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Abstract 11 
 12 
Crop growth in land surface models normally requires high temporal resolution climate data (3-13 
hourly or 6-hourly), but such high temporal resolution climate data are not provided by many 14 
climate model simulations due to expensive storage, which limits modeling choice if there is an 15 
interest in a particular climate simulation that only saved monthly outputs. The Community Land 16 
Surface Model (CLM) has proposed an alternative approach for utilizing monthly climate 17 
outputs as forcing data since version 4.5, and it is called the anomaly forcing CLM. However, 18 
such an approach has never been validated for crop yield projections. In our work, we created 19 
anomaly forcing datasets for three climate scenarios (1.5 °C warming, 2.0 °C warming, and 20 
RCP4.5) and validated crop yields against the standard CLM forcing with the same climate 21 
scenarios using 3-hourly data. We found that the anomaly forcing CLM could not produce crop 22 
yields identical to the standard CLM due to the different submonthly variations, and crop yields 23 
were underestimated by 5-8% across the three scenarios (1.5 °C, 2.0 °C, and RCP4.5) for the 24 
global average, and 28-41% of cropland showed significantly different yields. However, the 25 
anomaly forcing CLM effectively captured the relative changes between scenarios and over time, 26 
as well as regional crop yield variations. We recommend that such an approach be used for 27 
qualitative analysis of crop yields when only monthly outputs are available. Our approach can be 28 
adopted by other land surface models to expand their capabilities for utilizing monthly climate 29 
data. 30 
 31 
Key words: Community Land Model; Crop yields; Anomaly forcing 32 
 33 
 34 
Introduction 35 
 36 
Increasing numbers of future climate scenarios exhibit large uncertainties for crop yield 37 
projections. Crop yields may increase or decrease depending on which climate projection is used 38 
(Lobell et al., 2008; Rosenzweig et al., 2014; Urban et al., 2012). Ensemble future climate 39 
projections, such as CMIP5, showed a large range of future climate projections, even for one 40 
emission scenario (Knutti and Sedlacek, 2013). Using all future climate projections is not 41 
realistic not only because of the computational expense but also because many of these future 42 
climate projections only save monthly climate outputs that are not suitable for crop models that 43 
require high temporal resolution forcing data. Some standalone process-based crop models run in 44 
daily time steps, and some crop models embedded in land surface models need at least 6-hour 45 
climate data as the forcing data to represent diurnal cycles. Only a small portion of the CMIP5 46 



 2 

(Coupled Model Intercomparison Project 5) simulations (<25%) can be used as the forcing data 47 
for crop models, leaving little room for crop modelers to choose a particular climate model 48 
projection that is of interest.  49 
 50 
The Community Land Model (CLM) (Oleson et al., 2013) is a state-of-the-art land surface model 51 
that simulates biogeophysical (radiation transfer, vegetation-soil-hydrology, surface energy 52 
fluxes, etc.) and biogeochemical (soil carbon and nitrogen cycle, vegetation photosynthesis, 53 
dynamic vegetation growth, etc.) processes. CLM is the default land model in the Community 54 
Earth System Model (CESM) (Hurrell et al., 2013), and it can be run either online coupled with 55 
the rest of CESM (atmosphere and ocean) or offline (the land model only, forced with climate 56 
datasets) for multiple spatial extents (site, regional, and global) and at different resolutions. The 57 
crop model derived from AgroIBIS (Kucharik, 2003) was introduced to CLM4.0 by Levis et al. 58 
(2012), and it is responsible for crop growth phenology (temperature determined), carbon 59 
allocation algorithms, and crop management (e.g., irrigation). The crop model in CLM runs 60 
when the soil biogeochemical component is active, and it was tested with the CLM-CN in 61 
version 4.0 and tested with CLM-BGC in version 4.5, where CLM-CN and CLM-BGC are 62 
officially supported soil biogeochemical components in CLM4.0 and CLM4.5 respectively. 63 
Since their introduction, crop models in the CLM have been developed to represent more crop 64 
types and processes, such as soybean nitrogen fixation (Drewniak et al., 2013), ozone impacts on 65 
yields (Lombardozzi et al., 2015), winter wheat growth responses to cold hazards (Lu et al., 66 
2017), and maize growth responses to heat stress (Peng et al., 2018). CLM simulates nine crop 67 
types, accounting for 54% of global total crop production (other production is represented by the 68 
most similar crop type): maize, soybean, spring wheat, winter wheat, cotton, rice, sugarcane, 69 
tropical maize, and tropical soybean. In this study, we used CLM version 4.5 (Oleson et al., 70 
2013). 71 
 72 
Since version 4.5, CLM offers a built-in function that indirectly uses monthly climate outputs as 73 
the forcing data, and is called the anomaly forcing CLM (Lawrence et al., 2015). Anomaly 74 
forcing CLM reconstructs new subdaily forcing data by applying the precalculated future 75 
monthly anomaly signals to user-defined historical subdaily forcing data, referred to as the 76 
reference data. The future monthly anomaly signals are calculated by the future monthly climate 77 
outputs and by use of historical monthly outputs. The choice of reference data is arbitrary. Any 78 
existing subdaily forcing data (e.g., CRUNCEP (Viovy, 2018), QIAN (Qian et al., 2006)) for 79 
CLM can be used as the reference data. The historical monthly outputs are recommended to be 80 
multiyear averaged to represent the historical means and avoid affecting the monthly anomaly 81 
signal by rare, extreme events in a particular year. Such an arbitrary choice is because the goal of 82 
the original anomaly forcing CLM is not to reconstruct future forcing that is identical to the 83 
actual future forcing when the high temporal resolution data were saved. Rather, the original goal 84 
of the anomaly forcing CLM is to understand the influences due to the anomaly signal by 85 
comparing the simulation with the anomaly forcing CLM to the simulation run with the reference 86 
data. The differences between the two simulations are due to the anomaly signals.  87 
 88 
In our study, we modified the anomaly forcing CLM to fit our goals to understand whether we 89 
could simply use the anomaly forcing CLM for crop yield projections when only monthly 90 
climate data were available. We carefully chose the historical monthly data and the reference 91 
data so that the reconstructed future anomaly forcing had nearly identical monthly means as the 92 
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desired subdaily future forcing, but we used different submonthly variations. We created 93 
anomaly forcing datasets for three future scenarios (1.5 °C warming, 2.0 °C warming, and 94 
RCP4.5) for 2006-2075 for which both the subdaily and monthly climate outputs were available 95 
from three CESM simulations. With the three paired CLM simulations, we validated the 96 
anomaly forcing CLM by comparing it to the standard CLM. 97 
 98 
Methods 99 
 100 
The original anomaly forcing CLM has been available since CLM4.5. This approach reconstructs 101 
the subdaily (3-hourly or 6-hourly) forcing data by applying the monthly anomaly signal to user 102 
selected subdaily reference data; therefore, it indirectly uses the monthly atmospheric outputs as 103 
the forcing data for CLM. This approach does not change any of the scientific code in CLM; it 104 
only adds code that reads the monthly anomaly signals and automatically applies these to the 105 
reference data while the CLM is running. There were two monthly anomaly signals for RCP4.5 106 
and RCP8.5 that were generated using the CESM future projections and were ready for use. It is 107 
the user’s choice to select which subdaily reference (e.g., CRUNCEP or CLMQIAN) and which 108 
years to use. By simply modifying user_nl_cpl namelist and adding data streams of the anomaly 109 
forcing variables (see the appendix for the detailed usage), the anomaly forcing CLM will 110 
automatically read the monthly anomaly signal and apply the signal to each time step of the 111 
reference data within a month. When the reference data period is less than the anomaly signal 112 
period, the anomaly forcing CLM will cycle the same reference data until the simulation is 113 
complete. Because the different selections of reference data can generate different forcings, even 114 
with the same monthly anomaly signals, one should not use the simulation from the anomaly 115 
forcing CLM to represent the actual simulation. Rather, the original goal of the anomaly forcing 116 
CLM is to compare the simulation with the anomaly forcing and simulation with the reference 117 
forcing data to understand the effects of the monthly anomaly signals on land surface variables.  118 
 119 
The goal of this work is to test how well crop yield projections from the anomaly forcing CLM 120 
compare to the projections from the standard forcing CLM, given that anomaly forcing has the 121 
same monthly average as standard forcing. We selected three future scenarios for CESM 122 
simulations that saved both monthly outputs and 3-hourly outputs, where the 3-hourly outputs 123 
were directly used in the standard forcing CLM, and the monthly outputs were indirectly used in 124 
the anomaly forcing CLM. We calculated the anomaly forcing signals using the monthly CESM 125 
outputs and the monthly average of reference data, so that when applying the anomaly signals to 126 
the reference data, it is expected to generate identical monthly means as does regular forcing. 127 
However, due to a limit in calculations of precipitation anomalies (precipitation anomaly ratio 128 
less than 5 times) and how the CLM treats snow and rainfall, the anomaly forcing CLM did not 129 
show identical snow and rainfall monthly averages and introduced bias in the crop yield 130 
simulations (see the results section).   131 
 132 
Table 1. A summary of the original anomaly forcing CLM and the modifications in this work 133 
 Original anomaly forcing 

CLM 
Modifications in this work 

3 h/6 h reference data User choice 6 h Community Atmosphere 
Model outputs from one 
historical low warming 
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ensemble simulation 1996-
2005 
 

Monthly anomaly signals Existing for RCP4.5 and 
RCP8.5 

• Anomalies between future 
scenarios and monthly 
means of reference data 

• Three future scenarios: 
1.5 °C, 2.0 °C, and 
RCP4.5 

• Each scenario had 
monthly outputs and 3 h 
outputs  

 
Goals Climate impact due to 

anomaly signals when 
comparing the anomaly run 
with the reference run 

Given that anomaly forcing 
has the same monthly mean 
as the standard CLM forcing, 
can we use it for crop yield 
projections? 
 

 134 
We randomly chose the 6-hourly reference data (1996-2005) from one of the 11 historical low 135 
warming ensemble CESM simulations. Additionally, we selected three CESM future simulations 136 
for the 1.5 °C warming, 2.0 °C warming, and RCP4.5 scenarios, where all the three simulations 137 
saved both the monthly outputs and the 3-hourly outputs. We then calculated the monthly 138 
anomaly signal at each grid cell for each scenario (1.5, 2.0, and RCP45) from 2006-2075. The 139 
monthly anomaly signals are differences for temperature, specific humidity, wind, and air 140 
pressure and are ratios for solar radiation and precipitation between the monthly outputs of each 141 
scenario and the 1996-2005 averaged monthly values of the reference data. The anomaly forcing 142 
signal has both spatial and monthly variations. When running the anomaly forcing simulation for 143 
2006-2070, CLM repeatedly uses the 10-year reference period and applies the anomaly signal of 144 
a month to all subdaily reference forcing in this month. For example, an anomaly forcing 145 
simulation for 2006 January uses the 1996 January reference data plus or multiplied by (if the 146 
anomaly signal is a ratio) the 2006 January anomaly signal. If the 2006 January temperature 147 
anomaly is 1 K for a grid cell, then all 1996 January reference data will be increased by 1 K for 148 
the grid cell.     149 
 150 
The monthly anomaly signal is calculated at each grid cell (i,j). For temperature, pressure, wind, 151 
and humidity, the anomaly signal is the difference between the future monthly data and the 152 
historical monthly average (equation 1). For solar radiation, longwave radiation, and 153 
precipitation, the anomaly signal is the ratio between the future monthly data and the historical 154 
monthly average (equation 2). We set the maximum ratio for precipitation to 5 to avoid 155 
unrealistic extreme precipitation, which also introduced biases in precipitation (discussed in the 156 
discussion section).   157 
 158 

𝑎𝑓!,#,$ = 𝑓𝑢𝑡!,#,$ − ℎ𝑖𝑠𝑡!,#,$								(1) 159 
 160 
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𝑎𝑓!,#,$ = 𝑓𝑢𝑡!,#,$/ℎ𝑖𝑠𝑡!,#,$	   (2) 161 
Where 𝑎𝑓!,#,$is anomaly forcing signal at a location i and j in a month m, 𝑓𝑢𝑡!,#,$ is the averaged 162 
future value and ℎ𝑖𝑠𝑡!,#,$ is the averaged historical value at a location i and j in a month m. 163 
 164 
We set up global CLM crop simulations (compset CLM45BGCCROP) at 1.9 by 2.5 in latitude 165 
and longitude, respectively, using the anomaly forcing CLM and the regular forcing CLM for the 166 
1.5 °C warming, 2.0 °C warming, and RCP4.5 scenarios. All simulations used the default 167 
nitrogen fertilization rates and a constant CO2 level of 359.8 ppm. For each scenario, we validate 168 
the crop yield in the anomaly forcing CLM to the regular forcing CLM to determine if we can 169 
use the anomaly forcing CLM for future crop yield projections. We also studied whether the 170 
anomaly forcing CLM has a similar crop growth response to transient CO2 and nitrogen 171 
fertilization. The transient CO2 and nitrogen fertilization did not add extra computational cost 172 
compared to the constant CO2 and nitrogen fertilization simulation. However, due to our limited 173 
computational resources could not afford more experiments, we only tested such responses for 174 
the RCP4.5 scenario. The transient CO2 levels in the RCP45 scenario gradually increased from 175 
379 ppm in 2006 to 530 ppm in 2070. To test the nitrogen fertilization effects, we simply added a 176 
zero nitrogen fertilization simulation here. For the crop yield analysis, we aggregated the 177 
individual crop yield into an integrated crop yield by area weighted mean based on the crop area 178 
map MAPSMAP (https://www.mapspam.info/) 2005 crop area. The regional crop yield was 179 
simply the regional averaged crop yield at 9 regions defined in Ren et al., (2018). 180 
 181 
We adopted the two-sample Kolmogorov-Smirnov test (KS test) to test the statistical 182 
significance of differences between the anomaly forcing CLM and the standard CLM for 183 
atmospheric forcing data and yield. We used the KS test because some variables at some grid 184 
cells did not necessarily follow normal distributions. The KS test is a nonparametric test that 185 
detects differences in the empirical probability distributions between two samples, and the two 186 
samples do not need to have normal distributions (Justel et al., 1997; Marozzi, 2013). When 187 
repeated using the ten-year reference data, we expected that the ten year averaged monthly 188 
anomaly forcing would show no significant differences from the regular forcing. Thus, for the 189 
atmospheric forcing data, we tested probability distribution differences between anomaly forcing 190 
and regular forcing for every ten-year averaged monthly dataset (sample size was 7x12=84). For 191 
crop yields, we used the every ten-year averaged annual yields (sample size was 7). We used 192 
linear regression coefficent (R2), bias (equation 3), percentage differences (equation 4) in our 193 
evaluations.  194 
 195 

𝑏𝑖𝑎𝑠 = 𝐶𝐿𝑀%&'$%()	+',-!&. − 𝐶𝐿𝑀/0%&1%,1 							(3) 196 

%𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = 100 ∗ (
𝐶𝐿𝑀%&'$%()	+',-!&.

𝐶𝐿𝑀/0%&1%,1
− 1)								(4) 197 

 198 
 199 
Results 200 
 201 
We aimed to generate an anomaly forcing that produced identical monthly averages as its 202 
counterpart regular forcing (the desirable 3-hourly forcing data for CLM) but with different 203 
submonthly variations. All atmospheric forcing variables achieved this goal except for 204 
precipitation and its liquid and ice components, rain and snow. The linear regression coefficients 205 
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(R2) between anomaly forcing and standard forcing for the monthly means of incoming solar 206 
radiation, bottom layer atmosphere temperatures (sigma vertical coordinate, 𝜎=0.9925) , 207 
pressures, humidities, and winds all showed R2 values above 0.99, and there were also no 208 
significant differences for these variables for all grid cells. However, for rain and snow, the R2 209 
values were 0.63-0.87 and 0.88-0.96 across the three scenarios, respectively (Figure 1a). 210 
Statistically significant differences were also found for rain and snow in many regions in the 211 
Northern Hemisphere (Figure 2). We used monthly variances as a measure of the submonthly 212 
variations. We calculated the variation for twelve months in each decade, so we have 7 decades 213 
and 12 months variance and the sample size is 84 when setting up the regression.  R2 for 214 
variances of forcing were low for most variables except for incoming solar radiation (Figure 1b). 215 
Such lower R2 values indicated that anomaly forcing could not represent the submonthly 216 
variations as well as the regular forcing.  217 
 218 

There were two error sources for precipitation. First, there was overall average lower 219 
precipitation in the anomaly forcing by 0.02 mm/day, 0.03 mm/day, and 0.2 mm/day in the 220 
1.5 °C, 2.0 °C, and RCP45 scenarios, respectively. Such slightly lower precipitation was because 221 
we set the maximum precipitation anomaly ratio to 5 to avoid unrealistically extreme 222 
precipitation levels. Ratio 5 was suggested by NCAR scientists David Lawrence and Sean 223 
Swenson, who are core developers of CLM and wrote the initial anomaly forcing code in CLM.  224 
Most of unrealistic extreme precipitation ratio are actually due to the nearly zero historical 225 
precipitation (the denominator of equation 2). The cap for the precipitation anomaly ratio is use 226 
to avoid such situation. Second, the CLM used the temperature in each time step to determine if 227 
the given precipitation was rain or snow. Precipitation was rain when temperature was above 228 
273.15 K, otherwise it was snow. Therefore, the different submonthly variations in temperature 229 
resulted in different submonthly variations for snow and rain. Due to this problem, the lower 230 
precipitation did not evenly distribute to the rain and snow bias, for which rain was 231 
underestimated by 0.08-0.3 mm/day, and snow was overestimated by 0.06-0.11 mm/day across 232 
the three scenarios. The significantly different regions were mainly in the Northern Hemisphere 233 
and the Antarctic, and most regions in the Southern Hemisphere did not show significant 234 
differences in rain or snow. How the rain and snow biases affected yield projections will be 235 
discussed.  236 

 237 
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 238 
Figure 1. Linear regression coefficients (R2) between a) decade-averaged monthly mean (sample 239 
size =12 months x 7 decades=84) between anomaly forcing and regular forcing and b) every ten 240 

year-averaged monthly variance between anomaly forcing and regular forcing.  241 
 242 

 243 
 244 
Figure 2. 70-year averaged differences between anomaly forcing and regular forcing for rain (a-245 

c) and snow (d-f) for the 1.5oC, 2.0 oC, and RCP4.5 scenarios. All differences shown here are 246 
statistically significant differences tested by the Kolmogorov-Smirnov test with a sample size of 247 

84. The gray areas are regions that did not show significant differences.  248 
 249 
When compared to crop yield simulations in the standard CLM, the anomaly forcing CLM 250 
underestimated crop yields by 5-8% across the three scenarios for the global average, and 28-251 
41% of cropland showed statistically significant differences in yields. The rainfed crop yield 252 
differences across the three scenarios showed largely similar spatial distributions: overestimation 253 
in the northern US and Europe and underestimation in the Southern Hemisphere and in East Asia 254 
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(Figure 3d-f). The overestimated rainfed crop yield (mainly for maize and wheat) in the anomaly 255 
forcing CLM is due to higher water availability in these regions, which is a result of higher snow 256 
in the anomaly forcing CLM. For irrigated crops, such overestimations in the northern US and 257 
Europe disappear (Figure 3g-i) because sufficient irrigation was added to the irrigated soil 258 
column in the standard CLM, which removed the plant water stress that was seen for rainfed 259 
crops. However, the underestimations in the Southern Hemisphere and East Asia were persistent, 260 
because water availability does not cause yield differences for irrigated crops; we suspect such 261 
underestimations were caused by the other error in forcing data: the different submonthly 262 
variations in the forcing data. 263 
 264 

 265 
 266 

Figure 3. The percentage differences of 70-year integrated yields between the anomaly forcing 267 
CLM and the standard CLM for all crops (a-c), rainfed crops (d-f), and irrigated crops (g-i) for 268 
the 1.5 °C, 2.0 °C, and RCP45 scenarios. The white regions are where no crops grow based on 269 
the historical crop map in 2005 (MAPSPAM 2005; https://www.mapspam.info/). For plots a-c, 270 
we showed only the significant differences as determined by the by Kolmogorov-Smirnov test 271 

with a sample size of 7. The regions with insignificant differences are masked as gray in a-c. For 272 
plots d-i, we did not mask the insignificant differences to show an overall bias.  273 

 274 
 275 
 276 
 277 
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 278 
Figure 4. Regional comparisons of the 70-year integrated mean yields and yield standard 279 
deviations between the anomaly forcing CLM and the standard CLM. The error bars indicate 70-280 
year yield standard deviations. CHN: China; EU: European Union; IND: India; LAC: Latin 281 
America; ODC: Other Developing Countries; OIC: Other Industrialized Countries; SSA: Sub-282 
Saharan Africa; TC: Transition Countries; USA: United States  283 

The global 70-year averaged yields ± standard deviation in the standard CLM (Ren et al., 2018) 284 
and in the anomaly forcing CLM are 4.38 ± 0.09 and 4.03 ± 0.16 t/ha, respectively, in the 1.5 °C 285 
scenario, 4.36 ± 0.11 and 4.01 ± 0.14 t/ha, respectively, in the 2.0 °C scenario, 3.95 ±0.13 and 286 
3.72 ± 0.14, respectively, in the RCP45 scenario (Figure 4). The anomaly forcing CLM captured 287 
the regional yield variations. Latin America (LAC) showed the highest yield while India (IND) 288 
showed the lowest yields for both the anomaly forcing CLM and the standard CLM across the 289 
three scenarios.  290 
 291 
 292 
Although the crop yields were underestimated, the anomaly forcing CLM could qualitatively 293 
represent the spatial yield differences between two climate scenarios. Comparing 2.0 °C to 294 
1.5 °C, there was a 4-8% yield increase in the northern U.S. and a 0-4% yield decrease in (Figure 295 
5a) in the southeast U.S. When comparing the RCP45 to the 1.5 °C scenario, crop yields in the 296 
U.S. were largely reduced (up to 50%). The anomaly forcing CLM clearly captured these yield 297 
differences (Figure 5b and 5d). 298 
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 299 
Figure 5. The percentage of 70-year integrated yield differences between 2.0 °C and 1.5 °C (top 300 
panel) RCP45 to 1.5 (bottom panel) in the standard CLM and the anomaly forcing CLM 301 
 302 
 303 
 304 
  305 
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 306 
Figure 6. The percentage yield difference from 2006-2015 to 2066-2075 in the standard CLM 307 

and anomaly forcing CLM across the three scenarios 308 
 309 
The anomaly forcing CLM also captured yield changes over time for each climate scenario. The 310 
three scenarios showed some similarities in yield changes from 2006-2015 to 2066-2075. For 311 
example, crop yields increased in Southeast China and decreased in Sub-Saharan Africa. There 312 
were also yield changes that were unique to each scenario that were also found in the anomaly 313 
forcing CLM. For example, crop yields increased in Europe for the 1.5 °C scenario (Figure 6a-314 
b), while they decreased in Europe for the 2.0 °C and RCP45 scenarios (Figure 6c-f), and crop 315 
yields declined in the U.S. for the RCP45 scenario (Figure 6e-f) while they increased for the 316 
1.5 °C and 2.0 °C scenarios (Figure 6 a-d).  317 
 318 
All simulations in the above evaluations adopted a constant CO2 level (359.8 ppm) and crop 319 
types dependent fixed nitrogen fertilization (25-500 kg N/ ha), so whether the anomaly forcing 320 
CLM simulated a similar or different crop growth response to CO2 or nitrogen fertilization is 321 
unknown. Due to limited computational resources, we tested crop responses to transient CO2 and 322 
nitrogen fertilization only for the RCP45 scenario and assumed that the other scenarios would 323 
show the same differences as the RCP45 scenario. The transient CO2 in the RCP45 scenario 324 
gradually increased from 379 ppm in 2006 to 530 ppm in 2075. To test the effects of nitrogen 325 
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fertilization, we simply added a zero nitrogen fertilization simulation. Although all grid cells had 326 
the same amounts of CO2 increase in a given year (no spatial variation), crop yields had spatial 327 
variations in response to transient CO2. Most regions showed a 5-10% yield increase, but some 328 
regions showed much higher yield increases, such as northern India, the southern edge of the 329 
Sahara, and Australia (Figure 7a). Such crop yield responses to transient CO2 spatial patterns 330 
were also captured by the anomaly forcing CLM (Figure 7b). Similar for the crop yield responses 331 
to nitrogen fertilization, the anomaly forcing CLM simulated crop yield increase spatial patterns 332 
(Figure 7c-d), in which the Southern Hemisphere and Asia had greater yield increases in 333 
response to nitrogen fertilization.   334 
 335 
 336 

 337 
 338 

Figure 7. 70-year averaged integrated crop yield response to transient CO2 and to no nitrogen 339 
fertilization in the anomaly forcing CLM (a and b) and in the standard CLM (c and d) for the 340 

RCP45 scenario. 341 
 342 
Discussion 343 
 344 
In this work, we created anomaly forcing datasets for three future climate scenarios, and we 345 
validated the crop yields in the anomaly forcing CLM by comparison with the crop yields in the 346 
standard CLM. The differences between the anomaly forcing CLM and standard CLM were due 347 
only to differences in forcing data, for which the standard CLM used regular forcing (three-348 
hourly forcing) and the anomaly forcing CLM used anomaly forcing. We found that the anomaly 349 
forcing CLM underestimated crop yields but identified the regional yield variations, as well as 350 
yield differences between two climate scenarios and yield changes over time. The anomaly 351 
forcing CLM could not generate the exact same crop yields as the standard CLM due to errors in 352 
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precipitation and in the submonthly variations. However, it could be used for qualitative analysis 353 
of relative crop yield changes among different scenarios and over time.  354 
 355 
The overall underestimation of crop yields may be due to differences in phenology that resulted 356 
from different submonthly variations. Some of the low yields in the anomaly forcing CLM may 357 
be explained by shorter grain fill periods. For example, the lower rice yields in southeast China  358 
are due to a 5-10 day shorter grain fill period in the anomaly forcing CLM (Figure S1;a-c); maize 359 
and soybean in the Southern Hemisphere also showed a 1-5 day shorter grain fill period that may 360 
account for the lower yields (Figure S1; d-i). In addition to the low yields, the anomaly forcing 361 
CLM also simulated lower GPP and LAI compared to the standard CLM (Figure S2; a1-b3), and 362 
the spatial distributions of GPP and LAI differences were very similar to the yield differences.   363 
 364 
Some regions in the Northern Hemisphere showed higher rainfed crop yields in the anomaly 365 
forcing CLM, which is due to higher soil moistures at planting that resulted from higher snow 366 
levels in the Northern Hemisphere. Crop growth in CLM is very sensitive to the soil moisture at 367 
planting, and higher soil moisture (Figure S2; c1-c3) results in unstressed crop growth and hence 368 
produces higher yields. When adequate irrigation is applied, both the anomaly forcing and the 369 
standard CLM models have sufficient water for crop growth, and the overestimations 370 
disappeared. Therefore, the anomaly forcing may not be appropriate for estimating the actual 371 
future irrigation demands but is able to distinguish the relative differences in irrigation demand 372 
across different climate scenarios. 373 
 374 
The energy fluxes in the anomaly forcing CLM and in the standard CLM were different due to 375 
different crop growth rates and differences in forcing data. The higher snow cover in the 376 
Northern Hemisphere creates higher albedo and lowers absorbed solar radiation and hence lower 377 
surface energy fluxes. The higher LAI increased the summer latent heat flux up to 5 W.m-2 378 
(Figure S3),  while the annual latent heat flux showed 5-10 W.m-2 (Figure S2; d1-d3) lower 379 
values in the anomaly forcing CLM due to the lower net radiation. In the Southern Hemisphere, 380 
lower LAI (Figure S2; a1-a3) resulted in lower latent heat fluxes (Figure S2; d1-d3) and higher 381 
sensible heat fluxes (Figure S2; e1-e3).   382 
 383 
The regional yield comparisons indicate that the anomaly forcing CLM effectively captured 384 
regional yield variations but with slightly lower yield biases. We want to point out that the very 385 
high crop yields in Latin America and in Sub-Saharan Africa, and the very low crop yields in 386 
India in both the anomaly forcing CLM and the standard CLM approaches are not realistic when 387 
compared to the UNFAO yields (http://www.fao.org/statistics/en/). Such biases in the CLM have 388 
been discussed by Levis et al. (2018), and the low yields in India are due to incorrect crop 389 
phenology when crops entered the grain fill during the dry season. The high yields in Latin 390 
American and in Sub-Saharan Africa were due to the nitrogen fertilization amounts based on US 391 
levels, which are too high for these regions.  392 
 393 
The crop model in the most recent version of CLM5.0 includes new features as reported in 394 
Lombardozzi et al., (2020). For example CLM5.0 uses time‐varying spatial distributions of 395 
major crop types and has updated fertilization and irrigation schemes. These updates of crop 396 
model in CLM5.0 may improve the crop  yield simulations for both standard CLM and anomaly 397 
forcing CLM compared to crop yield in reality. The anomaly forcing method in CLM5.0 remains 398 
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unchanged so we speculate the bias due to anomaly forcing may still exist in CLM5.0. For 399 
example, CLM5.0 uses the same threshold to differ rain and snow, so the bias due to higher snow 400 
cover in the Northern Hemisphere may still exists in CLM5.0. However, how will the magnitude 401 
of  the bias change is unclear. We suggest that the anomaly forcing of CLM5.0 to be tested if the 402 
research interest is in absolute yield or in qualitative difference.  403 
 404 
Our approach can be adopted by other land surface models to expand their capabilities for 405 
utilizing monthly climate data. The source code of the anomaly forcing CLM is available at the 406 
repository website Zenodo https://doi.org/10.5281/zenodo.3900671. The path is 407 
post4.5crop_slevis/models/lnd/clm/src/cpl/ lnd_import_export.F90 when unzip 408 
post4.5crop_slevis_codeforGMD.tar.gz. The Fortran code could be transplanted to other land 409 
surface models which use NetCDF format atmospheric forcing.  410 
 411 
Conclusions 412 
 413 
The Community Land Surface model offers an alternative way in utilize the monthly climate as 414 
the forcing data. Such an approach could expand user choice of forcing data when high temporal 415 
resolution climate data are not available. In this work, we created anomaly forcing data for three 416 
climate scenarios (1.5 °C warming, 2.0 °C warming, and RCP4.5) and validated crop yield 417 
projections in the anomaly forcing CLM against the standard CLM. The anomaly forcing CLM 418 
underestimated crop yields by 5-8%, which was largely due to the differences in phenology and 419 
photosynthesis that resulted from the different submonthly variations. How CLM treated 420 
precipitation as rain or snow also introduced biases in crop yields and in the energy flux 421 
simulations. Although the anomaly forcing CLM could not generate crop yields identical to the 422 
standard CLM, it could be used for qualitative analysis of crop yield changes across various 423 
scenarios over time.  424 
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 447 
Appendix: a user guide for using anomaly forcing CLM 448 
 449 
Running the anomaly forcing CLM is similar to the standard CLM but with several additional 450 
steps. First, the monthly anomaly data are prepared as described in the method section. Then, the 451 
user needs to modify user_nl_cpl and user_nl_datm to specify which forcing variables to add to 452 
the anomaly signals. There are seven anomaly forcing variables (Table A2), and the user can 453 
specify one, or two, or all variables in the two namelists (user_nl_cpl and user_nl_datm). The 454 
final step is to add the corresponding anomaly forcing data streams depending on which anomaly 455 
forcing variables were specified in user_nl_cpl and user_nl_datm.  456 
 457 
 458 
1. Modify user_nl_cpl and user_nl_datm 459 

 460 
The user may add part or all of the following text to user_nl_cpl.  461 
 462 
cplflds_custom = 'Sa_prec_af->a2x', 'Sa_prec_af->x2l','Sa_tbot_af->a2x', 463 
'Sa_tbot_af->x2l','Sa_pbot_af->a2x', 'Sa_pbot_af->x2l','Sa_shum_af->a2x', 464 
'Sa_shum_af->x2l','Sa_u_af->a2x', 'Sa_u_af->x2l','Sa_v_af->a2x', 465 
'Sa_v_af->x2l','Sa_swdn_af->a2x', 'Sa_swdn_af->x2l','Sa_lwdn_af->a2x', 'Sa_lwdn_af->x2l' 466 
 467 
Add part or all of the following text into user_nl_datm: 468 
 469 
anomaly_forcing= 470 
'Anomaly.Forcing.Precip','Anomaly.Forcing.Temperature','Anomaly.Forcing.Pressure','Anomaly471 
.Forcing.Humidity','Anomaly.Forcing.Uwind','Anomaly.Forcing.Vwind','Anomaly.Forcing.Short472 
wave','Anomaly.Forcing.Longwave' 473 
 474 
Also attach the anomaly forcing data streams in user_nl_datm: 475 
 476 
streams = "datm.streams.txt.CLMCRUNCEP.Solar 1996 1996 2005", 477 
"datm.streams.txt.CLMCRUNCEP.Precip 1996 1996 2005", 478 
         "datm.streams.txt.CLMCRUNCEP.TPQW 1996 1996 2005", 479 
"datm.streams.txt.presaero.clim_2000 1 1 1", 480 
         "datm.streams.txt.Anomaly.Forcing.Precip 2006 2006 2075", 481 
"datm.streams.txt.Anomaly.Forcing.Temperature 2006 2006 2075", 482 
         "datm.streams.txt.Anomaly.Forcing.Pressure 2006 2006 2075", 483 
"datm.streams.txt.Anomaly.Forcing.Humidity 2006 2006 2075", 484 
         "datm.streams.txt.Anomaly.Forcing.Uwind 2006 2006 2075", 485 
"datm.streams.txt.Anomaly.Forcing.Vwind 2006 2006 2075", 486 
         "datm.streams.txt.Anomaly.Forcing.Shortwave 2006 2006 2075", 487 
"datm.streams.txt.Anomaly.Forcing.Longwave 2006 2006 2075", 488 
         "/glade/p/work/yaqiong/inputdata/atm/datm7/co2.1pt5degC.streams.txt 1901 1901 2075" 489 
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 490 
mapalgo = 'bilinear', 'bilinear', 'bilinear', 'bilinear', 'bilinear', 'bilinear', 'bilinear', 'bilinear', 491 
'bilinear', 492 
         'bilinear', 'bilinear', 'bilinear','nn' 493 
tintalgo = 'coszen', 'nearest', 'linear', 'linear', 'nearest', 'nearest', 'nearest', 'nearest', 'nearest', 494 
'nearest', 495 
         'nearest', 'nearest','linear' 496 
 497 
Any combination or subset of anomaly forcing variables can be used. For example, 498 
 cplflds_custom = 'Sa_prec_af->a2x', 'Sa_prec_af->x2l' (in user_nl_cpl) 499 
anomaly_forcing='Anomaly.Forcing.Precip' (in user_nl_datm) 500 
will only adjust precipitation. The reference data and period are defined in env_run.xml. 501 
 502 
2. Add the anomaly forcing data stream 503 
The anomaly forcing data stream is where to specify the data path of the monthly anomaly 504 
forcing signal and to tell the code which variable to retrieve. A list of all anomaly forcing data 505 
stream file names and the variables in the anomaly forcing data and the code are given in Table 506 
2. An example of the content in user_datm.streams.txt.Anomaly.Forcing.Humidity is also 507 
attached. The user only needs to add the corresponding variable data streams that are defined in 508 
user_nl_cpl.  509 
 510 
Table A2. A list of the anomaly forcing data streams and the corresponding variables in the 511 
anomaly forcing data and the code 512 
Data stream file names Vars in data Vars in code 
user_datm.streams.txt.Anomaly.Forcing.Humidity1 huss shum_af 
user_datm.streams.txt.Anomaly.Forcing.Precip pr prec_af 
user_datm.streams.txt.Anomaly.Forcing.Pressure ps pbot_af 
user_datm.streams.txt.Anomaly.Forcing.Shortwave rsds swdn_af 
user_datm.streams.txt.Anomaly.Forcing.Temperature tas tbot_af 
user_datm.streams.txt.Anomaly.Forcing.Uwind uas u_af 
user_datm.streams.txt.Anomaly.Forcing.Vwind vas v_af 
user_datm.streams.txt.Anomaly.Forcing.Longwave rlds lwdn_af 

1An example of the content in the data stream was given below: 513 
  <dataSource> 514 
         GENERIC 515 
      </dataSource> 516 
      <domainInfo> 517 
         <variableNames> 518 
            time    519 
            xc      lon 520 
            yc      lat 521 
            area    522 
            mask    523 
         </variableNames> 524 
         <filePath> 525 
            /glade/p/cesmdata/cseg/inputdata/share/domains 526 
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         </filePath> 527 
         <fileNames> 528 
           domain.lnd.fv0.9x1.25_gx1v6.090309.nc 529 
         </fileNames> 530 
      </domainInfo> 531 
      <fieldInfo> 532 
         <variableNames> 533 
            huss  shum_af 534 
         </variableNames> 535 
         <filePath> 536 
            THE ANOMALY FORCING SIGNAL DATA PATH 537 
         </filePath> 538 
         <fileNames> 539 
            THE ANOMALY FORCING SIGNAL DATA NAME 540 
         </fileNames> 541 
         <offset> 542 
            0 543 
         </offset> 544 
      </fieldInfo> 545 
 546 
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