms−1.

Using the fixed camera, the computed discharge was 85.38m3 s−1 at a stage of 1.762m.
::::::
Despite

:::
the

::::::::::
comparable

:::::::::
discharge

::::::
outputs

::::::::
generated

:::
by

:::
the

:::::
fixed

::::::
camera

:::
and

:::::
UAS,

:::::
some

::::::
visual

:::::::::
differences

::
in

:::
the

:::::::
velocity

:::::::
profiles

:::
are

::::::::
apparent.

:::::
Most

:::::::
notably,390
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A B

C D

Figure 5. KLT-IV example outputs for the River Feshie at a river stage of 1.762m using a DJI Phantom 4 Pro Unmanned Aerial System

(UAS) (A–B), and a fixed HikVision camera (C–D). The reconstructed discharge was 82.11m3 s−1 and 85.38m3 s−1 for the UAS and fixed

platform respectively. Figures A and C illustrate the trajectories and displacement rates of objects tracked on the river surface. Features were

tracked for a period of 1 s and 0.5 s for A and C respectively. Figures B and D illustrate the depth-averaged velocity for the river cross-section.

Black points indicate observations whereas red points indicate nodes of interpolation/extrapolation.
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::
the

:::::::
velocity

::::::
profile

:::::::::
generated

:::::
using

:::
the

::::
UAS

:::::::
footage

::
is

::::::::
smoother

::::
and

:::::::
produces

::
a
:::::
more

::::::::
complete

:::::
profile

:::::
(with

:::
the

:::::::::
exception

::
of

:::
the

::::
area

::
of

::::
flow

:::::
close

::
to

:::
the

::::
right

:::::
bank

:::::
which

::
is

:::
out

::
of

:::::
shot).

:::::::
Several

::::::
factors

::::
may

::::::::
influence

::::
this.

::::::
Firstly,

::
as

:::
the

:::::::
duration

:::
of

::
the

:::::
UAS

::::::
footage

::
is
::::::::
six-times

::::::
longer

::::
than

:::
the

:::::
fixed

::::::
camera,

::
a
::::::
greater

:::::::
number

::
of

:::::::
features

:::
are

:::::::
detected,

::::
and

::::::
tracked

::::::::::
throughout

::
the

:::::::::
sequence,

:::
and

::::::::
unsteady

::::
flow

::
is

:::::::
therefore

::::::::
averaged

::::
over

:
a
::::::
longer

::::::::::
time-frame.

::::::::
Secondly,

:::
the

:::::
water

::::::
surface

:::
of

:::
the

::::
river

::
is

:::
not

:::::
planar,

::::::
which

::
is

:
a
::::::::
necessary

::::::::::
assumption

::
of

:::
the

::::::::
software.

::::::::
Localised

::::::::
variations

::
in
:::
the

:::::
water

::::::
height

::::
(e.g.

:::::::
breaking

::::::
waves,

:::::::
moving395

::::::
waves)

:::
may

:::::
have

::
an

::::::::
influence

::
on

:::
the

::::::::
direction

:::
and

::::
also

:::
the

:::::::::
magnitude

::
of

:::
the

:::::::::::
reconstructed

::::::::::
trajectories.

::::
This

:::
will

::::
have

::
a
::::::
greater

:::::
effect

::
in

:::
the

::::
fixed

::::::
camera

:::::::
footage

:::
due

::
to

:::
the

:::::::
oblique

::::
angle

:::
of

:::::
video

::::::
capture.

:

::
An

::::::::::
illustration

::
of

::::
how

:::
the

::::::::
generated

::::::
outputs

::::
vary

::::
with

:::::::
changes

::
to

::::::::::
user-defined

:::::::
settings

::
of

::::::
extract

:::
rate

:::
(s)

:::
and

:::::
block

::::
size

::::
(px)

::
are

::::::::::::
demonstrated

::
for

::
a
:::::::
selection

:::
of

::
the

:::::
fixed

::::::
videos

:::::::
acquired

::
at

:::
the

:::::
Feshie

::::::::::
monitoring

::::::
station

:::::::::
(Appendix

::
C).

:::::::::
Generally,

:::::::
varying

::::
these

::::
two

:::::::::
parameters

::::::
results

:::
in

::::::::
relatively

:::::
small

:::::::
changes

::
to
::::

the
:::::::
velocity

::::::
profile,

:::::
with

:::
the

:::::
mean

::::::
values

::
of

:::
the

::::::::::::
reconstructed400

::::::
velocity

::::::
profile

:::::::
ranging

::::
from

:::::::::::::::
0.89–0.94ms−1

:::::
(Video

:::
8),

::::::::::::::
1.18–1.29ms−1

::::::
(Video

::
2),

::::
and

::::::::::::::
1.68–1.80ms−1

:::::
(Video

:::
6).

::
In
:::::

each

::
of

::::
these

:::::::::
examples,

:::
the

:::::::
selection

:::
of

:
a
:::::
broad

:::::
range

::
of

:::::
input

::::::
settings

:::::::
resulted

:::
the

:::::::::::::
cross-sectional

::::::
average

:::::::
velocity

:::::::
varying

::
by

::::
less

:::
than

:::::
10%.

:::
Of

::::
note

::::::::
however,

::
is

:::
that

:::::::::
deviations

::
in

:::
the

:::::::
velocity

::::::
profile

:::
are

:::::
most

:::::::
sensitive

::
to

:::::::
changes

::
in
:::::

these
::::::::::
parameters

::
in

:::
the

::::::::
near-field

:::::
where

:::::::
features

::::
may

:::::
transit

:::
the

:::::
scene

:::::::
rapidly,

:::
and

:::
the

:::
far

::::
field

:::::
where

:::::::
features

:::
are

:::::::
difficult

::
to

:::::::
resolve.

3.2 Case Study 2: River Coquet, England405

A 125 s flight of the River Coquet generated 3746 sequential images spanning a long-profile distance of 180m. Upon orthorec-

tification of the imagery using Emlid M+ GPS and UAS IMU data, image sequences were coarsely aligned. To further reduce

the registration error of the imagery, frame-to-frame stabilisation was employed. Following this, the root-mean square error of

the ground control point locations was 3.25 pixels (i.e. 6.5 cm). For GCPs one, two, and four, the median distance between the

location of individual GCPs relative to the central position of the GCP (UEN ) is below 2 pixels, with the highest median error410

reported for GCP three (4.5 pixels) (Figure 6). The interquartile range across GCPs is broadly stable, being less than 2.3 pixels

for all except GCP three, which has an interquartile range of 5.7 pixels. Individual GCPs are kept within the field-of-view for

a minimum of 26 s through to a maximum of 60 s. These findings indicate that the pixel locations of the GCPs are generally

stable over time, and that the reconstruction is geometrically consistent i.e. features that appear in a certain location appear in

the same location in all predictions where they are in view (Luo et al., 2015).415
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Figure 6. UEN indicates how the location of individual GCPs varies relative to the central position of the GCP throughout the stabilised image

sequence. Time-averaged results are presented (A) in the form of box-plots with UEN indicating the distance (px) of GCPs in individual

frames relative to the central position of the GCP. The location of GCPs were manually determined for every 10th frame in the stabilised

image sequence. The variation of the GCP locations over time, relative to the central position, is provided in (B). Line colors are consistent

with the GCP numbers provided in (A).

This stabilised imagery was subsequently used for image velocimetry analysis. This yielded a total of 19 million tracked

features, of which, 5% are displayed in Figure 7. Velocity magnitudes of individual trajectories are presented using a linear

colormap with points being displayed if they lie within the lower 99.99th percentile. The vast majority of tracked features

exhibit negligible apparent movement, with a median displacement of 0.01ms−1, as would be expected given the significant

areas of vegetated surfaces imaged by the UAS. The interquartile range of measurements spans 0.008 - 0.02ms−1. The data420

are positively skewed (s = 10.4) as a result of the majority of the identified features representing static areas of the landscape

(i.e. features beyond the extent of the active channel), with the long-tail of the distribution representing areas of motion.

25% of tracked features exhibit a velocity in excess of 0.2ms−1. These are predominantly located within the active channel

margins, although a cluster of points is also evident to the lower-left corner of Figure 7. Whereas trajectories plotted within the

main channel represents detected motion of the water surface, the movement to the lower-left represents apparent motion of425

vegetation. These elements of the landscape were not used in the stabilisation process due to the treetops being at a significantly

different elevation from the river channel. This apparent motion therefore illustrates the way in which parts of the image of

different elevations can generate differential displacement rates (as discussed in Section 2.3.1). Maximum velocities within the

main channel approximate 1ms−1 towards the lower extent of the field-of-view. Within this part of the river reach, the active

width narrows and depth does not appreciably increase, therefore resulting in the localised increase in velocity magnitude.430
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Figure 7. KLT-IV v1.0 outputs illustrating the apparent velocities of features within the river corridor of the River Coquet (UK) following

analysis using differential GPS and IMU data to orthorectify the imagery prior to stabilisation and image velocimetry analysis.

4 Discussion

KLT-IV offers a flexible, PTV-based approach for the determination of river flow velocity and river discharge across a range of

hydrological conditions. The software offers the user a range of options that may be chosen depending on the site conditions,

environmental factors at the time of acquisition, and the desired outputs. Platform movement can be accounted for through the

use of either ground control points, or features that are stable within the field of view. These approaches are consistent with435

work-flows provided in other image velocimetry software packages. However, additional features are also provided. KLT-IV

offers the user the opportunity to determine river flow velocities without the presence of ground control points. For example,

under the assumption that the camera is at nadir, the camera model is selected, and the sensor height above the water surface

is known, flow velocities can be determined. This has the potential to be used for opportunist
::::::::::
opportunistic

:
flow gauging from

a bridge, or using UAS platforms where the platform is stable, camera is at nadir, and ground control points are not visible.440
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This may be particularly useful for wide river cross-sections, or where surveying of ground control points is problematic. It

is also possible for work-flows to be combined. For example, in the situation where UAS-based footage has been acquired at

nadir, an initial analysis could be achieved using the ‘Stationary: Nadir’ approach, which would provide an estimate under the

assumption that the platform is stable. If, however, movement in the platform does occur, the orthorectified footage could be

subsequently analysed using the ‘Dynamic: Stabilisation’ approach to address any movement in the platform. These approaches445

have the potential to streamline the data acquisition procedure for image velocimetry analysis under conditions where image

velocimetry measurements may be problematic (e.g. during flood flow conditions where site access is limited).

Within KLT-IV, a novel approach of integrating external sensors (namely GPS and IMU data) has the potential to extend the

adoption of image velocimetry approaches beyond the local scale, and enable reach scale variations in hydraulic processes to be

examined. Navigating a UAS platform for several hundreds of meters (and potentially km’s) for the purposes of acquiring dis-450

tributed, longitudinal velocity measurements have
::
has

:
several applications including the mapping and monitoring of physical

habitats (Maddock, 1999), for the calibration and validation of hydraulic models in extreme floods, and quantification of forces

driving morphological adjustment (e.g. bank erosion). However, this approach does require further testing and validation. As

outlined by Huang et al. (2018), the reliance on sensors to determine the 3-dimensional position of an UAS platform at the in-

stance when measurements (e.g. images) are acquired can be affected by the time offset between instruments, the quality of the455

differential GPS data, the accuracy of the IMU and ability of the camera gimball to account for platform tilt and roll. However,

when using an UAS for image velocimetry analysis, the requirement of low-speeds (e.g. 5 kmh−1) will diminish the influence

of timing discrepancies (e.g. between camera trigger and GPS measurement) on positional errors. For example, an unaccounted

time offset of 15ms would equate to a positional error of 0.021m assuming a flight speed of 5 kmh−1, a value within the tol-

erances of most differential GPS systems. More precise orthophotos could be generated using IMU and GPS devices with460

higher sensitivity but this would come at increased cost (Bandini et al., 2020). To overcome potential hardware limitations, the

proposed GPS + IMU work-flow utilises stable features within the camera’s field-of-view to account for positional errors and

this has resulted in the generation of geometrically consistent image sequences for use within an image velocimetry work-flow

(Figure 7). However, the transferability of this approach should be the subject of further research and testing across a range

of conditions e.g. higher-density and diversity of vegetation cover. In instances where the GPS + IMU data alone (i.e. without465

stabilisation) produces sufficiently accurate orthophotos, the generated orthophotos may be subsequently used with the ‘Dy-

namic: Stabilisation’ orientation which would eliminate the need for the stabilisation routine and the requirement of the user

identifying stable features within the frame sequence. Finally, this approach operates under the assumption that the distance

between the camera and water surface is consistent throughout the footage. Whilst this approximation may hold for relatively

short sections, or river reaches with shallow gradients, this may become problematic when
::
the

:
surface slope is considerable,470

and/or the surveyed reach is sufficiently long.
::
An

:::::::::
alternative

:::::::
solution

::
for

::::::::
ensuring

:::
that

:::
the

:::::::
distance

:::::::
between

:::
the

:::::
UAS

:::
and

:::::
water

::::::
surface

:::::::
remains

:::::::
constant

::::
over

::::
time

::::
may

::
be

:::
to

:::
use

::::
flight

::::::::
planning

:::::::
software

:::::
(e.g.

::
fly

:::::
litchi

:::::::
mission

:::::::
planner).

::::
This

::::::
would

::::::
enable

::
the

::::
user

::
to
::::::

define
:::
the

::::::
altitude

:::
of

:::
the

::::
flight

::::::
above

:::
the

::::
earth

:::::::
surface

:::
(as

::::::
defined

:::
by

:
a
::::::
digital

:::::::
elevation

:::::::
model),

:::::
rather

::::
than

::::::
above

::
the

::::::::
elevation

::
at

:::::::
take-off.

:::::::::
However,

::
in

:::
this

::::::::
instance,

:::
the

::::
GPS

:::
log

:::::
would

:::::
need

::
to

::
be

::::::::
modified

::
to

::::::
ensure

:::
the

:::::::
recorded

::::
GPS

::::::
height

:::
was

:::::::
constant

::::
and

:::
that

::::
this

::::
value

::::::
minus

:::
the

:::::::
specified

:::::
WSE

::::::::::
corresponds

::::
with

:::
the

::::::
known

:::::
flight

:::::
height

:::::
above

:::
the

:::::
water

:::::::
surface.

:
475
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Whilst

5
:::::::::
Challenges

::::
and

::::::
Future

::::::::::::
Development

::
As

:
KLT-IV offers several new features for image velocimetry analysis,

::::::
utilizes

:
a
:::::::

particle
::::::::

tracking
:::::::
scheme,

::::::::
detection

::::
and

:::::::
tracking

::
of

:::::::::
individual

:::::::
features

::
is

:::::::::
contingent

::
on

:::
the

:::::::
ground

::::::::
sampling

:::::::
distance

::::::
(GSD)

::
of

:::
the

::
of
::::

the
::::::
images

:::::
being

::::::::::
appropriate

::
for

:::
the

:::::::
features

:::::
being

:::::::
tracked.

::::
This

::
is
::::::
largely

::::::::
governed

:::
by

:::::::
distance

:::::::
between

:::
the

::::::
camera

::::
and

:::
the

::::
ROI,

::::::
image

::::
size,

::::::
sensor

::::
size,480

:::
and

:::
the

::::::
camera

:::::
focal

::::::
length.

::::::::::
Processing

:::::
errors

::::
may

:::::
ensue

::::::
where

:::
the

:::
size

:::
of

:::
the

::::::
surface

:::::::
features

:::::
being

::::::::
detected

:::
and

:::::::
tracked

::
are

:::::::
smaller

::::
than

:::
the

:::::
GSD.

:::
In

:::
this

::::::::
instance,

:::
the

::::::::
sub-pixel

:::::::
location

::
of

:::
the

:::::::
feature

:::::::
(corner)

::::
may

::
be

::::::::::
erroneously

:::::::::
assigned.

::::
This

::::
issue

::
is

:::::
likely

::
to

::
be

:::::
most

::::::::
pervasive

:::::
during

::::
high

:::::::
altitude

::::
UAS

:::::::::::
deployments

:::::
when

::::::::
individual

:::::::
features

::::
may

::
be

:::::::
difficult

::
to

:::::::
resolve.

:::::
Users

::::
may

:::::::
therefore

::::
find

:::
the

:::
use

::
a

::::::
ground

::::::::
sampling

:::::::
distance

::::::::
calculator

:::::::::
beneficial

::
to

:::::
check

::::
that

::::::
camera

:::
and

:::::
flight

:::::::
settings

:::
are

::::::::
optimised

::
to

::::::
acquire

:::::::
footage

::
of

:::::::::
sufficiently

:::::
high

::::::::
resolution

::::::::::
(e.g. Pix4D)

:
.
::
In

::::::::
instances

:::::
where

:::::::::
individual

::::::
surface

:::::::
features

::::::
cannot485

::
be

::::::::
resolved,

::::::::::::::
cross-correlation

:::::::
methods

::::
may

:::
be

::::
more

::::::
robust

::::::::
provided

:::
that

::
a

::::::::
sufficient

::::::
number

:::
of

::::::
features

:::
are

::::::::::::::
homogeneously

:::::::::
distributed

:::::
across

:::
the

::::
flow

:::::
field.

:::
For

:::::::
optimal

::::::
results,

::::::::
particles

::::::
should

:::
be

:::::::::::
continuously

::::::
visible

::::::
across

:::
the

::::
ROI,

::::
and

::::::::::
throughout

:::
the

:::::::
duration

:::
of

:::
the

::::::
video.

::
An

::::::::::
assessment

:::
of

:::
the

::::
role

::
of
:::::::

seeding
::::::::

densities
::::

and
:::::::::
clustering

:::
on

:::
the

:::::::::::
performance

::
of

::::::::
KLT-IV

:::
has

:::
yet

:::
to

:::
be

::::::::::
undertaken.

::::::::
However,

:
a
:::::
recent

::::::::::::
benchmarking

:::::::
exercise

:::::::::
undertaken

::::
with

::::
high

:::::::
seeding

:::::::
densities

::::::::
indicated

:::
that

:::
the

::::::::::
performance

:::
of

::::::
KLT-IV

::::
was490

:::::::::
comparable

:::
to

::::::::
reference

::::::::::::
measurements

::::::::::::::::
(Pearce et al., 2020)

:
.
:::::::::::
Furthermore,

::::::
image

::::::::::
illumination

:::::
levels

::::::
should

:::
be

::
as

:::::::::
consistent

::
as

:::::::
possible

::::::
across

:::
the

:::::
ROI.

::
In

:::::::::
instances

:::::
where

::::::::::
differential

:::::::::::
illumination

:::::
levels

:::
are

:::::::
present,

::::::
image

:::::::::::::
pre-processing

::::
may

:::
be

::::::::
beneficial

::::
(see

::::::
Section

::::
1.3).

:::::
This

:::
will

:::::
limit

:::
the

:::::::
potential

:::
for

:::::::
changes

::
to

:::
the

::::::::
intensity

:::::
values

:::
of

:::::::
features

::::::
(pixels)

:::::
being

:::::::
tracked

::::::::::::::::::::
(Altena and Kääb, 2017).

:

:::::
When

:::::
using

:::::::::
PTV-based

::::::::::
approaches,

:
it
::
is
::::::::
common

:::
for

::::::::
trajectory

:::::::
filtering

::
to

::
be

:::::::::
undertaken

::
in

:::::
order

::
to

::::::::
eliminate

:::
the

::::::::
influence495

::
of

::::::
tracked

:::::::
features

:::
that

::
do

:::
not

:::::::::
accurately

::::::::
represent

::::::::
movement

::
of

:::
the

::::::::::
free-surface

::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Tauro et al., 2018; Lin et al., 2019; Eltner et al., 2020)

:
.
::::::::
Erroneous

:::::::::::::
reconstructions

::
of

:::
the

::::::::
flow-field

::::
may

::
be

::::::
caused

:::
by

:::::::::::
environmental

::::::
factors

:::::::::
including,

:::
but

:::
not

::::::
limited

::
to,

:::
the

::::::::
presence

::
of

:
a
::::::
visible

:::::
river

:::
bed

:::::::
causing

::::::::
near-zero

:::::::::
velocities,

:::::::::
differential

:::::::::::
illumination,

:::::::::
hydraulic

:::::
jumps

::::
and

:::::::
standing

::::::
waves.

:::::
This

::::
may

:::
also

:::::
occur

::
as

::
a
:::::
result

::
of

:::::::::
processing

:::::
errors

:::::
such

::
as

:::
the

:::
use

::
of

::::::::::
inaccurately

:::::::
defined

::::::
ground

::::::
control

::::::
points,

::
or

::
a
::::::
poorly

::::::::
stabilised

:::::
image

::::::::
sequence.

:::
As

:::::::
KLT-IV

::::
does

:::
not

::::::::
currently

::::
have

:::
the

::::::
option

::
to

::::
filter

::::::::::
trajectories,

::
it

::::
may

::
be

:::::::
possible

:::
for

:::::::
spurious

:::::::
vectors

::
to500

::::::::
negatively

:::::
affect

:::
the

:::::::::
generated

:::::::
outputs.

::
In

:::::
these

::::::::
instances

:::
the

::::
user

::::
may

::::::
choose

::
to

:::::
filter

:::
the

:::::::
velocity

::::::
outputs

:::::
from

::::::
within

:::
the

:::::::
exported

::::
.csv

:::
file

:::::
using

::::
their

::::
own

::::::
criteria.

:

::::::::
Following

:::::::::::
presentation

::
of

:::
the

:::::::
current

:::::::::
limitations

::
of

:::::::
KLT-IV,

:
further development of the software is planned which will:

(i) embed a suite of image pre-processing methods; (ii) enable post-processing (filtering) of the feature trajectories to elimi-

nate spurious velocity vectors; (iii) provide additional feature detection approaches (e.g. FAST, SIFT) in order to provide
:::
for505

::::::::
improved flexibility; and (iv) provide the option of analysing multiple videos (e.g. from a fixed monitoring station) to facili-

tate the generation of time-series of river flow observations. This processing will be possible using the user’s local machine,
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and also enable the user to transfer footage to the Newcastle University High Performance Computing cluster and file sharing

system for remote analysis.

6 Conclusions510

KLT-IV v1.0 software provides an easy-to-use graphical interface for sensing flow velocities and determining river discharge

in river systems. The basis for the determination of flow rates is the implementation of a novel PTV-based approach to tracking

visible features on the water surface. Velocities can be determined using either mobile camera platforms (e.g. UAS) or fixed

monitoring stations. Camera motion and scaling from pixel to real-world distances is accounted for using either ground control

points, stable features within the field-of-view, or external sensors (consisting of differential GPS and inertial measurement unit515

data). Conversely, if the platform is stable, scaling from pixel to real-world distances may be achieved through the use of either

ground control points, or by defining the known distance between the camera and the water surface (when the camera model

is known and view at nadir). This flexibility offers the user with a range of options depending on the mode of data acquisition.

To illustrate the use of KLT-IV two case studies from the UK are presented. In the first case study, footage is acquired from a

UAS and fixed camera over the duration of a high-flow event. Using this footage, a well-defined flow rating curve is developed520

with deviations between the fixed and UAS-based discharge measurements in the order of < 4%. In the second case study, a

UAS is deployed to acquire footage along a 180m reach of river. Equipped with a differential GPS sensor and travelling at a

speed of 5 kmh−1, video footage acquired over a period of 125 s is used to successfully reconstruct surface velocities along

the river reach without the use of ground control points. These examples are provided to illustrate the potential for KLT-IV to

be used for quantifying flow rates using videos collected from fixed, or mobile camera systems.525

7 Software Availability

KLT-IV v1.0 is freely available to download from: https://sourceforge.net/projects/klt-iv/. During the installation of KLT-IV

v1.0 an active internet connection is required as the MATLAB 2019b Runtime will be downloaded and installed, if not already

present on the operating system. Datasets used in the production of this article, along with the settings adopted within KLT-IV

v.1.0 can be downloaded at: https://zenodo.org/record/3882254#.XuCwcUVKj-g. The Digital Object Identifier (DOI) of the530

dataset is: 10.5281/zenodo.3882254. A Google Group has been established for the community of users to pose questions and

comments about the software at: https://groups.google.com/forum/#!forum/klt-iv-image-velocimetry-software.

8
::::::::
Software

:::
and

:
Hardware Requirements

The software can run on any of the following operating systems: Windows 10 (version 1709 or higher), Windows 7 Service

Pack 1, Windows Server 2019, Windows Server 2016. The minimum processor requirement is any Intel or AMD x86-64535

processor. However, it is recommended that the processor has four logical cores and AVX2 instruction set support. At least 3
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GB of HDD space is required. Minimum memory requirements are 4 GB, but 8 GB is recommended. No specific graphics card

is required, however, a hardware accelerated graphics card supporting OpenGL 3.3 with 1GB GPU memory is recommended.
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Appendix A

List of acceptable video file formats:

.asf - ASF File675

.asx - ASX File

.avi - AVI File

.m4v - MPEG-4 Video

.mj2 - Motion JPEG2000

.mov - QuickTime movie680

.mp4 - MPEG-4

.mpg - MPEG-1

.wmv - Windows Media Video
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::::::::
Appendix

::
B685

::::
Table

:::
B1:

::::
Total

::::::::
processing

:::::
time,

:::
and

:::::
typical

:::::::
memory

:::::::
utilisation

:::
of

::::::
KLT-IV

:::
v1.0

:::::
when

::::::::
processing

:::::
videos

::::
from

:::
the

:::::
Feshie

:::
and

::::::
Coquet

::::
case

:::::
studies.

::::
The

::::::
settings

:::
used

:::::
during

:::::::::
processing

::
are

::::::
defined

:::::
within

:::
the

:::
data

::::::::
repository

::::::::::
(Perks, 2020).

::::
Tests

::::
were

::::::::
conducted

:::::
using

:
a
:::
Dell

:::::::
Latitude

::::
7490

:::::
laptop

::::::
running

:::::::
Windows

:::
10,

:::::::
equipped

::::
with

:
a
:::
four

::::
core

::::
Intel

:::::::
i5-8350U

::::
CPU

::
at

::::::::
1.70GHz,

:::
and

::::
16GB

::::::
RAM.

::::::::
Processing

::::
time

:::::::
primarily

:::::::
increases

::
as

:
a
:::::::
function

::
of

:::
the

::::
total

::::::
number

::
of

:::::
frames

::::::::
analysed,

:::
the

:::
area

::::
(m2)

:::::::
imaged,

:::
and

:::
the

::::::
number

::
of

::::::
features

:::::::
detected

:::
and

:::::::
tracked.

::::::
Memory

::::::::
utilisation

:::::::
primarily

:::::::
increases

::::
with

:::
the

:::
area

:::
(m2

:
)
::::::
imaged.

::
*
::::
Note:

:::
The

:::::::::
processing

::::
times

:::::::
presented

:::
for

:::
the

:::::
Coquet

::::
UAS

:::::
video

::::
does690

::
not

::::::
include

:::
the

:::::::::
stabilisation

:::
and

::::::::
geometric

:::::::
correction

:::::::
process.

Case Study Duration Analysed [s] Processing Time Peak Memory Utilization

[GB]

::::::
Feshie:

::::
Fixed

:::::::
Camera,

::::
Video

:::
01

::
10

: ::::::
12-mins

: ::
2.6

::::::
Feshie:

::::
Fixed

:::::::
Camera,

::::
Video

:::
02

::
10

: ::::::
14-mins

: ::
2.6

::::::
Feshie:

::::
Fixed

:::::::
Camera,

::::
Video

:::
03

::
10

: ::::::
13-mins

: ::
2.6

::::::
Feshie:

::::
Fixed

:::::::
Camera,

::::
Video

:::
04

::
10

: ::::::
14-mins

: ::
2.6

::::::
Feshie:

::::
Fixed

:::::::
Camera,

::::
Video

:::
05

::
10

: ::::::
12-mins

: ::
2.6

::::::
Feshie:

::::
Fixed

:::::::
Camera,

::::
Video

:::
06

::
10

: ::::::
13-mins

: ::
2.6

::::::
Feshie:

::::
Fixed

:::::::
Camera,

::::
Video

:::
07

::
10

: ::::::
12-mins

: ::
2.6

::::::
Feshie:

::::
Fixed

:::::::
Camera,

::::
Video

:::
08

::
10

: ::::::
15-mins

: ::
2.6

::::::
Feshie:

::::
Fixed

:::::::
Camera,

::::
Video

:::
09

::
10

: ::::::
13-mins

: ::
2.6

::::::
Feshie:

::::
Fixed

:::::::
Camera,

::::
Video

:::
10

::
10

: ::::::
13-mins

: ::
2.6

:::::
Feshie:

::::
UAS,

:::::
Video

::
01

: ::
30

: :::
1-hr

::::::
46-mins

::
3.1

:::::
Feshie:

::::
UAS,

:::::
Video

::
02

: ::
55

: :::
3-hr

::::::
17-mins

::
2.8

:::::
Feshie:

::::
UAS,

:::::
Video

::
03

: ::
62

: :::
3-hr

::::::
48-mins

::
3.1

:::::
Feshie:

::::
UAS,

:::::
Video

::
04

: ::
61

: :::
3-hr

::::::
38-mins

::
2.6

::::::
Coquet:

::::
UAS,

:::::
Video

:::
01*

:::
125

:::
4-hr

::::::
30-mins

:::
12.0

:
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::::::::
Appendix

::
C

:::::
Figure

:::
C1:

::
An

:::::::::
illustration

::
of

::
the

::::::::
sensitivity

::
of

::::::
KLT-IV

::::
v1.0

::
to

:::::::
variations

::
in

::::
main

::::::
settings

:::
that

:::
can

::
be

::::::
defined

::
by

:::
the

::::
user,

::::::
namely:

::
(i)

::::::
Extract

:::
rate

:::
(s);

:::
and

::
(ii)

:::::
Block

::::
size

::::
(px).

:
A
:::::::

number
::
of

:::::
setting

::::::::::
combinations

::::
with

:::::
extract

::::
rates

::::::
varying

:::::::
between

::
0.2

::::
and

:::
1 s

::
and

:::::
block

::::
sizes

::::::
ranging

:::
from

:::
15

::
to

:::
127

:::
px

::
are

::::::::
displayed.

:::::::
Outputs

:::::::
displayed

:::
are

::
all

:::::
based

::
on

::::::
footage

:::::::
acquired

:::::
using

::
the

:::::
fixed

:::::
camera

::
at
:::
the

:::::
River

:::::
Feshie

::
at

::::
river695

:::::
stage’s

::
of

:::::::
0.885m [

::
A]

:
,
:::::::
1.204m [

:
B],

:::
and

:::::::
1.762m [

:
C].

:::::
These

::::::::
correspond

::::
with

::::
video

:::::::
numbers

::
8,

::
2,

:::
and

:
6
:::::::::
respectively

::
in

::
the

::::
data

::::::::
repository.

A B

C
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