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Abstract 11 
 12 
Crop growth in land surface models normally requires high temporal resolution climate data (3-13 
hourly or 6-hourly), but such high temporal resolution climate data are not provided by many 14 
climate model simulations due to expensive storage, which limits modeling choice if there is an 15 
interest in a particular climate simulation that only saved monthly outputs. The Community Land 16 
Surface Model (CLM) has proposed an alternative approach for utilizing monthly climate outputs 17 
as forcing data since version 4.5, and it is called the anomaly forcing CLM. However, such an 18 
approach has never been validated for crop yield projections. In our work, we created anomaly 19 
forcing datasets for three climate scenarios (1.5 °C warming, 2.0 °C warming, and RCP4.5) and 20 
validated crop yields against the standard CLM forcing with the same climate scenarios using 3-21 
hourly data. We found that the anomaly forcing CLM could not produce crop yields identical to 22 
the standard CLM due to the different submonthly variations, and crop yields were underestimated 23 
by 5-8% across the three scenarios (1.5 °C, 2.0 °C, and RCP4.5) for the global average, and 28-24 
41% of cropland showed significantly different yields. However, the anomaly forcing CLM 25 
effectively captured the relative changes between scenarios and over time, as well as regional crop 26 
yield variations. We recommend that such an approach be used for qualitative analysis of crop 27 
yields when only monthly outputs are available. Our approach can be adopted by other land surface 28 
models to expand their capabilities for utilizing monthly climate data. 29 
 30 
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 33 
Introduction 34 
 35 
Increasing numbers of future climate scenarios exhibit large uncertainties for crop yield projections. 36 
Crop yields may increase or decrease depending on which climate projection is used (Lobell et al., 37 
2008; Rosenzweig et al., 2014; Urban et al., 2012). Ensemble future climate projections, such as 38 
CMIP5, showed a large range of future climate projections, even for one emission scenario (Knutti 39 
and Sedlacek, 2013). Using all future climate projections is not realistic not only because of the 40 
computational expense but also because many of these future climate projections only save 41 
monthly climate outputs that are not suitable for crop models that require high temporal resolution 42 
forcing data. Some standalone process-based crop models run in daily time steps, and some crop 43 
models embedded in land surface models need at least 6-hour climate data as the forcing data to 44 
represent diurnal cycles. Only a small portion of the CMIP5 (Coupled Model Intercomparison 45 
Project 5) simulations (<25%) can be used as the forcing data for crop models, leaving little room 46 
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for crop modelers to choose a particular climate model projection that is of interest.  47 
 48 
The Community Land Model (CLM) (Oleson et al., 2013) is a state-of-the-art land surface model 49 
that simulates biogeophysical (radiation transfer, vegetation-soil-hydrology, surface energy fluxes, 50 
etc.) and biogeochemical (soil carbon and nitrogen cycle, vegetation photosynthesis, dynamic 51 
vegetation growth, etc.) processes. CLM is the default land model in the Community Earth System 52 
Model (CESM) (Hurrell et al., 2013), and it can be run either online coupled with the rest of CESM 53 
(atmosphere and ocean) or offline (the land model only, forced with climate datasets) for multiple 54 
spatial extents (site, regional, and global) and at different resolutions. The crop model derived from 55 
AgroIBIS (Kucharik, 2003) was introduced to CLM4.0 by Levis et al. (2012), and it is responsible 56 
for crop growth phenology (temperature determined), carbon allocation algorithms, and crop 57 
management (e.g., irrigation). The crop model in CLM runs when the soil biogeochemical 58 
component is active, and it was tested with the CLM-CN in version 4.0 and tested with CLM-BGC 59 
in version 4.5, where CLM-CN and CLM-BGC are officially supported soil biogeochemical 60 
components in CLM4.0 and CLM4.5 respectively. Since their introduction, crop models in the 61 
CLM have been developed to represent more crop types and processes, such as soybean nitrogen 62 
fixation (Drewniak et al., 2013), ozone impacts on yields (Lombardozzi et al., 2015), winter wheat 63 
growth responses to cold hazards (Lu et al., 2017), and maize growth responses to heat stress (Peng 64 
et al., 2018). CLM simulates nine crop types, accounting for 54% of global total crop production 65 
(other production is represented by the most similar crop type): maize, soybean, spring wheat, 66 
winter wheat, cotton, rice, sugarcane, tropical maize, and tropical soybean. In this study, we used 67 
CLM version 4.5 (Oleson et al., 2013). 68 
 69 
Since version 4.5, CLM offers a built-in function that indirectly uses monthly climate outputs as 70 
the forcing data, and is called the anomaly forcing CLM (Lawrence et al., 2015). Anomaly forcing 71 
CLM reconstructs new subdaily forcing data by applying the precalculated future monthly 72 
anomaly signals to user-defined historical subdaily forcing data, referred to as the reference data. 73 
The future monthly anomaly signals are calculated by the future monthly climate outputs and by 74 
use of historical monthly outputs. The choice of reference data is arbitrary. Any existing subdaily 75 
forcing data (e.g., CRUNCEP (Viovy, 2018), QIAN (Qian et al., 2006)) for CLM can be used as 76 
the reference data. The historical monthly outputs are recommended to be multiyear averaged to 77 
represent the historical means and avoid affecting the monthly anomaly signal by rare, extreme 78 
events in a particular year. Such an arbitrary choice is because the goal of the original anomaly 79 
forcing CLM is not to reconstruct future forcing that is identical to the actual future forcing when 80 
the high temporal resolution data were saved. Rather, the original goal of the anomaly forcing 81 
CLM is to understand the influences due to the anomaly signal by comparing the simulation with 82 
the anomaly forcing CLM to the simulation run with the reference data. The differences between 83 
the two simulations are due to the anomaly signals.  84 
 85 
In our study, we modified the anomaly forcing CLM to fit our goals to understand whether we 86 
could simply use the anomaly forcing CLM for crop yield projections when only monthly climate 87 
data were available. We carefully chose the historical monthly data and the reference data so that 88 
the reconstructed future anomaly forcing had nearly identical monthly means as the desired 89 
subdaily future forcing, but we used different submonthly variations. We created anomaly forcing 90 
datasets for three future scenarios (1.5 °C warming, 2.0 °C warming, and RCP4.5) for 2006-2075 91 
for which both the subdaily and monthly climate outputs were available from three CESM 92 
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simulations. With the three paired CLM simulations, we validated the anomaly forcing CLM by 93 
comparing it to the standard CLM. 94 
 95 
Methods 96 
 97 
The original anomaly forcing CLM has been available since CLM4.5. This approach reconstructs 98 
the subdaily (3-hourly or 6-hourly) forcing data by applying the monthly anomaly signal to user 99 
selected subdaily reference data; therefore, it indirectly uses the monthly atmospheric outputs as 100 
the forcing data for CLM. This approach does not change any of the scientific code in CLM; it 101 
only adds code that reads the monthly anomaly signals and automatically applies these to the 102 
reference data while the CLM is running. There were two monthly anomaly signals for RCP4.5 103 
and RCP8.5 that were generated using the CESM future projections and were ready for use. It is 104 
the user’s choice to select which subdaily reference (e.g., CRUNCEP or CLMQIAN) and which 105 
years to use. By simply modifying user_nl_cpl namelist and adding data streams of the anomaly 106 
forcing variables (see the appendix for the detailed usage), the anomaly forcing CLM will 107 
automatically read the monthly anomaly signal and apply the signal to each time step of the 108 
reference data within a month. When the reference data period is less than the anomaly signal 109 
period, the anomaly forcing CLM will cycle the same reference data until the simulation is 110 
complete. Because the different selections of reference data can generate different forcings, even 111 
with the same monthly anomaly signals, one should not use the simulation from the anomaly 112 
forcing CLM to represent the actual simulation. Rather, the original goal of the anomaly forcing 113 
CLM is to compare the simulation with the anomaly forcing and simulation with the reference 114 
forcing data to understand the effects of the monthly anomaly signals on land surface variables.  115 
 116 
The goal of this work is to test how well crop yield projections from the anomaly forcing CLM 117 
compare to the projections from the standard forcing CLM, given that anomaly forcing has the 118 
same monthly average as standard forcing. We selected three future scenarios for CESM 119 
simulations that saved both monthly outputs and 3-hourly outputs, where the 3-hourly outputs 120 
were directly used in the standard forcing CLM, and the monthly outputs were indirectly used in 121 
the anomaly forcing CLM. We calculated the anomaly forcing signals using the monthly CESM 122 
outputs and the monthly average of reference data, so that when applying the anomaly signals to 123 
the reference data, it is expected to generate identical monthly means as does regular forcing. 124 
However, due to a limit in calculations of precipitation anomalies (precipitation anomaly ratio less 125 
than 5 times) and how the CLM treats snow and rainfall, the anomaly forcing CLM did not show 126 
identical snow and rainfall monthly averages and introduced bias in the crop yield simulations (see 127 
the results section).   128 
 129 
Table 1. A summary of the original anomaly forcing CLM and the modifications in this work 130 
 Original anomaly forcing 

CLM 
Modifications in this work 

3 h/6 h reference data User choice 6 h Community Atmosphere 
Model outputs from one 
historical low warming 
ensemble simulation 1996-
2005 
 



 4 

Monthly anomaly signals Existing for RCP4.5 and 
RCP8.5 

• Anomalies between future 
scenarios and monthly 
means of reference data 

• Three future scenarios: 
1.5 °C, 2.0 °C, and 
RCP4.5 

• Each scenario had 
monthly outputs and 3 h 
outputs  

 
Goals Climate impact due to 

anomaly signals when 
comparing the anomaly run 
with the reference run 

Given that anomaly forcing 
has the same monthly mean as 
the standard CLM forcing, can 
we use it for crop yield 
projections? 
 

 131 
We randomly chose the 6-hourly reference data (1996-2005) from one of the 11 historical low 132 
warming ensemble CESM simulations. Additionally, we selected three CESM future simulations 133 
for the 1.5 °C warming, 2.0 °C warming, and RCP4.5 scenarios, where all the three simulations 134 
saved both the monthly outputs and the 3-hourly outputs. We then calculated the monthly anomaly 135 
signal at each grid cell for each scenario (1.5, 2.0, and RCP45) from 2006-2075. The monthly 136 
anomaly signals are differences for temperature, specific humidity, wind, and air pressure and are 137 
ratios for solar radiation and precipitation between the monthly outputs of each scenario and the 138 
1996-2005 averaged monthly values of the reference data. The anomaly forcing signal has both 139 
spatial and monthly variations. When running the anomaly forcing simulation for 2006-2070, 140 
CLM repeatedly uses the 10-year reference period and applies the anomaly signal of a month to 141 
all subdaily reference forcing in this month. For example, an anomaly forcing simulation for 2006 142 
January uses the 1996 January reference data plus or multiplied by (if the anomaly signal is a ratio) 143 
the 2006 January anomaly signal. If the 2006 January temperature anomaly is 1 K for a grid cell, 144 
then all 1996 January reference data will be increased by 1 K for the grid cell.     145 
 146 
The monthly anomaly signal is calculated at each grid cell (i,j). For temperature, pressure, wind, 147 
and humidity, the anomaly signal is the difference between the future monthly data and the 148 
historical monthly average (equation 1). For solar radiation, longwave radiation, and 149 
precipitation, the anomaly signal is the ratio between the future monthly data and the historical 150 
monthly average (equation 2). We set the maximum ratio for precipitation to 5 to avoid 151 
unrealistic extreme precipitation, which also introduced biases in precipitation (discussed in the 152 
discussion section).   153 
 154 

𝑎𝑓!,#,$ = 𝑓𝑢𝑡!,#,$ − ℎ𝑖𝑠𝑡!,#,$								(1) 155 
 156 

𝑎𝑓!,#,$ = 𝑓𝑢𝑡!,#,$/ℎ𝑖𝑠𝑡!,#,$	   (2) 157 
Where 𝑎𝑓!,#,$is anomaly forcing signal at a location i and j in a month m, 𝑓𝑢𝑡!,#,$ is the averaged 158 
future value and ℎ𝑖𝑠𝑡!,#,$ is the averaged historical value at a location i and j in a month m. 159 
 160 
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We set up global CLM crop simulations (compset CLM45BGCCROP) at 1.9 by 2.5 in latitude and 161 
longitude, respectively, using the anomaly forcing CLM and the regular forcing CLM for the 1.5 °C 162 
warming, 2.0 °C warming, and RCP4.5 scenarios. All simulations used the default nitrogen 163 
fertilization rates and a constant CO2 level of 359.8 ppm. For each scenario, we validate the crop 164 
yield in the anomaly forcing CLM to the regular forcing CLM to determine if we can use the 165 
anomaly forcing CLM for future crop yield projections. We also studied whether the anomaly 166 
forcing CLM has a similar crop growth response to transient CO2 and nitrogen fertilization. 167 
However, due to limited computational resources, we only tested such responses for the RCP4.5 168 
scenario. The transient CO2 levels in the RCP45 scenario gradually increased from 379 ppm in 169 
2006 to 530 ppm in 2070. To test the nitrogen fertilization effects, we simply added a zero nitrogen 170 
fertilization simulation here. 171 
 172 
We adopted the two-sample Kolmogorov-Smirnov test (KS test) to test the statistical significance 173 
of differences between the anomaly forcing CLM and the standard CLM for atmospheric forcing 174 
data and yield. We used the KS test because some variables at some grid cells did not necessarily 175 
follow normal distributions. The KS test is a nonparametric test that detects differences in the 176 
empirical probability distributions between two samples, and the two samples do not need to have 177 
normal distributions (Justel et al., 1997; Marozzi, 2013). When repeated using the ten-year 178 
reference data, we expected that the ten year averaged monthly anomaly forcing would show no 179 
significant differences from the regular forcing. Thus, for the atmospheric forcing data, we tested 180 
probability distribution differences between anomaly forcing and regular forcing for every ten-181 
year averaged monthly dataset (sample size was 7x12=84). For crop yields, we used the every ten-182 
year averaged annual yields (sample size was 7). We used linear regression coefficent (R2), bias 183 
(equation 3), percentage differences (equation 4) in our evaluations.  184 
 185 

𝑏𝑖𝑎𝑠 = 𝐶𝐿𝑀%&'$%()	+',-!&. − 𝐶𝐿𝑀/0%&1%,1 							(3) 186 

%𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = 100 ∗ (
𝐶𝐿𝑀%&'$%()	+',-!&.

𝐶𝐿𝑀/0%&1%,1
− 1)								(4) 187 

 188 
 189 
Results 190 
 191 
We aimed to generate an anomaly forcing that produced identical monthly averages as its 192 
counterpart regular forcing (the desirable 3-hourly forcing data for CLM) but with different 193 
submonthly variations. All atmospheric forcing variables achieved this goal except for 194 
precipitation and its liquid and ice components, rain and snow. The linear regression coefficients 195 
(R2) between anomaly forcing and standard forcing for the monthly means of incoming solar 196 
radiation, bottom atmosphere temperatures, pressures, humidities, and winds all showed R2 values 197 
above 0.99, and there were also no significant differences for these variables for all grid cells. 198 
However, for rain and snow, the R2 values were 0.63-0.87 and 0.88-0.96 across the three scenarios, 199 
respectively (Figure 1a). Statistically significant differences were also found for rain and snow in 200 
many regions in the Northern Hemisphere (Figure 2). We used monthly variances as a measure of 201 
the submonthly variations. We calculated the variation for twelve months in each decade, so we 202 
have 7 decades and 12 months variance and the sample size is 84 when setting up the regression. 203 
R2 for variances of forcing were low for most variables except for incoming solar radiation (Figure 204 
1b). Such lower R2 values indicated that anomaly forcing could not represent the submonthly 205 
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variations as well as the regular forcing.  206 
 207 
There were two error sources for precipitation. First, there was overall average lower precipitation 208 
in the anomaly forcing by 0.02 mm/day, 0.03 mm/day, and 0.2 mm/day in the 1.5 °C, 2.0 °C, and 209 
RCP45 scenarios, respectively. Such slightly lower precipitation was because we set the maximum 210 
precipitation anomaly ratio to 5 to avoid unrealistically extreme precipitation levels. Second, the 211 
CLM used the temperature in each time step to determine if the given precipitation was rain or 212 
snow. Precipitation was rain when temperature was above 273.15 K, otherwise it was snow. 213 
Therefore, the different submonthly variations in temperature resulted in different submonthly 214 
variations for snow and rain. Due to this problem, the lower precipitation did not evenly distribute 215 
to the rain and snow bias, for which rain was underestimated by 0.08-0.3 mm/day, and snow was 216 
overestimated by 0.06-0.11 mm/day across the three scenarios. The significantly different regions 217 
were mainly in the Northern Hemisphere and the Antarctic, and most regions in the Southern 218 
Hemisphere did not show significant differences in rain or snow. How the rain and snow biases 219 
affected yield projections will be discussed.  220 

 221 

 222 
Figure 1. Linear regression coefficients (R2) between a) decade-averaged monthly mean (sample 223 
size =12 months x 7 decades=84) between anomaly forcing and regular forcing and b) every ten 224 

year-averaged monthly variance between anomaly forcing and regular forcing.  225 
 226 
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 227 
 228 
Figure 2. 70-year averaged differences between anomaly forcing and regular forcing for rain (a-229 

c) and snow (d-f) for the 1.5oC, 2.0 oC, and RCP4.5 scenarios. All differences shown here are 230 
statistically significant differences tested by the Kolmogorov-Smirnov test with a sample size of 231 

84. The gray areas are regions that did not show significant differences.  232 
 233 
When compared to crop yield simulations in the standard CLM, the anomaly forcing CLM 234 
underestimated crop yields by 5-8% across the three scenarios for the global average, and 28-41% 235 
of cropland showed statistically significant differences in yields. The rainfed crop yield differences 236 
across the three scenarios showed largely similar spatial distributions: overestimation in the 237 
northern US and Europe and underestimation in the Southern Hemisphere and in East Asia (Figure 238 
3d-f). The overestimated rainfed crop yield (mainly for maize and wheat) in the anomaly forcing 239 
CLM is due to higher water availability in these regions, which is a result of higher snow in the 240 
anomaly forcing CLM. For irrigated crops, such overestimations in the northern US and Europe 241 
disappear (Figure 3g-i) because sufficient irrigation was added to the irrigated soil column in the 242 
standard CLM, which removed the plant water stress that was seen for rainfed crops. However, the 243 
underestimations in the Southern Hemisphere and East Asia were persistent, because water 244 
availability does not cause yield differences for irrigated crops; we suspect such underestimations 245 
were caused by the other error in forcing data: the different submonthly variations in the forcing 246 
data. 247 
 248 
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 249 
 250 

Figure 3. The percentage differences of 70-year integrated yields between the anomaly forcing 251 
CLM and the standard CLM for all crops (a-c), rainfed crops (d-f), and irrigated crops (g-i) for 252 
the 1.5 °C, 2.0 °C, and RCP45 scenarios. The white regions are where no crops grow based on 253 
the historical crop map in 2005 (MAPSPAM 2005; https://www.mapspam.info/). For plots a-c, 254 
we showed only the significant differences as determined by the by Kolmogorov-Smirnov test 255 

with a sample size of 7. The regions with insignificant differences are masked as gray in a-c. For 256 
plots d-i, we did not mask the insignificant differences  257 

 258 
 259 
 260 
 261 

 262 
Figure 4. Regional comparisons of the 70-year integrated mean yields and yield standard 263 
deviations between the anomaly forcing CLM and the standard CLM. The error bars indicate 70-264 
year yield standard deviations. CHN: China; EU: European Union; IND: India; LAC: Latin 265 
America; ODC: Other Developing Countries; OIC: Other Industrialized Countries; SSA: Sub-266 
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Saharan Africa; TC: Transition Countries; USA: United States  267 

The global 70-year averaged yields ± standard deviation in the standard CLM (Ren et al., 2018) 268 
and in the anomaly forcing CLM are 4.38 ± 0.09 and 4.03 ± 0.16 t/ha, respectively, in the 1.5 °C 269 
scenario, 4.36 ± 0.11 and 4.01 ± 0.14 t/ha, respectively, in the 2.0 °C scenario, 3.95 ±0.13 and 3.72 270 
± 0.14, respectively, in the RCP45 scenario (Figure 4). The anomaly forcing CLM captured the 271 
regional yield variations. Latin America (LAC) showed the highest yield while India (IND) 272 
showed the lowest yields for both the anomaly forcing CLM and the standard CLM across the 273 
three scenarios.  274 
 275 
 276 
Although the crop yields were underestimated, the anomaly forcing CLM could qualitatively 277 
represent the spatial yield differences between two climate scenarios. Comparing 2.0 °C to 1.5 °C, 278 
there was a 4-8% yield increase in the northern U.S. and a 0-4% yield decrease in (Figure 5a) in 279 
the southeast U.S. When comparing the RCP45 to the 1.5 °C scenario, crop yields in the U.S. were 280 
largely reduced (up to 50%). The anomaly forcing CLM clearly captured these yield differences 281 
(Figure 5b and 5d). 282 

 283 
Figure 5. The percentage of 70-year integrated yield differences between 2.0 °C and 1.5 °C (top 284 
panel) RCP45 to 1.5 (bottom panel) in the standard CLM and the anomaly forcing CLM 285 
 286 
 287 
 288 
  289 
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 290 
Figure 6. The percentage yield difference from 2006-2015 to 2066-2075 in the standard CLM 291 

and anomaly forcing CLM across the three scenarios 292 
 293 
The anomaly forcing CLM also captured yield changes over time for each climate scenario. The 294 
three scenarios showed some similarities in yield changes from 2006-2015 to 2066-2075. For 295 
example, crop yields increased in Southeast China and decreased in Sub-Saharan Africa. There 296 
were also yield changes that were unique to each scenario that were also found in the anomaly 297 
forcing CLM. For example, crop yields increased in Europe for the 1.5 °C scenario (Figure 6a-b), 298 
while they decreased in Europe for the 2.0 °C and RCP45 scenarios (Figure 6c-f), and crop yields 299 
declined in the U.S. for the RCP45 scenario (Figure 6e-f) while they increased for the 1.5 °C and 300 
2.0 °C scenarios (Figure 6 a-d).  301 
 302 
All simulations in the above evaluations adopted a constant CO2 level (359.8 ppm) and crop types 303 
dependent fixed nitrogen fertilization (25-500 kg N/ ha), so whether the anomaly forcing CLM 304 
simulated a similar or different crop growth response to CO2 or nitrogen fertilization is unknown. 305 
Due to limited computational resources, we tested crop responses to transient CO2 and nitrogen 306 
fertilization only for the RCP45 scenario and assumed that the other scenarios would show the 307 
same differences as the RCP45 scenario. The transient CO2 in the RCP45 scenario gradually 308 
increased from 379 ppm in 2006 to 530 ppm in 2075. To test the effects of nitrogen fertilization, 309 
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we simply added a zero nitrogen fertilization simulation. Although all grid cells had the same 310 
amounts of CO2 increase in a given year (no spatial variation), crop yields had spatial variations 311 
in response to transient CO2. Most regions showed a 5-10% yield increase, but some regions 312 
showed much higher yield increases, such as northern India, the southern edge of the Sahara, and 313 
Australia (Figure 7a). Such crop yield responses to transient CO2 spatial patterns were also 314 
captured by the anomaly forcing CLM (Figure 7b). Similar for the crop yield responses to nitrogen 315 
fertilization, the anomaly forcing CLM simulated crop yield increase spatial patterns (Figure 7c-316 
d), in which the Southern Hemisphere and Asia had greater yield increases in response to nitrogen 317 
fertilization.   318 
 319 
 320 

 321 
 322 

Figure 7. 70-year averaged integrated crop yield response to transient CO2 and to no nitrogen 323 
fertilization in the anomaly forcing CLM (a and b) and in the standard CLM (c and d) for the 324 

RCP45 scenario. 325 
 326 
Discussion 327 
 328 
In this work, we created anomaly forcing datasets for three future climate scenarios, and we 329 
validated the crop yields in the anomaly forcing CLM by comparison with the crop yields in the 330 
standard CLM. The differences between the anomaly forcing CLM and standard CLM were due 331 
only to differences in forcing data, for which the standard CLM used regular forcing (three-hourly 332 
forcing) and the anomaly forcing CLM used anomaly forcing. We found that the anomaly forcing 333 
CLM underestimated crop yields but identified the regional yield variations, as well as yield 334 
differences between two climate scenarios and yield changes over time. The anomaly forcing CLM 335 
could not generate the exact same crop yields as the standard CLM due to errors in precipitation 336 
and in the submonthly variations. However, it could be used for qualitative analysis of relative 337 
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crop yield changes among different scenarios and over time.  338 
 339 
The overall underestimation of crop yields may be due to differences in phenology that resulted 340 
from different submonthly variations. Some of the low yields in the anomaly forcing CLM may 341 
be explained by shorter grain fill periods. For example, the lower rice yields in southeast China  342 
are due to a 5-10 day shorter grain fill period in the anomaly forcing CLM (Figure S1;a-c); maize 343 
and soybean in the Southern Hemisphere also showed a 1-5 day shorter grain fill period that may 344 
account for the lower yields (Figure S1; d-i). In addition to the low yields, the anomaly forcing 345 
CLM also simulated lower GPP and LAI compared to the standard CLM (Figure S2; a1-b3), and 346 
the spatial distributions of GPP and LAI differences were very similar to the yield differences.   347 
 348 
Some regions in the Northern Hemisphere showed higher rainfed crop yields in the anomaly 349 
forcing CLM, which is due to higher soil moistures at planting that resulted from higher snow 350 
levels in the Northern Hemisphere. Crop growth in CLM is very sensitive to the soil moisture at 351 
planting, and higher soil moisture (Figure S2; c1-c3) results in unstressed crop growth and hence 352 
produces higher yields. When adequate irrigation is applied, both the anomaly forcing and the 353 
standard CLM models have sufficient water for crop growth, and the overestimations disappeared. 354 
Therefore, the anomaly forcing may not be appropriate for estimating the actual future irrigation 355 
demands but is able to distinguish the relative differences in irrigation demand across different 356 
climate scenarios. 357 
 358 
The energy fluxes in the anomaly forcing CLM and in the standard CLM were different due to 359 
different crop growth rates and differences in forcing data. The higher snow cover in the Northern 360 
Hemisphere creates higher albedo and lowers absorbed solar radiation and hence lower surface 361 
energy fluxes. The higher LAI increased the summer latent heat flux up to 5 W.m-2 (Figure S3),  362 
while the annual latent heat flux showed 5-10 W.m-2 (Figure S2; d1-d3) lower values in the 363 
anomaly forcing CLM due to the lower net radiation. In the Southern Hemisphere, lower LAI 364 
(Figure S2; a1-a3) resulted in lower latent heat fluxes (Figure S2; d1-d3) and higher sensible heat 365 
fluxes (Figure S2; e1-e3).   366 
 367 
The regional yield comparisons indicate that the anomaly forcing CLM effectively captured 368 
regional yield variations but with slightly lower yield biases. We want to point out that the very 369 
high crop yields in Latin America and in Sub-Saharan Africa, and the very low crop yields in India 370 
in both the anomaly forcing CLM and the standard CLM approaches are not realistic when 371 
compared to the UNFAO yields (http://www.fao.org/statistics/en/). Such biases in the CLM have 372 
been discussed by Levis et al. (2018), and the low yields in India are due to incorrect crop 373 
phenology when crops entered the grain fill during the dry season. The high yields in Latin 374 
American and in Sub-Saharan Africa were due to the nitrogen fertilization amounts based on US 375 
levels, which are too high for these regions.  376 
 377 

The anomaly forcing method in CLM5.0 remains unchanged so the bias due to anomaly forcing 378 
may still exists in CLM5.0. For example, CLM5.0 uses the same threshold to differ rain and 379 
snow, so the bias due to higher snow cover in the Northern Hemisphere may still exists in 380 
CLM5.0. However, the crop model in CLM5.0 includes new features as reported in Lombardozzi 381 
et al., (2020). For example CLM5.0 uses time‐varying spatial distributions of major crop types 382 
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and has updated fertilization and irrigation schemes. These updates of crop model in CLM5.0 383 
may improve crop  yields of anomaly forcing CLM5 compared to crop yield in reality.  384 

Our approach can be adopted by other land surface models to expand their capabilities for 385 
utilizing monthly climate data. The source code of the anomaly forcing CLM is available at 386 
post4.5crop_slevis/models/lnd/clm/src/cpl/ lnd_import_export.F90. The Fortran code could be 387 
transplanted to other land surface models which use NetCDF format atmospheric forcing.  388 

 389 
Conclusions 390 
 391 
The Community Land Surface model offers an alternative way in utilize the monthly climate as 392 
the forcing data. Such an approach could expand user choice of forcing data when high temporal 393 
resolution climate data are not available. In this work, we created anomaly forcing data for three 394 
climate scenarios (1.5 °C warming, 2.0 °C warming, and RCP4.5) and validated crop yield 395 
projections in the anomaly forcing CLM against the standard CLM. The anomaly forcing CLM 396 
underestimated crop yields by 5-8%, which was largely due to the differences in phenology and 397 
photosynthesis that resulted from the different submonthly variations. How CLM treated 398 
precipitation as rain or snow also introduced biases in crop yields and in the energy flux 399 
simulations. Although the anomaly forcing CLM could not generate crop yields identical to the 400 
standard CLM, it could be used for qualitative analysis of crop yield changes across various 401 
scenarios over time.  402 
 403 
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 423 
Appendix: a user guide for using anomaly forcing CLM 424 
 425 
Running the anomaly forcing CLM is similar to the standard CLM but with several additional 426 



 14 

steps. First, the monthly anomaly data are prepared as described in the method section. Then, the 427 
user needs to modify user_nl_cpl and user_nl_datm to specify which forcing variables to add to 428 
the anomaly signals. There are seven anomaly forcing variables (Table A2), and the user can 429 
specify one, or two, or all variables in the two namelists (user_nl_cpl and user_nl_datm). The 430 
final step is to add the corresponding anomaly forcing data streams depending on which anomaly 431 
forcing variables were specified in user_nl_cpl and user_nl_datm.  432 
 433 
 434 
1. Modify user_nl_cpl and user_nl_datm 435 

 436 
The user may add part or all of the following text to user_nl_cpl.  437 
 438 
cplflds_custom = 'Sa_prec_af->a2x', 'Sa_prec_af->x2l','Sa_tbot_af->a2x', 439 
'Sa_tbot_af->x2l','Sa_pbot_af->a2x', 'Sa_pbot_af->x2l','Sa_shum_af->a2x', 440 
'Sa_shum_af->x2l','Sa_u_af->a2x', 'Sa_u_af->x2l','Sa_v_af->a2x', 441 
'Sa_v_af->x2l','Sa_swdn_af->a2x', 'Sa_swdn_af->x2l','Sa_lwdn_af->a2x', 'Sa_lwdn_af->x2l' 442 
 443 
Add part or all of the following text into user_nl_datm: 444 
 445 
anomaly_forcing= 446 
'Anomaly.Forcing.Precip','Anomaly.Forcing.Temperature','Anomaly.Forcing.Pressure','Anomaly.447 
Forcing.Humidity','Anomaly.Forcing.Uwind','Anomaly.Forcing.Vwind','Anomaly.Forcing.Short448 
wave','Anomaly.Forcing.Longwave' 449 
 450 
Also attach the anomaly forcing data streams in user_nl_datm: 451 
 452 
streams = "datm.streams.txt.CLMCRUNCEP.Solar 1996 1996 2005", 453 
"datm.streams.txt.CLMCRUNCEP.Precip 1996 1996 2005", 454 
         "datm.streams.txt.CLMCRUNCEP.TPQW 1996 1996 2005", 455 
"datm.streams.txt.presaero.clim_2000 1 1 1", 456 
         "datm.streams.txt.Anomaly.Forcing.Precip 2006 2006 2075", 457 
"datm.streams.txt.Anomaly.Forcing.Temperature 2006 2006 2075", 458 
         "datm.streams.txt.Anomaly.Forcing.Pressure 2006 2006 2075", 459 
"datm.streams.txt.Anomaly.Forcing.Humidity 2006 2006 2075", 460 
         "datm.streams.txt.Anomaly.Forcing.Uwind 2006 2006 2075", 461 
"datm.streams.txt.Anomaly.Forcing.Vwind 2006 2006 2075", 462 
         "datm.streams.txt.Anomaly.Forcing.Shortwave 2006 2006 2075", 463 
"datm.streams.txt.Anomaly.Forcing.Longwave 2006 2006 2075", 464 
         "/glade/p/work/yaqiong/inputdata/atm/datm7/co2.1pt5degC.streams.txt 1901 1901 2075" 465 
 466 
mapalgo = 'bilinear', 'bilinear', 'bilinear', 'bilinear', 'bilinear', 'bilinear', 'bilinear', 'bilinear', 'bilinear', 467 
         'bilinear', 'bilinear', 'bilinear','nn' 468 
tintalgo = 'coszen', 'nearest', 'linear', 'linear', 'nearest', 'nearest', 'nearest', 'nearest', 'nearest', 'nearest', 469 
         'nearest', 'nearest','linear' 470 
 471 
Any combination or subset of anomaly forcing variables can be used. For example, 472 
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 cplflds_custom = 'Sa_prec_af->a2x', 'Sa_prec_af->x2l' (in user_nl_cpl) 473 
anomaly_forcing='Anomaly.Forcing.Precip' (in user_nl_datm) 474 
will only adjust precipitation. The reference data and period are defined in env_run.xml. 475 
 476 
2. Add the anomaly forcing data stream 477 
The anomaly forcing data stream is where to specify the data path of the monthly anomaly forcing 478 
signal and to tell the code which variable to retrieve. A list of all anomaly forcing data stream file 479 
names and the variables in the anomaly forcing data and the code are given in Table 2. An example 480 
of the content in user_datm.streams.txt.Anomaly.Forcing.Humidity is also attached. The user only 481 
needs to add the corresponding variable data streams that are defined in user_nl_cpl.  482 
 483 
Table A2. A list of the anomaly forcing data streams and the corresponding variables in the 484 
anomaly forcing data and the code 485 
Data stream file names Vars in data Vars in code 
user_datm.streams.txt.Anomaly.Forcing.Humidity1 huss shum_af 
user_datm.streams.txt.Anomaly.Forcing.Precip pr prec_af 
user_datm.streams.txt.Anomaly.Forcing.Pressure ps pbot_af 
user_datm.streams.txt.Anomaly.Forcing.Shortwave rsds swdn_af 
user_datm.streams.txt.Anomaly.Forcing.Temperature tas tbot_af 
user_datm.streams.txt.Anomaly.Forcing.Uwind uas u_af 
user_datm.streams.txt.Anomaly.Forcing.Vwind vas v_af 
user_datm.streams.txt.Anomaly.Forcing.Longwave rlds lwdn_af 

1An example of the content in the data stream was given below: 486 
  <dataSource> 487 
         GENERIC 488 
      </dataSource> 489 
      <domainInfo> 490 
         <variableNames> 491 
            time    492 
            xc      lon 493 
            yc      lat 494 
            area    495 
            mask    496 
         </variableNames> 497 
         <filePath> 498 
            /glade/p/cesmdata/cseg/inputdata/share/domains 499 
         </filePath> 500 
         <fileNames> 501 
           domain.lnd.fv0.9x1.25_gx1v6.090309.nc 502 
         </fileNames> 503 
      </domainInfo> 504 
      <fieldInfo> 505 
         <variableNames> 506 
            huss  shum_af 507 
         </variableNames> 508 
         <filePath> 509 
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            THE ANOMALY FORCING SIGNAL DATA PATH 510 
         </filePath> 511 
         <fileNames> 512 
            THE ANOMALY FORCING SIGNAL DATA NAME 513 
         </fileNames> 514 
         <offset> 515 
            0 516 
         </offset> 517 
      </fieldInfo> 518 
 519 
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