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Abstract

Lava flows present a significant natural hazard to communities around volcanoes and are
typically slow moving (< 1 to 5 cm/s) and laminar. Recent lava flows during the 2018
eruption of Kilauea Volcano, Hawai’i, however, reached speeds as high as 11 m/s and were
transitional to turbulent. The Kilauea flows formed a complex network of braided channels
departing from the classic rectangular channel geometry often employed by lava flow models.
To investigate these extreme dynamics we develop a new lava flow model that incorporates
nonlinear advection as well as a nonlinear expression for the fluid viscosity. The model
makes use of novel discontinuous Galerkin (DG) finite element methods and resolves complex
channel geometry through the use of unstructured triangular meshes. We verify the model
against an analytic test case and demonstrate convergence rates of P 4 1/2 for polynomials
of degree P. Direct observations recorded by Unoccupied Aerial Systems (UASs) during
the Kilauea eruption provide inlet conditions, constrain input parameters, and serve as a
benchmark for model evaluation.

1 Introduction

On May 3, 2018, Kilauea Volcano on the Island of Hawai’i began to erupt from new
fissures in the lower East Rift Zone at the center of the Leilani Estates Subdivision. Be-
fore ceasing in early August 2018, the lava flows destroyed over 650 structures and caused
significant damage to infrastructure and essential facilities. During the second half of the
eruption the flow field established a complex braided channel system (which is common to
many basaltic flows), originating from Fissure number 8 (see Figure[l)). The ”"Fissure 8” flows
were unique in the fact that they produced channelized flows reaching speeds as high as 15
m/s (Patrick et al.| [2019). These high speeds, coupled with channel geometry (e.g. constric-
tions) produced Reynolds numbers (Re > 3000) that were significantly higher than typical
lava flows. To investigate these extreme dynamics we develop a new channelized lava flow
computer model named a discontinuous Galerkin finite element model for fast channelized
lava flows version 1.0.

This paper is organized as follows: in we present the motivation for this work, as
well as background on the mathematical tools we employ. in §2| we present the mathematical
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model along with the bottom stress calculation and detail its nuances. We present the DG
numerical discretization of the mathematical model in §3] and verify the model in In
we evaluate the model against observations of lava flows from the 2018 eruption of Kilauea
volcano. We present misfit errors and root mean square (RMS) errors for the velocity field
from a braided channel section of Fissure 8, and provide quantitative insight into physical
quantities of the lava flow field in this area including its thickness and viscosity. We close
the paper in §6| with some discussion and conclusions.

1.1 Motivation

Typical “operational” lava flow models simulate unconfined lava flow in a 2D plan view [e.g.,
SCIARA (Crisci et al. 2004-04), MAGFLOW (Vicari et al., 2007), LavaPL (Connor et al.,
2012), VOLCFLOW (Kelfoun and Vargas, 2015)] using either cellular automata or depth-
averaged equations in an effort to forecast the area of land inundated by the lava. It is often
difficult, however, for these models to accurately reproduce the complicated braided channel
network such as those created by “Fissure 8.” These braided channel networks are common
in natural flows (e.g., Dietterich and Cashman, 2014-08)) and understanding the evolution of
the velocity, rheology, and temperature fields (e.g. in response to pulsating effusion) within
these channels is critical to hazard mitigation (Patrick et al., [2019). Direct measurements of
lava properties in situ is usually extremely difficult and dangerous. Modeling lava dynamics
within the bounds of an established channel can help to better understand material properties
of the flowing lava and inform models and decisions.

Previous attempts to model channelized lava flows have made use of simple heuristic
formulas such as Jeffreys equation for laminar flows (Harris and Rowland} [2015) or Chezy
approximations for higher speed flows (Baloga et al., [1995). While convenient, the use of
these equations has largely been dictated by the fact that it has been difficult to obtain
the physical data necessary for advanced modeling efforts (e.g. channel domain boundaries,
inlet boundary conditions, topography, etc). However, with the advent of Unoccupied Aerial
Systems (UASs, or 'drones’) and their ability to survey active lava fields, we now have access
to the data required by sophisticated numerical methods.

1.2 Shallow-water equations for fast lava flows

Commensurate with this development in observational capabilities, we introduce a numerical
method for modeling fast moving lava flows in complex channels. The high Reynolds number
associated with these lava flows coupled with the fact that the total length of the flows (on
the order of kilometers) is much greater than the flow depth (on the order of meters) means
that the dynamics can be well approximated by two-dimensional depth-integrated equations
for mass, momentum, and energy. In particular, we utilize a system of dynamical equations
known as the shallow water equations (De Saint Venant (1864) and Boussinesq (1872)),
which quantify average horizontal velocities and the depth of flow. These equations are
traditionally used to model free surface flows in coastal oceanic regions, estuaries, and rivers
(Dawson and Mirabito, [2008]), although they have been used to model debris flows (George:
and Iverson, |2014) and lava flows (Costa and Macedoniol 2005) as well. The main assumption
in the shallow water theory is that the fluid pressure is hydrostatic; gravitational acceleration
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Figure 1: A satellite image (colored, in the background, by DigitalGlobe) overlaid by a
thermal aerial orthomosaic (grayscale) where the white and light gray areas reveal the path
of the Fissure 8 flow channel as it was on June 21st, 2018. Data and map by USGS. The
orange rectangle depicts the area of UAS site 8, from where the video we analyzed was
captured on June 22nd, 2018. The flat gray areas south of the active flow channel demarcate
the areas inundated by lava during the early stages of the eruption. North is up. PGV is
the Puna Geothermal Ventures power plant that was heavily impacted by the lava.
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in the fluid dominates vertical accelerations and the pressure is calculated via the vertical
momentum equation. The formulation of the shallow water equations that we utilize is
designed specifically for advection dominated flows (Kubatko et all 2006 and the pressure
gradient term is formulated so that the dynamical equations are well balanced; steady states
are preserved and no artificial motion is induced by numerical artifacts (see (Conroy| (2014))
for a full derivation of the dynamical equations from conservation principles).

Lava flows are distinct from hydrological free surface flows in the sense that lava transfers
heat to its surroundings; as lava effuses from a vent it cools along lateral flow boundaries and
can form solid walls ("levees’) that prevent the lava from spreading to nearby regions. If lava
effusion extends for several days, long channels may form that efficiently transport lava from
the vent to the flow front. The speed at which the lava flows through the channel system
depends on the viscosity of the lava, which in turn is highly dependent on the temperature
and chemical composition of the lava (e.g., Griffiths, |2000). The presence of crystals and /or
bubbles in the lava can make its viscosity non-Newtonian (Manga et al., [1998; Mader et al.
2013) and thus strongly dependent on stress gradients and the thermal properties of the
lava. To reflect this strong dependence on temperature, we solve a depth-integrated energy
equation that quantifies the thermal evolution of the lava as it interacts with its environment.
The depth-integrated energy equation is coupled to the shallow water equations through a
thermally dependent non-linear stress term that reflects the rheology of the lava, and can
account for the presence of crystals and/or bubbles in the lava flow.

The logistical key to using shallow water equations to model lava flow dynamics rests
on the development of the non-Newtonian bottom stress term. Typical friction drag laws
do not take into account the viscosity of the fluid (due to the assumption that the fluids
inertial acceleration is much greater than its internal resistance). However, in our particular
case the flow is not fully turbulent; internal resistance needs to be taken into account in
some fashion. Thus, we express the stress at the bottom boundary as a function of the
temperature and the vertical stress gradient (which is a function on the vorticity). We solve
a thermal boundary layer problem to calculate the temperature at the bottom boundary and
utilize the vorticity to determine a virtual length scale over which the interior velocity goes
from the depth-averaged value to zero. This results in a bottom stress approximation that is
void of a friction factor (e.g. Manning’s n) and allows scientists to study physical properties
of the lava that are difficult to measure directly (e.g., viscosity). For example, application of
the model to the Kilauea 2018 Fissure 8 lava flows reveals that the lava behaved as a shear
thickening fluid due to the high bubble content (= 50%) with a large capillary number and
agree well with the recent lab experiments of [Lev et al.| (2020).

1.3 The Discontinuous Galerkin Finite Element Method

Because closed form analytic solutions do not exist to the nonlinear shallow water equations
and energy equation, we construct approximate solutions to these equations using discon-
tinuous Galerkin (DG) finite element methods (Cockburn and Shu, [2001), which have been
used to successfully model other geophysical fluid flows including coastal ocean circulation
(Karna et al., |2018)), hurricanes (Dawson et all) 2011), avalanches (Patra et al., 2006), and
debris flows (Conroy and Georgel [2020). The DG finite element method differs from con-
tinuous Galerkin (CG) finite element methods in that the DG method solves an integral (or
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weak) form of the mathematical equations over individual elements and utilizes a solution
space that is discontinuous across element boundaries. This allows the DG method to resolve
steep gradients that form in the numerical solution, such as the thermodynamic gradients
that form at lava channel wall boundaries. Even though the DG method is discontinuous it
still conserves mass, momentum, and energy both locally and globally by utilizing a numer-
ical flux function (introduced by finite volume methods, see LeVeque (2002) for instance)
that takes the discontinuous state of physical properties at element boundaries and creates
a consistent flow of information from element-to-element (Cockburn and Shu, 2001)).

Further, the DG method has been shown to be highly parallelizable using high perfor-
mance computing (e.g. Kubatko et al. (2009) and Patra et al. (2006)) and it is amenable to
unstructured numerical meshes. The later feature is important when resolving geometrically
complex boundaries of a given fluid domain such as the flow fields commonly produced by
basaltic flows. For instance, the lava flows that effused from Fissure 8 formed a complicated
network of braided channels, with multiple locations of branching and merging. In addition,
obstructions such as large lava rafts or preexisting structures caused local disruptions in the
flow field, making it difficult to evaluate the dynamics using a simplified one-dimensional
channelized model, such as those that use a classical rectangular channel geometry (Harris
and Rowland, 2015). To account for these complexities, our new lava flow model discretizes
the lava channel domain with an unstructured triangular mesh. This reduces model error as
it pertains to a representation of the lava flow domain and is important when reproducing
localized flow features of the lava field, such as the jet visible in Figure [4]

Model verification consists of solving an analytic test case using forcing functions that
we choose to exactly satisfy the equations of motion, and results indicate that for smooth
solutions the method converges to the exact solution at a rate of P + 1/2 for polynomials of
degree P.

2 Mathematical model

Fluid flow on a sloped terrain can be quantified in a Cartesian-coordinate (x, y, z) system
over a time dependent domain (¢) € R? by solving Eulerian conservation equations of mass,
linear momentum, and energy,

dp
o T V- (pu) = 0, (1)
0 F
() + pu-Vu + Vp — (v r) — 1, 2)
oT .
Po 5 + pep(0-VT)=V-q = g (3)

In equations (1)), p is the fluid density, u = (u,v,w) is the fluid velocity vector, V =
o 0 '

527 5y 5-) is the gradient operator, p is the pressure, and T is the stress term,
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Toz Tay Taz
T = Tye  Tyy Tyz | - (4)
Tz Ty Tez

We denote the x-component of gravitational acceleration that is tangential to the sloped
surface by g,; g, is the y-component of gravitational acceleration that is tangential to the
sloped surface, and g, is gravitational acceleration that is normal to the sloped surface.
Collectively, these terms form the body force vector f, = (g, gy, g.) acting on the fluid. T

oT oT

is the temperature of the fluid, ¢, is the specific heat capacity of the fluid, q = (kr %, kTa—y,

kJT%Z)/ is the heat flux through the fluid (k7 is a conduction heat transfer coefficient that
measures the spread of heat within the fluid), and ¢ quantifies the generation/dissipation of
heat within the fluid.

quations and , taken together, are the Navier-Stokes equations and quantify the
force dynamics acting on the fluid (see Conroy| (2014) for a derivation from first principles).
Equation (3] is the thermal energy equation; it quantifies the transport of energy through the
fluid due to internal temperature gradients and differences between the fluid temperature and
the temperature of the surrounding medium (see |[Moran et al. (2003) for instance). To apply
equations f to channelized lava flow we need to supplement them with appropriate
boundary conditions and define the stress matrix T. Here, we assume that the system of
equations given by f are subject to the following kinematic, dynamic, and thermal
boundary conditions:

e Channel wall boundary condition:

no normal flow, u-n = 0,
no pressure gradient, dp/on = 0,
slip velocity, u-t = f (Twall; O wal),
heat loss via conduction, q-n = (kr/hy) (T — Tyan) -
e Inlet boundary condition:
prescribed velocity, u-n = prescribed,
prescribed pressure, p = prescribed,
prescribed heat content, pc,T" = prescribed.
e Outlet boundary condition:
zero change in normal velocity, Jdu/on = 0,
zero change in pressure, op/on = 0,

zero change in heat content, pc,0T/0n = 0.
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e Free surface boundary condition at z = (:

no relative normal flow, a¢/ot = —u(9¢/0x) —vI((/y) + w,
atmospheric pressure, P = Datm;
surface shear stress, Tow = —Tu2(0C/0x) — Typ(0C/OY) + Tsa,
Ty = —Tuy(0(/0x) — T,y (0C/0Y) + Toy,
heat loss via radiation and convection, q-n = eop(T*—T4,) + ke (T — Tatm)% :
e Bottom boundary condition at z = —h:
no slip velocity, u = 0,
bottom shear stress, Toe = Tuu(Oh/0x) + Typ(Oh/0Y) + To,
Ty = Tuy(Oh/0x) 4+ Tyy(OR)OY) + Tsy,
heat loss via conduction, q-n = (ky/hy) (T — Tground) -

In the boundary conditions above, n is the unit normal vector to the wall boundary,
outlet boundary, inlet boundary, moving free surface, and bottom boundary, respectively; t
is the unit tangential vector to the wall, Tyay is the tangential shear stress at the wall, and
O is the normal stress at the wall. We denote the temperature at the wall by T, k,, is
the thermal conductivity of the wall, and h,, is the thickness of the thermal boundary layer
through which heat is conducted from the lava flow to the wall. We measure the free surface,
¢, relative to a steady depth of flow, h(x,y), that serves as the zero datum in the z-direction
(see Figure . The surface forces acting on the free surface consist of the atmospheric
pressure, paim, along with a surface shear stress applied by the wind T, = (T, Tsy)'. Heat
transfer from the lava surface to the surrounding atmosphere is dominantly due to radiation
and air convection where € is the emissivity of the lava, o is the Stefan-Boltzmann constant,
T,m is the temperature of the surrounding atmosphere, and k. is the convection heat transfer
coefficient. The main resisting force in dense shallow mass high speed flows comes from the
bottom stress, T, = (Ty,, Tby)', which is a function of the temperature of the lava at the basal
boundary, where Ty qunqg is the temperature of the ground and hy, is the depth of the thermal
boundary layer through through which heat is transferred from the lava to the ground.

Theoretically, we could define T and solve equations — along with the prescribed
boundary conditions to model channelized lava flows. In practice, however, we need to
simplify equations f to make the solution more tractable. More specifically, we assume
the following: i. the lava flow field is incompressible, ii. vertical accelerations in the lava
are dominated by gravity, iii. lava flow lengths are much greater than the flow depth and
horizontal flow speeds are large enough that stress gradients are dominated by the first two
columns of the stress matrix .
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Assumption i. reduces the conservation of mass equation to V-u = 0, while assumptions
ii. and iii. reduce the z-momentum equation to,

dp
0z P9z

which we can leverage to determine the pressure. Integrating from the free surface {( down
to a given z-coordinate yields,

P = Patm + pg:(C— 2) (5)

We assume that gradients in pa., are negligible and the horizontal pressure gradient in
equation becomes,
Vp = V(pg:Q),
where V = (2, 3%)'. We further simplify the mathematical model and eliminate the vertical
dimension by integrating V -u = 0 and equations and over the depth of the lava flow
(from —h to ¢). We then apply Leibniz’s integral rule, utilize the free-surface and bottom
boundary conditions, assume the density is constant, and simplify the resulting expression
to arrive at the following depth-integrated equations,

OH OHu OHv
_l’_

ot * Ox oy =0 (6)
O0Hu 0 5 0 o 0 1
W‘F%(HU)‘Fa—y(HUU) + H%(gzo + Hg, = ;(Tsas — T + fo), (7)
0Hv 0 0 0 1
— (Huv) + — (H©v? H— H = - —
OHT N OHuT N OHVT N R
at ax 8y - QS Qb q’L q7

where f, and f, are the x-component and y-component of the depth-averaged gradient of the
shear stresses acting on vertical fluid planes, ¢, is the heat flux through the free surface, gy is
the heat flux at the bottom boundary, V - ¢; quantifies depth-averaged internal conduction,
and ¢ represents depth-averaged internal heat generation/dissipation. The depth-averaged
velocity, 1 = (i, 9), and depth-averaged temperature, T, are defined as,

1 [

u = E/_hu dz, (10)
1 [

v o= E/_hv dz, (11)

_ 1 [
T = — T dz. 12
H/—h . (12
8
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The above system of depth-integrated equations @—@ can be further simplified due
to the dynamics of high speed flows. More specifically, f, and f, are negligible in high
speed flows except at no slip and small slip velocity boundary conditions where large stress
gradients form due to the decay of the velocity field to a value of zero (or near zero). In our
quantitative analysis of UAS footage from the 2018 Kilauea eruption, lava flow velocities at
channel wall boundaries were much greater than zero, and therefore, we utilize a slip (no
flow) channel wall boundary condition and neglect f, and f, in this initial version of the
model (see Rao and Rajagopai| (1999) for an in depth investigation on channel wall boundary
conditions in terms of the slip versus no slip condition). The surface stress terms (T, T,)’
in the depth-integrated equations account for wind stress on the lava flow, which we assume
to be negligible due to the ratio of the density of air to the density of lava being much less
than one. We include the effect of heat conduction at the channel wall boundaries, but we
neglect heat conduction in the interior of the lava due to the high speed of the flow and we
set V- ¢ = 0. Internal heat generation/dissipation can be significant in lava flows with a
high crystal content (Griffiths, 2000) and in lava flows in closed tubes (Costa and Macedoniol,
2005). The fissure 8 lava flows were hot with limited crust cover and samples indicate that
the crystal content was low in the channel section that we apply the model to (Gansecki
et al.| 2019), and therefore, we neglect ¢ in the current model but plan to include it in future
releases.

It can be noted that the pressure gradient terms, (1/p)Vp =(H2(g.¢), HZ(g.¢))', in
equations @ and are non-conservative product terms that can lead to entropy violating
numerical fluxes if care is not taken in evaluating them numerically (see LeVeque (2002), for
instance). To circumvent this issue, we make use of the fact, H(z,y,t) = ((z,y,t) + h(z,y),
and re-write equations and (8)) in the conservative form (Kubatko et al.| (2006)),

8¢  OHu  OHv
=+ +

= 1
ot ox dy 0 (13
OHu 0 9 0 o B Ooh  Tp
OHv 0 0 oh
v _ -~ H—2 — - _ % 1
5 + 8x(Hw) + ay ( v —|—P) + Hyg, gC@y 0’ (15)
OHT N OHuT N OHUT n (16)
ot or ay = (s Qv,
(17)

where P = £g. (H? — h?) is the pressure flux and 6h/dx and 0h/dy quantify the gradient in
the steady reference depth of flow that  is measured relative to. We supplement the system
of equations given by with initial conditions along with the channel wall, inlet, and
outlet boundary conditions. It can be noted that the depth-integrated mass and momentum
equations given by equations f are well studied in the literature and are commonly
used to model shallow mass flows such as coastal ocean circulation and hurricane storm
surge, see for example Dawson et al.| (2011) and Kubatko et al.| (2006). The addition of the
energy equation complicates the solution of equations and due to the fact that the

9
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Q(z,2,y,1)

ground slope 0
at z = —h(z,y)

Figure 2: A vertical cross-section along the center line of the flow, showing the coordinates (z
and z, with y the across-flow direction) and the heat transfer mechanisms considered in the
model (conduction to the base, advection by the flow, and heat loss by radiation/convection
at the surface).

bottom stress term, T, = (Tpy, Tby)/, is now a function of both non-linear velocity gradients
and temperature.

2.1 Quantifying the bottom stress term

In the equations of motion and , we define the bottom stress term using a Herschel-
Bulkley model (Herschel and Bulkley, (1926)),

0 0
Tp = Tex = /1/8_1: + Tyield |:Sgn (a_:)]a (18>

where T, = T.x = (T.s, sz)/, Tyield 1S the yield strength of the fluid, sgn denotes the sign
of the argument, and p is the non-linear viscosity defined as,

n—1

ou
0z
The symbol K in equation ([19) represents the consistency of the lava and can be modeled
solely as a function of temperature while the power law exponent, n, is typically a function
of the particle content (crystals and/or bubbles) of the lava (which in turn can be a function
of temperature), see |Castruccio et al.| (2010) and |Castruccio et al.| (2014) for example. We

quantify the temperature dependency of the lava consistency (K) in a fashion similar to
Sonder et al.| (2006) and use the VFT silicate melt model of |Giordano et al.| (2008)),

p =K (19)

log (ICEO) = A+ T(K)L—O (20)

where A is the value of log K /K, at infinite temperature K, is a constant set to 1 s"!) and
B and C are parameters that depend on the composition of the lava. The model assumes
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that A is a constant for all silicate melts regardless of composition, and thus, it represents
the high temperature limit for silicate melt viscosity. Once the parameter A is fixed then
the parameters B and C' are determined via a linear ensemble of combinations of oxide
components and a subordinate number of multiplicative oxide cross terms, see |Giordano
et al.| (2008) for the full details of the model.

The power law exponent of the viscosity term quantifies the effect that stress gradients
have on the material properties of the fluid. A value of n = 1 corresponds to a Newtonian
fluid while n < 1 or n > 1 corresponds to a non-Newtonian fluid. If n > 1 then the
fluid viscosity increases with increasing shear rate (shear thickening) while if n < 1 the
fluid viscosity decreases with increasing shear rate (known as shear thinning). Typically,
if the lava is sufficiently hot and degassed, then the lava stress can be modelled with a
Newtonian approximation and n = 1. However, if bubbles and/or crystals are present in
the lava (depending on the lava source and the amount of degassing that has occurred) then
these structures will deform and realign under an applied shear stress. This consequently
causes the viscosity of the lava to become thinner in some situations and thicker in others
depending on how the structures rearrange. Lava flows with a high crystal content are
typically pseudoplastic and shear thinning; the crystal structure of the lava resists the flow
of the lava and the lava will not flow unless a yield strength is surpassed. In this case, the
lava will continue to flow more readily as the shear stress increases. The opposite tends to
occur when a lava flow has a high bubble content at higher capillary numbers; large stress
gradients in the flow cause the bubbles to rearrange in a fashion that increases the viscosity
and the lava behaves as a shear thickening fluid.

The bottom stress term is a function of the velocity gradient evaluated at the bottom
boundary which we do not have access to in the depth-averaged equations, and therefore,
we define the bottom stress in terms of the depth-averaged velocity as,

~ u Ou Ju
Tpx = ,LLJ— + Tyield |SgN (5_ ~ [I/E + Tyield |SgN 5 ) (21)

n—1

cl

where

MZIC(S_Z

(22)

It can be noted that in the expression above, §, = (., 5Zy)/, is a measure of a virtual length
over which the shear stress is applied. We determine §, by taking into account the vorticity
of the lava flow field, which is defined as,

P A T O P - ) (23)
— \ody 0z or  0z)’ oy 0Oxr)

where 1, j’, and k are unit vectors in the xr—, y—, and z—directions, respectively. We solve
an auxiliary problem over a pseudo depth of the lava that consists of an upper mixed layer
where u(z,y, z) = u(zr,y) and a lower layer where (Ju/0z, Ov/0z)" >> (Ow/0x, Ow/dy)' .
We assume that the vorticity in the upper layer is equal to the vorticity in the bottom layer
(in terms of magnitude) at the coordinate point where du/0z # 0 (i.e., at the interface
between the two-layers). This allows us to calculate the vorticity in the upper layer and
then use this value to determine §,. In other words, we answer the following question;
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given a measure of the vorticity associated with the depth averaged velocity field, what is
the associated length scale over which the depth-averaged velocity must decay to a value
of zero (the bottom boundary condition) to ensure that the internal vorticity of the flow
is conserved? (It can be noted that an implicit assumption in depth-integrated models is
that internal friction in the vertical is null compared to the friction at flow boundaries. This
along with assumption i. and a constant density implies conservation of vorticity about the
7 and 7 directions except at flow boundaries). The key to this approach relies on calculating
a measure for the vertical velocity in the upper layer, which we achieve by making use of the
kinematic boundary condition,

o ¢
o T Yo

, (24)
z=( z2=( z=(

coupled with the depth-integrated continuity equation to obtain a measure of the vertical
velocity w. More specifically, expanding derivatives in , solving for 9¢/0t while substi-
tuting this result into and noting that in the upper layer, (u,v,w) = (u((),v(¢), w(()),
yields,

ou v
Ox + oy
The relevant voriticty terms in (23] include the ¢ and j components. By definition, du [0z =
0v/0z = 0 over the upper layer so that the vorticity component about the z—axis is dw/dy
and the vorticity component about the y—axis is dw/dxz. Because the bottom boundary
condition is modelled as a rigid wall where u = 0, and because the fluid is incompressible, a
vorticity layer forms in the fluid near the solid boundary that resists the local rotation of the
fluid (this is the reason why the rigid boundary does not deform). The vorticity created at
the boundary resists the rotation of the interior and is equal to dv/dz about the x—axis and
OJu/0z about the y—axis (see|Schlichting et al.| (1968))). Now, if we assume that each vorticity
component over the bulk of the flow is equal to each vorticity component in boundary layer
at the coordinate point where (Ou/0z, dv/0z)" is no longer equal to zero, then the virtual
length over which the shear stress is applied is given by,

W= (25)

u v
d., = d o6, = : 26

= = dwjar % T /oy (26)

It can be noted that as (0w/dx, 0w/dy) goes to 0, the vertical stress in the fluid goes to 0.

We can rewrite expression solely in terms of the depth-averaged variables using equation

(25), 1 X
0 ou av\ | 0 ou ov\ |
0., = u{%< p + Ca_y)} and 9, = v{ﬁ—y 9 + Ca—y)} . (27)
It can be noted that even though we do not explicitly include horizontal shear stresses in
the Kilauea simulations presented in §5| due to the high Re number, the virtual length used
to quantify the bottom stress as defined in is a function of horizontal shear within the
fluid. Further, we wish to emphasize that the virtual length, &., is non-physical, and is
not necessarily less than the lava flow thickness (H); it merely is a measure to ensure that
(W —0)/d, ~ 0u/0z at the bottom boundary in a fashion that conserves internal vorticity,
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i.e., it ensures that the interior of the flow field is irrotational about the 7 and ; coordinate
axis.

2.2 Heat transfer

As soon as lava effuses from an active vent it begins to degas and transfer heat to its
surroundings. Lava cools through the mechanisms of radiation, conduction and convection
in the air above it (we neglect heating from viscous dissipation, which is small compared
to heat loss through radiation and conduction for the low-viscosity flows we are considering
here (e.g., [Harris and Rowland}, 2001))). We quantify heat loss due to radiation via Stefan’s
law (Griffiths|, 2000)),
€0B /74 4

o= T =T (28)
where € is the emissivity of the lava, op is the Stefan-Boltzmann constant, and T, is the
temperature of the surrounding atmosphere in degree Kelvin. When lava temperatures fall
below the solidus (e.g., ~ 950 C for Kilauea lavas), buoyancy driven convection in the air
above the lava becomes the dominant mode of heat transfer at the lava surface instead of
radiation (due to crust formation) (Griffiths, [2000). In this case we set ¢ in the energy
equation to,

qs = ke (T - Tatm)4/3 s (29)
where k. is a heat transfer coefficient (e.g., Patrick et al.,|2004)) for more details. We quantify
heat transfer from the lava to the ground via conduction; in symbols we have (Patrick et al.|
2004),

@b = ky (T - Tground) ) (30)

where Tyround = f(X) is the temperature of the ground in contact with the lava flow field and
ky measures the thermal conductivity of the ground. We utilize equation to determine
the temperature near the bottom boundary of lava flow field which we use to evaluate the
nonlinear viscosity in the bottom stress term in the equations of motion. More specifically,
we can re-write in terms of a depth-dependent thermal boundary-layer temperature,
T(2),

T k
= T~ Toua), 31
where &, is the thermal boundary layer conductivity constant and hy(z, y) is the thickness of
the thermal boundary layer (see Figure. We solve equation over the thermal boundary
layer defined in the z—direction from z = z,(z,y) to z = —h(x,y) by setting z,(z,y) to a
relative zero. We then integrate equation (31)) over a thermal boundary coordinate defined
from Z =0 to Z = —hy(z,y). (It can be noted that the relationship between Z and z is given
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by Z = z — 2, so that hy, = h — z,). Equation is a non-homogeneous, constant coefficient
ordinary differential equation that has the solution,

. ky .

T(Z) = (ﬂnt - Tground) €xXp (h_bz> + Tground7 (32>
b

which gives an expression for the temperature profile over the thermal boundary layer of the

lava (Z € [0, —hy)). Evaluating equation at Z = —h;, and setting the interior temperature

(Tine) to the depth-integrated value (77), we have,

T = (T — Tground) exp (—ii’b> + Ttnground~ (33)

F=—h,

We use this temperature to evaluate the consistency in the bottom stress approximation,

_x (T ) | o
z2=—h Z=—hy

The greater the thermal conductivity of the boundary layer, the closer the boundary tem-
perature is to the ground temperature, however, in general, there is usually a steep gradient
in the temperature at the interface between the boundary of the flowing lava and the ground
that the lava is conducting heat to. It can be noted that we also use an analogous approach
to calculate the temperature of the lava at channel wall boundaries.

K

2.3 Steady reference depth of flow h

We have two options to calculate the steady reference depth of flow (k) of the lava that
we use as a zero datum to measure the free surface from. Our particular choice depends on
the inflow data available to the model. For instance, if a full set of temporally varying inflow
data is available, we set h equal to the time average thickness associated with the data, i.e.,

1 ¥ Qpn-n
h=—— [ =By
) / t (35)

(tf — tz Win (uin . fl)

where Q;, - 1 is the inflow flux normal to the boundary and wy, is the width of the inflow
boundary normal to the flow. If, however, the only inflow data available to the model is a set
of time-averaged data, then we set h to the solution of the steady, linear system of equations
associated with the full nonlinear system of equations given by (17).

3 Numerical discretization

To develop our numerical methods, we rewrite the system of equations (1) in the compact
form,

U@

i V-FOU) = sOU), i=1,2 3,4 (36)
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where U®, F® and S® are the i-th row entries of the vectors U, S, and the flux function
matrix F, defined as,

_ 0 ;
[ H ] [ Hau, Ho ]
oh The
Hi H@i?+P, Huw _ngJrgCa_x_?
U= s F = s S = )
o 0o 52 oh T
Hv Huw, Hv*+ P —ng+9C6——ﬂ
B B Y P
| HT | | Hal,  HoT |
L QS+Qb _

where P = 1g. (H? — h?).

3.1 Finite element partition

To apply a DG spatial discretization to our mathematical model over a lava flow
channel (see Figure for example), we begin by introducing a partition of the two-dimensional
domain 2. The complexities of the domain boundary, 0f2, are such that an unstructured
finite element partition (or mesh) is necessary to properly capture its intricacies. More specif-
ically, we obtain unstructured triangulations (that we denote by 7j) of the channel domain
via an automatic mesh generator known as ADMESH™ (Conroy et al, 2012). ADMESH™"
solves a number of differential equations to calculate a mesh size function that determines
local element sizes based on the curvature of the boundary, channel width, and changes in
the topography and domain slope to create a high-quality unstructured simplex mesh (the
elements are close to equilateral triangles). The only input required by the program is a list
of points defining the boundary as well as the topography of the domain.

3.2 A weak form and the semi-discrete equations

Given the finite element partition, 7j, of the domain €2, we obtain a weak form of equation
(36) if we first multiply by a sufficiently smooth test function ¢ (x,y) € V, integrate
over each element §2; € 7T;, and then integrate the flux term by parts,

ou ¥ dA — / FO.Vi dA + / (FD-a)ydS = / SOy dA,  UD peV,
o, Ot Q 09; Q
(37)
fori =1, 2, 3, 4, and j = 1,..., N, where N is the total number of elements of the
triangulation 7,. In the equation above, n is the outward unit normal to the element
boundary 0f);. Rather than seek solutions to we search for solutions in the finite
dimensional subspace of functions defined as

Vie = {¥: %o, € Pe(), VY1, (38)
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where P, demarcates the space of polynomials of at most degree ¢ that is not necessarily
continuous across element boundaries. In other words, given a set of basis functions ¢ =
(po, 41, .., ¢P¢) , we express the trial solution (U}(LZ) € V) and test function (¢, € V) as

¢
00| =3 U0 ), (39)
Q5 1=0
and
¢
Un| =Y it)an(x), (40)
=0

where <Uéi), Ul(i)7 e Ué”) are the time-dependent degrees of freedom of the finite element

solution and ¢ = 1, 2, 3, 4. We use products of Jacobi polynomials of degree ¢, {Pl}fzo, as the
basis for V,,. The orthogonal triangular basis is defined in terms of a “collapsed coordinate”
system that results in a matrix free implementation of the method, see Kubatko et al.| (2006))
for more details. Substituting U, }Ei) and vy, into (37) we arrive at the discrete weak form of
the problem: find U}(f) € Vpp such that for all test functions ¢y, € Vpy, for i =1, 2, 3, 4, the
expression,

0 - .
OUh_ 1y dA — / FO(U,) - Vi, dA + / <F(” n) U dS = / SO(U,) vy dA,
o, Ot Q 09, Q

(41)

holds over each element 2, € 7, where S (@) (Up,) is the source term evaluated in V,, and F@)
is a suitably chosen numerical flux.

3.2.1 Numerical flux

The space of functions defined by is not necessarily continuous across element bound-
aries, and thus, can be dual-valued (see Figure [3|for example). To remedy this inconsistency,
we replace the dual-valued flux in (37) with a so-called numerical flux (f‘) that makes use
of the left and right limits of the trial solution to produce a single valued flux across a given
element’s boundary.

More specifically, given an arbitrary function w;, € Vp, at an element boundary point
x;, we set the left and right limits of the function to w, = wy(x;) and w; = wy(x}),
respectively. In this work we utilize the local Lax-Friedrichs (LLF) flux, which defines the
numerical flux operator as,

~. 1 ) ) 1 ; -
FO .4 = 5(F“v”ﬂ?“v)) B 2 <U,(j’+) U >), for i =1, 2, 3, 4, (42)

where Apax is the maximum eigenvalue of the normal (to the element edges) Jacobian matrix.

16



element edge

n / 99,

1D

Figure 3: Jump in numerical solution Uj at an element edge 0€2;.

When solutions to are sufficiently smooth, we can rewrite in the quasilinear form,

ou
o + Jx (U)w + Jy (U)y = S, (43)
where the Jacobian matrices (J;; = gi) are,
[ 0 1 0 0]
oH—@ 20 0 0
Jx = ’
—uv v U 0
| —uT T 0 |
and
[ 0 0 1 0]
—uv v U 0
J, =
¢H—u> 0 20 0
=T 0 T v

406 The so-called “normal Jacobian matrix” is then defined by,

Jn = Jing + Jyny, (44)

where n, and n, are the x— and y—components of the normal edge vector n. In general, if
J is a square (m x m) matrix with m real eigenvalues, then it can be decomposed into its
eigensystem,

J, = 'R(m)A(x)'R(;l), and J, = 'R(y)A(y)R(;), (45)
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where R is the matrix of right eigenvectors, A, is the diagonal matrix of eigenvalues, and
411 R(__)l is the matrix of left eigenvectors (LeVeque, 2002). To determine A, and A, we solve

for the roots of det (J () — )\I) = 0, which gives the following eigenvalues,

/\1’2 = ﬂnz + ﬁny,
A3 = <ﬂ+ ng> ng + (TH— gZH> Ny,
AN = (ﬂ—\/ng> Ng + (1‘)— ng) TNy.
(46)

Each eigenvector (rg')) can be determined by solving (J .y — A, I)r; = 0 where I is the identity

matrix, 0 is a vector of zeros, and Ry = [rg'), rg), rg), r(')]. Solving for the eigenvectors we

have,
[0 0 1T 1T
Ry = ) ) :
1 0 v/T v/T
| 0 1 1 1 |
416 and
[0 0 /T 1/T ]
1 0 u/T u/T
Ry = _ _
0 0 (v++g.H)T (v—+9g.H)/T
0 1 1 1 |

We use the full eigensystem in the slope limiting process that stabilizes the method for
polynomials of degree greater than or equal to one (Cockburn and Shuj, |2001), and we set
Amax 0 the LLF flux to the maximum value of (A1, Ao, Az, A\yg).
It can be noted that to mathematically close the solution method of the discrete DG
421 system of equations we need to numerically evaluate expression to determine &,. More
specifically, we discretize equation (27) using a local discontinuous Galerkin (LDG) method
(Cockburn and Chi-Wang, |1998) analogous to the method used in (Conroy and Kubatko
(2016)) to evaluate second order derivative terms (see|Conroy| (2014)) for a detailed discussion
on application of the LDG method to shallow mass geophysical fluid flows).
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3.3 SSP Runge-Kutta time discretizations

Application of the DG spatial operator to results in a system of ODEs for each
element,

c0d0Y |
§.>d—tj = b, i=1,234 ad j=1,.,N (47)

( UJ(ZO, U]ll), ceey U](ZZ) )/ are vectors of the
_ (@) 1) @)\’
— (R, R! R'))

510

where N is the number of elements in 75, U j

degrees of freedom (i.e., the polynomial basis coefficients), and bgi)

with,
R() — /
Q

l\N/Igi) is the mass matrix,

F. Ve dA - /BQ(F n) g ds + /Q S ordA. (18)

J J

[ fQj o101 dA 0 0 |
0 Jo. G202 dA 0
M — !
J
0 0
I 0 . 0 fQj Gede dA |

which is diagonal due to the choice of basis. Left multiplying by the inverse of the mass
matrix, we have,

- M@) 1b§?) = Lip(U), with i=1,2, 3,4, and j=1,.,N,  (49)
where L, is the DG spatial operator. We evaluate the integrals in equation using
numerical integration rules of sufficiently high degree (Kubatko et al.l 2006)), and discretize
(49) with so-called strong-stability-preserving (SSP) Runge-Kutta (RK) methods (Kubatko
et al,|2014)). The unknown polynomial basis coefficients that define the solution over a given
element, €2;, are advanced in time from ¢, to t,,41 via,

1. Set U « UW fori=1, 2, 3, 4.

2. For each stage r =1,2,...,S, set

UW « 11, <Z Wy W' ) , wr =100 4 Brs At Ly, (Ugy, b + 8,A1).

par s
3. Finally, set INJSQH — INJS)

19



441

446

451

456

461

It can be noted that II, is a slope limiter that dampens over shoots and under shoots at
solution discontinuities when polynomial approximations greater than 0 are used for the
basis (Cockburn and Shuj 2001)), S is the number of stages of the RK method, d,At is a
sub-time step of the time step At, and the a,, and 3, are coefficients that define the RK
method. In particular, «,.s and [, conform to the following constraints,

1. a,, = 0if and only if 3., =0,
2. aps > 0 and B, >0,

3.3 0 ans = L.

Because we use explicit RK methods the time step of the model is limited by a CFL condition,
see Kubatko et al.| (2014)) for more details.

4 Verification

Verification of the DG solution of the mass and momentum equations in the depth-averaged
and full three-dimensional case is well documented and can be found in (Conroy and Kubatkol,
2016), (Dawson and Aizinger, 2005) and (Kubatko et al., [2006]). To verify our DG solution
method for the fully coupled mass, momentum, and energy (depth-averaged) equations we
solve a test problem that is designed to model a free surface wave propagating through a lava
channel using the method of manufactured solutions (see |Griffiths (2000) for a discussion
on free surface waves in lava channels at high Re number and |Le Moigne et al.| (2020) for a
detailed investigation on standing waves in lava flow channels). We choose @, v, and H so
that the depth-averaged mass equation is satisfied exactly. Specifically, we define,

u = uexp(—z),
v = vexp(—kz),

H = h + Cexp(iwt),
(50)

with i = constant, & = constant, 0 = aky, and ¢ = exp(—iw#) where & = exp(kz)/(ki).
The dynamical solution consists of a wave propagating in a direction perpendicular to the
y-axis with wave number & = 5.0 x 1073 m~! and frequency w = 2.0 x 1073 s7!. (These
values were chosen based on velocity and lava flow thickness data recorded by [Patrick et al.
(2019) during the pulsing effusion regime associated with Fissure 8 during the 2018 Kilauea
event.) We then set,

T = T exp(—krx), (51)

with 7' = (y* + Twan) and substitute (50) and into the mathematical model and
evaluate the derivative terms using Matlab’s symbolic package. The remainder terms associ-
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Table 1: L? errors using Py for (i, @n, On, Th)-

Mesh | [[¢r, — C]|2 | Order | ||ty — allo | Order | ||op, — ||z | Order | ||T} — T|2 | Order
dxg 3.91 - 8.81 - 9.24 - 2126.3 -
dzy 2.06 0.92 4.48 0.98 4.82 0.94 1227.7 0.79
dxa 1.39 0.97 3.01 0.98 3.30 0.93 875.11 0.84
dxs 0.31 1.08 0.77 0.98 0.77 1.05 218.2 1.00

Table 2: L? errors using Py for (¢, tp, Un, Tp).

Mesh | [|¢, —C||2 | Order | ||iy, — |2 | Order | ||op —v||2 | Order | [T}, — T||2 | Order
dxg 2.30e-2 - 0.33 - 0.82e-2 - 1589.8 -
dxy 4.85e-3 2.25 6.5e-2 2.35 1.50e-2 1.95 367.7 2.11
dza 1.72e-3 2.56 2.09e-2 2.79 6.33e-3 2.13 154.3 2.14
dxs 1.84e-4 1.63 2.13e-3 1.65 4.32e-4 1.94 6.73 2.26

ated with the x-momentum equation and the energy equation are then set as artificial source
terms that force the numerical solution to be and . The numerical domain consists
of a rectangular channel defined by the Cartesian-coordinates xqg = 0.0m, x; = 200.0m,
Yo = 0.0m, y;, = 30.0m. We assume symmetry about the centerline (at y = 15m) and only
solve the equations over the half-width of the channel. It can be noted that even though the
solutions are guaranteed to remain smooth for all time ¢ (because of the forcing functions)
the numerical solution is by no means trivial due to the coupling of the equations through
the viscosity. We use four different triangular meshes for the verification of the model. The
element size of each mesh is 7.50 m (the so-called dzy mesh), 3.75 m (dx1), 2.50 m (dzs), and
0.625 m (dz3), respectfully. Results are displayed in Tables where it can be noted that
the method converges to the analytic solution at a rate of approximately ¢ + 1/2. Further,
using P, polynomials on the coarsest mesh gives lower errors than P, polynomials on the
finest mesh. It can be noted that for a given computational mesh, a higher order polynomial
approximation will result in a greater computational expense. However, the goal of using
high order polynomial approximations is to use coarser meshes which results in better com-
putational efficiency in terms of the number of degrees of freedom necessary to achieve a
certain level of accuracy (high order local polynomials produce more accurate results more
efficiently than low order methods). This is explicitly shown in the works of Kubatko et al.
(2006)), [Kubatko et al.| (2009), and |Conroy et al. (2018)).

5 Evaluation: Recent eruption of Kilauea Volcano

We evaluate our model using data captured during the 2018 eruption of Kilauea volcano,
Hawai’i. The East Rift Zone of Kilauea has erupted repeatedly in historical times, and con-
tinuously since 1983 (Heliker and Mattox| 2003; Wolfe, |1988). A new eruption of unusually
large magnitude began May 3, 2018 in the lower part of the East Rift Zone, with fissures
opening in the middle of a residential area (Neal et al.; 2019). More than 20 fissures opened
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Table 3: L? errors using Py for (Cp, @n, On, Th)-

Mesh | |[¢, — C||2 | Order | ||ap — |2 | Order | ||op, — o||2 | Order | ||[T}, — T|]2 | Order
dxg 1.41e-2 - 6.76e-2 — 6.85e-3 - 17.20 -
dxq 2.56e-3 2.46 2.37e-2 1.51 3.51e-3 0.96 3.04 2.50
dxs 8.00e-4 2.87 8.70e-3 2.47 1.11e-3 2.84 1.09 2.52
dxs 1.24e-4 2.68 1.46e-3 2.57 1.70e-4 2.70 176 2.63

during the first 12 days of the eruption, erupting slow-moving, unusually high viscosity lava
at low effusion rates. The behavior changed on May 18, when much hotter and less viscous
lava reached the surface. Advance rates and flow lengths increased, widely impacting prop-
erty and infrastructure. Complete evacuation orders followed within days. Starting on May
28th, activity focused at Fissure 8, located in the heart of the Leilani Estate subdivision.
Fissure 8 remained the source of lava for the remainder of the eruption, until its abrupt
stop on August 4th. The lava that erupted from Fissure 8 soon established a channel which
flowed north and east of the vent, forming a moderately branched channel network 4 km
from the vent. The flow field exhibited transitions between flow types; a clear transition
from pahoehoe to ‘a‘a surface texture occurred down slope and is apparent on the thermal
map (see Figure . Overall, the Fissure 8 lava covered an area of 25 km? and supplied at
least 1 cubic km of lava (out of at least 1.2 total) over 70 days.

5.1 Observational data

During the 2018 Kilauea eruption, Unoccupied Aerial Systems (UAS) captured a com-
prehensive time-series of overhead videos of channelized lava (the “Fissure 8” flow). The
videography campaign was purposefully designed to collect data for ‘remote rheometry’ by
hovering above specific sites spaced 200-1300 m apart along the length of the open channel
and revisiting them throughout the duration of the eruption. The proximal (near vent) sites
record pahoehoe lava with little crust cover, while the distal sites capture behavior entirely
in the ‘a‘a flow regime. Sites within the braided section of the flow recorded video over
parallel channels. Over 500 hover videos at the channel sites were acquired over the course
of the Fissure 8 eruption between May 30 and August 5. In this paper, we focus on videos
collected at UAS site 8, capturing a junction point where the main channel split into two
branches.

5.1.1 Velocity field measurements

We analyze the UAS hover videos using the Optical Flow technique (Horn and Schunck,
1981}, |Sun et al., [2010) Optical Flow is a well-known Computer Vision technique used to
measure velocities of imaged objects based on the motion of brightness within an image
sequence or between frames of a video. [Lev et al.| (2012) used Optical Flow to measure the
two-dimensional surface velocities of laboratory-scale basaltic lava flows. We will follow the
same technique as in Lev et al. (2012)), tuning parameters to the specifics of the Kilauea 2018
UAS footage. Length scale for video analysis and channel geometry data are provided from
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Figure 4: A) Zoomed in view of the section of the braided channel system established by
Fissure 8 modeled in this work, near UAS site 8 (See Fig. . UAS photo by Ryan Perroy,
University of Hawaii-Hilo. B) Map view of the lava surface velocity measured using Optical
Flow from videos captured by UAS on June 22nd, 2018. Colors represent magnitude in m/s.
Also shown in the discretize finite-element mesh used to evaluate the model.

camera lens information and the recorded UAS flight altitude and refined using co-registered
digital elevation and orthomosaic images produced from additional UAS data collected at
the same or very close time.

5.2 Model input

We provide our model with a channel geometry, assumed material properties, inlet ve-
locity, and observed temperature. We use topography data from a pre-eruption digital
elevation maps (data from the USGS National Elevation Dataset, with a spatial resolution
of 10m/pixel, (2002)) to calculate the gradient of topography (see Figure [f]B). We set
the inlet velocity equal to values measured from the UAS video analyzed by Optical Flow
(Figure [4B). Channel edge geometry is obtained from the velocity field (||u|| >= 0) com-
bined with visible identification of channel boundaries in the UAS image. Figure [5 shows
the meshed model domain, with colors depicting (a) the elevation and (b) ground slope used
to set up the model.

We set the the lava density to p = 1350 kg/m?, which, with a nominal gas-free density
of Hawaiian basalts of 2700 kg/m? translates to 50% vesicularity. We set the channel inlet
temperature to 7 = 1152 C and wall and basal temperatures to Tyay = 1010 C and Toround =
477 C, respectively. The rheological constants in relation are set to A = —4.550,
B = 5805.30 and C' = 607.80. These values were calculated using the calculator by |Giordano]
and are specific for the composition of the basalt that erupted during June 2018
from Fissure 8 as measured by XRF analysis (Gansecki et al., [2019))). See Table {4 for the
coefficient values used in the heat transfer module. It can be noted that because the lava
temperature never falls below 950 C in the Kilauea simulations, surface heat loss is solely
due to radiation.
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Figure 5: Finite element partition of the modeled section of the braided channel system.
Colors corresponds to: (A) topography elevation in meters, and B) ground slope in degrees

Table 4: Value of thermal coefficients.

Coefficient Meaning Value used in Kilauea simulation
€ Emissivity 0.85
op Stefan-Boltzmann constant 5.670x1078 J- m~2. s~ 1. K4
cp Heat capacity 837 J - kg~ - K71
ke heat transfer coefficient 200.0 W-m~t K1
ky thermal conductivity of the ground 0.90 Wm~!. K~!
Ky thermal conductivity of the thermal boundary layer 0.10 Wem~— K1
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Figure 6: Map view of modeled speed using a value of (A) n = 1 and (B) n = 2 in the
viscosity model. Colors represent velocity magnitude in m/s.

5.3 Model results

All model simulations were executed on a Macbook Pro using Intel’s Fortran compiler and
on average took 56 minutes to execute using a time step dt = 0.05 secs. The finite element
partition of the braided channel system (shown in Figure |5) consists of 6908 elements with
a maximum element size of 8 m and a minimum element size of 1 m. The model’s initial
conditions were set to the solution of a linearized form of with ¢ = 0 and h = 10 m.
Inlet conditions are steady in time and we set Tyelq = 0 in the Herchel-Bulkley model. We
set the initial conditions to the solution of the linear equations of and time step the
non-linear system of equations to steady state.

Figure [6] shows the lava velocities calculated for the entire domain by our model using ex-
ponent values in the viscosity model of n = 1 (Newtonian) and n = 2 (shear-thickening).
Key features of the observed flow field, such as the increase in speed after the constriction
in the northern branch and the stagnation at the channel split point, are present in both
Figures. The overall magnitude of the velocity — up to 9 m/s — is also in agreement with the
observations.

5.4 Discussion

We evaluate the quality of the fit between the model and the observations by comparing
the modelled speed with the observed speed for different power-law exponent (n) values,
shown in Figure [} Two areas of relatively large error are clear in the southern branch. We
attribute these mostly to uncertainties in the underlying topography data. We use a coarse
pre-eruption DEM for an area where the overall slopes are very gradual (2-3 degrees). The
mesh and model resolution is very high compared to the coarseness of the DEM (only 10
DEM grid points across the model), which can lead to inaccuracies in slope estimates. In
addition, the DEM is from before the eruption, while the velocity data was captured a few
weeks after the channel was established. It is possible that by that time, some lava already
deposited on the bottom of the channel and modified the topography.

An additional source of misfit could be due to the bottom stress calculation. We calculate
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the thickness of the virtual layer over which the velocity transitions from the depth-integrated
velocity to a value of zero (at the bottom boundary) via a two-layer model of vorticity. The
two layers correspond to a mixed upper layer and a non-mixed bottom layer where the
lava is loosing heat due to conduction. While this approach seems to be valid in terms
or reproducing lava flow thicknesses observed by USGS surveys (USGS Hawaii Volcano
Observatory, 2019)) which place lava thicknesses between 5 m - 15 m, (alternative methods
produce flows that are 3 times too thick), the two-layer model still is a simplification of
reality that most likely introduces some errors.

Further, because we are limited to surface speed observations our error metrics will
unavoidably have a misfit in them due to the fact that modeled speeds are depth-averaged.
This effect will be small in regions of the channel where the Reynolds number is high because
the lava speed will be more uniform over its thickness. However, in areas where the Reynolds
number is low(er), model speeds will be less than observations. This is because the section
of channel we modeled has minimal crust cover, and therefore, there is relatively zero stress
at the top boundary of the lava flow meaning that lava speed should reach a maximum at
the surface. This effect is evident in the northern portion of the northern channel and the
portion of the southern channel between Latitude -154.886 °W and -154.8855 °W.

An interesting aspect of the model worth drawing attention to is how a change in the
value of n in the viscosity model affects numerical results. Figures [7| and [8| reveal that the
overall fit improves with increasing n values which corresponds to shear-thickening in our
model. Similarly, the thicknesses predicted by our model for larger power-law exponent
values (Figure @ are closer to the range of thicknesses (5-15 m) measured by USGS survey
(USGS Hawaii Volcano Observatory, 2019)) and the apparent viscosity calculated by our
model (shown in Figure for large n values is similar to rough estimates by the USGS
(W. Thelen, pers. comm., 2018).

The lower error measures produced by our model for shear-thickening behaviour is a
departure from other studies that find lava to behave as a shear-thinning fluid (e.g., |Cas-~
truccio et al., 2010; |Costa et al., 2009; Pinkerton, [1995). The disparity can most likely be
attributed to differences in the particle content of the lava; in the studies of |Castruccio
et al.| (2010)), |Costa et al. (2009), and Pinkerton (1995) the crystal/bubble content of the
lava studied was low (< 20%), whereas samples taken from the Fissure 8 flow during and
after the eruption show a wide range of crystallinity and vesicularity, often with very high
vesicle fraction of over 50% (Halverson et al., 2020). The improved overall fit of our model
for higher n values is most likely due to this high vesicle fraction and is consistent with the
lab experiments of Smith| (1997) and Lev et al. (2020)) that show high bubble content can
produce shear-thickening behavior. In fact, in the experiments of [Sayag and Worster| (2013)),
shear thickening behavior for a constant volume of fluid (as in our investigation) produce
flow thicknesses that are less than the shear-thinning case, which is visible in our results
in Figure [9] We conjecture that the increase in the viscosity is due to the fact that as the
strain rate increases, the bubbles re-arrange in a fashion that makes it harder for the lava
to flow. This effect should be especially pronounced in areas where the strain rate is high
(think of the stress associated with solid boundaries in turbulence and how the vorticity
created at these boundaries could cause bubbles to run into each other, impeding the flow).
This effect is apparent in Figure [10| for the case n = 2, where the effective viscosity is low
except in regions of high strain and high(er) Reynolds number, such as near the constriction
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Figure 7: Map view of the difference between modeled lava speed and surface speed obtained
from UAS video capture for various power law exponents. Colors represent difference in
meters per second.

in the northern channel, at the channel walls where the slope is high in the southern channel,
and at the bend area in the southern channel. In the future we will explore mathematical
relationships that allow n to be a function of the bubble/crystal content of the lava as well
as examine the sensitivity of the model to non-Newtonian rheological parameters. We plan
to infer the best fitting values for these parameters for a range of locations and times for the
Fissure 8 lava flow.
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Figure 10: Map view of the effective modeled lava viscosity for various power law exponents.
Colors represent viscosity in Pascal seconds.
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6 Conclusions

We present a novel numerical model for quantifying high-speed lava flows in complex
channels. The mathematical model consists of depth-averaged equations of mass, momen-
tum, and energy and the equations are closed via a non-linear viscosity model. Because we
use discontinuous Galerkin methods to discretize the mathematical model we are able to cap-
ture non-smooth transitions that can occur in lava flows, e.g. jumps in temperature, shear,
and viscosity, see Figure[I0] We overcome a major limitation to many depth-integrated mod-
els in terms of the need to use an adjustable friction coefficient by solving a heat transfer
boundary layer problem coupled with a calculation for the thickness of a virtual layer over
which the velocity transitions from the depth-integrated velocity to a value of zero (at the
bottom boundary) via a two-layer model of vorticity. This novel approach results in lava flow
thicknesses that are in the range of observed values as compared to simple linear schemes
that produce flow thicknesses that are 3 times too thick. Further, the use of unstructured
triangular meshes allows the model to accurately resolve complex braided channel systems
that are commonly produced by basaltic lava flows. This was demonstrated on a section of
the complex braided channel system that was created by the Fissure 8 flow from the 2018
Kilauea Lower East Rift Zone eruption with model results matching observational results
quantitatively well. Future work will include using the new versatile model as a tool to infer
lava properties and flux during volcanic crises.
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List of symbols

Symbol Name Definition
A consistency constant see
A, wetted area A, =wH
Qs Runge-Kutta coefficient see §3.3
B consistency constant see §2.1]
b discrete DG spatial matrix see §3.3]
Brs Runge-Kutta coefficient see §3.3]
C consistency constant see §2.1]
dA differential area —
dxg, ..., dxs mesh size in verification test case —
At numerical time step —
LAY sub time step in Runge-Kutta method see
0. length of virtual bottom boundary layer 0, = (0,4, 5Zy)'
€ emissivity of lava see Table [4]
F flux function matrix see equation
F numerical flux function see equation ({42))
f, body force vector fy = (92, 9y, g.)
fa x-comp. of depth-integrated horizontal shear stress f, = F O Oty dz
_p Oz dy
Iy y-comp. of depth-integrated horizontal shear stress f, = / C Oey + Oty dz
_p Ox y
9z, 9y, 9- T—,y—,z — components of gravitational acceleration —
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total depth of flow H=(+h

Hilbert space infinite dimensional space with finite energy
steady reference depth of flow see §2.3
depth of bottom thermal boundary layer see §2.2)

thickness of thermal boundary layer —

10 00
identity matrix 8 (1) (1) 8
0001
index counter for equations in ((17)) 1=1,...,4
unit vector in x-coordinate direction —
imaginary number —i=+/—1
Jacobian matrix see
Jacobian matrix in x-direction see
Jacobian matrix in y-direction see
index counter for the set of elements in 7, j=1,....N
unit vector in y-coordinate direction —
lava consistency Pa - s
lava consistency constant sl
free surface wave number 1/m
unit vector in z-coordinate direction —
thermal conductivity of ground see Table @
thermal conductivity of bottom boundary layer see Table [l
convection constant see Table [2
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kr

L2

heat transfer coefficient

L? — error norm

right hand side of ODE
diagonal matrix of eigenvalues
an eigenvalue of J

maximum eigenvalue of J

degree of freedom index for polynomial basis

degree of polynomial basis
finite element mass matrix
number of eignvalues of J
viscosity
number of elements in 7y,
viscosity power law exponent
normal vector
element 7 in 7},
vorticity
free surface wave frequency

pressure flux

polynomial space for basis functions

wetted perimeter
pressure

channel domain boundary
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J

1/2
11l = </Q_<U—Uh>2 dA)

see §3.3
see
see 93.2.1|
see

see

see
see
see §3.2.1]

Pa - s

see §2.1

vector perpendicular to a plane

see equation (23)



00 boundary of element j in 7, —

I, slope limiter see |Cockburn and Shu/ (2001)
0] basis functions combinations of Jacobi polynomials
Y test function Yey
U finite element approximation of see equation
Wy polynomial coefficients of vy, see equation ([40)
Qin channel inflow flux m3/s
q heat flux q= (kTg_Z’ sz—Z, kTg—z>
q internal heat generation/dissipation —
q internal heat generation/dissipation —
@ bottom heat flux see
7 depth-integrated internal heat flux —
qs surface heat flux see
R vector of DG spatial operator see
R) Matrix of right eigenvectors of J see
R(% Matrix of left eigenvectors of J see
Re Reynold’s number Re = PH;#
r eigenvector of J see
P density Kg/m?

r, s index counters in Runge-Kutta time stepper —
S source vector see equation
S number of Runge-Kutta stages —
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sgn()

Op

O wall

Th
Tatm

Tground

+>

Ty

Ts

O wall

Un

sign of argument
Stefan-Boltzmann constant
normal stress vector at wall

temperature
depth averaged temperature

amplitude of T in verification test
finite element triangulation of (2
atmospheric temperature
ground temperature
time
tangential vector
initial time in averaging window
final time in averaging window
stress tensor
bottom stress vector
surface stress vector

normal stress vector at wall

transpose operator

solution vector

vector of polynomial coefficients (degrees of freedom)

finite element approximation of U
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see Table [
(—at)

K

_ 1 [¢
T:E/thZ
see 4]
E:{Qj};\il
K

K

vector parallel to a plane

(—aT)
u
(w,v,w) = | v
w

see equation
see

see equation (39)



To, TL

Yo, YL

Tyield

polynomial coefficients of Uy,
depth dependent velocity

magnitude of velocity

depth-averaged velocity vector

x — component of velocity
amplitude of @ in verification test
admissible space of functions
finite dimensional subspace
y — component of velocity
amplitude of v in verification test

z — component of velocity

measure of depth averaged vertical velocity

right hand side function in RK method

channel width at inlet

Cartesian coordinate

x-coordinate of inlet and outlet boundaries

y-coordinate of channel walls

thermal boundary layer coordinate

z-coordinate where thermal boundary layer begins

free surface elevation

amplitude of surface elevation in verification test

yield strength of lava
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u=

see equation

u

= (u,v,w)/

[ul| = (u? + v + w?)!/?

(

1

H

/

¢ 1 /¢ /
hu dz, E/_hv dz)
u=dz/dt

see 4]

VeHr

VeV
v =dy/dt

see §4]

w=dz/dt

see equation ([25)

see

X = (x,y,z)/

zZ € [0, —hy)

see

(=H—h

see
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\V4 gradient operator V = (8—, 8_, 8_>

V horizontal gradient operator ~ V = (8_ 8_)

0 vector of zeros (0,...,0)

Computer code and data

The computer code and data used in this investigation can be found at https://zenodo.
org/badge/latestdoi/267726380.
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