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Abstract

1 Lava flows present a significant natural hazard to communities around volcanoes and are
typically slow moving (< 1 to 5 cm/s) and laminar. Recent lava flows during the 2018
eruption of Kilauea Volcano, Hawai’i, however, reached speeds as high as 11 m/s and were
transitional to turbulent. The Kilauea flows formed a complex network of braided channels
departing from the classic rectangular channel geometry often employed by lava flow models.

6 To investigate these extreme dynamics we develop a new lava flow model that incorporates
nonlinear advection as well as a nonlinear expression for the fluid viscosity. The model
makes use of novel discontinuous Galerkin (DG) finite element methods and resolves complex
channel geometry through the use of unstructured triangular meshes. We verify the model
against an analytic test case and demonstrate convergence rates of p + 1/2 for polynomials

11 of degree p. Direct observations recorded by Unoccupied Aerial Systems (UASs) during
the Kilauea eruption provide inlet conditions, constrain input parameters, and serve as a
benchmark for model evaluation.

1 Introduction

On May 3, 2018, Kilauea Volcano on the Island of Hawai’i began to erupt from new
fissures in the lower East Rift Zone at the center of the Leilani Estates Subdivision. Be-

16 fore ceasing in early August 2018, the lava flows destroyed over 650 structures and caused
significant damage to infrastructure and essential facilities. During the second half of the
eruption the flow field established a complex braided channel system (which is common
to many basaltic flows), originating from Fissure number 8 (see Figure 1). The ”Fissure
8” flows were unique in the fact that they produced channelized flows reaching speeds as

21 high as 11 m/s (Neal et al., 2019). These high speeds, coupled with channel geometry (e.g.
constrictions) produced Reynolds numbers (Re > 3000) that were significantly higher than
typical lava flows. At these conditions sections of the lava flow field were in the transitional
to turbulent regime implying that inertial forces did not necessarily dominate viscous forces.
Any attempt to model the fluid resistance, therefore, needs to account for basal friction as

26 well as the viscous forces normally considered by lava flow models.
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Figure 1: A satellite image (colored, in the background, by DigitalGlobe) overlayed by a
thermal aerial orthomosaic (grayscale) where the white and light gray areas reveal the path
of the Fissure 8 flow channel as it was on June 21st, 2018. Data and map by USGS. The
orange rectangle depicts the area of UAS site 8, from where the video we analyzed was
captured on June 22nd, 2018. The flat gray areas south of the active flow channel demarcate
the areas inundated by lava during the early stages of the eruption. North is up. PGV is
the Puna Geothermal Ventures power plant that was heavily impacted by the lava.
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Typical “operational” lava flow models simulate unconfined lava flow in a 2D plan view
[e.g., SCIARA (Crisci et al., 2004-04), MAGFLOW (Vicari et al., 2007), LavaPL (Connor
et al., 2012), VOLCFLOW (Kelfoun and Vargas, 2015)] using either cellular automata or
depth-averaged equations in an effort to forecast the area of land inundated by the lava. It

31 is often difficult, however, for these models to accurately reproduce the complicated braided
channel network such as those created by “Fissure 8.” These braided channel networks are
common in natural flows (e.g., Dietterich and Cashman, 2014-08) and understanding the
evolution of the velocity, rheology, and temperature fields (e.g. in response to pulsating
effusion) within these channels is critical to hazard mitigation (Patrick et al., 2019). Direct

36 measurements of lava properties in situ is usually extremely difficult and dangerous. Model-
ing lava dynamics within the bounds of an established channel can help to better understand
material properties of the flowing lava and inform models and decisions.

Previous attempts to model channelized lava flows have made use of simple heuristic
formulas such as Jeffreys equation for laminar flows (Harris and Rowland, 2015) or Chezy

41 approximations for higher speed flows (Baloga et al., 1995). While convenient, the use of
these equations has largely been dictated by the fact that it has been difficult to obtain
the physical data necessary for advanced modeling efforts (e.g. channel domain boundaries,
inlet boundary conditions, topography, etc). However, with the advent of Unoccupied Aerial
Systems (UASs, or ’drones’) and their ability to survey active lava fields, we now have access

46 to the data required by sophisticated numerical methods.
Commensurate with this development in observational capabilities, we introduce a nu-

merical method for modeling fast moving lava flows in complex channels. The large Reynolds
number associated with these lava flows means that the dynamics can be well approximated
by two-dimensional depth-integrated equations for mass, momentum, and energy. We build

51 approximate solutions to these equations using discontinuous Galerkin (DG) finite element
methods (Cockburn and Shu, 2001) and discretize the complexities of the lava channel do-
main with unstructured triangular meshes. The DG method, in particular, seems to be a
judicious choice for modeling lava flows because of the weak constraints it places on the
continuity of the lava flow field. This allows the discontinuous thermodynamic properties

56 of the lava to be readily captured by the model. Further, even though the DG method
is discontinuous it still conserves mass, momentum, and energy both locally and globally
(Cockburn and Shu, 2001).

A major component of our investigation involves quantifying the bottom stress that resists
the flow of the lava. Typical friction drag laws do not take into account the viscosity of the

61 fluid (due to the assumption that the fluids inertial acceleration is much greater than its
internal resistance), however, in our particular case the flow is not fully turbulent; internal
resistance needs to be taken into account in some fashion. To account for this effect we
introduce a stress term at the bottom boundary of the lava field that is a function of the
temperature and vorticity of the flow field. We solve a thermal boundary layer problem

66 to calculate the non-linear viscosity at the bottom boundary and utilize the vorticity to
determine a virtual length scale over which the interior velocity goes from the depth-averaged
value to a value of zero. This results in a bottom stress approximation that does not make
use of a friction factor (e.g. Manning’s n). This allows scientists to study physical properties
of the lava that cannot be measured directly, for example, the lava thickness and viscosity.

71 Model verification consists of solving an analytic test case using forcing functions that
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we choose to exactly satisfy the equations of motion. The dynamical equations are coupled
to the energy equation through a non-linear stress-strain relationship and results indicate
that for smooth solutions the method converges to the exact solution at a rate of p+ 1/2 for
polynomials of degree p.

76 The remainder of this paper is organized as follows: in §2 we present the math model
along with the bottom stress calculation and detail its nuances. We present the DG numerical
discretization of the math model in §3 and verify the model in §4. In §5 we evaluate the
model against observations of lava flows from the 2018 eruption of Kilauea volcano. We
present misfit errors and root mean square (rms) errors for the velocity field from a braided

81 channel section of Fissure 8, and provide quantitative insight into physical quantities of the
lava flow field in this area including its thickness and viscosity. We close the paper in §6
with some discussion and conclusions.

2 Mathematical model

The mathematical model consists of depth-integrated equations of mass, momentum, and
energy in Cartesian–coordinates (x, y) (see Figure 2 for a diagram) over a time-dependent

86 domain Ω (t) ⊂ R2 written in conservative form (see Kubatko et al. (2006)),

∂ζ

∂t
+

∂Hu

∂x
+

∂Hv

∂y
= 0,

∂Hu

∂t
+

∂

∂x

(
Hu2 + p

)
+
∂Huv

∂y
+ gHβx = gζ

∂h

∂x
− τ (x)Hu,

∂Hv

∂t
+
∂Huv

∂x
+

∂

∂y

(
Hv2 + p

)
+ gHβy = gζ

∂h

∂y
− τ (y)Hv,

∂HT

∂t
+

∂HuT

∂x
+

∂HvT

∂y
= Qsurf + Qbase,

(1)

where H = h+ ζ is the total depth of flow of the lava, h is the steady depth of flow, and ζ is
the free surface elevation, see Figure 2 for the details. The depth-averaged horizontal velocity
vector, u = (u, v), is defined as u = 1

H

∫ ζ
−h ũ dz and v = 1

H

∫ ζ
−h ṽ dz; g is acceleration due

to gravity, p = 1
2
g (H2 − h2) cos θ is the dynamic pressure, θ is the bottom slope, βx and βy

91 are the x− and y−components of the slope, ∂h/∂x and ∂h/∂y quantify the gradient in the

steady depth of flow, T = 1
H

∫ ζ
−h T̃ dz is the depth-averaged temperature in degrees Kelvin,

and Qsurf and Qbase quantify heat transfer at the surface and the base/walls of the channel,
respectively. We write the bottom stress term, µ(∂u/∂z)|z=−h, which resists the flow of the
lava, as τ (x,y)Hu, which gives the mathematical model the flexibility to use different stress

96 approximations. For instance, if one sets τ (x,y) = constant, then the bottom stress is linearly
proportional to the mass flux. Many depth-integrated models utilize a Manning’s n stress
approximation that defines τ (x,y) as a function of the velocity, flow depth, and an adjustable
friction coefficient. We utilize an approximation due to Herschel and Bulkley (1926) that
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z = 0

z = ζ(x, y, t)
Free surface

Ω̃ (x, z, t)

Bottom slope θ
at z = −h(x, y) and zb = −hb(x, y)

Qsurf

u∂T
∂x

(transport)

Qbase

zb = 0

x

z

Figure 2: A vertical cross-section along the center line of the flow, showing the coordinates (x
and z, with y the across-flow direction) and the heat transfer mechanisms considered in the
model (conduction to the base, advection by the flow, and heat loss by radiation/convection
at the surface).

quantifies the fluid stress in terms of a temperature dependent non-linear viscosity, see §2.1
101 for details.

The system of equations given by (1) are subject to the following dynamic and thermal
boundary conditions:

• Channel wall boundary condition: no normal flow and heat loss due to conduction,

u(x, y) · n = 0 and ρcp
∂T

∂x
= cb (T − Twall) ,

• Inlet boundary condition: prescribed velocity and heat content,

u(x, y) · n = prescribed and ρcpT = prescribed,

• Outlet boundary condition: zero change in normal velocity and heat content,

∂u

∂n
= 0 and ρcp

∂T

∂n
= 0,

where cb is a conduction constant, Twall is the channel wall temperature, ρ is the density of
the lava, and cp is the specific heat of the lava. It can be noted that the depth-integrated mass

106 and momentum equations given in (1) are well studied in the literature and are commonly
used to model shallow mass flows such as coastal ocean circulation and hurricane storm
surge, see for example Dawson et al. (2011) and Kubatko et al. (2006). The addition of the
energy equation complicates the solution of (1) due to the fact that the stress term τ (x,y) is
now a function of both non-linear velocity gradients and temperature.

2.1 The stress term

111 In the equations of motion we define the stress term using a Herchel-Bulkley model (Herschel
and Bulkley, 1926),

τzx = µ̃
∂u

∂z
+ τyield

[
sgn

(
∂u

∂z

)]
, (2)
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where τyield is the yield strength of the fluid, sgn denotes the sign of the argument and µ̃ is
the non-linear viscosity defined as,

µ̃ = K
∣∣∣∣
∂u

∂z

∣∣∣∣
n−1

. (3)

The symbol K in equation (3) represents the consistency of the lava and can be modeled
116 solely as a function of temperature or as a function of its particle/bubble content (which in

turn are functions of temperature), see Castruccio et al. (2010) and Castruccio et al. (2014)
for example. A value of n = 1 corresponds to a Newtonian fluid while n < 1 or n > 1
corresponds to a non-Newtonian fluid. If n > 1 then the fluid viscosity increases with shear
rate increases (known as shear thickening) while if n < 1 the fluid viscosity decreases as the

121 shear rate increases (known as shear thinning). Typically, if the lava is sufficiently hot and
degassed, then the lava stress can be modelled with a Newtonian approximation and n = 1.
However, if bubbles and/or crystals are present in the lava (depending on the lava source and
the amount of degassing that has occurred) then these structures will deform and realign
under an applied shear stress which consequently causes the effective viscosity of the lava to

126 become thinner in some situations and thicker in others (depending on how the structures
rearrange).

2.1.1 Fluid consistency

We quantify the temperature dependency of the lava consistency (K) using the VFT silicate
melt model following Giordano et al. (2008),

logK = A+
B

T (K)− C , (4)

131 where A is the value of logK (Pa·s) at infinite temperature and B and C are parameters
that depend on the composition of the lava. The model assumes that A is a constant for all
silicate melts regardless of composition, and thus, it represents the high temperature limit
for silicate melt viscosity. Once the parameter A is fixed then the parameters B and C are
determined via a linear ensemble of combinations of oxide components and a subordinate

136 number of multiplicative oxide cross terms, see Giordano et al. (2008) for the full details of
the model.

2.1.2 The bottom stress

Once n and K have been defined in equation (3) we can write an expression for the vertical
shear force acting over the thickness of the lava,

∂τzx
∂z

=
∂

∂z

{
µ̃
∂u

∂z
+ τyield

[
sgn

(
∂u

∂z

)]}
. (5)

We incorporate this expression into the depth-integrated equations of motion by integrating
141 over the lava thickness,

∫ ζ

−h

∂

∂z

{
µ̃
∂u

∂z
+ τyield

[
sgn

(
∂u

∂z

)]}
dz = 0−

{
µ̃
∂u

∂z
+ τyield

[
sgn

(
∂u

∂z

)]} ∣∣∣∣∣
z=−h

, (6)
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where we have assumed that the vertical shear at the surface of the lava flow field is zero.
Finally, we obtain an expression for τ in the equations of motion by dividing (6) by the mass
flux,

τ = − 1

uH

{
µ̃
∂u

∂z
+ τyield

[
sgn

(
∂u

∂z

)]} ∣∣∣∣∣
z=−h

= − 1

uH

{
µ̃

u

δz
+ τyield

[
sgn

(
u

δz

)]} ∣∣∣∣∣
z=−h

.

(7)
It can be noted that in the expression above, δz, is a measure of a virtual length over which

146 the shear stress is applied. We determine δz by taking into account the vorticity of the lava
flow field. More specifically, we define the vorticity as,

ω =

(
∂w

∂y
− ∂v

∂z

)
î +

(
∂w

∂x
− ∂u

∂z

)
ĵ +

(
∂u

∂y
− ∂v

∂x

)
k̂, (8)

where î, ĵ, and k̂ are unit vectors in the x−, y−, and z−directions, respectively, and w is
a measure of the vertical velocity. Depth-integrated models are inherently limited by the
fact that they typically eliminate the vertical velocity in the equations of motion via scaling

151 arguments and our model is no different. However, we circumvent this issue by making use
of the kinematic boundary condition,

∂ζ

∂t
+ u

∂ζ

∂x

∣∣∣∣
z=ζ

+ v
∂ζ

∂y

∣∣∣∣
z=ζ

= w

∣∣∣∣
z=ζ

, (9)

coupled with the depth-integrated continuity equation (1) to obtain a measure of the ver-
tical velocity w. More specifically, expanding derivatives in (1), solving for ∂ζ/∂t while
substituting this result into (9) and assuming that (u, v, w) ≈ (u(ζ), v(ζ), w(ζ)) yields,

w = ζ
∂u

∂x
+ ζ

∂v

∂y
. (10)

156 The relevant voriticty terms in (8) include the î and ĵ components. By definition, ∂u/∂z =
∂v/∂z = 0 over the bulk of the lava thickness so that the vorticity component about the
x−axis is ∂w/∂y and the vorticity component about the y−axis is ∂w/∂x. Because the
bottom boundary condition is modelled as a rigid wall where u = 0 and the fluid is incom-
pressible, a vorticity layer forms in the lava field near the solid boundary that resists the

161 local rotation of the fluid (this is the reason why the rigid boundary does not deform). The
vorticity created at the boundary resists the rotation of the interior and is equal to ∂v/∂z
about the x−axis and ∂u/∂z about the y−axis (see Schlichting et al. (1968)). Now, if we
assume that each vorticity component over the bulk of the flow is equal to each vorticity
component in boundary layer at the coordinate point where ∂u/∂z = ∂v/∂z is no longer

166 equal to zero, then the virtual length over which the shear stress is applied is given by,

δzx =
u

∂w/∂x
and δzy =

v

∂w/∂y
. (11)

It can be noted that as (∂w/∂x, ∂w/∂y) goes to 0, the vertical stress in the fluid goes to 0.
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2.2 Heat transfer

As soon as lava effuses from an active vent it begins to degas and transfer heat to its
surroundings. Lava cools through the mechanisms of radiation, conduction and convection.
We quantify heat loss due to radiation via Stefan’s law (Griffiths, 2000),

Qsurf =
εσB
ρcpH

(
T 4 − T 4

atm

)
, (12)

171 where ε is the emissivity of the lava, σB is the Stefan-Boltzmann constant, and Tatm is the
temperature of the surrounding atmosphere in degree Kelvin. When lava temperatures fall
below the solidus (e.g., ∼ 950 C for Kilauea lavas), buoyancy driven convection in the air
above the lava becomes the dominant mode of heat transfer at the lava surface instead of
radiation (due to crust formation) (Griffiths, 2000). In this case we set Qsurf in the energy

176 equation to,

Qsurf =
kc
H

(T − Tatm)4/3 , (13)

where kc is a heat transfer coefficient (e.g., Patrick et al., 2004) for more details. In addition
to heat transfer at the free surface, lava loses heat to the ground and any walls it may be in
contact with via conduction. In symbols we have (Patrick et al., 2004),

Qbase =
kT
H

(T − Twall) , (14)

where Twall = f(x) is the wall (or ground) temperature in contact with the lava flow field and
181 kT measures the thermal conductivity of the ground. We utilize equation (14) to determine

the temperature near the bottom boundary of lava flow field which we use to evaluate the
nonlinear viscosity in the bottom stress term in the equations of motion. More specifically,
we can re-write (14) in terms of a depth-dependent thermal boundary-layer temperature,
T̃ (zb),

∂T̃

∂zb
=

k̃T
hb

(
T̃ − Twall

)
, (15)

186 where zb is the z-coordinate in the boundary layer, k̃T is the thermal boundary layer con-
ductivity constant and hb(x, y) is the thickness of the thermal boundary layer (see Figure
2). Equation (15) is a non-homogeneous, constant coefficient ordinary differential equation
that has the solution,

T̃ (zb) = (Tint − Twall) exp

(
k̃T
hb
zb

)
+ Twall, (16)

which gives an expression for the temperature profile over the thermal boundary layer of
191 the lava (zb ∈ [0,−hb]). Evaluating equation (16) at zb = −hb and setting the interior

temperature (Tint) to the depth-integrated value (T ), we have,

T̃

∣∣∣∣
zb=−hb

= (T − Twall) exp
(
−k̃T

)
+ Twall. (17)
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We use this temperature to evaluate the viscosity in the bottom stress approximation,

µ̃(z = −h) = µ̃
(
T̃ (zb = −hb)

)
. (18)

The greater the thermal conductivity of the lava, the closer the boundary temperature is to
the wall temperature, however, in general, there is usually a steep gradient in the temperature

196 at the interface between the boundary of the flowing lava and the ground/walls that the lava
is conducting heat to.

2.3 Steady depth of flow h

We have two options to calculate the steady depth of flow (h) of the lava. Our particular
choice depends on the inflow data available to the model. For instance, if a full set of
temporally varying inflow data is available, we set h equal to the time average thickness

201 associated with the data, i.e.,

h =
1

(tf − ti)

∫ tf

ti

qin · n
win (uin · n)

dt, (19)

where qin · n is the inflow flux normal to the boundary and win is the width of the inflow
boundary normal to the flow. If, however, the only inflow data available to the model is a set
of time-averaged data, then we set h to the solution of the steady, linear system of equations
associated with (20).

3 Numerical discretization

206 To develop our numerical methods, we rewrite the system of equations (1) in the compact
form,

∂U (i)

∂t
+ ∇ · F(i)(U) = S(i)(U), i = 1, 2, 3, 4 (20)

where U (i), F(i), and S(i) are the i-th row entries of the vectors U, S, and the flux function
matrix F, defined as,

U =




H

Hu

Hv

HT




, F =




Hu, Hv

Hu2 + p, Huv

Huv, Hv2 + p

HuT, HvT




, S =




0

−gHβx + gζ ∂h
∂x
− τuH

−gHβy + gζ
∂h

∂y
− τvH

QR +Qc




,

and p = 1
2
g (H2 − h2) cos θ.
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3.1 Finite element partition

To apply a DG spatial discretization to our mathematical model (20) over a lava flow
channel (see Figure 4 for example), we begin by introducing a partition of the two-dimensional

211 domain Ω. The complexities of the domain boundary, ∂Ω, are such that an unstructured
finite element partition (or mesh) is necessary to properly capture its intricacies. More specif-
ically, we obtain unstructured triangulations (that we denote by Th) of the channel domain Ω
via an automatic mesh generator known as ADMESH+ (Conroy et al., 2012). ADMESH+

solves a number of differential equations to calculate a mesh size function that determines
216 local element sizes based on the curvature of the boundary, channel width, and changes in

the topography and domain slope to create a high-quality unstructured simplex mesh (the
elements are close to equilateral triangles). The only input required by the program is a list
of points defining the boundary as well as the topography of the domain.

3.2 A weak form and the semi-discrete equations

Given the finite element partition, Th, of the domain Ω, we obtain a weak form of equation
221 (20) if we first multiply (20) by a sufficiently smooth test function ψ(x, y) ∈ V , integrate

over each element Ωj ∈ Th, and then integrate the flux term by parts,

∫

Ωj

∂U (i)

∂t
ψ dA −

∫

Ωj

F(i) ·∇ψ dA +

∫

∂Ωj

(
F(i) · n

)
ψ dS =

∫

Ωj

S(i) ψ dA, U (i), ψ ∈ V ,
(21)

for i = 1, 2, 3, 4. In the equation above, n is the outward unit normal to the element
boundary ∂Ωj. Rather than seek solutions to (21) we search for solutions in the finite
dimensional subspace of functions defined as

Vhp = {ψ : ψ |Ωe ∈ Pp (Ωj) ,∀Ωj} , (22)

226 where Pp demarcates the space of polynomials of at most degree p that is not necessarily
continuous across element boundaries. In other words, given a set of basis functions φ =
[φ0, φ1, . . . , φk]

T , we express the trial solution (U
(i)
h ∈ Vhp) and test function (ψh ∈ Vhp) as

U
(i)
h

∣∣∣∣
Ωe

=
k∑

l=0

U
(i)
l (t)φl(x), (23)

and

ψh

∣∣∣∣
Ωe

=
k∑

l=0

ψl(t)φl(x), (24)

where
[
U

(i)
0 , U

(i)
1 , ..., U

(i)
k

]
are the time-dependent degrees of freedom of the finite element

231 solution and i = 1, 2, 3, 4. We use products of Jacobi polynomials of degree k, {Pp}kp=0,
as our basis for Vhp. The orthogonal triangular basis is defined in terms of a “collapsed
coordinate” system that results in a matrix free implementation of the method, see Kubatko

10
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U+
hU−h U−h

U−h

n

n n

U−h

U+
h

2D 1D

element edge

Ωe

∂Ωe

Figure 3: Jump in numerical solution Uh.

et al. (2006) for more details. Substituting U
(i)
h and ψh into (21) we arrive at the discrete

weak form of the problem: find U
(i)
h ∈ Vhp such that for all test functions ψh ∈ Vhp, for

236 i = 1, 2, 3, 4, the expression,

∫

Ωj

∂U
(i)
h

∂t
ψh dA −

∫

Ωj

F(i)(Uh) ·∇ψh dA +

∫

∂Ωj

(
F̂(i) · n

)
ψh dS =

∫

Ωj

S(i)(Uh) ψh dA,

(25)
holds over each element Ωj ∈ Th, where S(i)(Uh) is the source term evaluated in Vhp and F̂(i)

is a suitably chosen numerical flux.

3.2.1 Numerical flux

The space of functions defined by (22) is not necessarily continuous across element bound-
aries, and thus, can be dual-valued (see Figure 3 for example). To remedy this inconsistency,

241 we replace the dual-valued flux in (21) with a so-called numerical flux (F̂) that makes use
of the left and right limits of the trial solution to produce a single valued flux across a given
element’s boundary.

More specifically, given an arbitrary function wh ∈ Vhp at an element boundary point
xi, we set the left and right limits of the function to w−h ≡ wh(x

−
i ) and w+

h ≡ wh(x
+
i ),

246 respectively. In this work we utilize the local Lax-Friedrichs (LLF) flux, which defines the
numerical flux operator as,

F̂(i) · n =
1

2

(
F(i,+) + F(i,−)

)
· n − 1

2
|λmax|

(
U

(i,+)
h − U (i,−)

h

)
, for i = 1, 2, 3, 4, (26)

where λmax is the maximum eigenvalue of the normal (to the element edges) Jacobian matrix.
When solutions to (20) are sufficiently smooth, we can rewrite (20) in the quasilinear form,

∂U

∂t
+ Jx (U)x + Jy (U)y = S, (27)
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where the Jacobian matrices (Jij = ∂Fi

∂xj
) are,

Jx =




0 1 0 0

gH − u2 2u 0 0

−uv v u 0

−uT T 0 u




,

251 and

Jy =




0 0 1 0

−uv v u 0

gH − v2 0 2v 0

−vT 0 T v




.

The so-called “normal Jacobian matrix” is then defined by,

Jn = Jxnx + Jyny, (28)

where nx and ny are the x− and y−components of the normal edge vector n. In general, if
J is a square (n× n) matrix with n linear eigenvectors, then it can be decomposed into its
eigensystem,

Jx = R(x)Λ(x)R−1
(x), and Jy = R(y)Λ(y)R−1

(y), (29)

256 where R(·) is the matrix of right eigenvectors, Λ(·) is the diagonal matrix of eigenvalues, and
R−1

(·) is the matrix of left eigenvectors (LeVeque et al., 2002). To determine Λ(x) and Λ(y) we

solve for the roots of det
(
J(·) − λI

)
= 0, which gives the following eigenvalues,

λ1,2 = unx + vny,

λ3 =
(
u+

√
gH
)
nx +

(
v +

√
gH
)
ny,

λ4 =
(
u−

√
gH
)
nx +

(
v −

√
gH
)
ny.

(30)

Each eigenvector (r
(·)
i ) can be determined by solving (J(·)−λiI)ri = 0 where I is the identity

matrix, 0 is a vector of zeros, and R(·) =
[
r

(·)
1 , r

(·)
2 , r

(·)
3 , r

(·)
4

]
. Solving for the eigenvectors we

12

https://doi.org/10.5194/gmd-2020-184
Preprint. Discussion started: 21 September 2020
c© Author(s) 2020. CC BY 4.0 License.



261 have,

R(x) =




0 0 1/T 1/T

0 0 (u+
√
gH)/T (u−√gH)/T

1 0 v/T v/T

0 1 1 1




,

and

R(y) =




0 0 1/T 1/T

1 0 u/T u/T

0 0 (v +
√
gH)/T (v −√gH)/T

0 1 1 1




.

We use the full eigensystem in the slope limiting process that stabilizes the method for
polynomials of degree greater than or equal to one (Cockburn and Shu, 2001), and we set
λmax in the LLF flux to maximum value of (λ1, λ2, λ3, λ4).

3.3 SSP Runge-Kutta time discretizations

266 Application of the DG spatial operator to (25) results in a system of ODEs for each
element,

M̃
(i)
j

dŨ
(i)
j

dt
= b

(i)
j , i = 1, 2, 3, 4 and j = 1, ..., N (31)

where N is the number of elements, Ũ
(i)
j =

[
U

(i)
j,0 , U

(i)
j,1 , . . . , U

(i)
j,k

]T
are vectors of the degrees

of freedom, and b
(i)
j =

[
R

(i)
j,0,R

(i)
j,1, . . . ,R

(i)
j,k

]T
with,

R
(i)
j,l =

∫

Ωj

F
(i)
j · ∇φl dA −

∫

∂Ωj

(
F̂

(i)
j · n

)
φl dS +

∫

Ωj

S
(i)
j φl dA. (32)

M̃
(i)
j is the mass matrix,

M̃
(i)
j =




∫
Ωj
φ1φ1 dA 0 . . . 0

0
∫

Ωj
φ2φ2 dA 0

...

... 0
. . . 0

0 . . . 0
∫

Ωj
φkφk dA




.
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271 which is diagonal due to the choice of basis. Left multiplying (31) by the inverse of the mass
matrix, we have,

dŨ(i)

dt
=
(
M̃

(i)
j

)−1

b
(i)
j = Lhp(Ũ), with i = 1, 2, 3, 4, and j = 1, ..., N, (33)

where Lhp is the DG spatial operator. We evaluate the integrals in equation (32) using
numerical quadrature rules of sufficiently high degree (Kubatko et al., 2006), and discretize
(33) with so-called strong-stability-preserving (SSP) Runge–Kutta (RK) methods (Kubatko

276 et al., 2014). The unknown basis coefficients that define the solution over a given element,
Ωj, are advanced in time from tn to tn+1 via,

1. Set Ũ
(i)
0 ← Ũ

(i)
n , for i = 1, 2, 3, 4.

2. For each stage r = 1, 2, . . . , s, set

Ũ(i)
r ← Πh

(
r∑

j=1

αrjw
rj

)
, wrj = Ũ

(i)
j−1 +

βrj
αrj

∆t Lh

(
Ũj−1, tn + δj∆t

)
.

3. Finally, set Ũ
(i)
n+1 ← Ũ

(i)
s .

It can be noted that Πh is a slope limiter that dampens oscillations when polynomial approx-
imations greater than 0 are used for the basis (Cockburn and Shu, 2001), δj∆t is a sub-time
step of the time step ∆t, and the αrj and βrj are coefficients that define the RK method. In

281 particular, αrj and βrj conform to the following constraints,

1. αrj = 0 if and only if βrj = 0,

2. αrj ≥ 0 and βrj ≥ 0,

3.
∑r

j=1 αrj = 1.

Because we use explicit RK methods the time step of the model is limited by a CFL condition,
see Kubatko et al. (2014) for more details.

4 Verification

Verification of the DG solution of the mass and momentum equations in the depth-averaged
and full three-dimensional case is well documented and can be found in (Conroy and Kubatko,

286 2016), (Dawson and Aizinger, 2005) and (Kubatko et al., 2006). To verify our DG solution
method for the fully coupled mass, momentum, and energy (depth-averaged) equations we
solve a test problem using the method of manufactured solutions. We choose u, v and H so
that the depth-averaged mass equation is satisfied exactly. Specifically, we define,
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Table 1: L2 errors using P0 for (ζh, uh, vh, Th).

Mesh ||ζh − ζ||2 Order ||uh − u||2 Order ||vh − v||2 Order ||Th − T ||2 Order
h0 3.91 – 8.81 – 9.24 – 2126.3 –
h1 2.06 0.92 4.48 0.98 4.82 0.94 1227.7 0.79
h2 1.39 0.97 3.01 0.98 3.30 0.93 875.11 0.84
h3 0.31 1.08 0.77 0.98 0.77 1.05 218.2 1.00

u = û exp (−kx),

v = v̂ exp(−kx),

H = h + ζ̂ exp(iωt),

(34)

with h = constant, û = constant, v̂ = ûky, and ζ̂ = exp(−iωx̂) where x̂ = exp(kx)/(kû).
291 The dynamical solution consists of a wave propagating in a direction perpendicular to the

y-axis with wave number k = 5.0 × 10−3 m−1 and frequency ω = 2.0 × 10−3 s−1. We then
set,

T = T̂ exp(−kTx), (35)

with T̂ = (y2 + Twall) and substitute (34) and (35) into the math model (1) and evaluate
the derivative terms using Matlab’s symbolic package. The remainder terms associated

296 with the x-momentum equation and the energy equation are then set as artificial source
terms that force the numerical solution to be (34) and (35). The numerical domain consists
of a rectangular channel defined by the Cartesian-coordinates x0 = 0.0m, xL = 200.0m,
y0 = 0.0m, yL = 30.0m. We assume symmetry about the centerline (at y = 15m) and only
solve the equations over the half-width of the channel. It can be noted that even though the

301 solutions are guaranteed to remain smooth for all time t (because of the forcing functions)
the numerical solution is by no means trivial due to the coupling of the equations through
the viscosity. We use four different triangular meshes for our verification. The element size
of each mesh is 7.50 m (the so-called h0 mesh), 3.75 m (h1), 2.50 m (h2), and 0.625 m (h3),
respectfully. Results are displayed in Tables 1-3 where it can be noted that the method

306 converges to the analytic solution at rate of approximately p+ 1/2. Further, using p = 2 on
the coarsest mesh gives lower errors than p = 0 on the finest mesh.

5 Evaluation: Recent eruption of Kilauea Volcano

We evaluate our model using data captured during the 2018 eruption of Kilauea volcano,
Hawai’i. The East Rift Zone of Kilauea has erupted repeatedly in historical times, and con-
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Table 2: L2 errors using P1 for (ζh, uh, vh, Th).

Mesh ||ζh − ζ||2 Order ||uh − u||2 Order ||vh − v||2 Order ||Th − T ||2 Order
h0 2.30e-2 – 0.33 – 5.82e-2 – 1589.8 –
h1 4.85e-3 2.25 6.5e-2 2.35 1.50e-2 1.95 367.7 2.11
h2 1.72e-3 2.56 2.09e-2 2.79 6.33e-3 2.13 154.3 2.14
h3 1.84e-4 1.63 2.13e-3 1.65 4.32e-4 1.94 6.73 2.26

Table 3: L2 errors using P2 for (ζh, uh, vh, Th).

Mesh ||ζh − ζ||2 Order ||uh − u||2 Order ||vh − v||2 Order ||Th − T ||2 Order
h0 1.41e-2 – 6.76e-2 – 6.85e-3 – 17.20 –
h1 2.56e-3 2.46 2.37e-2 1.51 3.51e-3 0.96 3.04 2.50
h2 8.00e-4 2.87 8.70e-3 2.47 1.11e-3 2.84 1.09 2.52
h3 1.24e-4 2.68 1.46e-3 2.57 1.70e-4 2.70 .176 2.63

tinuously since 1983 (Heliker and Mattox, 2003; Wolfe, 1988). A new eruption of unusually
311 large magnitude began May 3, 2018 in the lower part of the East Rift Zone, with fissures

opening in the middle of a residential area (Neal et al., 2019). More than 20 fissures opened
during the first 12 days of the eruption, erupting slow-moving, unusually high viscosity lava
at low effusion rates. The behavior changed on May 18, when much hotter and less viscous
lava reached the surface. Advance rates and flow lengths increased, widely impacting prop-

316 erty and infrastructure. Complete evacuation orders followed within days. Starting on May
28th, activity focused at Fissure 8, located in the heart of the Leilani Estate subdivision.
Fissure 8 remained the source of lava for the remainder of the eruption, until its abrupt
stop on August 4th. The lava that erupted from Fissure 8 soon established a channel which
flowed north and east of the vent, forming a moderately branched channel network 4 km

321 from the vent. The flow field exhibited transitions between flow types; a clear transition
from pahoehoe to ‘a‘a surface texture occurred down slope and is apparent on the thermal
map (see Figure 1). Overall, the Fissure 8 lava covered an area of 25 km2 and supplied at
least 1 cubic km of lava (out of at least 1.2 total) over 70 days.

5.1 Observational data

During the 2018 Kilauea eruption, Unoccupied Aerial Systems (UAS) captured a com-
326 prehensive time-series of overhead videos of channelized lava (the “Fissure 8” flow). The

videography campaign was purposefully designed to collect data for ‘remote rheometry’ by
hovering above specific sites spaced 200-1300 m apart along the length of the open channel
and revisiting them throughout the duration of the eruption. The proximal (near vent) sites
record pahoehoe lava with little crust cover, while the distal sites capture behavior entirely

331 in the ‘a‘a flow regime. Sites within the braided section of the flow recorded video over
parallel channels. Over 500 hover videos at the channel sites were acquired over the course
of the Fissure 8 eruption between May 30 and August 5. In this paper, we focus on videos
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Figure 4: A) Zoomed in view of the section of the braided channel system established by
Fissure 8 modeled in this work, near UAS site 8 (See Fig. 1). UAS photo by Ryan Perroy,
University of Hawaii-Hilo. B) Map view of the lava surface velocity measured using Optical
Flow from videos captured by UAS on June 22nd, 2018. Colors represent magnitude in m/s.
Also shown in the discretize finite-element mesh used to evaluate the model.

collected at UAS site 8, capturing a junction point where the main channel split into two
branches.

5.1.1 Velocity field measurements

336 We analyze the UAS hover videos using the Optical Flow technique (Horn and Schunck,
1981; Sun et al., 2010) Optical Flow is a well-known Computer Vision technique used to
measure velocities of imaged objects based on the motion of brightness within an image
sequence or between frames of a video. Lev et al. (2012) used Optical Flow to measure the
two-dimensional surface velocities of laboratory-scale basaltic lava flows. We will follow the

341 same technique as in Lev et al. (2012), tuning parameters to the specifics of the Kilauea 2018
UAS footage. Length scale for video analysis and channel geometry data are provided from
camera lens information and the recorded UAS flight altitude and refined using co-registered
digital elevation and orthomosaic images produced from additional UAS data collected at
the same or very close time.

5.2 Model input

346 We provide our model with a channel geometry, assumed material properties, inlet ve-
locity, and observed temperature. We use topography data from a pre-eruption digital
elevation maps (data from the USGS National Elevation Dataset, with a spatial resolution
of 10m/pixel, USGS (2002)) to calculate the gradient of topography (see Figure 5B). We set
the inlet velocity equal to values measured from the UAS video analyzed by Optical Flow

351 (Figure 4B). Channel edge geometry is obtained from the velocity field (V >= 0) combined
with visible identification of channel boundaries in the UAS image. Figure 5 shows the
meshed model domain, with colors depicting (a) the elevation and (b) ground slope used to
set up the model.

We set the the lava density to ρ = 1350 kg/m3, which, with a nominal gas-free density

17

https://doi.org/10.5194/gmd-2020-184
Preprint. Discussion started: 21 September 2020
c© Author(s) 2020. CC BY 4.0 License.



A) B)

Figure 5: Finite element partition of the modeled section of the braided channel system.
Colors corresponds to: (A) topography elevation in meters, and B) ground slope in degrees

356 of Hawaiian basalts of 2700 kg/m3 translates to 50% vesicularity. We set the channel inlet
temperature to T = 1152 C and wall and basal temperatures to T = 1010 C and T = 477 C,
respectively. The rheological constants in relation (4) are set to A = −4.550, B = 5805.30
and C = 607.80. These values were calculated using the calculator by Giordano et al. (2008)
and are specific for the composition of the basalt that erupted during June 2018 from Fissure

361 8 as measured by XRF analysis (Gansecki et al., 2019)). See Table 4 for the coefficient values
used in the heat transfer module. It can be noted that because the lava temperature never
falls below 950 C in the Kilauea simulations, surface heat loss is solely due to radiation.

5.3 Model results

All model simulations were executed on a Macbook Pro using Intel’s Fortran compiler
and on average took 56 minutes to execute using a time step dt = 0.05 secs. The model’s

366 initial conditions were set to the solution of a linearized form of (1) with ζ = 0 and h = 10
m. Inlet conditions are steady in time and we set τ yield = 0 in the Herchel-Bulkley model.

Figure 6 shows the lava velocities calculated for the entire domain by our model using ex-
ponent values in the viscosity model (3) of n = 1 (Newtonian) and n = 2 (shear-thickening).
Key features of the observed flow field, such as the increase in speed after the constriction

371 in the northern branch and the stagnation at the channel split point, are present in both
Figures. The overall magnitude of the velocity – up to 9 m/s – is also in agreement with the
observations.

5.4 Discussion

We evaluate the quality of the fit between the model and the observations by comparing
the modelled speed with the observed speed for different power-law exponent (n) values,

376 shown in Figure 7. Two areas of relatively large error are clear in the southern branch. We
attribute these mostly to uncertainties in the underlying topography data. We use a coarse
pre-eruption DEM for an area where the overall slopes are very gradual (2-3 degrees). The
mesh and model resolution is very high compared to the coarseness of the DEM (only 10

18

https://doi.org/10.5194/gmd-2020-184
Preprint. Discussion started: 21 September 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 4: Value of thermal coefficients.

Coefficient Meaning Value used in Kilauea simulation

ε Emissivity 0.85

σb Stefan-Boltzmann constant 5.670×10−8 J· m−2· s−1· K−4

cp Heat capacity 837 J · kg−1· K−1

kc heat transfer coefficient 200.0 W·m−1· K−1

kT thermal conductivity of the ground 0.90 W·m−1· K−1

k̃T thermal conductivity of the thermal boundary layer 0.10 W·m−1· K−1

A) B)

Figure 6: Map view of modeled speed using a value of (A) n = 1 and (B) n = 2 in the
viscosity model. Colors represent velocity magnitude in m/s.

19

https://doi.org/10.5194/gmd-2020-184
Preprint. Discussion started: 21 September 2020
c© Author(s) 2020. CC BY 4.0 License.



DEM grid points across the model), which can lead to inaccuracies in slope estimates. In
381 addition, the DEM is from before the eruption, while the velocity data was captured a few

weeks after the channel was established. It is possible that by that time, some lava already
deposited on the bottom of the channel and modified the topography.

An additional source of misfit could be due to the bottom stress calculation. We calculate
the thickness of the virtual layer over which the velocity transitions from the depth-integrated

386 velocity to a value of zero (at the bottom boundary) via a two-layer model of vorticity. The
two layers correspond to a mixed upper layer and a non-mixed bottom layer where the
lava is loosing heat due to conduction. While this approach seems to be valid in terms
or reproducing lava flow thicknesses observed by USGS surveys (USGS Hawaii Volcano
Observatory, 2019) which place lava thicknesses between 5 m - 15 m, (alternative methods

391 produce flows that are 3 times too thick), the two-layer model still is a simplification of
reality that most likely introduces some errors.

Further, because we are limited to surface speed observations our error metrics will
unavoidably have a misfit in them due to the fact that modeled speeds are depth-averaged.
This effect will be small in regions of the channel where the Reynolds number is high because

396 the lava speed will be more uniform over its thickness. However, in areas where the Reynolds
number is low(er), model speeds will be less than observations. This is because the section
of channel we modeled has minimal crust cover, and therefore, there is relatively zero stress
at the top boundary of the lava flow meaning that lava speed should reach a maximum at
the surface. This effect is evident in the northern portion of the northern channel and the

401 portion of the southern channel between Latitude -154.886 ◦W and -154.8855 ◦W.
An interesting aspect of the model worth drawing attention to is how a change in the

value of n in the viscosity model affects numerical results. Figures 7 and 8 reveal that the
overall fit improves with increasing n values which corresponds to shear-thickening in our
model. Similarly, the thicknesses predicted by our model for larger power-law exponent

406 values (Figure 9) are closer to the range of thicknesses (5-15 m) measured by USGS survey
(USGS Hawaii Volcano Observatory, 2019) and the apparent viscosity calculated by our
model (shown in Figure 10) for large n values is similar to rough estimates by the USGS
(W. Thelen, pers. comm., 2018).

The lower error measures produced by our model for shear-thickening behaviour is a
411 departure from other studies that find lava to behave as a shear-thinning fluid when crystals

and/or bubbles are present (e.g., Castruccio et al., 2010; Costa et al., 2009; Pinkerton, 1995).
The disparity can most likely be attributed to differences in the crystal/bubble content of the
lava. In the studies of Castruccio et al. (2010), Costa et al. (2009), and Pinkerton (1995) the
crystal/bubble content of the lava studied was low (< 20%). Samples taken from the Fissure

416 8 flow during and after the eruption show a wide range of crystallinity and vesicularity, often
with very high vesicle fraction of over 50% (Halverson et al., 2020). The improved overall
fit of our model for higher n values is most likely due to this high vesicle fraction and is
consistent with the lab experiments of Smith (1997) and Lev et al. (2020) that show high
bubble/crystal content can produce shear-thickening behavior. In fact, in the experiments

421 of Sayag and Worster (2013), shear thickening behavior for a constant volume of fluid (as in
our investigation) produce flow thicknesses that are less than the shear-thinning case, which
is visible in our results in Figure 9. We conjecture that the increase in the viscosity is due
to the fact that as the strain rate increases, the bubbles re-arrange in a fashion that makes
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Figure 7: Map view of the difference between modeled lava speed and surface speed obtained
from UAS video capture for various power law exponents. Colors represent difference in
meters per second.

it harder for the lava to flow. This effect should be especially pronounced in areas where the
426 strain rate is high (think of the stress associated with solid boundaries in turbulence and

how the vorticity created at these boundaries could cause bubbles to run into each other,
impeding the flow). This effect is apparent in Figure 10 for the case n = 2, where the effective
viscosity is low except in regions of high strain and high(er) Reynolds number, such as near
the constriction in the northern channel, at the channel walls where the slope is high in the

431 southern channel, and at the bend area in the southern channel. In the future we will explore
mathematical relationships that allow n to be a function of the bubble/crystal content of the
lava as well as examine the sensitivity of the model to non-Newtonian rheological parameters.
We plan to infer the best fitting values for these parameters for a range of locations and times
for the Fissure 8 lava flow.
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Figure 8: A) Maximum error in model speed versus power law exponent. B) Root mean
square error in model speed versus power law exponent.

Figure 9: Map view of the modeled lava thickness for various power law exponents. Colors
represent lava thickness in meters. Notice that the lava becomes thinner as the value of n
increases.
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Figure 10: Map view of the effective modeled lava viscosity for various power law exponents.
Colors represent viscosity in Pascal seconds.
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6 Conclusions

436 We present a novel numerical model for quantifying high-speed lava flows in complex
channels. The math model consists of depth-averaged equations of mass, momentum, and
energy and the equations are closed via a non-linear viscosity model. Because we use discon-
tinuous Galerkin methods to discretize the math model we are able to capture non-smooth
transitions that can occur in lava flows, e.g. jumps in temperature, shear, and viscosity, see

441 Figure 10. We overcome a major limitation to many depth-integrated models in terms of
the need to use an adjustable friction coefficient by solving a heat transfer boundary layer
problem and by calculating the thickness of a virtual layer over which the velocity transitions
from the depth-integrated velocity to a value of zero (at the bottom boundary) via a two-
layer model of vorticity. This novel approach results in lava flow thicknesses that are in the

446 range of observed values as compared to simple linear schemes that produce flow thicknesses
that are 3 times too thick. Further, our use of unstructured triangular meshes allows the
model to accurately resolve complex braided channel systems that are commonly produced
by basaltic lava flows. This was demonstrated on a section of the complex braided channel
system that was created by the Fissure 8 flow from the 2018 Kilauea Lower East Rift Zone

451 eruption with model results matching observational results quantitatively well. Future work
will include using our new versatile model as a tool to infer lava properties and flux during
volcanic crises.

Computer code and data

The computer code and data used in this investigation can be found at https://zenodo.

org/badge/latestdoi/267726380.
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