
Author responses to the Interactive discussion on ”Fast an efficient

MATLAB-based MPM solver (fMPMM-solver v1.0)” in the

Geoscientific Model Development (GMD) Journal

Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, Yury Podladchikov

October 12, 2020

The referee comments appear in black, whereas our responses appear in blue and the changes made in
the revised manuscript appear in red.

1 Referee #1

The paper presents an explicit vectorised form of the material point method for the generalised interpolation
and CPDI2 variants of the method. The paper is reasonably written but is missing many details on the
implemented algorithms and the numerical analyses are too focused on reproducing the results of others
rather than on numerical performance which is the main trust of the article.

Thank you for the time spent on the revision of our work. We acknowledge the lack of details on the
implemented algorithm. We developed the numerical implementation, especially the deformation framework
chosen and the elasto-plastic constitutive relation. As a result, we included a subsection ”3.1 Rate formulation
and elasto-plasticity”, which provides the reader with a detailed presentation of the constitutive relation we
implemented in the solver. In addition, we focused our performance analysis for the selected case of the
elasto-plastic granular collapse considering both the number of iteration per second and the number of
floating-point operation per seconds with respect to the total number of material points in the system.
Furthermore, we also decided to restrict our analysis to the total number of material points for two main
reasons we detailed in the preamble of the Result section, as this was suggested by the second referee.

Comment # 1 The introduction to the paper appears to have picked a random selection of MPM articles
rather than focusing on articles that look at the numerical implementation of the method. The introduction
should be made more coherent and focused.

Reply # 1 We acknowledge the lack of coherence of the introduction section. Consequently, we focus our
introduction toward the numerical implementation of MPM and add references which focus on numerical
implementation of MPM and FEM, since both share common grounds. Especially, we present with greater
details the concepts of vectorisation, blocking, overheads and RAM-to-cache communication issues.

Change # 1 (L31-L58) MATLAB c© allows a rapid code prototyping but, at the expense of significantly
lower computational performances than compiled language. An efficient MATLAB implementation of FEM
called MILAMIN (Million a Minute) was proposed by Dabrowski et al. (2008) that was capable of solving
two-dimensional linear problems with one million unknowns in one minute on a modern computer with a
reasonable architecture. The efficiency of the algorithm lies on a combined use of vectorised calculations with
a technique called blocking. MATLAB uses the Linear Algebra PACKages (LAPACK), written in Fortran,
to perform mathematical operations by calling Basic Linear Algebra Subroutines (BLAS, Moler (2000)). The
latter results in an overhead each time a BLAS call is made. Hence, mathematical operations over a large
number of small matrices should be avoided and, operations on fewer and larger matrices preferred. This is

1

a typical bottleneck in FEM when local stiffness matrices are assembled during the integration point loop
within the global stiffness matrix. Dabrowski et al. (2008) proposed an algorithm, in which a loop reordering
is combined with operations on blocks of elements to address this bottleneck. However, data required for
a calculation within a block should entirely resides in the CPUs cache. Otherwise, an additional time is
spent on the RAM-to-cache communication and the performance decreases. Therefore, an optimal block
size exists and, is solely defined by the CPU architecture. This technique of vectorisation combined with
blocking significantly increases the performance.

More recently, Bird et al. (2017) extended the vectorised and blocked algorithm presented by Dabrowski
et al. (2008) to the calculation of the global stiffness matrix for Discontinuous Galerkin FEM considering
linear elastic problems using only native MATLAB functions. Indeed, the optimisation strategy chosen
by Dabrowski et al. (2008) also relied on non-native MATLAB functions, e.g., sparse2 of the SuiteSparse
package (Davis, 2013). In particular, Bird et al. (2017) showed the importance of storing vectors in a
column-major form during calculation. Mathematical operations are performed in MATLAB by calling
LAPACK, written in FORTRAN, in which arrays are stored in column-major order form. Hence, element-
wise multiplication of arrays in column-major form is significantly faster and thus, vectors in column-major
form are recommended, whenever possible. Bird et al. (2017) concluded that vectorisation alone results in a
performance increase between 13.7 and 23 times, while blocking only improved vectorisation by an additional
1.8 times. OSullivan et al. (2019) recently extended the works of Bird et al. (2017); Dabrowski et al. (2008)
to optimised elasto-plastic codes for Continuous Galerkin (CG) or Discontinuous Galerkin (DG) methods. In
particular, they proposed an efficient native MATLAB function, i.e., accumarray(), to efficiently assemble
the internal force vector. Such function constructs an array by accumulation. More generally, OSullivan
et al. (2019) reported a performance gain of x25.7 when using an optimised CG code instead of an equivalent
non-optimised code.

Comment # 2 The authors have not picked up on any of the papers that extend the MILAMIN approach.
In particular the authors should refer to the following paper that extends the MILAMIN ideas to non-linear
problems: OSullivan, S, Bird, R.E., Coombs, W.M. and Giani, S. (2019). Rapid non-linear finite element
analysis of continuous and discontinuous Galerkin methods in MATLAB. Computers and Mathematics with
Applications 78(9): 3007-3026. There are others and the authors should review the appropriate literature.

Reply # 2 Indeed, we were not aware of further extension to the MILAMIN approach. We reviewed the
reference proposed and found common approach concerning vectorization, i.e., the use of the accumarray
function to accumulate internal force contributions to nodes. Additionally, we reviewed the appropriate
literature and consequently update the introduction section. As such, our reply follows the previous statement
of our first reply.

Change # 2 See Change # 1.

Comment # 3 If performance is the focus, why use MATLAB? Why not adopt one of the existing
MPM codes that are written in compiled code which will always be faster than MATLAB? Such as:
jixiefx.com, github.com/yuanminghu/taichi mpm, cimne.com/kratos/, github.com/nairnj/nairn-mpm-fea,
github.com/cbgeo/mpm/, sourceforge.net/p/mpmgimp, github.com/xzhang66/MPM3D-F90. There may be
others.

Reply # 3 It is true that MPM codes written in compiled codes will always be faster than MATLAB.
Our point is to show that one can use MATLAB to produce prototyped code with a decent computational
performance. However, our true concern is to propose an efficient and vectorised code, which could be more
easily translated into the C CUDA language, or, at least, which partially minimizes the hurdles of the syntax
translation while preserving the algorithm. As such, we clearly state such concern in the revised manuscript.

2

Change # 3 (L68-70) The vectorisation of MATLAB functions is also crucial for a straight transpose of
the solver to a more efficient language, such as the C-CUDA language, which allows the parallel execution
of computational kernels of graphics processing units (GPUs).

(L558-560) The vectorisation activities we performed provide a fast and efficient MATLAB-based MPM
solver. Such vectorised code could be transposed to a more efficient language, such as the C-CUDA language,
that is known to efficiently take advantage of vectorised operations.

Comment # 4 The authors mention an implicit implementation but do not present any results in terms of
the speed gains of the implicit vectorised algorithm. These should be included and the vectorised algorithm
explained.

Reply # 4 It is true that i) we do not present any results related to speed gain and, ii) the implicit
implementation is not explained. Our concern was to show that the error saturation we reported for the
explicit implementation was due to the explicit formulation. Consequently, an implicit implementation under
the vectorisation framework of the explicit formulation should converge without any saturation error. We
showed it did. However, we can include in the Supplementary Material of the paper a description of the
vectorization for the implicit implementation if needed. But up to now, we decided not to included any
description of an implicit MPM implementation. We prefer to directly refer to the relevant literature.

Change # 4 (L111-118) Additionally, we implemented a CPDI/CPDI2q version (in an explicit and quasi-
static implicit formulation) of the solver. However, in this paper, we do not present the theoretical background
of the CPDI variant nor the implicit implementation of a MPM-based solver. Therefore, interested readers
are referred to the original contributions of Sadeghirad et al. (2013, 2011) and Acosta et al. (2020); Charlton
et al. (2017); Iaconeta et al. (2017); Beuth et al. (2008); Guilkey and Weiss (2003), respectively. Regarding
the quasi-static implicit implementation, we strongly adapted our vectorisation strategy to some aspects
of the numerical implementation proposed by Coombs and Augarde (2020) in the MATLAB code AMPLE
v1.0. However, we did not consider blocking, because our main concern for performance is on the explicit
implementation.

Comment # 5 CPDI2 methods suffer from issues associated with domain distortion and are not suitable
for problems involving large shear/rotation. This point should be acknowledged, see for example: Wang,
L., Coombs, W.M. , Augarde, C.E. , Cortis, M. Charlton, T.J. , Brown, M.J. Knappett, J., Brennan,
A. Davidson, C. Richards, D. & Blake, A. (2019). On the use of domain-based material point methods
for problems involving large distortion. Computer Methods in Applied Mechanics and Engineering 355:
1003-1025.

Reply # 5 It is true that CPDI2q suffers from domain distortion, as shown in the cited reference by the
referee. We clarified this in the revised manuscript by introducting a new subsection ”2.2 Domain-based
material point method variants” (L119). In general, we discussed in greater details advantages and flaws of
domain-based MPM.

Change # 5 (L120-151) Domain-based material point method variants could be treated as two distinct
groups:

• The material point’s domain is a square for which the deformation is always aligned with the mesh
axis, i.e., a non-deforming domain uGIMPM (Bardenhagen and Kober, 2004) or, a deforming do-
main cpGIMPM (Wallstedt and Guilkey, 2008), the latter being usually related to a measure of the
deformation, e.g., the determinant of the deformation gradient.

• The material point’s domain is either a deforming parallelogram for which its dimensions are specified
by two vectors, i.e., CPDI (Sadeghirad et al., 2011), or a deforming quadrilateral solely defined by its
corners, i.e., CPDI2q (Sadeghirad et al., 2013). However, the deformation is not necessarily aligned
with the mesh anymore.

3

We first focus on the different domain updating methods for GIMPM. Four domain updating methods
exists: i) the domain is not updated, ii) the deformation of the domain is proportional to the determinant of
the deformation gradient det(Fij) (Bardenhagen and Kober, 2004), iii) the domain lengths lp are updated
accordingly to the principal component of the deformation gradient Fii (Sadeghirad et al., 2011) or, iv)
are updated with the principal component of the stretch part of the deformation gradient Uii (Charlton
et al., 2017). Coombs et al. (2020) highlighted the suitability of generalised interpolation domain updating
methods accordingly to distinct deformation modes. Four different deformation modes were considered by
Coombs et al. (2020): simple stretch, hydrostatic compression/extension, simple shear and, pure rotation.
Coombs et al. (2020) concluded the following:

• Not updating the domain is not suitable for simple stretch and hydrostatic compression/extension.

• A domain update based on det(Fij) will results in an artificial contraction/expansion of the domain
for simple stretch.

• The domain will vanish with increasing rotation when using Fii.

• The domain volume will change under isochoric deformation when using Uii.

Consequently, Coombs et al. (2020) proposed a hybrid domain update inspired by CPDI2q approaches: the
corners of the material point domain are updated accordingly to the nodal deformation but, the midpoints
of the domain limits are used to update domain lengths lp to maintain a rectangular domain. Even tough
Coombs et al. (2020) reported an excellent numerical stability, the drawback is to compute specific basis
functions between nodes and material point’s corners, which has an additional computational cost. Hence,
we did not selected this approach in this contribution.

Regarding the recent CPDI/CPDI2q, Wang et al. (2019) investigated the numerical stability under
stretch, shear and torsional deformation modes. CPDI2q was found to be erroneous in some case, especially
when torsion mode is involved, due to distortion of the domain. In contrast, CPDI and even sMPM per-
formed better in modelling torsional deformations. Even tough CPDI2q can exactly represent the deformed
domain (Sadeghirad et al., 2013), care must be taken when dealing with very large distortion, especially
when the material has yielded, which is common in geotechnical engineering (Wang et al., 2019).

Consequently, the domain-based method as well as the domain updating method should be carefully
chosen accordingly to the deformation mode expected for a given case. The latter will be always specify in
the following and, the domain update method will be clearly stated.

Comment # 6 What large deformation formulation has been used in this paper in terms of stresses and
strains? Logarithmic strains and Kirchhoff stresses? Explain and justify the large deformation framework.

Reply # 6 The large deformation formulation is based on the Jaumann stress rate formulation. It is
a widely accepted deformation framework, see Huang et al. (2015); Bandara et al. (2016); Wang et al.
(2016c,b) and many others. We think for an explicit implementation with a sufficiently small time step, such
deformation formulation stands to reason. As such, we introduced a specific subsection ”3.1 Rate formulation
and elasto-plasticity”.

Change # 6 (L156-163) The large deformation framework in a linear elastic continuum requires an
appropriate stress-strain formulation. One approach is based on the finite deformation framework, which
relies on a linear relationship between elastic logarithmic strains and Kirchoff stresses (Coombs et al., 2020;
Gaume et al., 2018; Charlton et al., 2017). In this study, we adopt another approach, namely, a rate
dependent formulation using the Jaumann stress rate (e.g. Huang et al. 2015; Bandara et al. 2016; Wang
et al. 2016c,b). This formulation provides an objective (invariant by rotation or frame-indifferent) stress rate
measure (de Souza Neto et al., 2011) and is simple to implement. The Jaumann rate of the Cauchy stress is
defined as

Dσij
Dt

=
1

2
Cijkl

(
∂vl
∂xk

+
∂vk
∂xl

)
, (1)

4

where Cijkl is the fourth rank tangent stiffness tensor and vk is the velocity. Thus, the Jaumann stress
derivative can be written as

Dσij
Dt

=
Dσij

Dt
− σikωjk − σjkωik, (2)

where ωij = (∂ivj − ∂jvi)/2 is the vorticity tensor and Dσij/Dt denotes the material derivative

Dσij

Dt
=
∂σij

∂t
+ vk

∂σij

∂xk
. (3)

Comment # 7 How has the plasticity algorithm been implemented within the large deformation frame-
work? The authors mention a prediction/correction type algorithm so how have they recovered the additive
decomposition of the elastic and plastic strains from the multiplicative decomposition of the deformation
gradient? Critical details are missing here.

Reply # 7 It is true that critical details are missing concerning the plasticity algorithm we selected. We
added more details concerning the way plasticity is handle in the revised manuscript. More specifically, we
used the prediction/correction algorithm combined with the Jaumann stress rate formulation which allow
us to afford the decomposition of the elastic and plastic strain from the decomposition of the deformation
gradient, as done in the MATLAB code AMPLE. We present in detail the general implementation of plastic
flow accordingly to Simpson (2017) in the subsection ”3.1 Rate formulation and elasto-plasticity”.

Change # 7 (L164-184) Plastic deformation is modelled with a pressure dependent Mohr-Coulomb law
with non-associated plastic flow, i.e., both the dilatancy angle ψ and the volumetric plastic strain εpv are null
(Vermeer and De Borst, 1984). We have adopted the approach of Simpson (2017) for a two dimensional linear
elastic, perfectly plastic (elasto-plasticity) continuum because of its simplicity and its ease of implementation.
The yield function is defined as

f = τ + σ sinφ− c cosφ, (4)

where c is the cohesion and φ the angle of internal friction,

σ = (σxx + σyy)/2, (5)

and

τ =
√

(σxx − σyy)2/4 + σ2
xy. (6)

The elastic state is defined when f < 0. However when f > 0, plastic state is declared and stresses must
be corrected (or scaled) to satisfy the condition f = 0, since f > 0 is an inadmissible state. Simpson (2017)
proposed the following simple algorithm to return stresses to the yield surface,

σ?
xx = σ + (σxx − σyy)β/2, (7)

σ?
yy = σ − (σxx − σyy)β/2, (8)

σ?
xy = σxyβ, (9)

where β = (| c cosφ− σ sinφ |)/τ , and σ?
xx, σ?

yy and σ?
xy are the corrected stresses, i.e., f = 0.

A similar approach is used to return stresses when considering a non-associated Drucker-Prager plasticity
(see Huang et al. (2015) for a detailed description of the procedure). In addition, their approach allows also
to model associated plastic flows, i.e., ψ > 0 and εpv 6= 0.

Comment # 8 How are boundary conditions imposed in this model?

5

Reply # 8 Boundary conditions can be difficult to impose thoroughly in MPM, especially when considering
non-aligned boundary conditions with respect to the background mesh, as mentioned in Cortis, M., Coombs,
W., Augarde, C., Brown, M., Brennan, A., Robinson, S. Imposition of essential boundary conditions in the
material point method. International Journal for Numerical Methods in Engineering. 113: 130-152. This is
the main reason why we choose numerical problem and setup in which boundary conditions could be directly
applied on the background mesh. We mentioned this important point of aligned boundary conditions in the
revised manuscript in the new subsection ”3.4 Initial settings and adaptive time step”.

Change # 2 (L315-319) In this contribution, Dirichlet boundary conditions are resolved directly on the
background mesh, as in the standard finite element method. This implies that boundary conditions are
resolved only in contiguous regions between the mesh and the material points. Deviating from this conti-
guity or having the mesh not aligned with the coordinate system requires specific treatments for boundary
conditions (Cortis et al., 2018). Furthermore, we ignore the external tractions as their implementation is
complex.

Comment # 9 Figure 6 - what causes the step in the red line around 103 material points? Is there a
shift in terms of the cost within the algorithm?

Reply # 9 Thank you for this comment. We started an investigation in terms of flops and L2 cache
concerning this step around 103 material points and we just concluded this shift is due to the overhead and
RAM-to-cache transfer. As mentioned further by the referee, overheads are a major concern in MATLAB.
This step typically occurs when the block of data send from RAM to the CPU L2 cache exceeds its maximum
capacity. MATLAB can no longer treat the information as a contiguous block of data sent once and start
swapping from RAM to cache and back and forth. This costs an additional computational expense which
results in this step in Fig. 6 in the original paper (see 1).

Figure 1: a) Floating-point operation per second in million and, b) linear increase of RAM usage with an
increasing number of material point. The limit when the allocated space in RAM reaches the L2 cache size
(1024kB) corresponds to the drop of FLOPS in FIG I a).

Thanks to the referees comment, we now come with a different approach to vectorise the matrix multi-
plication problem which is faster than the previous one but still suffers from overhead due RAM-to-cache
communication. For this particular problem, we report a rather significant difference between the two vec-
torisation variants. This is particularly obvious when we observe the difference in terms of Mflops: flops are
at least twice higher than the former implementation for the matrix multiplication (see Fig. 2). In the earlier
version of the solver, the matrix multiplication problem was handle by the MATLAB instruction depicted
in line 6 in the code listing 1. However, the function permute() is less efficient than using the function
reshape(). Hence, we found out it was more efficient to use the MATLAB instruction in line 8 in the code
listing 1 instead. However, these two variants give the exact same result as the standard iterative matrix
multiplication in line 3 in the code listing 1.

Even tough it does not ensure optimal RAM-to-cache communications, it increased rather significantly
the performance compared to the previous version. Consequently, we replaced the previous vectorisation
by this new technique and make the necessary changes in our revised paper. It also implied to modify
results and observations in the computational efficiency section of the paper. Therefore, the actual version
of the solver is v1.1. This has been changed wherever necessary in the revised manuscript. However, we also

6

Figure 2: a) Floating-point operation per second (in million) for old (dashed lines) and new (continuous
lines) vectorisation frameworks and, b) wall-clock time (in ms) for an increasing number of material point
np for an iterative calculation, the old and the new vectorisation frameworks.

mentioned the drop of efficiency due to overheads. In addition, this computational cost due to RAM-to-cache
communication would be an interesting improvement of a future implementation of a vectorised MPM code
in MATLAB.

1 %% MATRIX MULTIPLICATION USING FOR LOOP

2 for k = 1:np(p)

3 loop_Bs(:,k) = (B(:,:,k)) ’*(s(:,k))

;% matrix multiplication operator *

4 end

5 %% MATRIX -VECTOR MULTIPLICATION USING VECTORISATION

6 vect_Bs = squeeze(sum(permute(B ,[2 1 3]) .*...

7 repmat ((permute(s’,[3 2 1])) ,nDoF ,1) ,2))

;% old matrix -vector multiplication

8 vect_Bs = (squeeze(sum(B.* repmat(reshape(s,3,1,np(p)) ,1,nDoF)

,1)));% new matrix -vector multiplication

Listing 1: Original (v1.0) and new (v1.1) vectorised solutions of the matrix
multiplication problem.

Change # 9 (L281-288) To illustrate the numerical efficiency of the vectorised multiplication between a
matrix and a vector, we have developed an iterative and vectorised solution of B(xp)Tσp with an increasing
np and considering single (4 bytes) and double (8 bytes) arithmetic precision. The wall-clock time increases
with np with a sharp transition for the vectorised solution around np ≈ 1000, as showed in Fig 6a. The
mathematical operation requires more memory than available in the L2 cache (1024 kB under the CPU
architecture used), which inhibits cache reuse (Dabrowski et al., 2008). A peak performance of at least
1000 Mflops, showed in Fig. 6b, is achieved when np = 1327 or np = 2654 for simple or double arithmetic
precision respectively, i.e., it corresponds exactly to 1024 kB for both precisions. Beyond, the performance
dramatically drops to approximately the half of the peak value. This drop is even more severe for a double
arithmetic precision.

7

Figure 6: a) Wall-clock time to solve for a matrix multiplication between a multidimensional array and a
vector with an increasing number of the third dimension with a double arithmetic precision and, b) number
of floating point operations per second (flops) for single and double arithmetic precisions. The continuous
line represents the averages value whereas the shaded area denotes the standard deviation.

Comment # 10 It is well known that MPMs can provide a reasonable global approximation (in terms
of force-displacement response) but the computed stress field can be spurious/highly oscillatory due to
issues such as locking and/or cell crossing. The authors should present the predicted stress response for the
numerical examples presented in the paper and compare them to analytical solutions where available.

Reply # 10 This is a good suggestion. We present the stress field for selected numerical problems in the
revised manuscript, i.e., the elastic compression and the cantilever beam. Additionally, we also present the
analytical solution of the stress σyy for the elastic column and its analytical solution.

Change # 10

Figure 9: a) Convergence of the error: a limit is reached at error ≈ 2 · 10−6 for the explicit solver, whereas
the quasi-static solution still converges. This was already demonstrated in Bardenhagen and Kober (2004)
as an error saturation due to the explicit scheme, i.e., the equilibrium is never resolved. b) The stress σyy
along the y-axis predicted at the deformed position yp by the CPDI2q variant is in good agreements with
the analytical solution for a refined mesh.

8

Figure 13: Finite deformation of the material point domain and vertical Cauchy stress σyy for CPDI, i.e., a)
& b), and for cpGIMPM, i.e., c) & d). The CPDI variant gives a better and contiguous description of the
material point’s domain and a slightly smoother stress field, compared to the cpGIMPM variant, which is
based on the stretch part of the deformation gradient.

Comment # 11 The elastic column problem will only have around 2 % deformation in terms of the
deformed to original height so this problem is not a good test of the convergence of MPMs. The authors
refer to the work of Coombs et al. for this problem but they show convergence for the case where the column
compresses to around 50 % of its initial height. Run the convergence for the case with a Youngs modulus of
10kPa, not 1MPa.

Reply # 11 The referee is right; the elastic column will only have a small vertical deformation. We run
the convergence analysis with lower elastic modulus as proposed to achieve a greater deformation of the
column.

Change # 11 (L360-361) The material has a Young’s modulus E = 1 · 104 Pa and a Poisson’s ratio ν = 0
with a density ρ = 80 kg m−3.

9

Comment # 12 How have the authors avoided volumetric locking when using isochoric plastic flow?
What do the pressure distributions look like through the deformed domains?

Reply # 12 We did not avoid volumetric locking when using isochoric plastic flow. As a result, the
pressure field experience severe oscillations for isochoric plastic deformations. It is true that any MPM
variant suffers from volumetric locking. As such, we now clearly state in the revised manuscript that we
did not treat the oscillation of the pressure field due to volumetric locking. We also discuss in detail the
issue of volumetric locking in the Discussion section and share potential ways to regularize the pressure field,
especially when ischoric plastic deformations are involved.

Change # 12 (L513-517) This particular case of isochoric plastic deformations rises the issue of volumetric
locking. In the actual implementation, no regularization techniques are considered. As a result, the pressure
field experience severe locking for isochoric plastic deformations. One way to overcome locking phenomenons
would be to implement the regularization technique initially proposed by Coombs et al. (2018) for quasi-static
sMPM and GIMPM implementations.

Comment # 13 The various comments on the use of cpGIMP and uGIMP are confused and misleading.
Just because an analysis is stable it does not mean that it is ”appropriate” as the results may be meaningless.
The authors cite the work of Coombs to justify the use of the stretch to update the domains, however this
technique does not work for problems involving simple shear type deformation, refer to Table 2 of: Coombs,
WM, Augarde, CE, Brennan, AJ, Brown, MJ, Charlton, TJ, Knappett, JA, Ghaffari Motlagh, Y & Wang,
L (2020). On Lagrangian mechanics and the implicit material point method for large deformation elasto-
plasticity. Computer Methods in Applied Mechanics and Engineering 358: 112622. The authors later adopt
a determinant of the deformation gradient-type updating method but this has been shown to not converge for
simple compression problems as the domains artificially shrink in the non-compressed direction and overlap
in the compressed direction (see Figure 8 from the above reference). For example, the statement on lines
76-77 is not correct, or rather it is only correct for some types of problem.

Reply # 13 We agree that this various comment all around the manuscript were confused and misleading.
As such, we elaborated the presentation of domain-based MPMs and correctly refer to advantages and flaws
for each of these domain-based variants. Consequently, we included a new subsection in the MPM overview
section, e.g., ”2.2 Domain-based material point method variants”.

Regarding the determinant of the deformation gradient-type update, the referee comment is absolutely
true. However, we selected such approach since it gave the most stable numerical result. But, we clearly
mentioned the problem of artificial shrinking and domain overlaps associated with this variant in the revised
paper.

Change # 14 See Change # 5.

Comment # 14 The speed gains of MILAMIN come from the combination of blocking and vectorisation.
Have both techniques been used in this paper? If so, what are the relative speed gains from the different
sources? How does the speed gain change with different block sizes?

Reply # 14 We did use vectorisation but we did not use blocking. It is true that in MILAMIN the speed
gain come from a combination between vectorisation and blocking. However, such technique is applied in
assembling local stiffness matrix in the global stiffness matrix, which does not appear in an explicit MPM
formulation. Hence, the technique of blocking was disregarded for that concern. We acknowledge this
statement in the introduction section.

Change # 14 (L64-67) We did not consider the blocking technique initially proposed by Dabrowski
et al. (2008) since an explicit formulation in MPM excludes the global stiffness matrix assembly procedure.
The performance gain mainly comes from the vectorisation of the algorithm, whereas blocking has a less
significant impact over the performance gain, as stated by Bird et al. (2017).

10

Comment # 15 The authors have not explained by MATLAB is inefficient when working with small
amounts of data. This point should be discussed with reference to CPU cache size and RAM-to-cache
overheads.

Reply # 15 We discussed this point explicitly when presenting the new vectorisation framework of the
matrix multiplication problem we mentioned previously in our response. In addition, we also discuss this
issue in the section ”5. Discussion”.

Change # 15 (L37-39) Hence, mathematical operations over a large number of small matrices should be
avoided and, operations on fewer and larger matrices preferred. This is a typical bottleneck in FEM when
local stiffness matrices are assembled during the integration point loop within the global stiffness matrix.

(L284-285) The mathematical operation requires more memory than available in the L2 cache (1024 kB
under the CPU architecture used), which inhibits cache reuse (Dabrowski et al., 2008).

(538-542) An iterative implementation would require multiple nested for-loops and a larger number of
operations on smaller matrices, which increase the number of BLAS calls, thus inducing significant BLAS
overheads and decreasing the overall performance of the solver. This is limited by a vectorised code structure.
However and as showed by the matrix multiplication problem, the L2 cache reuse is the limiting factor and, it
ultimately affects the peak performance of the solver due to these numerous RAM-to-cache communications
for larger matrices.

Comment # 16 It would be more appropriate to present the speed gains in terms of flops. There should
be a peak in performance if you consider large enough problems.

Reply # 16 Thank you for this relevant suggestion. As mentioned previously in our reply, we already
started to investigate the speed gain of the matrix-vector operation problem. We extended this point to our
computational performance analysis, which greatly benefited from this. Our performance analysis focused
on both the number of iterations per second and the number of floating-point operations per second with
respect to the total number of material points. As stated by the referee, a peak performance is reached and
then, a residual performance is further resolved as the total number of material points increases.

Change # 16 (L473-482) The performance of the solver is demonstrated in Fig. 18. A peak performance
of ≈ 900 Mflops is reached, as soon as np exceeds 1000 material points and, a residual performance of ≈ 600
Mflops is further resolved (for np approximately 50000 material points). Every functions provide an even and
fair contribution on the overall performance, except the function constitutive.m for which the performance
appears delayed or shifted. First of all, this function treats the elasto-plastic constitutive relation, in which
the dimensions of the matrices are smaller when compared to the other functions. Hence, the amount of
floating point operations per second is lower compared to other functions, e.g., p2Nsolve.m. This results in
less performance for an equivalent number of material points. It also requires a greater number of material
points to increase the dimensions of the matrices in order to exceed the L2 cache maximum capacity.

This considerations provide a better understanding of the performance gain of the vectorised solver
showed in Fig. 19: the gain increases and then, reaches a plateau and ultimately, decreases to a residual
gain. This is directly related to the peak and the residual performances of the solver showed in Fig. 18.

11

Figure 18: Number of floating point operation per seconds (flops) with respect to the total number of
material point np for the vectorised implementation. The discontinuous lines refer to the functions of the
solver, whereas the continuous line refer to the solver. A peak performance of 900 Mflops is reached by the
solver for np > 1000 and, a residual performance of 600 Mflops is further resolved for an increasing np.

Figure 19: Number of iterations per second with respect to the total number of material point np. The
greatest performance gain is reached around np = 1000, which is related to the peak performance of the solver
(see Fig. 18). The gains corresponding to the peak and residual performances are 46 and 28 respectively.

12

Comment # 17 Figure 2 is misleading as the GIMP domain is fully inside a single element and will have
the same connectivity as the standard MP case.

Reply # 17 We agree that Figure 2 was misleading. Consequently, we replaced the previous Figure 2 by
a new one in the revised manuscript. In addition, we also included the nodal connectivity for the CPDI2q
variant.

Change # 17

a) sMPM b) GIMPM

p2N = {6, 7, 10, 11} p2N = {1, 2, 3, 5, 6, 7, 9, 10, 11}

1

2

3

5 9

p2e = {5} p2e = {1, 2, 4, 5} c2e = {1, 5, 2}

c2N = {1, 2, 3, 5, 6, 7, 10, 11}

c) CPDI2q

1

2

3

5

Figure 2: Nodal connectivities of a) standard MPM, b) GIMPM and c) CPDI2q variants. The material
point’s location is marked by the blue cross. Note that for sMPM (and similarly BSMPM) the particle
domain does not exist, unlike GIMPM or CPDI2q (the blue square enclosing the material point). Nodes
associated with the material point are denoted by filled blue squares, and the element number appears in
green in the centre of the element. For sMPM and GIMPM, the connectivity array between the material
point and the element is p2e and, the array between the material point and its associated nodes is p2N. For
CPDI2q, the connectivity array between the corners (filled red circles) of the quadrilateral domain of the
material point and the element is c2e and, the array between the corners and their associated nodes is c2N.

Comment # 18 Line 162 - the authors mention a 30 % speed up - what problem/size of problem/number
of points, etc?

Reply # 18 We mentioned a 30 % speed up at Line 162 in the original manuscript for the calculation of
the shape function. We carried out a more thoroughly analysis of such speed up and observe a steady gain
regardless of the number of material points or the number of element. Consequently, we simply mention
this within the text. However, we also noted the sentence was not clear enough. Therefore, we made our
point more straight forward in indicating that such speed up was only valid for the calculation of the shape
function during a computational cycle and not over the whole solver.

Change # 18 (L247-249) The performance gain is significant between the two approaches, i.e., an intrinsic
30 % gain over the wall-clock time of the basis functions and derivatives calculation. We observe an invariance
of such gain with respect to the initial number of material point per element or to the mesh resolution.

Comment # 19 Where are material points located within the elements when the problems are set up?

Reply # 19 Regarding the initial location of material points within elements, we preferred a regular
distribution of material point within elements. Considering 4 material points per element, their location (in
local coordinate) would be [-0.5; 0.5] along x and y direction. Hence, we decided to simply mention that we
only consider a regular mesh spacing with a uniform distribution of material points per initially populated
element. As suggested by the second referee, this was included in the new subsection ”3.3 Initial settings
and adaptive time step”.

13

Change # 19 (L312-314) Regarding the initial setting of the background mesh of the demonstration cases
further presented, we select a uniform mesh and a regular distribution of material points within the initially
populated elements of the mesh. Each element is evenly filled with 4 material points, e.g., npe = 22, unless
otherwise stated.

Comment # 20 Some key information is missing from the numerical analysis, such as time step sizes and
total times which would make it impossible to reproduce the results. This information must be added.

Reply # 20 During the revision process of our contribution, we decided to consider an adaptive time step.
Hence, we clearly mention this in the revised manuscript and we provide the reader with the CFL number C
we used for every demonstration case. Whenever relevant, we also mention the minimal and maximal time
steps obtained given elastic properties of the material and the CFL number chosen and we also specify the
total simulation time.

Change # 20 (L320-328) As explicit time integration is only conditionally stable, any explicit formulation
requires a small time step ∆t to ensure numerical stability (Ni and Zhang, 2020), e.g., smaller than a critical
value defined by the Courant-Friedrich-Lewy (CFL) condition. Hence, we employ an adaptive time step (de
Vaucorbeil et al., 2020), which considers the velocity of the material points. The first step is to compute the
maximum wave speed of the material using (Zhang et al., 2016; Anderson Jr, 1987)

(cx, cy) = {max
p

(V+ | (vx)p |),max
p

(V+ | (vy)p |)}, (10)

where the wave speed is V = ((K + 4G/3)/ρ)
1
2 , K and G are the bulk and shear moduli respectively, ρ is

the material density, (vx)p and (vy)p are the material point velocity components. ∆t is then restricted by
the CFL condition as followed:

∆t = αmin

(
hx
cx
,
hy
cy

)
, (11)

where α ∈ [0; 1] is the time step multiplier, and hx and hy are the mesh spacings.

Comment # 21 Incomplete sentence on line 359.

Reply # 21 That is correct, sentence on line 359 was completed in the revised manuscript.

Change # 21 (L497-498) In this contribution, a fast and efficient explicit MPM solver is proposed that
considers two variants (e.g., the uGIMPM/cpGIMPM and the CPDI/CPDI2q variants).

2 Referee #2

This manuscript presents a vectorized material point method for MATLAB and quantifies the increase
in computational efficiency gained from using vectorized rather than iterative code. To my knowledge, this
paper provides the only formal analysis of the performance gains from vectorizing MPM code. The presented
vectorization approach could be easily implemented within existing and future MPM models. However, as
already thoroughly noted by Referee #1, many details of the algorithms, setup of simulations, and numerical
analysis are missing. I would like to add the following comments to those already given.

Comment # 1 I found the structure of the paper to be confusing, especially in Section 4, where results
from five test cases are reported. These test cases are all nearly exact reproductions of previously-published
work. The first two test cases the elastic compaction of a column (Section 4.1) and elastic cantilever beam
(Section 4.2) appear to solely serve as benchmark examples for verification of the MPM model, though this
is not clearly stated. The third test case elasto-plastic column collapse (Section 4.3) also appears to serve
as further verification of the model until it is used again in Section 4.4, where the main results of the paper
concerning the computational efficiency gained from vectorization are presented. A fourth test case (collision

14

of two elastic disks) is also presented in 4.4 for further analysis of computational efficiency. The final test
case (elasto-plastic landslide) is then presented in Section 4.5, which seems to serve the dual purpose of
further model verification and a geomechanical application.

Reply # 1 It is true that the structure might be confusing. We focus on the section ”4. Results” and
made our point clearer by adding, as suggested in the following by the referee, a quick introduction to this
section. We think it improves the readability of this section.

Overall, the reorganised section ”4. Results” now reads as:

1. Results

(a) Validation of the solver and numerical efficiency

i. Convergence: elastic compaction under self-weight of a column

ii. Large deformation: the elastic cantilever beam problem

iii. Application: the elasto-plastic slumpin dynamics

(b) Computational performance

i. Iterative and vectorised elasto-plastic collapses

ii. Comparison between Julia and MATLAB

We also clearly state our motivation of the exact reproduction of previously-published works. We think
it is also important to showcase the efficiency of our solver with benchmarks from past studies. However,
we reorganized the subsection in which computational performances are showed, in order to make our point
more obvious to the reader.

Change # 1 (L330-344) In this section, we first demonstrate our MATLAB-based MPM solver to be
efficient in reproducing results from other studies, i.e., the compaction of an elastic column (Coombs et al.,
2020) (e.g., quasi-static analysis), the cantilever beam problem (Sadeghirad et al., 2011) (e.g., large elastic
deformation) and an application to landslide dynamics (Huang et al., 2015) (e.g., elasto-plastic behaviour).
Then, we present both the efficiency and the numerical performances for a selected case, e.g., the elasto-
plastic collapse. We conclude and compare the performances of the solver with respect to the specific case
of an impact of two elastic disks previously implemented in a Julia language environment by (Sinaie et al.,
2017).

Regarding the performance analysis, we investigate the performance gain of the vectorised solver con-
sidering a double arithmetic precision with respect to the total number of material point because of the
following reasons: i) the mesh resolution, i.e., the total number of elements nel, influences the wall-clock
time of the solver by reducing the time step due to the CFL condition hence increasing the total number
of iterations. In addition, ii) the total number of material points np increases the number of operations per
cycle due to an increase of the size of matrices, i.e., the size of the strain-displacement matrix depends on
np and not on nel. Hence, np consistently influences the performance of the solver whereas nel determines
the wall-clock time of the solver. The performance of the solver is addressed through both the number of
floating point operations per second (flops), and by the average number of iteration per second (it/s). The
number of floating point operations per second was manually estimated for each function of the solver.

Comment # 2 The motivation behind most of the test cases is not clear, especially on the first read.
Section 4 would benefit from a short introduction (before 4.1) that outlines what test cases were selected
and for what purpose.

Reply # 2 Thank you for this comment. We agree that the motivation behind most of the test cases
is not clear. Consequently, we have now written two paragraphs (as a preamble) at the very begining of
the section ”4. Results” in which we clearly state our motivations of i) reproducing efficiently results from
other studies and ii) analyse the computational performance of our solver for two selected cases, i.e., the
elasto-plastic granular collapse and the elastic disk impact problem.

15

Change # 2 See Change # 1

Comment # 3 It may help readability if the test cases for elasto-plastic column collapse and collision of
two elastic disks are separated into an entirely different section from the rest of the examples, as these two test
cases provide the main results in the paper regarding the computational efficiency gained by vectorization.

Reply # 3 It is a good suggestion and it should even significantly help the readability of the manuscript.
We created a new subsection ”4.2 Computational performance” composed of two subsubsections, namely
”4.2.1 Iterative and vectorised elasto-plastic collapses” and ”4.2.2 Comparison between Julia and MATLAB”.

Change # 3 See Reply # 1 and Change # 1

Comment # 4 Many of the statements regarding the effectiveness of cpGIMPM vs. uGIMPM vs. CPDI
are misleading or lacking in detail:

Reply # 4 We agree with the Referee that the statements related to the effectiveness of uGIMPM,
cpGIMPM and CPDI are misleading or lacking in detail. Therefore, we created a new subsection ”2.2
Domain-based material point method variants”, which summarises the major difference between GIMPM
and CPDI (the way the material points domain is updated). We also present the different domain updating
methods for GIMPM and we more clearly highlight the suitability of each of these domains updating methods
based on the investigation of Coombs, WM, Augarde, CE, Brennan, AJ, Brown, MJ, Charlton, TJ, Knappett,
JA, Ghaffari Motlagh, Y & Wang, L (2020). On Lagrangian mechanics and the implicit material point
method for large deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering
358: 112622, and, Wang, L., Coombs, W.M. , Augarde, C.E. , Cortis, M. Charlton, T.J. , Brown, M.J.
Knappett, J., Brennan, A. Davidson, C. Richards, D. & Blake, A. (2019). On the use of domain-based
material point methods for problems involving large distortion. Computer Methods in Applied Mechanics
and Engineering 355: 1003-1025. Finally, we explicitly state at the end of new 2.2 subsection that the
domain-based method as well as the domain update method should be carefully chosen accordingly to the
deformation mode expected for a given case. Moreover, the domain update method is clearly stated in each
case presented in the section ”5. Results”. We believe that now this additional 2.2 subsection provides a
better overview of both domain-based method and domain updating method.

Change # 4 See Change # 5 for the first referee

Comment # 5 Line 288: in what way did domain updates based on the deformation gradient result in
failure?

Reply # 5 The domain updates based on the deformation gradient showed some flaws of GIMP-based
implementation, i.e. the domain artificially shrinks under large rotation, which was already demonstrated
in Fig.4 in Coombs, WM, Augarde, CE, Brennan, AJ, Brown, MJ, Charlton, TJ, Knappett, JA, Ghaffari
Motlagh, Y & Wang, L (2020). On Lagrangian mechanics and the implicit material point method for large
deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering 358: 112622. We
now clearly mention the reason why the simulation in which the domain updates based on the deformation
gradient failed for the cantilever beam problem. In addition, we restructured the elasto-plastic collapse.
Hence, we now only mentioned that we performed preliminary analyses to select the most suitable domain
updating method for the cpGIMPM variant.

Change # 5 (L398-399) As indicated in Sadeghirad et al. (2011), the cpGIMPM simulation failed when
using the diagonal components of the deformation gradient to update the material point domain, i.e., the
domain vanishes under large rotations as stated in Coombs et al. (2020).

(L460-464) We conducted preliminary investigations using either uGIMPM or cpGIMPM variants, the
latter with a domain update based either on the determinant of the deformation gradient or on the diagonal

16

components of the stretch part of the deformation gradient. We concluded the uGIMPM was the most
reliable, even tough its suitability is restricted to both simple shear and pure rotation deformation modes
(Coombs et al., 2020).

Comment # 6 Line 301: [The elasto-plastic MPM solver] demonstrates the inability of the MPM variants
based on a domain update (GIMPM or CPDI) to resolve extremely large plastic deformations when relying on
the normal components of the deformation gradient or its stretch part to update the material point domain.
This is too general of a statement. There are many cases in which these domain updates would work well; for
example, if simple shear is minimal and the ”stretch” update is used (Coombs et al 2020). A similarly-flawed
statement is made in the conclusion section (lines 394-396). Better conclusions regarding GIMPM/CPDI
might incorporate the performance gains reported using the vectorization scheme for calculation of the shape
functions and the difference in computational efficiency measured for GIMPM vs CPDI.

Reply # 6 We agree that the statement on Line 301 is too general. As such, we specified our concern
regarding the deformation mode involved avoiding such flawed statements in the revised version of the
manuscript, referring explicitly to the work of Coombs, WM, Augarde, CE, Brennan, AJ, Brown, MJ,
Charlton, TJ, Knappett, JA, Ghaffari Motlagh, Y & Wang, L (2020). On Lagrangian mechanics and
the implicit material point method for large deformation elasto-plasticity. Computer Methods in Applied
Mechanics and Engineering 358: 112622. As suggested by the Referee, we now focus our discussion on the
performance gain of GIMPM and CPDI variants, which is indeed the main point of our contribution.

Change # 6 (L531-550) The computational performance comes from the combined use of the connectivity
array p2N with the built-in function accumarray() to i) accumulate material point contributions to their
associated nodes or, ii) to interpolate the updated nodal solutions to the associated material points. When a
residual performance is resolved, an overall performance gain (e.g., the amount of it/s) of 28 is reported. As
an example, the functions p2nsolve.m and mapN2p.m are 24 and 22 times faster than an iterative algorithm
when the residual performance is achieved. The overall performance gain is in agreement to other vectorised
FEM codes, i.e., OSullivan et al. (2019) reported an overall gain of 25.7 for a optimised continuous Galerkin
finite element code.

An iterative implementation would require multiple nested for-loops and a larger number of operations
on smaller matrices, which increase the number of BLAS calls, thus inducing significant BLAS overheads and
decreasing the overall performance of the solver. This is limited by a vectorised code structure. However and
as showed by the matrix multiplication problem, the L2 cache reuse is the limiting factor and, it ultimately
affects the peak performance of the solver due to these numerous RAM-to-cache communications for larger
matrices. Such problem is serious and, its influence is demonstrated by the delayed response in terms of
performance for the function constitutive.m. However, we also have to mention that the overall residual
performance was resolved only for a limited total number of material points. The performance drop of
the function constitutive.m has never been achieved. Consequently, we suspect an additional decrease of
overall performances of the solver for larger problems.

The overall performance achieved by the solver is higher than expected and, is even higher with respect
to what was reported by Sinaie et al. (2017). We demonstrate that MATLAB is even more efficient than
Julia, i.e., a minimum 2.86 performance gain achieved compared to a similar Julia CPDI2q implementation.
This confirms the efficiency of MATLAB for solid mechanics problems, provided a reasonable amount of
time is spent on the vectorisation of the algorithm.

Comment # 7 Line 305: As already pointed out by Referee #1, it should be noted that the determinant
of the deformation gradient-type GIMPM domain update is problematic for simple compression problems.
Have the authors tried updating the GIMPM domains with the corner scheme from Eqs 35-37 in Coombs et
al (2020)? Perhaps it would be more robust.

Reply # 7 This is a good comment. First, we added a presentation of the suitability of domain updating
methods in GIMPM for the possible deformation modes, directly referring to the work of Coombs, WM,
Augarde, CE, Brennan, AJ, Brown, MJ, Charlton, TJ, Knappett, JA, Ghaffari Motlagh, Y & Wang, L

17

(2020). On Lagrangian mechanics and the implicit material point method for large deformation elasto-
plasticity. Computer Methods in Applied Mechanics and Engineering 358: 112622. This is important and is
lacking up to now. Concerning the investigation of the corner update, we did not have tried to implement it.
We decided to quickly investigate this scheme but we figured out it was necessary to compute additional shape
functions between material points corners and nodes, similarly to the CPDI variant. Our concern comes from
the need to compute these additional quantities, alongside to the shape function relating material points to
their associated nodes. This extra cost is significant, especially when our major concern is computational
performance. We therefore decided not to pursue such investigation for that reason. We discuss this in the
section ”5. Discussion”

Change # 7 (L526-530) We did not selected the domain updating method based on the corners of the
domain as suggested in Coombs et al. (2020). This is because such domain updating method necessitates
to calculate additional shape functions between the corners of the domain of the material point with their
associated nodes. This results in an additional computational cost. Nevertheless, such variant is of interest
and should be addressed as well when the computational performances are not the main concern.

Comment # 8 There does not appear to be any reference to Fig. 1 in the main text. The caption for
Fig. 1 also appears to lack any description of panels B and C.

Reply # 8 Indeed, there was no reference to Fig. 1 in the main text. We added a description of panels B
and C in the figure caption as highlighted by the referee and, we refer now to this Fig. 1 in the main text,
as mentioned in the following reply # 9.

Change # 8 (L81-93) Hence, a typical calculation cycle (see Fig. 1) consists of the three following steps
(Wang et al., 2016a):

1. A Mapping phase, during which properties of the material point (mass, momentum or stress) are
mapped to the nodes.

2. An updated-Lagrangian FEM (UL-FEM) phase, during which the momentum equations are solved on
the nodes of the background mesh and, the solution is explicitly advanced forward in time.

3. A Convection phase, during which i) the nodal solutions are interpolated back to the material points,
and ii) the properties of the material point are updated.

a) Points to Nodes Projection

t t+∆t

c) Nodes to Points Interpolationb) Nodal solution

Figure 1: Typical calculation cycle of a MPM solver for a homogeneous velocity field, inspired by Dunatunga
and Kamrin (2017). a) The continuum (orange) is discretized into a set of Lagrangian material points (red
dots), at which state variables or properties (e.g., mass, stress, and velocity) are defined. The latter are
mapped to an Eulerian finite element mesh made of nodes (blue square). b) Momentum equations are solved
at the nodes and, the solution is explicitly advanced forward in time. c) The nodal solutions are interpolated
back to the material points and, their properties are updated.

18

Comment # 9 The list of the three steps of a typical MPM cycle at the beginning of Section 3.1 seems
misplaced and is somewhat repetitive of the description of MPM in the previous sections. I suspect this list
should link with Fig. 1 and may be more appropriately located within Section 2.

Reply # 9 We agree with the Referee; this list is misplaced. Consequently, we moved it in the section
”2. Overview of the Material Point Method (MPM)” within the subsection ”2.1 A Material Point Method
implementation” and, we directly refer to this list with Fig. 1.

Change # 9 See Change # 8

Comment # 10 Fig 2. In the caption, GIMP should be changed to GIMPM to match the rest of the
paper. The authors have already fixed the error in Fig. 2b regarding which nodes are associated with the
GIMPM domain.

Reply # 10 Right, we have made the change in the revised paper.

Change # 10 -

Comment # 11 Line 39: which numerical considerations from MILAMIN are used? This is not specifically
addressed.

Reply # 11 Due to the comment of the first referee concerning the lack of focus in the introduction
section, we partially have rewritten it. We now specify in the section ”1. Introduction” the considerations
we selected (from MILAMIN but also from the works of Birds et al, 2017 and OSullivan et al, 2019), which
are the use of the function accumarray() and vectorisation activities mainly to reduce the number of BLAS
calls.

Change # 11 (L64-70) These techniques include the use of accumarray(), optimal RAM-to-cache com-
munication, minimum BLAS calls and the use of native MATLAB functions. We did not consider the blocking
technique initially proposed by Dabrowski et al. (2008) since an explicit formulation in MPM excludes the
global stiffness matrix assembly procedure. The performance gain mainly comes from the vectorisation of
the algorithm, whereas blocking has a less significant impact over the performance gain, as stated by Bird
et al. (2017).

Comment # 12 several citations are missing parentheses (e.g. lines 52 and 84).

Reply # 12 We have fixed these numerous citation problems in the revised paper.

Change # 12 -

19

References

Acosta, J. L. G., Vardon, P. J., Remmerswaal, G., and Hicks, M. A.: An investigation of stress inaccuracies
and proposed solution in the material point method, Computational Mechanics, 65, 555–581, 2020.

Anderson Jr, C. E.: An overview of the theory of hydrocodes, International journal of impact engineering,
5, 33–59, 1987.

Bandara, S., Ferrari, A., and Laloui, L.: Modelling landslides in unsaturated slopes subjected to rainfall
infiltration using material point method, International Journal for Numerical and Analytical Methods in
Geomechanics, 40, 1358–1380, 2016.

Bardenhagen, S. G. and Kober, E. M.: The generalized interpolation material point method, Computer
Modeling in Engineering and Sciences, 5, 477–496, 2004.

Beuth, L., Benz, T., Vermeer, P. A., and Wieckowski, Z.: Large deformation analysis using a quasi-static
material point method, Journal of Theoretical and Applied Mechanics, 38, 45–60, 2008.

Bird, R. E., Coombs, W. M., and Giani, S.: Fast native-MATLAB stiffness assembly for SIPG linear elasticity,
Computers & Mathematics with Applications, 74, 3209–3230, 2017.

Charlton, T., Coombs, W., and Augarde, C.: iGIMP: An implicit generalised interpolation material point
method for large deformations, Computers & Structures, 190, 108–125, 2017.

Coombs, W. M. and Augarde, C. E.: AMPLE: A Material Point Learning Environment, Advances in Engi-
neering Software, 139, 102 748, 2020.

Coombs, W. M., Charlton, T. J., Cortis, M., and Augarde, C. E.: Overcoming volumetric locking in material
point methods, Computer Methods in Applied Mechanics and Engineering, 333, 1–21, 2018.

Coombs, W. M., Augarde, C. E., Brennan, A. J., Brown, M. J., Charlton, T. J., Knappett, J. A., Mot-
lagh, Y. G., and Wang, L.: On Lagrangian mechanics and the implicit material point method for large
deformation elasto-plasticity, Computer Methods in Applied Mechanics and Engineering, 358, 112 622,
2020.

Cortis, M., Coombs, W., Augarde, C., Brown, M., Brennan, A., and Robinson, S.: Imposition of essen-
tial boundary conditions in the material point method, International Journal for Numerical Methods in
Engineering, 113, 130–152, 2018.

Dabrowski, M., Krotkiewski, M., and Schmid, D.: MILAMIN: MATLAB-based finite element method solver
for large problems, Geochemistry, Geophysics, Geosystems, 9, 2008.

Davis, T. A.: Suite Sparse, URL https://people.engr.tamu.edu/davis/research.html, 2013.

de Souza Neto, E. A., Peric, D., and Owen, D. R.: Computational methods for plasticity: theory and
applications, John Wiley & Sons, 2011.

de Vaucorbeil, A., Nguyen, V., and Hutchinson, C.: A Total-Lagrangian Material Point Method for solid
mechanics problems involving large deformations, 2020.

Dunatunga, S. and Kamrin, K.: Continuum modeling of projectile impact and penetration in dry granular
media, Journal of the Mechanics and Physics of Solids, 100, 45–60, 2017.

Gaume, J., Gast, T., Teran, J., van Herwijnen, A., and Jiang, C.: Dynamic anticrack propagation in snow,
Nature communications, 9, 1–10, 2018.

Guilkey, J. E. and Weiss, J. A.: Implicit time integration for the material point method: Quantitative and
algorithmic comparisons with the finite element method, International Journal for Numerical Methods in
Engineering, 57, 1323–1338, 2003.

20

Huang, P., Li, S.-l., Guo, H., and Hao, Z.-m.: Large deformation failure analysis of the soil slope based on
the material point method, computational Geosciences, 19, 951–963, 2015.

Iaconeta, I., Larese, A., Rossi, R., and Guo, Z.: Comparison of a material point method and a galerkin
meshfree method for the simulation of cohesive-frictional materials, Materials, 10, 1150, 2017.

Moler, C.: MATLAB Incorporates LAPACK, URL https://ch.mathworks.com/de/company/newsletters/articles/matlab-incorporates-lapack.html?refresh=true,
2000.

Ni, R. and Zhang, X.: A precise critical time step formula for the explicit material point method, International
Journal for Numerical Methods in Engineering, 121, 4989–5016, 2020.

OSullivan, S., Bird, R. E., Coombs, W. M., and Giani, S.: Rapid non-linear finite element analysis of
continuous and discontinuous galerkin methods in matlab, Computers & Mathematics with Applications,
78, 3007–3026, 2019.

Sadeghirad, A., Brannon, R. M., and Burghardt, J.: A convected particle domain interpolation technique
to extend applicability of the material point method for problems involving massive deformations, Inter-
national Journal for numerical methods in Engineering, 86, 1435–1456, 2011.

Sadeghirad, A., Brannon, R., and Guilkey, J.: Second-order convected particle domain interpolation (CPDI2)
with enrichment for weak discontinuities at material interfaces, International Journal for numerical meth-
ods in Engineering, 95, 928–952, 2013.

Simpson, G.: Practical finite element modeling in earth science using matlab, Wiley Online Library, 2017.

Sinaie, S., Nguyen, V. P., Nguyen, C. T., and Bordas, S.: Programming the material point method in Julia,
Advances in Engineering Software, 105, 17–29, 2017.

Vermeer, P. A. and De Borst, R.: Non-associated plasticity for soils, concrete and rock, HERON, 29 (3),
1984, 1984.

Wallstedt, P. C. and Guilkey, J.: An evaluation of explicit time integration schemes for use with the gener-
alized interpolation material point method, Journal of Computational Physics, 227, 9628–9642, 2008.

Wang, B., Hicks, M., and Vardon, P.: Slope failure analysis using the random material point method,
Géotechnique Letters, 6, 113–118, 2016a.

Wang, B., Vardon, P., and Hicks, M.: Investigation of retrogressive and progressive slope failure mechanisms
using the material point method, Computers and Geotechnics, 78, 88–98, 2016b.

Wang, B., Vardon, P. J., Hicks, M. A., and Chen, Z.: Development of an implicit material point method for
geotechnical applications, Computers and Geotechnics, 71, 159–167, 2016c.

Wang, L., Coombs, W. M., Augarde, C. E., Cortis, M., Charlton, T., Brown, M., Knappett, J., Brennan,
A., Davidson, C., Richards, D., et al.: On the use of domain-based material point methods for problems
involving large distortion, Computer Methods in Applied Mechanics and Engineering, 355, 1003–1025,
2019.

Zhang, X., Chen, Z., and Liu, Y.: The material point method: a continuum-based particle method for
extreme loading cases, Academic Press, 2016.

21

Fast and efficient MATLAB-based MPM solver (fMPMM-solver
v1.0

:::
.1)

Emmanuel Wyser1, Yury Alkhimenkov1,2,3, Michel Jaboyedoff1,2, and Yury Y. Podladchikov1,2,3

1Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
2Swiss Geocomputing Centre, University of Lausanne, 1015 Lausanne, Switzerland
3Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia

Correspondence: Emmanuel Wyser (manuwyser@gmail.com)

Abstract. In this contribution, we
:::
We present an efficient MATLAB-based implementation of the material point method (MPM)

and its most recent variants.

MPM has gained popularity over the last decade, especially for problems in solid mechanics in which large deformations

are involved, i.e., cantilever beam problems, granular collapses
:
, and even large-scale snow avalanches. Although its numerical

accuracy is lower than that of the widely accepted finite element method (FEM), MPM has been proven useful in overcoming5

some of the limitations of FEM, such as excessive mesh distortions.

We demonstrate that MATLAB is an efficient high-level language for MPM implementations that solve elasto-dynamic and

elasto-plastic problems, such as the cantilever beam and granular collapses, .
:::
We

::::::::
accelerate

:::
the

::::::::::::::
MATLAB-based

:::::::::::::
implementation

::
of

:::::
MPM

::::::
method

:::
by

:::::
using

:::
the

::::::::
numerical

:::::::::
techniques

:::::::
recently

:::::::::
developed

:::
for

::::
FEM

:::::::::::
optimization

::
in

:::::::::
MATLAB.

::::::
These

:::::::::
techniques

::::::
include

:::::::::::
vectorisation,

:::
the

:::::
usage

::
of

:::::
native

:::::::::
MATLAB

::::::::
functions,

:::
the

:::::::::::
maintenance

::
of

:::::::
optimal

::::::::::::
RAM-to-cache

:::::::::::::
communication,

::::
and10

:::::
others.

::::
We

:::::::
validate

:::
our

:::::::
in-house

:::::
code

::::
with

:::::::
classical

:::::
MPM

:::::::::::
benchmarks

::::::::
including

::
i)

:::
the

::::::
elastic

:::::::
collapse

:::::
under

:::::::::
self-weight

:::
of

:
a
:::::::
column,

::
ii)

:::
the

::::::
elastic

::::::::
cantilever

:::::
beam

::::::::
problem,

:::
and

:::
iii)

:::::::
existing

:::::::::::
experimental

:::
and

:::::::::
numerical

::::::
results,

::::
i.e.,

:::::::
granular

::::::::
collapses

:::
and

::::::::
slumping

:::::::::
mechanics

:
respectively. We report a computational efficiency factor of 20 for a vectorized

:::::::::::
performance

::::
gain

::
by

::
a

:::::
factor

::
of

:::
28

:::
for

::
a
:::::::::
vectorised code compared to a classical iterative version. In addition, the numerical efficiency

:::
The

:::::::::::
computational

:::::::::::
performance

:
of the solver surpassed

::
is

::
at

::::
least

:::
2.8

:::::
times

::::::
greater

::::
than those of previously reported MPM imple-15

mentations in Julia , ad minima 2.5 times faster under a similar computational architecture.

1 Introduction

The material point method (MPM), developed in the 1990s (Sulsky et al. (1994))
::::::::::::::::
(Sulsky et al., 1994), is an extension of a

particle-in-cell (PIC) method to solve solid mechanics problems involving massive deformations. It is an alternative to La-

grangian approaches (updated Lagrangian finite element method) that is well suited to problems with large deformations20

involved in geomechanics, granular mechanics or even snow avalanche mechanics. Wang et al. (2016c); Vardon et al. (2017)

:::::::::::::::::::::::::::::::::
Vardon et al. (2017); Wang et al. (2016c) investigated elasto-plastic problems of strain localization of slumping processes rely-

ing on an explicit or implicit MPM formulation. Similarly, Bandara et al. (2016); Bandara and Soga (2015)
:::
Bandara et al. (2016); Bandara and Soga (2015); Abe et al. (2014)

proposed a poro-elasto-plastic MPM formulation to study levee failures induced by pore pressure increases. Additionally,

1

Dunatunga and Kamrin (2017, 2015); Więckowski (2004); Bardenhagen et al. (2000)
:::
Baumgarten and Kamrin (2019); Dunatunga and Kamrin (2017, 2015); Więckowski (2004)25

proposed a general numerical framework of granular mechanics, i.e., silo discharge or granular collapses. More recently,

Gaume et al. (2018)
::::::::::::::::::::::
Gaume et al. (2019, 2018) proposed a unified numerical model in the finite deformation framework to

study the whole process, i.e., from failure to propagation, of slab avalanche releases.

The core idea of MPM is to discretize a continuum with material points carrying state variables (e.g., mass, stress, and

velocity). The latter are mapped (accumulated) to the nodes of a regular or irregular background FE mesh, on which an30

Eulerian solution to the momentum balance equation is explicitly advanced forward in time.

Nodal solutions are then mapped back to the material points, and the mesh can be discarded. The mapping from material

points to nodes is ensured using the standard FE hat function that spans over an entire element (Bardenhagen and Kober (2004)

)
:::::::::::::::::::::::::
(Bardenhagen and Kober, 2004). This avoids a common flaw of FEM, which is an excessive mesh distortion. We will refer to

this first variant as the standard material point method (sMPM).35

MATLAB© allows a rapid code prototyping but
:
, at the expense of significantly lower computational performance than C

or C++. However, Sinaie et al. (2017) recently demonstrated that an MPM implementation in Julia offers significantly higher

performances when compared to a similar implementation in MATLAB
:::::::::::
performances

::::
than

::::::::
compiled

::::::::
language. An efficient

MATLAB implementation of FEM called MILAMIN (Million a Minute) was proposed by Dabrowski et al. (2008) that was ca-

pable of solving two-dimensional
:::::
linear problems with one million unknowns in one minute on a modern computer with a rea-40

sonable architecture.
:::
The

:::::::::
efficiency

::
of

:::
the

::::::::
algorithm

:::
lies

:::
on

:
a
:::::::::
combined

:::
use

::
of

:::::::::
vectorised

::::::::::
calculations

::::
with

:
a
::::::::
technique

::::::
called

::::::::
blocking.

:::::::::
MATLAB

::::
uses

:::
the

::::::
Linear

::::::
Algebra

::::::::::
PACKages

::::::::::
(LAPACK),

::::::
written

::
in

::::::
Fortran,

::
to
:::::::
perform

::::::::::::
mathematical

::::::::
operations

:::
by

:::::
calling

:::::
Basic

::::::
Linear

:::::::
Algebra

::::::::::
Subroutines

::::::
(BLAS,

::::::::::
Moler 2000

:
).
::::
The

::::
latter

::::::
results

::
in

::
an

::::::::
overhead

::::
each

::::
time

:
a
::::::
BLAS

:::
call

::
is

:::::
made.

::::::
Hence,

:::::::::::
mathematical

:::::::::
operations

::::
over

:
a
:::::
large

::::::
number

:::
of

::::
small

::::::::
matrices

::::::
should

::
be

:::::::
avoided

::::
and,

:::::::::
operations

::
on

:::::
fewer

::::
and

:::::
larger

:::::::
matrices

::::::::
preferred.

:::::
This

::
is

:
a
::::::
typical

:::::::::
bottleneck

:::
in

:::::
FEM

:::::
when

::::
local

::::::::
stiffness

:::::::
matrices

:::
are

:::::::::
assembled

::::::
during

:::
the

::::::::::
integration45

::::
point

::::
loop

::::::
within

:::
the

::::::
global

:::::::
stiffness

:::::::
matrix.

::::::::::::::::::::
Dabrowski et al. (2008)

:::::::
proposed

:::
an

:::::::::
algorithm,

::
in

::::::
which

:
a
:::::

loop
:::::::::
reordering

::
is

::::::::
combined

::::
with

:::::::::
operations

::
on

::::::
blocks

::
of

::::::::
elements

::
to

:::::::
address

:::
this

::::::::::
bottleneck.

::::::::
However,

::::
data

:::::::
required

:::
for

:
a
::::::::::
calculation

:::::
within

::
a

::::
block

::::::
should

:::::::
entirely

::::::
resides

::
in

:::
the

:::::
CPUs

::::::
cache.

:::::::::
Otherwise,

:::
an

::::::::
additional

::::
time

::
is

:::::
spent

::
on

:::
the

:::::::::::::
RAM-to-cache

:::::::::::::
communication

:::
and

:::
the

:::::::::::
performance

:::::::::
decreases.

:::::::::
Therefore,

::
an

:::::::
optimal

:::::
block

::::
size

:::::
exists

::::
and,

::
is

:::::
solely

:::::::
defined

::
by

:::
the

:::::
CPU

:::::::::::
architecture.

::::
This

::::::::
technique

::
of

:::::::::::
vectorisation

::::::::
combined

::::
with

::::::::
blocking

::::::::::
significantly

::::::::
increases

:::
the

:::::::::::
performance.50

::::
More

::::::::
recently,

::::::::::::::
Bird et al. (2017)

::::::::
extended

:::
the

::::::::
vectorised

::::
and

::::::
blocked

:::::::::
algorithm

::::::::
presented

::
by

::::::::::::::::::::
Dabrowski et al. (2008)

::
to

:::
the

:::::::::
calculation

::
of

:::
the

:::::
global

:::::::
stiffness

::::::
matrix

:::
for

::::::::::::
Discontinuous

:::::::
Galerkin

:::::
FEM

:::::::::
considering

:::::
linear

::::::
elastic

::::::::
problems

:::::
using

:::
only

::::::
native

::::::::
MATLAB

:::::::::
functions.

::::::
Indeed,

:::
the

:::::::::::
optimisation

:::::::
strategy

::::::
chosen

::
by

::::::::::::::::::::
Dabrowski et al. (2008)

:::
also

:::::
relied

:::
on

:::::::::
non-native

:::::::::
MATLAB

::::::::
functions,

::::
e.g.,

:::::::::
sparse2

:
of

:::
the

:::::::::::
SuiteSparse

:::::::
package

:::::::::::
(Davis, 2013)

:
.
::
In

:::::::::
particular,

:::::::::::::::
Bird et al. (2017)

::::::
showed

:::
the

::::::::::
importance

::
of

::::::
storing

::::::
vectors

::
in

:
a
::::::::::::
column-major

:::::
form

:::::
during

::::::::::
calculation.

::::::::::::
Mathematical

:::::::::
operations

:::
are

::::::::
performed

:::
in

::::::::
MATLAB

:::
by

::::::
calling55

::::::::
LAPACK,

::::::
written

:::
in

::::::::::
FORTRAN,

::
in

:::::
which

::::::
arrays

:::
are

:::::
stored

::
in

::::::::::::
column-major

:::::
order

:::::
form.

::::::
Hence,

:::::::::::
element-wise

::::::::::::
multiplication

::
of

:::::
arrays

::
in
::::::::::::

column-major
:::::

form
::
is

:::::::::::
significantly

:::::
faster

:::
and

:::::
thus,

::::::
vectors

::
in

::::::::::::
column-major

:::::
form

:::
are

::::::::::::
recommended,

:::::::::
whenever

:::::::
possible.

:::::::::::::::
Bird et al. (2017)

::::::::
concluded

::::
that

:::::::::::
vectorisation

:::::
alone

::::::
results

::
in

::
a

::::::::::
performance

::::::::
increase

:::::::
between

::::
13.7

::::
and

::
23

::::::
times,

::::
while

::::::::
blocking

::::
only

:::::::::
improved

::::::::::
vectorisation

:::
by

:::
an

::::::::
additional

:::
1.8

::::::
times.

::::::::::::::::::::
O’Sullivan et al. (2019)

::::::
recently

::::::::
extended

:::
the

::::::
works

2

::
of

::::::::::::::::::::::::::::::::::
Bird et al. (2017); Dabrowski et al. (2008)

::
to

::::::::
optimised

:::::::::::
elasto-plastic

:::::
codes

:::
for

::::::::::
Continuous

:::::::
Galerkin

:::::
(CG)

::
or

::::::::::::
Discontinuous60

:::::::
Galerkin

:::::
(DG)

:::::::
methods.

::
In

:::::::::
particular,

::::
they

:::::::
proposed

:::
an

::::::
efficient

::::::
native

::::::::
MATLAB

::::::::
function,

:::
i.e.,

:::::::::::::::
accumarray(),

::
to

:::::::::
efficiently

:::::::
assemble

:::
the

:::::::
internal

::::
force

::::::
vector.

::::
Such

:::::::
function

:::::::::
constructs

::
an

:::::
array

::
by

::::::::::::
accumulation.

:::::
More

::::::::
generally,

::::::::::::::::::::
O’Sullivan et al. (2019)

:::::::
reported

:
a
:::::::::::
performance

::::
gain

::
of

:::::
x25.7

:::::
when

::::
using

:::
an

::::::::
optimised

:::
CG

:::::
code

::::::
instead

::
of

::
an

:::::::::
equivalent

::::::::::::
non-optimised

:::::
code.

:

Since MPM and FEM share common grounds, we aim at increasing the performances of MATLAB up to what was reported

by Sinaie et al. (2017) , combining
::::
using

::::
Julia

::::::::
language

:::::::::::
environment.

::
In

::::::::
principal,

:::::
Julia

::
is

::::::::::
significantly

:::::
faster

::::
than

:::::::::
MATLAB65

::
for

::
a
:::::
MPM

::::::::::::::
implementation.

:::
We

::::::::
combine the most recent and accurate versions of MPM: the explicit GIMPM (generalized

interpolation material point method , Bardenhagen and Kober (2004)
::::::::
(GIMPM,

::::::::::::::::::::::::
Bardenhagen and Kober 2004) and the explicit

convected particle domain interpolation with second-order quadrilateral domains (CPDI2q , Sadeghirad et al. (2013, 2011)
:::
and

:::::
CPDI,

:::::::::::::::::::::::
Sadeghirad et al. 2013, 2011) variants with some of the numerical considerations from the FEM solver MILAMIN

::::::::
techniques

::::::::
developed

::::::
during

:::
the

:::
last

:::::::
decade

::
of

:::::
FEM

::::::::::
optimisation

::
in

::::::::::
MATLAB.

:::::
These

:::::::::
techniques

:::::::
include

:::
the

:::
use

::
of

:::::::::::::::
accumarray()

:
,70

::::::
optimal

:::::::::::::
RAM-to-cache

:::::::::::::
communication,

::::::::
minimum

::::::
BLAS

::::
calls

:::
and

:::
the

::::
use

::
of

:::::
native

:::::::::
MATLAB

::::::::
functions.

:::
We

:::
did

:::
not

::::::::
consider

::
the

::::::::
blocking

::::::::
technique

:::::::
initially

::::::::
proposed

::
by

::::::::::::::::::::
Dabrowski et al. (2008)

::::
since

::
an

:::::::
explicit

::::::::::
formulation

::
in

:::::
MPM

:::::::
excludes

:::
the

::::::
global

:::::::
stiffness

::::::
matrix

::::::::
assembly

:::::::::
procedure.

::::
The

::::::::::
performance

::::
gain

:::::::
mainly

:::::
comes

:::::
from

:::
the

:::::::::::
vectorisation

::
of

::::
the

:::::::::
algorithm,

:::::::
whereas

:::::::
blocking

:::
has

:
a
::::
less

:::::::::
significant

::::::
impact

:::
over

:::
the

:::::::::::
performance

::::
gain,

::
as

:::::
stated

:::
by

::::::::::::::
Bird et al. (2017)

:
.
:::
The

:::::::::::
vectorisation

::
of

:::::::::
MATLAB

:::::::
functions

::
is
::::

also
::::::

crucial
::::

for
:
a
:::::::
straight

::::::::
transpose

::
of

:::
the

::::::
solver

::
to

::
a
:::::
more

:::::::
efficient

::::::::
language,

:::::
such

::
as

:::
the

::::::::
C-CUDA

:::::::::
language,75

:::::
which

::::::
allows

:::
the

::::::
parallel

::::::::
execution

::
of

::::::::::::
computational

:::::::
kernels

::
of

:::::::
graphics

:::::::::
processing

::::
units

:::::::
(GPUs).

In this manuscript
:::::::::
contribution, we present an implementation of an efficiently vectorized

::::::::
vectorised

:
explicit MPM solver

(fMPMM-solver, which v1.0
:
.1
:

is available for download from Bitbucket at: https://bitbucket.org/ewyser/fmpmm-solver/src/

master/), taking advantage of vectorization
::::::::::
vectorisation

:
capabilities of MATLAB©, i.e. , extensive use of built-in functions

:
.

:::
We

:::::::::
extensively

:::
use

:::::
native

::::::::
functions

::
of

::::::::::
MATLAB© such as repmat(), reshape(), sum() , sparse() or accumarray(80

). We compare our results with i)
:::::::
validate

:::
our

:::::::
in-house

:::::
code

::::
with

:
classical MPM benchmarks , i.e.,

::::::::
including

::
i)

:
the elastic

collapse under self-weight , and ii) validate our in-house code with
::
of

:
a
:::::::
column,

::
ii)

:::
the

::::::
elastic

:::::::::
cantilever

::::
beam

::::::::
problem,

::::
and

::
iii)

:
existing experimental results, i.e., granular collapses . We conclude by showcasing examples of applications to landslide

mechanics
:::
and

:::::::::
slumping

:::::::::
mechanics.

::::
We

::::::::::
demonstrate

:::
the

:::::::::::::
computational

::::::::
efficiency

:::
of

:
a
:::::::::

vectorised
::::::::::::::

implementation
::::
over

:::
an

::::::
iterative

::::
one

:::
for

:::
the

:::::
case

::
of

:::
an

:::::::::::
elasto-plastic

:::::::
collapse

:::
of

:
a
:::::::
column.

::::
We

:::::::
compare

::::
the

:::::::::::
performances

:::
of

::::
Julia

::::
and

:::::::::
MATLAB85

:::::::
language

::::::::::::
environments

::
for

:::
the

::::::::
collision

::
of

:::
two

::::::
elastic

::::
discs

::::::::
problem.

2 Overview of the Material Point Method (MPM)

2.1 A Material Point Method implementation

The material point method (MPM), originally proposed by Sulsky et al. (1995, 1994) in an explicit format
::::::::::
formulation, is an

extension of the particle-in-cell (PIC) method.90

The key idea is to solve the weak form of the momentum balance equation on an
:
a FE mesh while state variables (e.g.,

stress, velocity or mass) are stored at Lagrangian points discretizing the continuum, i.e., the material points, which can move

3

https://bitbucket.org/ewyser/fmpmm-solver/src/master/
https://bitbucket.org/ewyser/fmpmm-solver/src/master/
https://bitbucket.org/ewyser/fmpmm-solver/src/master/

according to the deformation of the grid Dunatunga and Kamrin (2017)
:::::::::::::::::::::::::
(Dunatunga and Kamrin, 2017). MPM could be re-

garded as a finite element solver in which integration points (material points) are allowed to move (Guilkey and Weiss (2003)

)
::::::::::::::::::::::
(Guilkey and Weiss, 2003) and are thus not always located at the Gauss-Legendre location within an element, resulting in95

higher quadrature errors and poorer integration estimates, especially when using low-order basis functions Steffen et al. (2008a); ?

.
:::::::::::::::::::
(Steffen et al., 2008a, b)

:
.

:
A
::::::
typical

::::::::::
calculation

::::
cycle

::::
(see

::::
Fig.

::
1)

:::::::
consists

::
of

:::
the

::::
three

:::::::::
following

::::
steps

:::::::::::::::::
(Wang et al., 2016a):

:

1.
:
A
::::::::
Mapping

::::::
phase,

:::::
during

::::::
which

::::::::
properties

::
of
:::
the

:::::::
material

:::::
point

::::::
(mass,

:::::::::
momentum

:::
or

:::::
stress)

:::
are

:::::::
mapped

::
to

:::
the

::::::
nodes.

2.
::
An

:::::::::::::::::
updated-Lagrangian

:::::
FEM

:::::::::
(UL-FEM)

::::::
phase,

::::::
during

:::::
which

:::
the

::::::::::
momentum

::::::::
equations

:::
are

::::::
solved

::
on

:::
the

:::::
nodes

:::
of

:::
the100

:::::::::
background

:::::
mesh

::::
and,

:::
the

:::::::
solution

::
is

::::::::
explicitly

::::::::
advanced

:::::::
forward

::
in

::::
time.

:

3.
:
A
::::::::::
Convection

:::::
phase,

::::::
during

:::::
which

::
i)

:::
the

:::::
nodal

:::::::
solutions

:::
are

::::::::::
interpolated

::::
back

::
to

:::
the

:::::::
material

::::::
points,

:::
and

::
ii)

:::
the

:::::::::
properties

::
of

:::
the

:::::::
material

::::
point

:::
are

::::::::
updated.

a) Points to Nodes Projection

t t+∆t

c) Nodes to Points Interpolationb) Nodal solution

Figure 1. Typical calculation cycle of an a
:

MPM solver for an a
:

homogeneous velocity field, inspired by Dunatunga and Kamrin (2017).

:
a)
:

The continuum (orange) is discretized into a set of Lagrangian material points (red dots), at which state variables or properties (e.g.,

mass, stress, and velocity) are defined. The latter are mapped to an Eulerian finite element mesh made of nodes (blue square).
::
b)

:::::::::
Momentum

:::::::
equations

:::
are

:::::
solved

:
at
:::
the

:::::
nodes

:::
and,

:::
the

::::::
solution

::
is

:::::::
explicitly

:::::::
advanced

::::::
forward

::
in

::::
time.

::
c)

:::
The

:::::
nodal

:::::::
solutions

::
are

:::::::::
interpolated

::::
back

::
to

:::
the

::::::
material

:::::
points

:::
and,

::::
their

::::::::
properties

::
are

:::::::
updated.

Since the 1990’s, several variants were introduced to resolve a number of numerical issues. The generalized interpolation

material point method (GIMPM) was first presented by Bardenhagen and Kober (2004)and .
:::::
They proposed a generalization of105

the basis and gradient functions that were convoluted with a characteristic domain function of the material point. A major flaw

in sMPM is the lack of continuity of the gradient basis function, resulting in spurious oscillations of internal forces as soon as

a material point crosses an element boundary while entering into its neighbour. This is referred to as cell-crossing instabilities

due to the C0 continuity of the gradient basis functions , and it
:::
used

::
in

:::::::
sMPM.

::::
Such

:::::
issue is minimized by the GIMPM variant .

This variant allows the material point’s domain to deform (cpGIMPM) or not (uGIMPM) according to its deformation gradient110

tensor (see Coombs et al. (2020)). Hence,
::::::::::::::::
(Acosta et al., 2020)

:
.

4

GIMPM is categorized as a domain-based material point method, unlike the later development of the B-spline material point

method (BSMPM, see Gaume et al. (2018); ?); Steffen et al. (2008a)
::
e.g.

:::
de Koster et al. 2020; Gan et al. 2018; Gaume et al. 2018; Stomakhin et al. 2013

) which cures cell-crossing instabilities using B-spline functions as basis functions. Whereas in sMPM only nodes belonging

to an element contribute to a given material point, GIMPM requires an extended nodal connectivity, i.e., the nodes of the115

element enclosing the material point and the nodes belonging to the adjacent elements (see Fig. 2). Last
::::
More

:::::::
recently, the con-

vected particle domain interpolation proposed by Sadeghirad et al. (2013, 2011) accounts for the deformation and the rotation

of the material point’s domain, the latter being considered either as a deforming parallelogram (CPDI) or as a deforming

quadrilateral (
:::::
(CPDI

::::
and

::
its

:::::
most

:::::
recent

:::::::::::
development CPDI2q) . These variants require some additional considerations during

the vectorization task
:::
has

::::
been

::::::::
proposed

::
by

:::::::::::::::::::::::::
Sadeghirad et al. (2013, 2011).

a) sMPM b) GIMPM

p2N = {6, 7, 10, 11} p2N = {1, 2, 3, 5, 6, 7, 9, 10, 11}

1

2

3

5 9

p2e = {5} p2e = {1, 2, 4, 5} c2e = {1, 5, 2}

c2N = {1, 2, 3, 5, 6, 7, 10, 11}

c) CPDI2q

1

2

3

5

Figure 2. Nodal connectivities of a) standard MPMand
:
, b) GIMP

::::::
GIMPM

:::
and

::
c)

::::::
CPDI2q

:
variants. The material point’s location is marked

by the blue cross. Note that for sMPM (and similarly BSMPM) the particle domain does not exist, unlike for GIMP
::::::
GIMPM

::
or

::::::
CPDI2q

:
(the

blue square enclosing the material point). Nodes associated with the material point are denoted by filled blue squares, and the element number

appears in green in the center
::::
centre

:
of the element. The

:::
For

:::::
sMPM

:::
and

:::::::
GIMPM,

:::
the connectivity array between the material point and the

element is p2e
::
and, the array between the element

::::::
material

::::
point and its associated nodes is e2N and

:::
p2N

:
.
:::
For

:::::::
CPDI2q, the

:::::::::
connectivity

array between the
:::::
corners

:::::
(filled

:::
red

::::::
circles)

::
of

:::
the

::::::::::
quadrilateral

::::::
domain

::
of

:::
the material point and its

::
the

::::::
element

::
is
::::
c2e

:::
and,

::
the

:::::
array

::::::
between

:::
the

:::::
corners

:::
and

::::
their

:
associated nodes is p2N

:::
c2N.

120

We choose the explicit GIMPM variant with the modified update stress last scheme (MUSL, see Nairn (2003); Bardenhagen

et al. (2000) for a detailed discussion), i.e., the stress of material point is updated after the nodal solutions are obtained. The

updated momentum of the material point is then mapped back a second time to the nodes in order to obtain an updated nodal

velocity, further used to calculate gradient
::::::::
derivative terms such as the strains or the deformation gradient of the material point.

The explicit format
:::::::::
formulation

:
also implies the well-known restriction on the time step, which is limited by the Courant-125

Friedrich-Lewy (CFL) condition to ensure numerical stability. The domain update is based on the diagonal components of

the stretch tensor of the material point (Charlton et al. (2017)), which ensures optimal convergence properties according to

Coombs et al. (2020).

Additionally, we implemented a CPDI/CPDI2q version (in an explicit and quasi-static implicit format
::::::::::
formulation) of the

solver. However, in this paper, we do not present the theoretical background of the CPDI variant nor the implicit imple-130

5

mentation of an
:
a
:
MPM-based solver, and therefore.

:::::::::
Therefore, interested readers are referred to the original contributions of

Sadeghirad et al. (2013, 2011) and Charlton et al. (2017); Iaconeta et al. (2017); Beuth et al. (2008); Guilkey and Weiss (2003)

::
Acosta et al. (2020); Charlton et al. (2017); Iaconeta et al. (2017); Beuth et al. (2008); Guilkey and Weiss (2003), respectively.

::::::::
Regarding

::::
the

:::::::::
quasi-static

:::::::
implicit

::::::::::::::
implementation,

:::
we

::::::::
strongly

:::::::
adapted

:::
our

:::::::::::
vectorisation

:::::::
strategy

:::
to

:::::
some

::::::
aspects

:::
of

:::
the

::::::::
numerical

:::::::::::::
implementation

::::::::
proposed

:::
by

::::::::::::::::::::::::
Coombs and Augarde (2020)

::
in

:::
the

:::::::::
MATLAB

::::
code

::::::::
AMPLE

::::
v1.0.

:::::::::
However,

:::
we

:::
did135

:::
not

:::::::
consider

::::::::
blocking,

:::::::
because

:::
our

::::
main

:::::::
concern

:::
for

:::::::::::
performance

:
is
:::
on

:::
the

::::::
explicit

::::::::::::::
implementation.

3 MATLAB-based MPM implementation

2.1 Structure of the MPM solverThe solver procedure is shown in Fig.3.A typical MPM calculation cycle consists of

the three following steps Wang et al. (2016a): A Mapping phase, during which properties of the
:::::::::::::
Domain-based

material point (mass, momentum or stress) are mapped to the nodes.
::::::
method

::::::::
variants140

::::::::::::
Domain-based

:::::::
material

::::
point

:::::::
method

:::::::
variants

:::::
could

::
be

::::::
treated

::
as

::::
two

::::::
distinct

::::::
groups:

:

–
:::
The

:::::::
material

::::::
point’s

::::::
domain

::
is

:
a
::::::
square

:::
for

:::::
which

:::
the

::::::::::
deformation

::
is

:::::
always

:::::::
aligned

::::
with

::
the

:::::
mesh

::::
axis,

:::
i.e.,

::
a
::::::::::::
non-deforming

::::::
domain

:::::::::
uGIMPM

::::::::::::::::::::::::::
(Bardenhagen and Kober, 2004)

:::
or,

:
a
:::::::::
deforming

:::::::
domain

:::::::::
cpGIMPM

:::::::::::::::::::::::::
(Wallstedt and Guilkey, 2008)

:
,

::
the

:::::
latter

:::::
being

::::::
usually

::::::
related

::
to

::
a

:::::::
measure

::
of

:::
the

:::::::::::
deformation,

::::
e.g.,

:::
the

::::::::::
determinant

::
of

:::
the

::::::::::
deformation

::::::::
gradient.

– An Updated-Lagrangian FEM (UL-FEM) phase, during which the momentum equations are solved on the nodes and145

the solution is explicitly advanced forward in time.
:::
The

:::::::
material

::::::
point’s

:::::::
domain

::
is

:::::
either

::
a
:::::::::
deforming

::::::::::::
parallelogram

::
for

::::::
which

::
its

::::::::::
dimensions

:::
are

:::::::
specified

:::
by

::::
two

::::::
vectors,

::::
i.e.,

:::::
CPDI

::::::::::::::::::::
(Sadeghirad et al., 2011)

:
,
::
or

:
a
:::::::::
deforming

:::::::::::
quadrilateral

:::::
solely

::::::
defined

:::
by

::
its

:::::::
corners,

:::
i.e.,

:::::::
CPDI2q

::::::::::::::::::::
(Sadeghirad et al., 2013)

:
.
::::::::
However,

:::
the

::::::::::
deformation

::
is

:::
not

:::::::::
necessarily

:::::::
aligned

::::
with

::
the

:::::
mesh

::::::::
anymore.

:

:::
We

:::
first

:::::
focus

:::
on

:::
the

::::::::
different

::::::
domain

::::::::
updating

:::::::
methods

:::
for

::::::::
GIMPM.

:::::
Four

::::::
domain

::::::::
updating

:::::::
methods

::::::
exists:

::
i)

:::
the

:::::::
domain150

:
is
::::

not
:::::::
updated,

:::
ii)

:::
the

:::::::::::
deformation

::
of

:::
the

:::::::
domain

::
is

:::::::::::
proportional

::
to

:::
the

::::::::::
determinant

:::
of

:::
the

:::::::::::
deformation

:::::::
gradient

::::::::
det(Fij)

::::::::::::::::::::::::::
(Bardenhagen and Kober, 2004),

:::
iii)

:::
the

::::::
domain

::::::
lengths

::
lp:::

are
:::::::
updated

::::::::::
accordingly

:
to
:::
the

::::::::
principal

:::::::::
component

::
of

:::
the

::::::::::
deformation

:::::::
gradient

:::
Fii :::::::::::::::::::::

(Sadeghirad et al., 2011)
::
or,

::
iv)

:::
are

:::::::
updated

:::::
with

:::
the

:::::::
principal

::::::::::
component

::
of

:::
the

::::::
stretch

::::
part

::
of

:::
the

:::::::::::
deformation

:::::::
gradient

:::
Uii ::::::::::::::::::

(Charlton et al., 2017).
::::::::::::::::::
Coombs et al. (2020)

:::::::::
highlighted

:::
the

::::::::
suitability

::
of

::::::::::
generalised

::::::::::
interpolation

:::::::
domain

:::::::
updating

:::::::
methods

::::::::::
accordingly

::
to

::::::
distinct

::::::::::
deformation

::::::
modes.

::::
Four

:::::::
different

:::::::::::
deformation

:::::
modes

::::
were

:::::::::
considered

:::
by

:::::::::::::::::
Coombs et al. (2020)155

:
:
:::::
simple

::::::
stretch,

::::::::::
hydrostatic

:::::::::::::::::::
compression/extension,

::::::
simple

::::
shear

::::
and,

::::
pure

:::::::
rotation.

::::::::::::::::::
Coombs et al. (2020)

::::::::
concluded

:::
the

:::::::::
following:

– A Convection phase, during which i) the nodal solutions are interpolated back to the material points,
:::
Not

::::::::
updating

:::
the

::::::
domain

:::
is

:::
not

:::::::
suitable

::
for

::::::
simple

::::::
stretch

:::
and

::::::::::
hydrostatic

:::::::::::::::::::
compression/extension.

:

–
:
A
:::::::
domain

::::::
update

:::::
based

::
on

::::::::
det(Fij):::

will
::::::
results

::
in

:::
an

:::::::
artificial

::::::::::::::::::
contraction/expansion

::
of

:::
the

:::::::
domain

::
for

::::::
simple

:::::::
stretch.160

6

–
:::
The

:::::::
domain

:::
will

::::::
vanish

::::
with

:::::::::
increasing

::::::
rotation

:::::
when

:::::
using

::::
Fii.

–
:::
The

:::::::
domain

::::::
volume

::::
will

::::::
change

:::::
under

::::::::
isochoric

::::::::::
deformation

:::::
when

:::::
using

:::
Uii.:

:::::::::::
Consequently,

:::::::::::::::::::
Coombs et al. (2020)

:::::::
proposed

::
a

::::::
hybrid

::::::
domain

::::::
update

::::::::
inspired

::
by

::::::::
CPDI2q

::::::::::
approaches:

:::
the

:::::::
corners

::
of
::::

the

:::::::
material

::::
point

:::::::
domain

:::
are

:::::::
updated

::::::::::
accordingly

::
to

:::
the

:::::
nodal

:::::::::::
deformation

:::
but,

:::
the

:::::::::
midpoints

::
of

:::
the

:::::::
domain

:::::
limits

:::
are

:::::
used

::
to

:::::
update

:::::::
domain

::::::
lengths

::
lp::

to
::::::::
maintain

:
a
::::::::::
rectangular

:::::::
domain.

::::
Even

:::::
tough

::::::::::::::::::
Coombs et al. (2020)

:::::::
reported

::
an

::::::::
excellent

:::::::::
numerical165

:::::::
stability,

:::
the

:::::::::
drawback

::
is

::
to

::::::::
compute

:::::::
specific

:::::
basis

::::::::
functions

::::::::
between

:::::
nodes

::::
and

:::::::
material

:::::::
point’s

:::::::
corners,

:::::
which

::::
has

:::
an

::::::::
additional

::::::::::::
computational

::::
cost.

::::::
Hence,

:::
we

:::
did

:::
not

:::::::
selected

::::
this

:::::::
approach

::
in
::::
this

:::::::::::
contribution.

::::::::
Regarding

:::
the

:::::
recent

:::::::::::::
CPDI/CPDI2q,

::::::::::::::::
Wang et al. (2019)

:::::::::
investigated

:::
the

::::::::
numerical

:::::::
stability

:::::
under

::::::
stretch,

:::::
shear

:::
and

::::::::
torsional

::::::::::
deformation

::::::
modes.

::::::::
CPDI2q

::::
was

:::::
found

::
to
:::

be
:::::::::
erroneous

::
in

:::::
some

:::::
case,

:::::::::
especially

:::::
when

::::::
torsion

:::::
mode

:::
is

::::::::
involved,

:::
due

:::
to

::::::::
distortion

::
of

:::
the

:::::::
domain.

::
In

:::::::
contrast,

:::::
CPDI

::::
and

::::
even

::::::
sMPM

::::::::
performed

:::::
better

:::
in

::::::::
modelling

::::::::
torsional

:::::::::::
deformations.

:::::
Even

:::::
tough170

:::::::
CPDI2q

:::
can

::::::
exactly

::::::::
represent

:::
the

::::::::
deformed

::::::
domain

::::::::::::::::::::
(Sadeghirad et al., 2013)

:
,
::::
care

::::
must

::
be

:::::
taken

:::::
when

::::::
dealing

::::
with

::::
very

:::::
large

::::::::
distortion,

:::::::::
especially

::::
when

:::
the

:::::::
material

::::
has

:::::::
yielded,

:::::
which

::
is

:::::::
common

::
in

:::::::::::
geotechnical

::::::::::
engineering

::::::::::::::::
(Wang et al., 2019).

:

:::::::::::
Consequently,

:::
the

::::::::::::
domain-based

:::::::
method

::
as

::::
well

::
as

:::
the

:::::::
domain

:::::::
updating

:::::::
method

:::::
should

:::
be

::::::::
carefully

::::::
chosen

::::::::::
accordingly

::
to

::
the

:::::::::::
deformation

:::::
mode

::::::::
expected

:::
for

:
a
:::::
given

:::::
case.

::::
The

::::
latter

::::
will

:::
be

::::::
always

::::::
specify

::
in
::::

the
::::::::
following

::::
and,

:::
the

:::::::
domain

::::::
update

::::::
method

:::::
will

::
be

::::::
clearly

::::::
stated.175

3
::::::::::::::
MATLAB-based

::::::
MPM

::::::::::::::
implementation

3.1
:::

Rate
:::::::::::
formulation

::::
and

::::::::::::::
elasto-plasticity

:::
The

:::::
large

::::::::::
deformation

:::::::::
framework

::
in

:
a
:::::
linear

::::::
elastic

:::::::::
continuum

:::::::
requires

::
an

::::::::::
appropriate

::::::::::
stress-strain

::::::::::
formulation.

::::
One

::::::::
approach

:
is
::::::

based
::
on

:::
the

:::::
finite

:::::::::::
deformation

::::::::::
framework,

:::::
which

:::::
relies

:::
on

::
a

:::::
linear

::::::::::
relationship

:::::::
between

::::::
elastic

::::::::::
logarithmic

::::::
strains

::::
and

:::::::
Kirchoff

:::::::
stresses

:::
(Coombs et al., 2020; Gaume et al., 2018; Charlton et al., 2017)

:
.
::
In

::::
this

:::::
study,

:::
we

:::::
adopt

:::::::
another

:::::::::
approach,180

::::::
namely,

::
a

:::
rate

:::::::::
dependent

:::::::::
formulation

:::::
using

:::
the

:::::::
Jaumann

:::::
stress

::::
rate

:::
(e.g.

:::
Huang et al. 2015; Bandara et al. 2016; Wang et al. 2016c, b

:
).
::::
This

::::::::::
formulation

:::::::
provides

::
an

::::::::
objective

::::::::
(invariant

::
by

:::::::
rotation

::
or

:::::::::::::::
frame-indifferent)

:::::
stress

:::
rate

:::::::
measure

:::::::::::::::::::::::
(de Souza Neto et al., 2011)

:::
and

::
is

::::::
simple

::
to

:::::::::
implement.

::::
The

:::::::
Jaumann

::::
rate

::
of

:::
the

:::::::
Cauchy

:::::
stress

:
is
:::::::
defined

::
as

Dσij
Dt

=
1

2
::::::::

C
: ijkl

(
∂vl
∂xk

+
∂vk
∂xl

)
,

::::::::::::::::

(1)

:::::
where

:::::
Cijkl :

is
:::
the

::::::
fourth

::::
rank

::::::
tangent

:::::::
stiffness

::::::
tensor

:::
and

::
vk::

is
:::
the

:::::::
velocity.

:::::
Thus,

:::
the

::::::::
Jaumann

:::::
stress

::::::::
derivative

:::
can

:::
be

::::::
written185

::
as

Dσij
Dt

=
Dσij

Dt
−

:::::::::::::

σ
:ikωjk−
::::::

σ
:jk

:
ω
:ik,

::
(2)

:::::
where

::::::::::::::::::
ωij = (∂ivj − ∂jvi)/2::

is
:::
the

:::::::
vorticity

::::::
tensor

:::
and

::::::::
Dσij/Dt:::::::

denotes
:::
the

:::::::
material

::::::::
derivative

Dσij

Dt
=
∂σij

∂t
+

::::::::::::

v
:k
∂σij

∂xk
.

:::::

(3)

7

:::::
Plastic

:::::::::::
deformation

::
is

::::::::
modelled

::::
with

:
a
::::::::
pressure

::::::::
dependent

::::::::::::::
Mohr-Coulomb

:::
law

::::
with

:::::::::::::
non-associated

::::::
plastic

::::
flow,

::::
i.e.,

::::
both190

::
the

::::::::
dilatancy

:::::
angle

::
ψ

:::
and

:::
the

:::::::::
volumetric

::::::
plastic

::::
strain

:::
εpv :::

are
:::
null

:::::::::::::::::::::::::
(Vermeer and De Borst, 1984).

:::
We

::::
have

:::::::
adopted

:::
the

::::::::
approach

::
of

:::::::::::::
Simpson (2017)

:::
for

:
a
::::
two

::::::::::
dimensional

:::::
linear

::::::
elastic,

::::::::
perfectly

:::::
plastic

:::::::::::::::
(elasto-plasticity)

:::::::::
continuum

:::::::
because

::
of

::
its

:::::::::
simplicity

:::
and

::
its

::::
ease

::
of

::::::::::::::
implementation.

::::
The

::::
yield

:::::::
function

::
is

::::::
defined

:::
as

f = τ +σ sinφ− ccosφ,
::::::::::::::::::::

(4)

:::::
where

:
c
::
is

:::
the

::::::::
cohesion

:::
and

::
φ

:::
the

::::
angle

:::
of

::::::
internal

:::::::
friction,

:
195

σ = (σxx +σyy)/2,
::::::::::::::::

(5)

and ii) the properties of the material point are updated.

τ =
√

(σxx−σyy)2/4 +σ2
xy.

::::::::::::::::::::::::

(6)

:::
The

::::::
elastic

::::
state

::
is

:::::::
defined

:::::
when

:::::
f < 0.

::::::::
However

:::::
when

::::::
f > 0,

::::::
plastic

::::
state

::
is

:::::::
declared

::::
and

:::::::
stresses

::::
must

:::
be

::::::::
corrected

:::
(or

::::::
scaled)

::
to

::::::
satisfy

:::
the

::::::::
condition

::::::
f = 0,

:::::
since

:::::
f > 0

::
is
:::

an
:::::::::::
inadmissible

:::::
state.

::::::::::::::
Simpson (2017)

:::::::
proposed

:::
the

:::::::::
following

::::::
simple200

::::::::
algorithm

::
to

:::::
return

:::::::
stresses

::
to

:::
the

::::
yield

:::::::
surface,

σ?
xx = σ+ (σxx−σyy)β/2,

::::::::::::::::::::::
(7)

σ?
yy = σ− (σxx−σyy)β/2,

::::::::::::::::::::::

(8)

205

σ?
xy = σxyβ,

::::::::::

(9)

:::::
where

:::::::::::::::::::::::
β = (| ccosφ−σ sinφ |)/τ ,

:::
and

::::
σ?
xx,

::::
σ?
yy :::

and
::::
σ?
xy :::

are
:::
the

::::::::
corrected

:::::::
stresses,

:::
i.e.,

::::::
f = 0.

:
A
::::::
similar

::::::::
approach

::
is

::::
used

::
to

:::::
return

::::::
stresses

:::::
when

::::::::::
considering

:
a
::::::::::::
non-associated

:::::::::::::
Drucker-Prager

::::::::
plasticity

:::
(see

:::::::::::::::::
Huang et al. (2015)

::
for

::
a

::::::
detailed

::::::::::
description

::
of

:::
the

:::::::::
procedure).

::
In

::::::::
addition,

::::
their

::::::::
approach

:::::
allows

::::
also

::
to

::::::
model

::::::::
associated

::::::
plastic

:::::
flows,

:::
i.e.,

::::::
ψ > 0

:::
and

::::::
εpv 6= 0.

:
210

3.2
::::::::
Structure

::
of

:::
the

::::::
MPM

:::::
solver

:::
The

::::::
solver

::::::::
procedure

::
is

::::::
shown

::
in

::::
Fig.

::
3. In the main.m script, both functions meSetup.m and mpSetup.m, respectively,

define the geometry and related quantities , particularly
::::
such

::
as

:
the nodal connectivity array, i.e.

::
(or

:::::::
element

:::::::::
topology)

:::::
array,

:::
e.g., the e2N array(Simpson (2017)). The latter stores the nodes associated with a given element. As such, a material point p

located in an element e can immediately identify which nodes N
::
n it is associated with.215

8

main.m

meSetup.mmpSetup.m

SdS.m

p2Nsolve.m

mapN2p.m

DefUpdate.m

constitutive.m

postprocessing

while t ≤ T

Preprocessor

Solution

Postprocessor

Figure 3. Workflow of the explicit GIMPM solver and the calls to functions within a calculation cycle. The role of each function is described

in the text.

After initialization, a while loop solves the elasto-dynamic (or elasto-plastic) problem until a time criterion T is reached.

This time criterion could be restricted to the time needed for the system to reach an equilibrium, or if the global kinetic energy

of the system has reached a threshold.

At the beginning of each cycle, a connectivity array p2e between the material points and their respective element (a material

point can only reside in a single element) is created
:::::::::
constructed. Since i) the nodes associated with the elements and ii) the220

elements enclosing the material points are known, it is possible to obtain the connectivity array p2N between the material points

and their associated nodes, e.g., p2N=e2N(p2e,:) in a MATLAB syntax (see Fig. 2 for an example of these connectivity

arrays). This array is of dimension (np,nNe) ::::::
(np,nn), with np the total number of material points, nNe ::

nn the total number

of nodes associated with an element (16 in two-dimensional problems) and ni,j the node number where i corresponds to the

material point and j corresponds to its j-th associated nodes, which results in the following:225

p2N =


n1,1 · · · n1,nn

...
. . .

...

nnp,1 · · · nnp,nn

 . (10)

The following functions are called successively during one
::::::::
calculation

:
cycle:

1. SdS.m calculates the basis functionsand the gradient of the basis functions and ,
:::::::::
derivatives

::::
and,

:
assembles the strain-

displacement matrix
::
for

::::
each

:::::::
material

::::::
points.

9

2. p2Nsolve.m projects the quantities of the material point (e.g., mass and momentum) to the associated nodes, solves230

the equations of motion and sets Dirichlet boundary conditions.

3. mapN2p.m interpolates nodal solutions (acceleration and velocity) to the material points with a double mapping proce-

dure (see Zhang et al. (2016) or Nairn (2003) for a clear discussion of USF, USL and MUSL algorithms).

4. DefUpdate.m updates incremental strains and deformation-related quantities (e.g., the volume of the material point

or the domain half-length) at the level of the material point based on the remapping of the updated material point235

momentum.

5. constitutive.m calls two functions to solve for the constitutive elasto-plastic relation, i.e.,

(a) elastic.m, which predicts an incremental objective stress-rate (the Jaumann stress-rate is selected for its ease of

implementation and its acknowledged accuracy) considering
::::
stress

::::::::
assuming a purely elastic step, further corrected

by240

(b) plastic.m, which corrects the trial stress by a plastic correction if the material has yielded.

When a time criterion is met, the calculation cycle stops and further post-processing tasks (visualization, data exportation) can

be performed.

The numerical simulations are conducted using MATLAB© R2018a within a Windows 7 64-bit environment on an Intel

Core i7-4790 (4th generation CPU with 4 physical cores of base frequency at 3.60 GHz up to a maximum turbo frequency of245

4.00 GHz) with 8 MB
::::::
4× 256

:::
kB

:::
L2 cache and 16 GB DDR3 RAM (clock speed 800 MHz).

3.3 Vectorization
:::::::::::
Vectorisation

3.3.1 Basis Functions
::::::::
functions and derivatives

The GIMPM basis function (Coombs et al. (2018); Steffen et al. (2008a); Bardenhagen and Kober (2004))
::
(Coombs et al., 2018; Steffen et al., 2008a; Bardenhagen and Kober, 2004)

results from the convolution of a characteristic particle function χp (i.e., the material point spatial extent or domain) with the250

standard basis function NI(xp)
:::::
Nn(x) of the mesh, which results in:

SIn
:
(xp) =



1− (4x2 + l2p)/(4hlp) if | x |< lp/2

1− | x | /h if lp/2≤| x |< h− lp/2

(h+ lp/2− | x |)2
/(2hlp) if h− lp/2≤| x |< h+ lp/2

0 otherwise ,

(11)

with lp the length of the material point domain, h the mesh spacing, x= xp−xI ::::::::::
x= xp−xn:where xp is the coordinate of a

material point and xI ::
xn the coordinate of its associated node I

:
n. The basis function of a node I

:
n
:
with its material point p is

10

constructed for a two-dimensional model, as follows:255

SIn
:
(xp) = SIn

:
(xp)SIn

:
(yp), (12)

for which the derivative is defined as:

∇SIn
:
(xp) = (∂xSIn

:
(xp)SIn

:
(yp),SIn

:
(xp)∂ySIn

:
(yp)). (13)

Within the GIMPM variant, uGIMPM (undeformed GIMPM) and cpGIMPM (contiguous particle GIMPM) can be chosen to

update the material point domain length l0p, i.e., lp = l0p for the undeformed GIMPM, li,p = det(Fjk)l0i,p or li,p = Fiil
0
i,p where260

Fii is the diagonal component of the deformation gradient for the cpGIMPM. However, Charlton et al. (2017) recommend

using the diagonal components Uii = (FkjFki)
0.5 of the stretch part of the deformation gradient instead of the deformation

gradient. Hence, the variant we use relies either on the determinant or on the stretch part of the deformation gradient.

Similar to the FEM, the strain-displacement matrixB consists of the derivatives of the basis function and is assigned to each

material point, which results in the following:265

B(xp) =


∂xS1 0 · · · ∂xSnn

0

0 ∂yS1 · · · 0 ∂ySnn

∂yS1 ∂xS1 · · · ∂ySnn
∂xSnn

 , (14)

where nNe:::
nn is the total number of associated nodes to an element e, in which a material point p resides.

The algorithm outlined in Code Fragment 1
:::
Fig.

::
4 (the function [mpD] = SdS(meD,mpD,p2N) called at the begin-

ning of each cycle, see Fig. 4) represents the vectorized
:::::::::
vectorised solution of the computation of basis functions and their

derivativesin just one time step, which avoids any for-loop requirement.270

Table B1 lists the variables used in Code fragments 1 & 2 (Figs. 4 & 5).

Coordinates of the material points mpD.x(:,1:2) are first replicated and then subtracted by their associated nodes coor-

dinates, e.g., meD.x(p2N) or
::
and

:
meD.y(p2N)

:::::::::
respectively

:
(Lines 3 or 4 in

:
5
::
in

::::
Fig. 4). This yields the array D with the

same dimension of p2N. This array of distance between the points and their associated nodes is sent as an input to the local

:::::
nested

:
function [N,dN] = NdN(D,h,lp), which computes 1D basis functions and derivatives through matrix piecewise275

:::::::
function

:::
and

:::
its

::::::::
derivative

:::::::
through

:::::
matrix

::::::::::::
element-wise operations (operator .*) (either in Line 4 for x coordinates or Line 6

for y coordinates in Fig. 4). Note that the use of one single array D avoids a redundant usage of memory.

Given the piecewise
:::::::::
piece-wise Eq. 11, three logical arrays (c1, c2 and c3) are defined (Lines 28-30

:::::
21-24 in Fig. 4),

whose elements are either 1 (the condition is true) or 0 (the condition is false). Three arrays of basis functions are calculated

(N1, N2 and N3, Lines 32-34
::::
26-28) according to Eq. 12. The array of basis functions N is obtained through a summation of280

the elementwise
::::::::::
element-wise

:
multiplications of these temporary arrays with their corresponding logical arrays (Line 35

::
29

in Fig. 4). The same holds true for the calculation of the gradient basis function (Lines 37-40
:::::
31-34

:
in Fig. 4). Furthermore,

it
:
It is faster to use logical arrays as multipliers of precomputed basis function arrays rather than using these in a conditional

indexing statement, e.g., N(c2==1) = 1-abs(dX(c2==1))./h. The performance gain is significant
:::::::
between

:::
the

::::
two

:::::::::
approaches, i.e., a

::
an

:::::::
intrinsic 30 % gain over a calculationcycle.285

11

Description of variables of the structure arrays for the mesh meD and the material point mpD used in Code Fragment 1

& 2 shown in Figs. 4 & 5. nDF stores the local and global number of degrees of freedom, i.e., nDF=nNe,nN*DoF. The

constant nstr is the number of stress components, according to the standard definition of the Cauchy stress tensor using the

Voigt notation, e.g., σp = (σxx,σyy,σxy). nNe nodes per element (1) nN number of nodes (1) DoF degree of freedom

(1) nDF number of DoF (1,2) h mesh spacing (1,DoF) x node coordinates (nN,1) y node coordinates (nN,1)290

m node mass (nN,1) p node momentum (nDF(2),1) f node force (nDF(2),1) n number of points (1) l domain

half-length (np,DoF) V volume (np,1) m mass (np,1) x point coordinates (np,DoF) p momentum (np,DoF) s

stress (np,nstr) S basis function (np,nNe) dSx derivative in x (np,nNe) dSy derivative in y (np,nNe) B B matrix

(nstr,nDF(1),np)
::
the

:::::::::
wall-clock

:::::
time

::
of

:::
the

:::::
basis

::::::::
functions

::::
and

:::::::::
derivatives

::::::::::
calculation.

:::
We

:::::::
observe

::
an

:::::::::
invariance

:::
of

::::
such

::::
gain

::::
with

::::::
respect

::
to

:::
the

:::::
initial

:::::::
number

::
of

:::::::
material

::::
point

:::
per

:::::::
element

::
or
:::
to

::
the

:::::
mesh

:::::::::
resolution.

:
295

Figure 4. Code Fragment 1 shows the vectorized
:::::::
vectorised

:
solution to the calculation of the basis functions and their gradients

::::::::
derivatives

within the function SdS.m.
::::
Table

:::
B1

:::
lists

:::
the

:::::::
variables

::::
used.

3.3.2 Integration of internal forces

Another computationally expensive operation for MATLAB© is the mapping (or accumulation) of the material point contribu-

tions to their associated nodes. It is performed by the function p2Nsolve.m in the workflow of the solver.

12

The standard calculations for the material point contributions to the lumped mass mI :::
mn, the momentum pI::

pn, the external

fe
I and internal f i

I ::
fe
n:::

and
:::::::
internal

:::
f i
n forces are given by:300

mIn
:

=
∑

p∈Ip∈n
::
SIn

:
(xp)mp, (15)

pIn
:

=
∑

p∈Ip∈n
::
SIn

:
(xp)mpvp, (16)

f In
:

e =
∑

p∈Ip∈n
::
SIn

:
(xp)mpbp, (17)

f In
:

i =
∑

p∈Ip∈n
::
vpB

T (xp)σp, (18)

with mp the material point mass, vp the material point velocity, bp the body force applied to the material point and σp the305

material point Cauchy stress tensor in the Voigt notation.

Once the mapping phase is achieved, the equations of motions are explicitly solved forward in time on the mesh. Nodal

accelerations and velocities
:::
an:::

and
::::::::
velocities

:::
vn:

are given by:

aIn
:

t+∆t =mIn
:

−1(f In
:

e−f In
:

i), (19)

vIn
:

t+∆t =mIn
:

−1pIn
:

+ ∆taIn
:

t+∆t. (20)310

Finally, boundary conditions are applied to the nodes that belong to the boundaries.

The vectorized
:::::::::
vectorised solution comes from the use of the built-in function accumarray() of MATLAB© combined

with reshape() and repmat(). Similar to the function sparse(), accumarray() collects, in a vector e, and

accumulates, into a second vector e′, all values in e that have identical subscripts, whose values are contained in a vector s.

Such an operation corresponds to the summation operator in Eqs. 15-18. The core of the vectorization is to use p2N as the
:
a315

vector (i.e., flattening the array p2N(:) results in a row vector) of subscripts with accumarray, which accumulates material

point contributions (e.g., mass or momentum) that share the same node.

In the function p2Nsolve (Code Fragment 2 shown in Fig. 5), the first step is to initialize nodal vectors (mass, momentum,

forces, etc.) to zero (Lines 4-5 in Fig. 5). Then, temporary vectors (m, p, f and fi) of material point contributions (namely,

mass, momentum, and external and internal forces) are generated (Lines 10-17 in Fig. 5). The accumulation (nodal summation)320

is performed (Lines 19-26 in Fig. 5) using either the flattened p2n(:) or l2g(:) (e.g., the global indices of nodes) as the

vector of subscripts. Note that for the accumulation of material point contributions of internal forces, a short for-loop iterates

over the associated node (e.g., from 1 to meD.nNe) of every material point to accumulate their respective contributions.

To calculate the temporary vector of internal forces (fi at Lines 15-17 in Fig. 5), the first step consists of the matrix multipli-

cation of the strain-displacement matrix mpD.Bwith the material point stress vector mpD.s. The vectorized
::::::::
vectorised solution325

is given by i) elementwise multiplications of a permutation
::::::::::
element-wise

:::::::::::::
multiplications

::
of permute(mpD.B,2 1 3) (e.g.,

the transpose operator for multidimensional arrays) with a replication of the transposed stress vector repmat(permute
:::::::::::::::::::::
reshape(mpD.s,size(mpD.s’,3

2 1),
:::::::::::::
1,mpD.n),1,meD.nDF

::::
nDoF(1),1), whose result is then ii) summed by means of the built-in function sum()

along the columns and,
:
finally multiplied by a replicated transpose of the material point volume vector, e.g., repmat(permute(mpD.V,3

2 1)
:
’,meD.nDF

::::
nDoF(1),1).330

13

Figure 5. Code Fragment 2 shows the vectorized
::::::::
vectorised solution to the nodal projection of material point quantities (e.g., mass and

momentum) within the local function p2Nsolve.m. The core of the vectorization process is the extensive use of the built-in function of

MATLAB© accumarray(), for which we detail the main features in the text.
::::
Table

:::
B1

:::
lists

:::
the

:::::::
variables

::::
used.

14

To illustrate the efficiency of such a procedure
::::::::
numerical

:::::::::
efficiency

::
of

:::
the

:::::::::
vectorised

:::::::::::
multiplication

::::::::
between

:
a
::::::
matrix

:::
and

::
a

:::::
vector, we have developed an iterative and vectorized

:::::::::
vectorised solution of B(xp)Tσp with an increasing np and survey the

computational time spent on solving the problem. We report again in computational time (close to an order of magnitude faster

for one order of increase in magnitude of np for
:::::::::
considering

::::::
single

::
(4

:::::
bytes)

::::
and

::::::
double

::
(8

::::::
bytes)

:::::::::
arithmetic

::::::::
precision.

::::
The

::::::::
wall-clock

:::::
time

:::::::
increases

:::::
with

::
np::::

with
::

a
:::::
sharp

::::::::
transition

:::
for

:::
the

:::::::::
vectorised

:::::::
solution

::::::
around

:::::::::
np ≈ 1000,

:::
as

::::::
showed

:::
in

:::
Fig

:::
6a.335

:::
The

:::::::::::
mathematical

::::::::
operation

:::::::
requires

:::::
more

:::::::
memory

::::
than

:::::::
available

::
in

:
the vectorized solution)

:::
L2

:::::
cache

:::::
(1024

:::
kB

:::::
under

::
the

:::::
CPU

:::::::::
architecture

::::::
used),

:::::
which

:::::::
inhibits

:::::
cache

:::::
reuse

::::::::::::::::::::
(Dabrowski et al., 2008).

::
A
:::::
peak

::::::::::
performance

:::
of

::
at

::::
least

::::
1000

:::::::
Mflops,

:::::::
showed

::
in

:::
Fig.

:::
6b,

::
is

:::::::
achieved

:::::
when

:::::::::
np = 1327

::
or

:::::::::
np = 2654

:::
for

::::::
simple

::
or

::::::
double

::::::::
arithmetic

::::::::
precision

:::::::::::
respectively,

:::
i.e.,

::
it

::::::::::
corresponds

::::::
exactly

::
to

:::::
1024

:::
kB

:::
for

::::
both

:::::::::
precisions.

::::::::
Beyond,

:::
the

:::::::::::
performance

::::::::::
dramatically

:::::
drops

:::
to

::::::::::::
approximately

:::
the

::::
half

::
of

:::
the

:::::
peak

:::::
value.

::::
This

::::
drop

::
is

::::
even

:::::
more

:::::
severe

:::
for

:
a
::::::
double

:::::::::
arithmetic

::::::::
precision.

Figure 6. Computational
::
a)

::::::::
Wall-clock

:
time needed to solve

::
for a matrix multiplication between a multidimensional array and a vector with

an increasing number of the third dimension
:::
with

:
a
::::::
double

:::::::
arithmetic

:::::::
precision

::::
and,

::
b)

::::::
number

::
of

::::::
floating

::::
point

::::::::
operations

::
per

::::::
second

:::::
(flops)

::
for

:::::
single

:::
and

:::::
double

::::::::
arithmetic

::::::::
precisions.

::::
The

::::::::
continuous

:::
line

::::::::
represents

:::
the

::::::
averages

:::::
value

::::::
whereas

:::
the

:::::
shaded

::::
area

:::::
denotes

:::
the

:::::::
standard

:::::::
deviation.

340

3.3.3 Update of material point properties

Finally, we propose a vectorization
:::::::::::
vectorisation of the function mapN2p.m that i) interpolates updated nodal solutions to

the material points (velocities and coordinates) and ii) the double mapping (DM or MUSL) procedure (see Fern et al. (2019)

:::::::::::::
Fern et al. 2019). The material point velocity

::
vp is defined as an interpolation of the solution of the updated nodal accelerations,

given by:345

vt+∆t
p =vtp + ∆t

∑
nNe

I=1
nn
n=1
:::

SIn
:
(xp)aIn

:

t+∆t. (21)

The material point updated momentum is found by pt+∆t
p =mpv

t+∆t
p . The double mapping procedure (MUSL) of the nodal

velocity
::
vn:consists of the remapping of the updated material point momentum on the mesh, divided by the nodal mass, which

yields the nodal incremental displacements ∆uI when multiplied by an increment of time, both given by:
::::
given

:::
as:

vIn
:

t+∆t =mIn
:

−1
∑

p∈Ip∈n
::
SIn

:
(xp)pt+∆t

p ,∆I= ∆tt+∆t
I (22)350

15

and for which boundary conditions are enforced.

Finally, the material point coordinates are updated based on the following:

xt+∆t
p = xt

p + ∆t
::

∑
nNe

I=1
nn
n=1
:::

SIn
:
(xp)∆Iv

t+∆t
n .
::::

(23)

To solve for the interpolation of the updated nodal solutions to the material points, we rely on a combination of elementwise

:::::::::::
element-wise matrix multiplication between the array of basis functions mpD.S with the global vectors through a transform355

of the p2N array, i.e., iDx=meD.DoF*p2N-1 and iDy=iDx+1 (Lines 3-4 in Code Fragment 3 in Fig. 7), which are used to

access to x and y components of global vectors.

When accessing global nodal vectors by means of iDx and iDy, the resulting arrays are naturally of the same size as p2N

and are therefore dimension-compatible with mpD.S. For instance, a summation along the columns (e.g., the associated nodes

of material points) of an elementwise
:::::::::::
element-wise multiplication of mpD.S with meD.a(iDx) results in an interpolation of360

the x-component of the global acceleration vector to the material points.

This procedure is used for the velocity update (Lines 6-7
:::
Line

::
6 in Fig. 7) and for the material point coordinate update (Line

11
::
10 in Fig. 7). A remapping of the nodal momentum is carried out (Lines 17 to 20

::
12

::
to

:::
16 in Fig. 7), which allows calcu-

lating the updated nodal incremental displacements (Line 22
::
17

:
in Fig. 7). Finally, boundary conditions of nodal incremental

displacements are enforced (Lines 29-32
:::::
21-22 in Fig. 7).365

Figure 7. Code Fragment 3 shows the vectorized
:::::::
vectorised

:
solution for the interpolation of nodal solutions to material points with a double

mapping procedure (or MUSL) within the function mapN2p.m.

3.4
:::::

Initial
:::::::
settings

:::
and

::::::::
adaptive

::::
time

::::
step

::::::::
Regarding

:::
the

::::::
initial

:::::
setting

:::
of

:::
the

::::::::::
background

:::::
mesh

::
of

:::
the

::::::::::::
demonstration

:::::
cases

::::::
further

::::::::
presented,

:::
we

:::::
select

::
a
:::::::
uniform

:::::
mesh

:::
and

:
a
:::::::
regular

:::::::::
distribution

::
of

::::::::
material

:::::
points

::::::
within

:::
the

::::::
initially

:::::::::
populated

:::::::
elements

:::
of

:::
the

:::::
mesh.

:::::
Each

::::::
element

::
is
::::::
evenly

:::::
filled

::::
with

:
4
:::::::
material

::::::
points,

::::
e.g.,

::::::::
npe = 22,

::::::
unless

::::::::
otherwise

::::::
stated.

16

::
In

:::
this

:::::::::::
contribution,

::::::::
Dirichlet

::::::::
boundary

:::::::::
conditions

:::
are

:::::::
resolved

:::::::
directly

:::
on

:::
the

::::::::::
background

:::::
mesh,

::
as

:::
in

:::
the

:::::::
standard

:::::
finite370

::::::
element

::::::::
method.

::::
This

::::::
implies

::::
that

::::::::
boundary

:::::::::
conditions

::::
are

:::::::
resolved

::::
only

:::
in

:::::::::
contiguous

:::::::
regions

:::::::
between

:::
the

:::::
mesh

::::
and

:::
the

:::::::
material

::::::
points.

::::::::
Deviating

:::::
from

:::
this

:::::::::
contiguity

::
or

::::::
having

::::
the

::::
mesh

::::
not

::::::
aligned

::::
with

::::
the

:::::::::
coordinate

::::::
system

:::::::
requires

:::::::
specific

::::::::
treatments

:::
for

::::::::
boundary

:::::::::
conditions

::::::::::::::::
(Cortis et al., 2018)

:
.
:::::::::::
Furthermore,

::
we

::::::
ignore

:::
the

:::::::
external

:::::::
tractions

:::
as

::::
their

:::::::::::::
implementation

:
is
::::::::
complex.

:

::
As

:::::::
explicit

::::
time

:::::::::
integration

::
is
:::::

only
:::::::::::
conditionally

::::::
stable,

:::
any

:::::::
explicit

::::::::::
formulation

:::::::
requires

:
a
:::::

small
:::::

time
::::
step

:::
∆t

::
to

::::::
ensure375

::::::::
numerical

:::::::
stability

::::::::::::::::::
(Ni and Zhang, 2020)

:
,
::::
e.g.,

:::::::
smaller

::::
than

::
a

::::::
critical

:::::
value

:::::::
defined

::
by

::::
the

::::::::::::::::::::
Courant-Friedrich-Lewy

::::::
(CFL)

::::::::
condition.

::::::
Hence,

:::
we

:::::::
employ

::
an

::::::::
adaptive

::::
time

::::
step

::::::::::::::::::::::
(de Vaucorbeil et al., 2020),

::::::
which

::::::::
considers

:::
the

:::::::
velocity

:::
of

:::
the

:::::::
material

:::::
points.

::::
The

:::::
first

:::
step

::
is
::
to

::::::::
compute

:::
the

::::::::
maximum

:::::
wave

:::::
speed

::
of

:::
the

:::::::
material

:::::
using

::::::::::::::::::::::::::::::::
(Zhang et al., 2016; Anderson Jr, 1987)

(cx,
:
cy) =

(
max

p
(V+ | (vx)p |),max

p
(V+ | (vy)p |)

)
,

:::::::::::::::::::::::::::::::::::::::

(24)

:::::
where

:::
the

::::
wave

:::::
speed

::
is

::::::::::::::::::::
V = ((K + 4G/3)/ρ)

1
2 ,

::
K

::::
and

::
G

:::
are

:::
the

::::
bulk

:::
and

::::
shear

:::::::
moduli

::::::::::
respectively,

:
ρ
::
is
:::
the

:::::::
material

:::::::
density,380

::::
(vx)p::::

and
:::::
(vy)p :::

are
:::
the

:::::::
material

::::
point

:::::::
velocity

:::::::::::
components.

:::
∆t

::
is

::::
then

:::::::
restricted

:::
by

:::
the

::::
CFL

::::::::
condition

::
as

::::::::
followed:

:

∆t= αmin

(
hx
cx
,
hy
cy

)
,

:::::::::::::::::::

(25)

:::::
where

::::::::
α ∈ [0;1]

::
is

:::
the

::::
time

:::
step

:::::::::
multiplier,

::::
and

::
hx::::

and
::
hy:::

are
:::
the

:::::
mesh

::::::::
spacings.

4 Results

::
In

:::
this

:::::::
section,

::::
we

::::
first

::::::::::
demonstrate

::::
our

::::::::::::::
MATLAB-based

::::::
MPM

:::::
solver

:::
to

:::
be

:::::::
efficient

::
in
:::::::::::

reproducing
::::::
results

:::::
from

:::::
other385

::::::
studies,

:::
i.e.,

:::
the

::::::::::
compaction

::
of

::
an

::::::
elastic

::::::
column

::::::::::::::::::
(Coombs et al., 2020)

::::
(e.g.,

::::::::::
quasi-static

::::::::
analysis),

:::
the

::::::::
cantilever

:::::
beam

:::::::
problem

::::::::::::::::::::
(Sadeghirad et al., 2011)

::::
(e.g.,

:::::
large

::::::
elastic

:::::::::::
deformation)

:::
and

:::
an

:::::::::
application

::
to

::::::::
landslide

::::::::
dynamics

::::::::::::::::::
(Huang et al., 2015)

::::
(e.g.,

:::::::::::
elasto-plastic

:::::::::
behaviour).

::::::
Then,

:::
we

::::::
present

::::
both

:::
the

:::::::::
efficiency

:::
and

:::
the

:::::::::
numerical

:::::::::::
performances

:::
for

::
a
:::::::
selected

:::::
case,

::::
e.g.,

:::
the

:::::::::::
elasto-plastic

:::::::
collapse.

:::
We

::::::::
conclude

:::
and

::::::::
compare

:::
the

:::::::::::
performances

::
of

:::
the

:::::
solver

:::::
with

::::::
respect

::
to

:::
the

::::::
specific

::::
case

::
of

:::
an

::::::
impact

::
of

:::
two

::::::
elastic

::::
disks

:::::::::
previously

:::::::::::
implemented

::
in

::
a

::::
Julia

::::::::
language

::::::::::
environment

:::
by

::::::::::::::::
(Sinaie et al., 2017).

:
390

::::::::
Regarding

:::
the

:::::::::::
performance

::::::::
analysis,

:::
we

:::::::::
investigate

::::
the

::::::::::
performance

:::::
gain

::
of

:::
the

:::::::::
vectorised

::::::
solver

::::::::::
considering

::
a

::::::
double

::::::::
arithmetic

::::::::
precision

::::
with

::::::
respect

::
to

:::
the

::::
total

:::::::
number

::
of

:::::::
material

::::
point

:::::::
because

::
of

:::
the

::::::::
following

:::::::
reasons:

::
i)
:::
the

:::::
mesh

:::::::::
resolution,

:::
i.e.,

:::
the

::::
total

:::::::
number

::
of

::::::::
elements

::::
nel, ::::::::

influences
:::
the

:::::::::
wall-clock

:::::
time

::
of

:::
the

:::::
solver

:::
by

::::::::
reducing

:::
the

::::
time

::::
step

:::
due

::
to
:::
the

:::::
CFL

::::::::
condition

:::::
hence

:::::::::
increasing

:::
the

::::
total

:::::::
number

:::
of

::::::::
iterations.

:::
In

::::::::
addition,

::
ii)

:::
the

:::::
total

::::::
number

:::
of

:::::::
material

::::::
points

:::
np ::::::::

increases

::
the

:::::::
number

::
of

:::::::::
operations

::::
per

::::
cycle

::::
due

::
to

:::
an

:::::::
increase

::
of

:::
the

::::
size

::
of

::::::::
matrices,

:::
i.e.,

::::
the

:::
size

:::
of

:::
the

::::::::::::::::
strain-displacement

::::::
matrix395

:::::::
depends

::
on

:::
np::::

and
:::
not

::
on

::::
nel.::::::

Hence,
:::
np::::::::::

consistently
:::::::::
influences

:::
the

:::::::::::
performance

::
of

:::
the

::::::
solver

:::::::
whereas

:::
nel::::::::::

determines
:::
the

::::::::
wall-clock

::::
time

:::
of

:::
the

:::::
solver.

::::
The

:::::::::::
performance

::
of

:::
the

:::::
solver

::
is

::::::::
addressed

:::::::
through

::::
both

:::
the

:::::::
number

::
of

::::::
floating

:::::
point

:::::::::
operations

:::
per

::::::
second

::::::
(flops),

:::
and

:::
by

::
the

:::::::
average

:::::::
number

::
of

:::::::
iteration

:::
per

::::::
second

:::::
(it/s).

:::
The

:::::::
number

::
of

::::::
floating

:::::
point

:::::::::
operations

:::
per

::::::
second

:::
was

::::::::
manually

::::::::
estimated

:::
for

::::
each

:::::::
function

:::
of

::
the

::::::
solver.

:

17

4.1 Convergence: elastic compaction under self-weight
:::::::::
Validation

:
of a column

::
the

::::::
solver

::::
and

:::::::::
numerical

::::::::
efficiency400

4.1.1
::::::::::::
Convergence:

:::::
elastic

:::::::::::
compaction

:::::
under

::::::::::
self-weight

::
of

::
a
:::::::
column

Following the convergence analysis proposed by ?Wang et al. (2019); Charlton et al. (2017)
:::
Coombs and Augarde (2020); Wang et al. (2019); Charlton et al. (2017)

, we analyse an elastic column of an initial height l0 = 10 m subjected to an external load (e.g. the gravity).
:::
We

:::::::
selected

:::
the

:::::::::
cpGIMPM

::::::
variant

::::
with

:
a
::::::
domain

::::::
update

:::::
based

:::
on

:::
the

:::::::
diagonal

::::::::::
components

::
of

:::
the

::::::::::
deformation

::::::::
gradient.

::::::::::::::::::
Coombs et al. (2020)

::::::
showed

::::
that

::::
such

::::::
domain

::::::
update

::
is

::::
well

:::::
suited

:::
for

::::::::::
hydrostatic

::::::::::
compression

:::::::::
problems.

:::
We

::::
also

::::::
selected

:::
the

::::::::
CPDI2q

::::::
variant

::
as405

:
a
::::::::
reference,

:::::::
because

::
of

:::
its

:::::::
superior

::::::::::
convergence

::::::::
accuracy

:::
for

::::
such

:::::::
problem

::::::::
compared

::
to
::::::::
GIMPM

::::::::::::::::::
(Coombs et al., 2020).

:

The initial geometry is shown in Fig. 8. The background mesh is made of a bi-linear four-noded quadrilateral
:::::::::::
quadrilaterals,

and roller boundary conditions are applied on the base and the sides of the column, initially populated by 22
:
4
:
material points

per element. The column is 1 element wide and n elements tall
::::
and,

:::
the

::::::
number

::
of

:::::::
element

::
in

:::
the

::::::
vertical

::::::::
direction

::
is

::::::::
increased

::::
from

::
1

::
to

:
a
:::::::::

maximum
:::
of

::::
1280

:::::::::
elements.

:::
The

:::::
time

:::
step

::
is
::::::::

adaptive
:::
and

:::
we

::::::::
selected

:
a
::::
time

::::
step

:::::::::
multiplier

::
of

::::::::
α= 0.5,

::::
e.g.,410

:::::::
minimal

:::
and

::::::::
maximal

::::
time

::::
step

::::::
values

::
of

::::::::::::::::
∆tmin = 3.1 · 10−4

:
s
::::
and

::::::::::::::::
∆tmax = 3.8 · 10−4

:
s
::::::::::
respectively

:::
for

::::
the

:::::
finest

::::
mesh

:::
of

::::
1280

::::::::
elements.

l0 = 10 m

npe = 4

y

x

Figure 8. Initial geometry of the column.

To consistently apply the external load for the explicit solver, we follow the recommendation of Bardenhagen and Kober

(2004), i.e., a quasi-static solution (given an explicit integration scheme is chosen) is obtained if the total simulation time is

equal to 40 elastic wave transit times. The material has an elastic modulus E = 1 · 106
:
a

:::::::
Young’s

:::::::
modulus

::::::::::
E = 1 · 104 Pa and a415

Poisson’s ratio ν = 0 with a density ρ= 80 kg m−3. The gravity g is increased from 0 to its final value, i.e., g = 9.81 m s−2. We

performed additional implicit quasi-static simulations (named iCPDI
:::::::
iCPDI2q) in order to consistently discuss the results with

respect to what was reported in ?
:::::::::::::::::::::::
Coombs and Augarde (2020). The external force is consistently applied over 25

::
50 equal load

steps. The vertical normal stress is given by the analytical solution (?)
::::::::::::::::::::::::
(Coombs and Augarde, 2020) σyy(y0) = ρg(l0− y0)

:
,

where l0 is the initial height of the column and y0 is the initial position of a point within the column.420

The error between the analytical and numerical solutions is as follows:

error =

np∑
p=1

||(σyy)p−σyy(yp)||(V0)p
(ρgl0)V0

, (26)

where (σyy)p is the vertical stress
::::
stress

:::::
along

:::
the

:::::
y-axis

:
of a material point p

::::
(Fig.

::
8) of an initial volume (V0)p and V0 is the

initial volume of the column, i.e., V0 =
∑np

p=1(V0)p.

18

Figure 9. Linear convergence
:
a)

::::::::::
Convergence of the error: a limit is reached at error ≈ 2·10−6 for the explicit solver, whereas the quasi-static

solution still converges. This was already demonstrated in Bardenhagen and Kober (2004) as an error saturation due to the explicit scheme,

i.e., the equilibrium is never resolved.
:
b)
::::
The

::::
stress

:::
σyy:::::

along
:::
the

:::::
y-axis

:::::::
predicted

::
at

::
the

::::::::
deformed

::::::
position

::
yp:::

by
::
the

:::::::
CPDI2q

:::::
variant

::
is

::
in

::::
good

::::::::
agreements

::::
with

:::
the

:::::::
analytical

::::::
solution

:::
for

:
a
:::::
refined

:::::
mesh.

The convergence toward a quasi-static solution is shown in Fig. 9 . As mentioned by Coombs et al. (2020), it is linear for both425

cpGIMP
:::
(a).

::
Is

::
is

:::::::
quadratic

:::
for

::::
both

:::::::::
cpGIMPM and CPDI2q, but contrary to ?Coombs et al. (2020)

::
Coombs et al. (2020); Coombs and Augarde (2020)

who reported a full convergence, it stops at error≈ 2 ·10−6 for the explicit implementation. This was already outlined by Bar-

denhagen and Kober (2004) as a saturation of the error caused by resolving the dynamic stress wave propagation, which is

inherent to any explicit scheme. Hence, a static solution could never be achieved because, unlike quasi-static implicit methods,

the elastic waves propagate indefinitely and the static equilibrium is never resolved. This is consistent when compared to the430

iCPDI
:::::::
iCPDI2q solution we implemented(green circles), whose behaviour is still converging below the limit error≈ 2 · 10−6

reached by the explicit solver. In addition
:::::::
However, the convergence becomes quadratic below this limit. It confirms that the

error saturation is due to the explicit format and not to our numerical implementation.
:::
rate

:::
of

::
the

:::::::
implicit

:::::::::
algorithm

::::::::
decreases

::
as

:::
the

:::::
mesh

::::::::
resolution

:::::::::
increases.

:::
We

:::
did

:::
not

::::::::::
investigate

:::
this

:::::
since

:::
our

:::::
focus

::
is
:::
on

:::
the

:::::::
explicit

:::::::::::::
implementation.

::::
The

:::::::
vertical

::::::
stresses

::
of

:::::::
material

::::::
points

:::
are

::
in

:::::
good

:::::::::
agreements

::::
with

:::
the

:::::::::
analytical

:::::::
solution

:::
(see

::::
Fig.

::
9

:::
b)).

:::::
Some

::::::::::
oscillations

:::
are

::::::::
observed435

::
for

::
a
:::::
coarse

:::::
mesh

:::::::::
resolution

:::
but

::::
these

::::::
rapidly

::::::::
decrease

::
as

:::
the

:::::
mesh

::::::::
resolution

::::::::
increases.

:

4.2 Large deformation: the elastic cantilever beam problem

:::
We

::::::
finally

:::::
report

:::
the

::::::::::
wall-clock

::::
time

:::
for

::::
the

:::::::::
cpGIMPM

:::::::::
(iterative),

::::::::::
cpGIMPM

::::::::::
(vectorised)

::::
and

:::
the

:::::::
CPDI2q

:::::::::::
(vectorised)

:::::::
variants.

::
As

:::::::
claimed

:::
by

::::::::::::::::::::::::
Sadeghirad et al. (2013, 2011)

:
,
::
the

:::::::
CPDI2q

::::::
variant

:::::::
induces

::
no

:::::::::
significant

::::::::::::
computational

:::
cost

:::::::::
compared

::
to

:::
the

:::::::::
cpGIMPM

:::::::
variant.

::::::::
However,

:::
the

::::::::
absolute

:::::
value

:::::::
between

:::::::::
vectorised

:::
and

::::::::
iterative

::::::::::::::
implementations

::
is

:::::::::
significant.

::::
For440

:::::::::
np = 2560,

:::
the

:::::::::
vectorised

:::::::
solution

:::::::::
completed

::
in

:::::
1161

:
s
:::::::
whereas

:::
the

:::::::
iterative

:::::::
solution

:::::::::
completed

::
in

::::::
52’856

::
s.
::::
The

:::::::::
vectorised

:::::::::::::
implementation

:
is
:::::::
roughly

:::
50

::::
times

:::::
faster

::::
than

:::
the

:::::::
iterative

::::::::::::::
implementation.

4.1.1
:::::
Large

::::::::::::
deformation:

:::
the

::::::
elastic

:::::::::
cantilever

:::::
beam

::::::::
problem

The cantilever beam problem Sinaie et al. (2017); Sadeghirad et al. (2011)
:::::::::::::::::::::::::::::::::::
(Sinaie et al., 2017; Sadeghirad et al., 2011) is the

second benchmark which demonstrates the robustness of the MPM solver. Two MPM variants are implemented, namely,445

19

Figure 10.
::::::::
Wall-clock

::::
time

:::
for

::::::::
cpGIMPM

::::::::
(vectorised

:::
and

:::::::
iterative

:::::::
solutions)

::::
and

::
the

:::::::
CPDI2q

::::::
solution

::::
with

:::::
respect

::
to
:::
the

::::
total

::::::
number

::
of

::::::
material

:::::
points

:::
np.

::::
There

::
is
::
no

::::::::
significant

:::::::::
differences

::::::
between

:::::::
CPDI2q

:::
and

::::::::
cpGIMPM

::::::
variants

:::::::
regarding

:::
the

::::::::
wall-clock

::::
time.

:::
The

:::::::
iterative

:::::::::::
implementation

::
is

:::
also

:::::
much

:::::
slower

::::
than

::
the

::::::::
vectorised

::::::::::::
implementation.

i) the contiguous GIMP (cpGIMP
:::::::
GIMPM

::::::::::
(cpGIMPM) which relies on the stretch part of the deformation gradient (see

Charlton et al. (2017)
::::::::::::::::
Charlton et al. 2017) to update the particle domain

::::
since

:::::
large

:::::::
rotations

:::
are

:::::::
expected

::::::
during

:::
the

::::::::::
deformation

::
of

::
the

:::::
beam, and ii) the convected particle domain interpolation (CPDILeavy et al. (2019); Sadeghirad et al. (2011)). In addition,

two ,
::::::::::::::::::::::::::::::::::

Leavy et al. 2019; Sadeghirad et al. 2011
:
).
:::
We

::::::::
selected

:::
the

:::::
CPDI

:::::::
variant

:::::
since

::
it

::
is

:::::
more

:::::::
suitable

::
to

:::::
large

::::::::
torsional

::::::::::
deformation

::::::
modes

::::::::::::::::::
(Coombs et al., 2020)

::::
than

:::
the

:::::::
CPDI2q

:::::::
variant.

::::
Two

:
constitutive elastic models are selected, i.e., neo-450

Hookean Guilkey and Weiss (2003) or linear elastic York et al. (1999) solids. For consistency, we use the same physical

quantities as in Sadeghirad et al. (2011), i.e., an elastic modulus E = 106 Pa, a Poisson’s ratio ν = 0.3, a density ρ= 1050

kg/m3, the gravity g = 10.0 m/s and a real-time simulation t= 3 s with no damping forces introduced.

l0 = 4 m

h
0
=

1
m

x

y

Figure 11. Initial geometry for the cantilever beam problem; the free end material point appears in red where a red cross marks its centre.

The beam geometry is depicted in Fig. 11 and is discretized by 64 bi-linear four-noded quadrilaterals, each of them initially

populated by 32
:
9
:
material points (e.g., np = 576) with a

::::::
adaptive

:
time step determined by the CFL condition, e.g., ∆t= 10−3455

s
:::
i.e.,

:::
the

::::
time

::::
step

::::::::
multiplier

::
is
:::::::::::
alpha= 0.1,

::::::
which

:::::
yields

:::::::
minimal

:::
and

::::::::
maximal

::::
time

::::
step

:::::
values

::
of
::::::::::::::::
∆tmin = 5.7 · 10−4

:
s
::::
and

:::::::::::::::
∆tmax = 6.9 · 10−4

::
s
::::::::::
respectively. The large deformation is initiated by suddenly applying the gravity at the beginning of the

simulation, i.e., t= 0 s.

As indicated in Sadeghirad et al. (2011), the cpGIMP
:::::::::
cpGIMPM

:
simulation failed when using the diagonal components of

the deformation gradient to update the material point domain. However, ,
::::
i.e.,

::
the

:::::::
domain

:::::::
vanishes

:::::
under

::::
large

::::::::
rotations

::
as

:::::
stated460

::
in

:::::::::::::::::
(Coombs et al., 2020)

:
.
::::::::
However

:::
and

::
as

:
as expected, the cpGIMP

:::::::::
cpGIMPM

:
simulation succeeded when using the diagonal

terms of the stretch part of the deformation tensor
::::::
gradient, as proposed by Charlton et al. (2017)

:::::::::::::::::::::::::::::::::::
Coombs et al. (2020); Charlton et al. (2017)

. The numerical solutions, obtained by the latter cpGIMP
:::::::::
cpGIMPM and CPDI, to the vertical deflection ∆u of the material

20

Figure 12. Vertical deflection response
:::
∆u for the cantilever beam problem. The black markers denote the solutions of Sadeghirad et al.

(2011) (circles for CPDI and squares for FEM). The line colour indicates the MPM variant (blue for CPDI and red for cpGIMP), solid lines

refer to a linear elastic solid, whereas dashed lines refer to a neo-Hookean solid. The vertical deflection ∆u corresponds to the vertical

displacement of the bottom material point at the free end of the beam (the red cross in Fig. 11).

point at the bottom free end of the beam (e.g., the red cross in Fig. 11) are shown in Fig. 12. Some comparative results reported

by Sadeghirad et al. (2011) are depicted by black markers (squares for the FEM solution and circles for the CPDI solution),465

whereas the results of our MPM
:::
the solver are depicted by lines.

The local minimal and the minimal and maximal values (in timing and magnitude) are in agreement with the FEM solution

of Sadeghirad et al. (2011). Moreover, the
:::
The

:
elastic response is in agreement with the CPDI results reported by Sadeghirad

et al. (2011) but,
::

it
:
differs in timing with respect to the FEM solution. This confirms our numerical implementation of CPDI

when compared to the one proposed by Sadeghirad et al. (2011). In addition, the elastic response does not substantially differ470

from a linear elastic solid to a neo-Hookean one. It demonstrates the incremental implementation of the MPM solver to be

relevant in capturing large
::::::
elastic deformations for the cantilever beam problem.

4.2 Elasto-plasticity: the column collapse

We compare our MPM solver with a non-associated plasticity based on a Drucker-Prager model with tension cutoff (Huang et al. (2015)

) to the experimental results of an elasto-plastic collapse of a material (e.g., an aluminium-bar assemblage, see Bui et al. (2008)475

). The numerical implementation is detailed in Huang et al. (2015), andwe therefore suggest the interested reader to directly

refer to their contribution since we do not describe the elasto-plastic model in this manuscript.
:::::
Figure

:::
13

::::::
shows

:::
the

:::::
finite

::::::::::
deformation

::
of

:::
the

::::::::
material

:::::
point

:::::::
domain,

::::
i.e.,

::
a)

::
or

:::
c),

::::
and,

::::
the

::::::
vertical

:::::::
Cauchy

:::::
stress

:::::
field,

::::
i.e.,

::
b)

:::
or

:::
d),

:::
for

:::::
CPDI

::::
and

:::::::::
cpGIMPM.

::::
The

::::
stress

::::::::::
oscillations

:::
due

::
to

:::
the

:::::::::::
cell-crossing

::::
error

:::
are

:::::::
partially

:::::
cured

::::
when

:::::
using

:
a
::::::::::::
domain-based

::::::
variant

::::::::
compared

::
to

::
the

::::::::
standard

:::::
MPM.

:::::::::
However,

:::::::
spurious

::::::
vertical

:::::::
stresses

:::
are

::::
more

:::::::::
developed

::
in

::::
Fig.

::
13

:::
(d)

::::::::
compared

::
to
::::
Fig.

:::
13

::
(b)

::::::
where

:::
the480

21

Figure 13.
:::::
Finite

:::::::::
deformation

::
of

:::
the

::::::
material

::::
point

::::::
domain

:::
and

::::::
vertical

::::::
Cauchy

:::::
stress

:::
σyy:::

for
:::::
CPDI,

:::
i.e.,

::
a)

::
&

::
b),

:::
and

:::
for

:::::::::
cpGIMPM,

:::
i.e.,

:
c)
::

&
:::

d).
:::
The

:::::
CPDI

::::::
variant

::::
gives

::
a

::::
better

::::
and

::::::::
contiguous

:::::::::
description

::
of

:::
the

::::::
material

::::::
point’s

::::::
domain

:::
and

:
a
::::::

slightly
::::::::

smoother
::::
stress

:::::
field,

:::::::
compared

::
to

:::
the

::::::::
cpGIMPM

::::::
variant,

:::::
which

:
is
:::::
based

::
on

:::
the

:::::
stretch

:::
part

::
of

:::
the

:::::::::
deformation

:::::::
gradient.

::::::
vertical

:::::
stress

::::
field

:::::::
appears

::::
even

::::::::
smoother.

:::::
Both

:::::
CPDI

:::
and

::::::::::
cpGIMPM

::::
give

:
a
::::::
decent

::::::::::::
representation

::
of

:::
the

:::::
actual

::::::::
geometry

:::
of

::
the

:::::::::
deformed

:::::
beam.

Our elasto-plastic MPMsolver closely follows the implementation of Huang et al. (2015), except our solver relies on an

MUSL procedure, whereas Huang et al. (2015) selected the USF procedure. The
:::
We

::::
also

:::::
report

::
a

::::
quite

:::::::::
significant

:::::::::
difference

::
in

::::::::
execution

::::
time

:::::::
between

:::
the

:::::
CPDI

::::::
variant

::::::::
compared

::
to

:::
the

:::::::
CPDI2q

:::
and

:::::::::
cpGIMPM

:::::::
variants,

::::
i.e.,

:::::
CPDI

:::::::
executes

::
in

::
an

:::::::
average485

::::::
280.54

::
it/s

:::::::
whereas

:::::
both

:::::::
CPDI2q

:::
and

::::::::::
CPGIMPM

::::::
execute

::
in

:::
an

::::::
average

::::::
301.42

:::
it/s

::::
and

::
an

:::::::
average

::::::
299.33

:::
it/s,

:::::::::::
respectively.

4.1.1
:::::::::::
Application:

:::
the

:::::::::::
elasto-plastic

:::::::::
slumping

::::::::
dynamics

:::
We

::::::
present

::
an

::::::::::
application

::
of

:::
the

:::::
MPM

:::::
solver

:::::::::
(vectorised

::::
and

:::::::
iterative

:::::::
version)

::
to

:::
the

::::
case

::
of

:::::::
landslide

::::::::::
mechanics.

:::
We

:::::::
selected

::
the

::::::::::::
domain-based

:::::
CDPI

::::::
variant

:::::
since

:
it
::::::::
performs

:::::
better

::::
than

:::
the

:::::::
CPDI2q

:::::
variant

::
in
:::::::::
modelling

:::::::
torsional

::::
and

::::::
stretch

::::::::::
deformation

:::::
modes

:::::::::::::::::
(Wang et al., 2019)

::::::
coupled

::
to

::
an

:
elasto-plastic problem is solved by i) an elastic trial, ii) corrected by a return mapping490

22

when the material yields either in shear or in tension or both , assuming a
::::::::::
constitutive

:::::
model

:::::
based

:::
on

::
a non-associated (the

dilation angle ψ = 0) perfectly plastic behaviour of the material. Since the MPM variant in Huang et al. (2015) was not clearly

stated, we use the uGIMP variant . The reason is the collapse results in extreme deformations, for which a domain update based

on the deformation gradient systematically resulted in a failure during the simulation. We conducted preliminary investigations

andconcluded that the uGIMP variant was the most reliable MPM variant for such a problem
::::::::::::
Mohr-Coulomb

::::::
(M-C)

::::::::
plasticity495

:::::::::::::
(Simpson, 2017)

:
.
:::
We

::
i)

::::::
analyse

:::
the

::::::::::
geometrical

:::::::
features

::
of

:::
the

:::::
slump

::::
and,

::
ii)

::::::::
compare

::
the

::::::
results

::::
(the

::::::::
geometry

:::
and

:::
the

::::::
failure

::::::
surface)

:::
to

:::
the

::::::::
numerical

:::::::::
simulation

:::
of

::::::::::::::::
Huang et al. (2015),

::::::
which

::
is

:::::
based

:::
on

:
a
:::::::::::::

Drucker-Prager
::::::

model
::::
with

:::::::
tension

::::::
cut-off

:::::
(D-P).

Lx = 110 m

L
y
=

3
5
m

45
◦

30 m

1
5
m

Figure 14. Initial geometry for the elasto-plastic collapse (
:::::
slump

::::::
problem

::::
from Huang et al. (2015)). Roller boundaries

:::::::
boundary

::::::::
conditions

are imposed on the left and right boundaries of the domain while a no-slip condition is enforced at the bottom of the domain. The

aluminium-bar assemblage has dimensions
:::
base

:
of l0 ×h0 and is discretized by npe = 4 material points per element, and Table ??

summarizes the materialproperties.

The initial geometry and boundary conditions used for this problem are depicted

:::
The

::::::::
geometry

::
of

:::
the

::::::::
problem

:
is
::::::

shown
:
in Fig. 16, while the parameters used are summarized in Table ?? and represent the500

problem described in Bui et al. (2008). The aluminium assemblage
::
14,

:::
the

::::
soil

:::::::
material is discretized by np = 28′800 material

points within a mesh made of 320 × 48 quadrilateral elements
:::::::
110× 35

::::::::
elements

::::
with

:::::::
npe = 9, resulting in a uniform spacing

of h= 1.25 mm. The time step is given by the CFL condition , e.g., ∆t= 7.02 · 10−5 s for a total simulation time of 1.25 s.

Parameters used for the elasto-plastic collapse simulation. The values of parameters are those found in Huang et al. (2015),

obtained using a shear box test by Bui et al. (2008). Parameter Symbol Value Unit Density ρ 2650 kgm−3
::::::::::
np = 21′840

:::::::
material505

:::::
points.

::
A
:::::::
uniform

:::::
mesh

:::::::
spacing

:::::::
hx,y = 1

::
m

::
is

::::
used

::::
and,

::::::
rollers

:::
are

:::::::
imposed

::
at

:::
the

:::
left

:::
and

:::::
right

::::::
domain

:::::
limits

:::::
while

::
a

::::::
no-slip

::::::::
condition

:
is
::::::::

enforced
::
at

:::
the

::::
base

::
of
::::

the
:::::::
material.

:::
We

:::::::
closely

:::::
follow

:::
the

:::::::::
numerical

:::::::::
procedure

:::::::
proposed

:::
in

::::::::::::::::
Huang et al. (2015)

:
,
:::
i.e.,

:::
no

::::
local

::::::::
damping

::
is

:::::::::
introduced

:::
in

:::
the

:::::::
equation

:::
of

::::::
motion

:::
and

::::
the

::::::
gravity

::
is

::::::::
suddenly

::::::
applied

::
at
::::

the
::::::::
beginning

:::
of

:::
the

:::::::::
simulation.

:::
As

::
in

::::::::::::::::
Huang et al. (2015)

:
,
:::
we

::::::::
consider

::
an

:::::::::::
elasto-plastic

::::::::
cohesive

:::::::
material

:::
of

::::::
density

:::::::::
ρ= 2100

::::::
kg·m3,

::::
with

:::
an

:::::
elastic

::::::::
modulus

::::::
E = 70

::::
MPa

::::
and

:
a
:
Poisson’s ratio ν 0.3 - Bulk modulus K 0.7 MPa Cohesion c 0 PaInternal friction angle φ510

19.8 ◦ Dilation angle ψ 0 ◦ Gravity g -9.81 m s−2

Figure 17 shows the numerical solution compared with the experimental results of Bui et al. (2008).We observe a good

agreement between the numerical simulation and the experiments, considering either the final surface (blue square dotted line)

or the failure surface (blue circle dotted line) . Similarly, the repose angle in the numerical simulation is approximately 13◦ from

the horizontal, which is also in agreement with the experimental data reported by Bui et al. (2008) (e. g.
:::::::
ν = 0.3.

:::
The

::::::::
cohesion515

23

:
is
::::::
c= 10

:::
Pa,

:::
the

:::::::
internal

:::::::
friction

:::::
angle

::
is

:::::::
φ= 20◦

::::
with

:::
no

::::::::
dilatancy,

::::
i.e.,

:::
the

::::::::
dilatancy

:::::
angle

::
is

::::::
ψ = 0.

:::
The

:::::
total

:::::::::
simulation

::::
time

:
is
:::::

7.22
:
s
:::
and, they reported a final angle of 14◦).

:::
we

:::::
select

:
a
:::::

time
:::
step

:::::::::
multiplier

:::::::::::
alpha= 0.5.

::::
The

:::::::
adaptive

::::
time

:::::
steps

::::::::::
(considering

:::
the

::::::
elastic

::::::::
properties

:::
and

:::
the

:::::
mesh

::::::::
spacings

:::::::
hx,y = 1

:::
m)

::::
yield

:::::::
minimal

::::
and

:::::::
maximal

::::::
values

:::::::::::::::
∆tmin = 2.3 · 10−3

::
s

:::
and

::::::::::::::::
∆tmax = 2.4 · 10−3

:
s
::::::::::
respectively.

:

These numerical results demonstrate the solver to be in agreement with both previous experimental (Bui et al. (2008)) and520

numerical results (Huang et al. (2015)) and confirms its ability to solve

Figure 15.
::::
MPM

:::::::
solution

::
to

::
the

::::::::::
elasto-plastic

::::::
slump.

:::
The

:::
red

::::
lines

::::::
indicate

::
the

::::::::
numerical

::::::
solution

::
of
:::::::::::::::
Huang et al. (2015)

:::
and,

:::
the

:::::::
coloured

::::
points

:::::::
indicate

::
the

::::::
second

:::::::
invariant

::
of

::
the

::::::::::
accumulated

:::::
plastic

:::::
strain

:::
εII ::::::

obtained
:::
by

::
the

:::::
CPDI

:::::
solver.

:::
An

:::::
intense

:::::
shear

::::
zone

::::::::::
progressively

::::::
develops

::::::::
backwards

::::
from

:::
the

:::
toe

::
of

::
the

:::::
slope,

:::::::
resulting

::
in

:
a
::::::
circular

:::::
failure

:::::
mode.

:::
The

:::::::::
numerical

:::::::
solution

::
to

:::
the

:
elasto-plastic problems such as granular collapses using an appropriate constitutive model.

However, it also demonstrates the inability of the MPM variants based on a domain update (GIMPM or CPDI) to resolve

extremely large plastic deformations when relying on the normal components of
:::::::
problem

::
is

::::::
shown

::
in

::::
Fig.

:::
15.

:::
An

:::::::
intense

::::
shear

:::::
zone,

::::::::::
highlighted

:::
by

:::
the

::::::
second

::::::::
invariant

::
of

:
the deformation gradient or its stretch part to update the material point525

domain (interested readers are referred to the contribution of Coombs et al. (2020) regarding the suitability of different domain

update variants) . Consecutively, we performed an additional simulation using a domain update based on the determinant of the

deformation gradient. No significant differences were observed with the experimental results, and the simulation succeeded
::::::::::
accumulated

:::::
plastic

:::::
strain

::::
εII ,

::::::::
develops

::
at

:::
the

:::
toe

::
of

:::
the

:::::
slope

::
as

:::::
soon

::
as

:::
the

:::::::
material

::::::
yields

:::
and

::::::::::
propagates

:::::::::
backwards

::
to

:::
the

:::
top

:::
of

:::
the

:::::::
material.

::
It

:::::
results

::
in

:
a
:::::::::
rotational

:::::
slump.

::::
The

:::::
failure

::::::
surface

::
is
::
in

:::::
good

::::::::
agreement

::::
with

:::
the

:::::::
solution

:::::::
reported

::
by

:::::::::::::::::
Huang et al. (2015)530

:::::::::
(continuous

::::
and

:::::::::::
discontinuous

:::
red

::::
lines

::
in

::::
Fig.

:::
15)

:::
but,

:::
we

::::
also

::::::
observe

::::::::::
differences,

:::
i.e.,

:::
the

::::
crest

::
of

:::
the

:::::
slope

::
is

::::
lower

:::::::::
compared

::
to

:::
the

:::::::
original

:::::
work

::
of

::::::::::::::::
Huang et al. (2015)

:
.
::::
This

:::::
may

::
be

:::::::::
explained

:::
by

:::
the

:::::::
problem

:::
of

:::::::
spurious

::::::::
material

:::::::::
separation

:::::
when

::::
using

::::::
sMPM

::
or
::::::::

GIMPM
::::::::::::::::::::
(Sadeghirad et al., 2011)

:
,
::
the

:::::
latter

:::::
being

::::::::
overcome

:::::
with

::
the

::::::
CPDI

::::::
variant,

::::
i.e.,

:::
the

::::
crest

::
of

:::
the

:::::
slope

:::::::::
experiences

:::::::::::
considerable

::::::
stretch

:::::::::::
deformation

::::::
modes.

:::::::
Despite

:::::
some

::::::::::
differences,

:::
our

:::::::::
numerical

::::::
results

::::::
appear

:::::::
coherent

:::::
with

::::
those

:::::::
reported

:::
by

::::::::::::::::
Huang et al. (2015).

:
535

24

:::
The

:::::::::
vectorised

::::
and

:::::::
iterative

::::::::
solutions

:::
are

::::::::
resolved

:::::
within

:::::::::::::
approximately

:::
630

::
s
::
(a

:::::::::
wall-clock

:::::
time

::
of

::
≈
:::

10
::::
min.

::::
and

:::
an

::::::
average

::::
4.20

::::
it/s)

:::
and

:::::::
14’868

:
s
::
(a

:::::::::
wall-clock

::::
time

:::
of

::
≈

:::
4.1

::::
hrs.

:::
and

:::
an

::::::
average

::::
0.21

::::
it/s)

:::::::::::
respectively.

::::
This

::::::::::
corresponds

::
to

::
a

::::::::::
performance

::::
gain

::
of

:::::
23.6.

:::
The

:::::::::::
performance

::::
gain

::
is

:::::::::
significant

:::::::
between

::
an

:::::::
iterative

:::
and

::
a
:::::::::
vectorised

:::::
solver

:::
for

:::
this

:::::::
problem.

Final geometry of the collapse: in the intact (undeformed) region, the material points are coloured in green, whereas in

deformed regions, they are coloured in red and indicate plastic deformations of the initial mass. The transition between the540

deformed and undeformed region marks the failure surface of the material. Experimental results are depicted by the blue dotted

lines.

4.2 Computational efficiency: loop-based code versus vectorized code
:::::::::::
performance

4.2.1
:::::::
Iterative

::::
and

:::::::::
vectorised

::::::::::::
elasto-plastic

::::::::
collapses

We evaluate the computational efficiency of the MATLAB-based MPM
::::::::::
performance

::
of

:::
the

:
solver, using the MATLAB version545

R2018a on an Intel Core i7-4790, with a benchmark based on the collapse of an
:::::::::::
elasto-plastic

:::::::
collapse

::
of

:::
the

:
aluminium-bar

assemblage
:
,
:::
for

:::::
which

::::::::
numerical

::::
and

:::::::::::
experimental

:::::
results

:::::
were

:::::::
initially

:::::::
reported

::
by

::::::::::::::
Bui et al. (2008)

:::
and

:::::::::::::::::
Huang et al. (2015)

::::::::::
respectively.

Lx = 800 mm

L
y
=

1
2
0
m
m

l0 = 200 mm

h
0
=

1
0
0
m
m

npe = 4

Figure 16.
::::
Initial

::::::::
geometry

::
for

:::
the

:::::::::
elasto-plastic

:::::::
collapse

:::::::::::::::
(Huang et al., 2015).

:::::
Roller

::::::::
boundaries

:::
are

::::::
imposed

::
on

:::
the

:::
left

:::
and

:::
right

:::::::::
boundaries

:
of
:::

the
::::::::::::

computational
::::::
domain

:::::
while

:
a
::::::
no-slip

:::::::
condition

::
is
::::::::

enforced
::
at

:::
the

:::::
bottom

:::
of

:::
the

::::::
domain.

::::
The

:::::::::::
aluminium-bar

::::::::::
assemblage

:::
has

::::::::
dimensions

::
of

::::::
l0 ×h0:::

and
::
is

::::::::
discretized

::
by

::::::
npe = 4

:::::::
material

:::::
points

::
per

::::::
initially

::::::::
populated

:::::::
element.

We vary the number of elements of the background mesh, which results in a variety of different mesh spacings h
::::::
regular

:::::
mesh

:::::::
spacings

::::
hx,y . The number of elements along the x-direction is nel,x = [20,40,80,160,320,640], and the resulting number550

of elements in the y-direction is nel,y = [2,5,11,23,47,95]
::
x-

:::
and

:::
y-

::::::::
directions

:::
are

::::::::::::::::::::::::::::::
nel,x = [10,20,40,80,160,320,640]

::::
and

:::::::::::::::::::::::
nel,y = [1,2,5,11,23,47,95]

::::::::::
respectively. The number of material points per element is kept constant, i.e., npe = 32, and the

:::::::
npe = 4,

:::
and

:::
this

::::::
yields

:
a total number of material points is np = [128,465,1830,7260,28′920,115′440]

:::::::::::::::::::::::::::::::::::::
np = [10,50,200,800,3′200,12′800,51′200].

:::
The

::::::
initial

::::::::
geometry

::::
and

::::::::
boundary

:::::::::
conditions

::::
used

:::
for

::::
this

::::::::
problem

:::
are

:::::::
depicted

:::
in

::::
Fig.

:::
16.

::::
The

::::
total

:::::::::
simulation

:::::
time

::
is

:::
1.0

:
s
::::
and,

:::
the

::::
time

::::
step

:::::::::
multiplier

::
is

:::::::
α= 0.5.

:::::::::::
Accordingly

::
to

:::::::::::::::::
Huang et al. (2015),

:::
the

::::::
gravity

::::::::
g = 9.81

::::::
m·s−2

::
is

::::::
applied

:::
to555

::
the

::::::::::
assemblage

::::
and,

:::
no

:::::::
damping

::
is
::::::::::
introduced.

:::
We

::::::::
consider

:
a
:::::::::::
non-cohesive

:::::::
granular

::::::::
material

:::::::::::::::::
(Huang et al., 2015)

:
of

:::::::
density

:::::::
ρ= 2650

:::::::
kg·m3,

::::
with

::
a

::::
bulk

:::::::
modulus

::::::::
K = 0.7

:::::
MPa

:::
and

::
a
::::::::
Poisson’s

::::
ratio

::::::::
ν = 0.3.

::::
The

:::::::
cohesion

::
is
::::::
c= 0

:::
Pa,

:::
the

:::::::
internal

::::::
friction

:::::
angle

::
is

::::::::
φ= 19.8◦

::::
and

::::
there

::
is

::
no

:::::::::
dilatancy,

:::
i.e.,

:::::
ψ = 0.

25

We calculate the average number of iterations per second (
::::::::
conducted

::::::::::
preliminary

::::::::::::
investigations

:::::
using

:::::
either

::::::::
uGIMPM

:::
or

:::::::::
cpGIMPM

:::::::
variants,

:::
the

:::::
latter

::::
with

::
a
:::::::
domain

::::::
update

:::::
based

:::::
either

:::
on

:::
the

::::::::::
determinant

:::
of

:::
the

::::::::::
deformation

::::::::
gradient

::
or

:::
on

:::
the560

:::::::
diagonal

::::::::::
components

::
of

:::
the

::::::
stretch

::::
part

::
of

:::
the

::::::::::
deformation

::::::::
gradient.

:::
We

:::::::::
concluded

:::
the

::::::::
uGIMPM

::::
was

:::
the

::::
most

:::::::
reliable,

:::::
even

:::::
tough

::
its

::::::::
suitability

::
is
::::::::
restricted

::
to

::::
both

::::::
simple

:::::
shear

:::
and

::::
pure

:::::::
rotation

::::::::::
deformation

::::::
modes

::::::::::::::::::
(Coombs et al., 2020).

:

Figure 17.
::::
Final

::::::::
geometry

::
of

::
the

:::::::
collapse:

::
in
:::

the
:::::
intact

:::::
region

::::::::
(horizontal

:::::::::::
displacement

:::::
ux < 1

:::::
mm),

:::
the

::::::
material

:::::
points

:::
are

:::::::
coloured

::
in

::::
green,

:::::::
whereas

::
in

::
the

::::::::
deformed

:::::
region

::::::::
(horizontal

::::::::::
displacement

::::::
ux > 1

::::
mm),

::::
they

:::
are

::::::
coloured

::
in
:::

red
:::
and

:::::::
indicate

:::::
plastic

::::::::::
deformations

::
of

::
the

:::::
initial

::::
mass.

::::
The

:::::::
transition

::::::
between

:::
the

:::::::
deformed

:::
and

::::::::::
undeformed

:::::
region

:::::
marks

::
the

:::::
failure

::::::
surface

::
of

:::
the

::::::
material.

:::::::::::
Experimental

:::::
results

:
of
::::::::::::::

(Bui et al., 2008)
::
are

:::::::
depicted

::
by

:::
the

:::
blue

:::::
dotted

:::::
lines.

:::
The

:::::::::::
computational

::::::
domain

::
is

::::::::
discretized

::
by

::
a
:::::::::
background

::::
mesh

::::
made

::
of
::::

320
::
×

::
48

::::::::::
quadrilateral

:::::::
elements

:::
with

::::::
np = 4

:::
per

::::::
initially

::::::::
populated

:::::::
element,

:::
i.e.,

::
a

:::
total

::::::::::
np = 12′800

:::::::
material

:::::
points

:::::::
discretize

:::
the

:::::::::
aluminium

:::::::::
assemblage.

:::
We

:::::::
observe

:
a
:::::

good
:::::::::
agreement

::::::::
between

:::
the

:::::::::
numerical

:::::::::
simulation

::::
and

:::
the

::::::::::
experiments

::::
(see

::::
Fig.

::::
17),

::::::::::
considering

::::::
either

::
the

:::::
final

::::::
surface

:::::
(blue

::::::
square

:::::
dotted

:::::
line)

::
or

:::
the

::::::
failure

:::::::
surface

::::
(blue

:::::
circle

::::::
dotted

:::::
line).

::::
The

::::::
repose

:::::
angle

::
in

:::
the

:::::::::
numerical

::::::::
simulation

::
is
:::::::::::::

approximately
::::
13◦,

:::::
which

::
is
::
in
::::::::::

agreements
::::
with

:::
the

:::::::::::
experimental

::::
data

::::::::
reported

::
by

::::::::::::::
Bui et al. (2008)

:
,
::::
e.g.,

::::
they565

:::::::
reported

:
a
::::
final

:::::
angle

::
of

::::
14◦.

:

:::
The

:::::::::
vectorised

:::
and

:::::::
iterative

::::::::
solutions

:::
(for

::
a
::::
total

::
of

:::::::::::
np = 12′800

:::::::
material

::::::
points)

:::
are

:::::::
resolved

::::::
within

::::::::::::
approximately

::::
1595

::
s

::
(a

:::::::::
wall-clock

::::
time

::
of

::
≈

:::
0.5

::::
hrs.

:::
and

:::
an

::::::
average

:::::
10.98

::::
it/s)

::::
and

::::::
43’861

:
s
::
(a

:::::::::
wall-clock

::::
time

:::
of

::
≈

::
12

::::
hrs.

:::
and

:::
an

:::::::
average

::::
0.38

it/s)which corresponds to the number of calculation cycles during 1 second for an increasing total number of elements. We use

this metric since itprovides a clearer insight regarding the efficiency of the numerical solver , i. e. , the more iterations there are,570

the more efficient the solver. Figure ?? shows an overall speed-up ratio of 20 reached by the vectorized solver
:
s)

:::::::::::
respectively.

::::
This

::::::::::
corresponds

::
to

:
a
::::::::::
performance

::::
gain

::
of

:::::
28.24

:::
for

:
a
:::::::::
vectorised

::::
code

::::
over

::
an

:::::::
iterative

::::
code

::
to

:::::
solve

:::
this

:::::::::::
elasto-plastic

::::::::
problem.

26

:::
The

:::::::::::
performance

::
of

:::
the

:::::
solver

::
is
::::::::::::
demonstrated

::
in

::::
Fig.

:::
18.

::
A

::::
peak

:::::::::::
performance

::
of

::
≈

::::
900

::::::
Mflops

::
is

:::::::
reached,

::
as

:::::
soon

::
as

:::
np

::::::
exceeds

:::::
1000

:::::::
material

:::::
points

::::
and,

:
a
:::::::
residual

::::::::::
performance

::
of

::
≈

::::
600

::::::
Mflops

:
is
::::::
further

:::::::
resolved

::::
(for

::::::::::
np ≈ 50′000

:::::::
material

:::::::
points).575

:::::
Every

::::::::
functions

::::::
provide

:::
an

::::
even

:::
and

:::
fair

:::::::::::
contribution

::
on

:::
the

::::::
overall

:::::::::::
performance,

::::::
except

:::
the

:::::::
function

:::::::::::::::::
constitutive.m

:::
for

:::::
which

:::
the

:::::::::::
performance

:::::::
appears

::::::
delayed

:::
or

::::::
shifted.

:::::
First

::
of

:::
all,

::::
this

:::::::
function

:::::
treats

:::
the

:::::::::::
elasto-plastic

::::::::::
constitutive

::::::::
relation,

::
in

:::::
which

:::
the

::::::::::
dimensions

::
of

:::
the

:::::::
matrices

:::
are

:::::::
smaller

:::::
when compared to the iterative implementation. Such a gain is appreciable

since it results in a decrease of the runtime, i.e., approximately 40 hours for the iterative version, whereas the vectorized

solution is achieved in 3 hours (np = 115′440)
::::
other

:::::::::
functions.

::::::
Hence,

:::
the

:::::::
amount

::
of

:::::::
floating

::::
point

:::::::::
operations

::::
per

::::::
second

::
is580

:::::
lower

::::::::
compared

::
to

:::::
other

::::::::
functions,

::::
e.g.,

::::::::::::
p2Nsolve.m

:
.
::::
This

::::::
results

::
in

:::
less

:::::::::::
performance

:::
for

::
an

:::::::::
equivalent

::::::
number

:::
of

:::::::
material

:::::
points.

::
It
::::
also

:::::::
requires

:
a
::::::
greater

:::::::
number

::
of

:::::::
material

:::::
points

::
to
:::::::
increase

:::
the

::::::::::
dimensions

::
of

:::
the

:::::::
matrices

::
in

:::::
order

::
to

::::::
exceed

:::
the

:::
L2

:::::
cache

::::::::
maximum

:::::::
capacity.

Figure 18. Number of iterations
::::::
floating

::::
point

:::::::
operation per second, i.e.,

::::::
seconds

:::::
(flops)

:::
with

::::::
respect

::
to the

:::
total number of calculation cycles

achieved in one second with respect
:::::

material
:::::
point

::
np:::

for
::
the

::::::::
vectorised

::::::::::::
implementation.

::::
The

::::::::::
discontinuous

::::
lines

::::
refer to the mesh spacing

h under
:::::::
functions

::
of the MATLAB version R2018a

::::
solver,

:::::::
whereas

::
the

:::::::::
continuous

:::
line

::::
refer

:
to
:::
the

:::::
solver.

::
A

::::
peak

:::::::::
performance

::
of

:::
900

::::::
Mflops

:
is
::::::
reached

::
by

:::
the

:::::
solver

:::
for

::::::::
np > 1000

:::
and,

::
a
::::::
residual

:::::::::
performance

::
of
:::
600

::::::
Mflops

::
is

:::::
further

:::::::
resolved

::
for

::
an

::::::::
increasing

:::
np.

In addition, we also monitor the average time spent on the different functions called during a single execution cycle t̄c

(Fig. ??). When comparing time spent on the functions p2Nsolve.m and mapN2p.m, we report a speed up of 24 and 22,585

respectively. This difference is expected since these functions originally necessitate an extensive use of two nested for-loops

to calculate i) the material point contribution or ii) the interpolation of updated nodal solutions
:::
This

:::::::::::::
considerations

::::::
provide

::
a

:::::
better

:::::::::::
understanding

:::
of

:::
the

::::::::::
performance

::::
gain

:::
of

:::
the

::::::::
vectorised

::::::
solver

::::::
showed

::
in
::::

Fig.
:::
19:

:::
the

::::
gain

::::::::
increases

::::
and

::::
then,

:::::::
reaches

:
a
::::::
plateau

::::
and

:::::::::
ultimately,

::::::::
decreases

::
to

:
a
:::::::
residual

:::::
gain.

::::
This

::
is

::::::
directly

::::::
related

::
to
:::

the
:::::

peak
:::
and

:::
the

:::::::
residual

::::::::::::
performances

::
of

:::
the

:::::
solver

::::::
showed

::
in
::::
Fig.

:::
18.590

We conclude with a direct comparison of a vectorized

27

Figure 19. Average time t̄c spent on
::::::
Number

::
of

:::::::
iterations

:::
per

::::::
second

::::
with

:::::
respect

::
to

:
the functions called during one calculation cycle for

:::
total

::::::
number

::
of
:::::::
material

::::
point

:::
np.

:::
The

:::::::
greatest

:::::::::
performance

::::
gain

::
is

::::::
reached

:::::
around

:::::::::
np = 1000,

:::::
which

::
is
:::::
related

::
to
:

the iterative and
::::
peak

:::::::::
performance

::
of

:
the vectorized solver for np = 115′440

:::
(see

:::
Fig.

:::
18).

::::
The

::::
gains

:::::::::::
corresponding

::
to

::
the

::::
peak

:::
and

::::::
residual

:::::::::::
performances

::
are

:::
46

:::
and

::
28

:::::::::
respectively.

4.2.2
:::::::::::
Comparison

:::::::
between

:::::
Julia

:::
and

::::::::::
MATLAB

:::
We

:::::::
compare

::::
the

::::::::::::
computational

:::::::::
efficiency

::
of

:::
the

:::::::::
vectorised

:
CPDI2q implementation of the collision of two elastic disks

::::::::
MATLAB

::::::::::::::
implementation and the computational efficiency reported by Sinaie et al. (2017) of a Julia-based implementa-

tion
:
of

:::
the

::::::::
collision

::
of

::::
two

:::::
elastic

:::::
disks

:::::::
problem. However, we note a difference between the actual implementation and the595

one used by Sinaie et al. (2017); the latter is based on a USL variant with a cutoff
:::::
cut-off

:
algorithm, whereas our

::
the

:::::::
present

implementation relies on the MUSL (or double mapping) procedure, which necessitates a double mapping procedure. The

initial geometry and parameters are the same as those used in Sinaie et al. (2017).
::::::::
However,

:::
the

::::
time

::::
step

::
is

:::::::
adaptive

::::
and,

:::
we

:::::
select

:
a
::::
time

::::
step

::::::::
multiplier

::::::::
α= 0.5.

:::::
Given

:::
the

::::::
variety

::
of

:::::
mesh

:::::::::
resolution,

:::
we

::
do

:::
not

:::::::
present

:::::::
minimal

:::
and

::::::::
maximal

::::
time

::::
step

::::::
values.600

Our CPDI2q implementation, in MATLAB R2018a, is, ad minima
::
at

::::
least, 2.8 times faster than the Julia implementation

proposed by Sinaie et al. (2017) for similar hardware (see Table 1). Sinaie et al. (2017) completed the analysis with an Intel

Core i7-6700 (4 cores with a base frequency of 3.40 GHz up to a turbo frequency of 4.00 GHz) with 16 GB RAM, whereas

we used an Intel Core i7-4790 with similar specifications (see section
::::::
Section

:
2). However, the performance ratio between

MATLAB and Julia seems to decrease as the mesh resolution increases.605

4.3 Elasto-plastic slumping

We present an application of the MPM solver to the case of landslide mechanics. Considering a CPDI2q variant coupled to an

elasto-plastic constitutive model based on a Mohr-Coulomb (M-C) non-associated plasticity Simpson (2017), we i) analyse the

28

Table 1. Efficiency comparison of the Julia implementation of Sinaie et al. (2017), and the MATLAB-based implementation for the two

elastic disk impact problems.

mesh npe np

Its/s

Julia MATLAB Gain

20 × 20 22 416 132.80 224.45
:::::
450.27

:::
3.40

20 × 20 42 1’624 33.37 81.07
:::::
118.45

:::
3.54

40 × 40 22 1’624 26.45 77.61
:::::
115.59

:::
4.37

80 × 80 42 25’784 1.82 4.57
::::
5.21

:::
2.86

geometrical features of the slump and ii) compare the results (the geometry and the failure surface) to the numerical simulation

of Huang et al. (2015), which is based on a Drucker-Prager model with tension cutoff (D-P).610

Initial geometry for the slump problem from Huang et al. (2015). Roller boundary conditions are imposed on the left and

right of the domain while a no-slip condition is enforced at the base of the material.

Since an explicit scheme is used, we introduce a local damping in the equations of motion to resolve the equilibrium

during a loading phase of 8 seconds, during which the gravity g is linearly ramped up to 9.81 m s−2. The elasto-plastic

behaviour is activated once this loading procedure is terminated, and the simulation proceeds during 7 additional seconds for615

a total simulation time of 15 seconds. The local damping coefficient is set to 0.1 since the latter damps the oscillations while

preserving the dynamics Wang et al. (2016c).

Parameters used for the elasto-plastic slump. The values of parameters are those found in Huang et al. (2015). Parameter

Symbol Value Unit Density ρ 2100 kg m−3 Poisson’s ratio ν 0.3 - Elastic modulus E 70 MPa Cohesion c 10 kPa Internal

friction angle φ 20 ◦ Dilation angle ψ 0 ◦620

The geometry of the problem is depicted in Fig. 14, the soil material is discretized by 110× 35 elements with npe = 32,

resulting in np = 21′840 material points; a mesh spacing h= 1 m and rollers are imposed at the left and right domain limits

while a no-slip condition is enforced at the base of the material. The parameters used for the solution are shown in Table ??.

MPM solution to the elasto-plastic slump. The red lines indicate the solution obtained by Huang et al. (2015) and the

coloured points indicate the second plastic strain invariant obtained with our CPDI2q solver. An intense shear zone progressively625

develops backwards from the toe of the slope, resulting in a circular failure mode.

The numerical solution to the elasto-plastic problem is shown in Fig. 15. An intense shear zone, highlighted by the second

invariant of the plastic strain εII , develops at the toe of the slope as soon as the material yields and it propagates backwards to

the top of the material. It results in a rotational slump. The geometry and the failure surface reported by Huang et al. (2015)

are highlighted by the continuous and the dotted lines respectively.630

The maximal horizontal extent of the slump is smaller for the MPM solver with an M-C model, but the failure surface is in

good agreement with the solution reported by Huang et al. (2015). They did not mention any use of a local damping in their

implementation, and this can certainly explain the difference in the maximal extent. The local damping forces implemented

in our solver should result in a smaller horizontal extent (because of the extra dissipation term introduced) but these should

29

not affect the geometry of the shear band. Despite the horizontal extent, our results appear coherent with those reported by635

Huang et al. (2015).

5 Discussion

In this contribution, an efficient
:
a
:::
fast

::::
and

:::::::
efficient

:::::::
explicit

:
MPM solver is proposed that considers two variants (e.g., the

cpGIMP
:::::::::::::::::
uGIMPM/cpGIMPM

:
and the CPDI/CPDI2q variant) under either an explicit or implicit

The efficiency derives from the combined use of the connectivity array p2N with the built-in function accumarray(640

) to i) accumulate material point contributions to their associated nodes or ii)interpolate the updated nodal solutions to the

associated material points in a vectorized manner. The efficiency is demonstrated by the speed-up values obtained for the

evaluation of functions p2nsolve.m and mapN2p.m, which are 24 and 22 times faster, respectively, than an iterative

approach that would require multiple nested for-loops. For the cantilever beam, the MATLAB-based solver is, ad minima,

twice faster than a Julia implementation
:::::::
variants).645

Regarding the elastic compaction of a one element-wide
::::::::::
compression

::
of

:::
the

::::::
elastic column, we report a good agreement of

the numerical solver with previous explicit MPM implementations, such as Bardenhagen and Kober (2004). The same flaw

of an explicit scheme is also experienced by the solver, i.e., a saturation of the error due to the specific used
:::::
usage of an

explicit scheme that resolves the wave propagation, thus preventing any static equilibrium to be reached. This confirms that our

implementation is consistent with previous MPM implementations, especially for the implicit formulation where a quadratic650

convergence is resolved
:
.
::::::::
However,

:::
the

::::::
implicit

:::::::::::::
implementation

::::::
suffers

:::::
from

:
a
:::::::
decrease

::
of

:::
the

:::::::::::
convergence

:::
rate

:::
for

::
a

:::
fine

:::::
mesh

::::::::
resolution.

:::::::
Further

:::::
work

:::::
would

:::
be

::::::
needed

::
to

::::::::::
investigate

:::
this

::::::::
decrease

::
of

::::::::::
convergence

:::::
rate.

::::
This

::::
case

::::
also

:::::::::::
demonstrated

::::
that

:::::::::
cpGIMPM

:::
and

:::::
CPDI

:::::::
variants

::::
have

:
a
::::::
similar

::::::::::::
computational

::::
cost

::::
and,

:::
this

::::::::
confirms

:::
the

::::::::
suitability

::
of

::::::::::
cpGIMPM

::::
with

::::::
respect

::
to

:::::
CPDI,

::
as

:::::::::
previously

:::::::::
mentioned

:::
by

:::::::::::::::::::::::::::::::::::
Coombs et al. (2020); Charlton et al. (2017).

Regarding
:::
For

:
the cantilever beamproblem, we report a good agreement of our

::
the

:
solver with the results obtained by655

Sadeghirad et al. (2011). Furthermore
::
of

::::::::::::::::::::
Sadeghirad et al. (2011),

:::
i.e., we report the vertical deflection of the beam to be very

close in both magnitude and timing (for the CPDI2
::::
CPDI

:
variant) to the FEM solution. The beam almost recovered all the

vertical deflection it experienced during the gravitational loading.

Since we compared
::::::::
However,

::
we

::::
also

:::::
report

:
a
::::::
slower

::::::::
execution

::::
time

:::
for

:::
the

:::::
CPDI

::::::
variant

::::
when

:::::::::
compared

::
to both cpGIMPM

and CPDI2 implementations for the cantilever beam problem, we observed a difference regarding the computational efficiency;660

the cpGIMP (e.g. , it/s = 252.40) implementation is 3.5 times faster than the CPDI2 (e.g. , it/s = 75.78) implementation for this

case. This is mainly due to the extra cost of calculation of the basis functions and their derivatives. Additional computational

resources are required to calculate these quantities, i.e. , the basis function and their derivatives weights.
::::::
CPDI2q

:::::::
variants.

:

The elasto-plastic
:::::
slump

::::
also

:::::::::::
demonstrates

:::
the

:::::
solver

::
to

::
be

:::::::
efficient

::
in

::::::::
capturing

:::::::
complex

::::::::
dynamics

::
in

:::
the

::::
field

::
of

::::::::::::
geomechanics.

:::
The

:::::
CDPI

::::::::
solution

:::::::
showed

:::
that

::::
the

::::::::
algorithm

::::::::
proposed

:::
by

::::::::::::::
Simpson (2017)

::
to

:::::
return

:::::::
stresses

:::::
when

::::
the

:::::::
material

::::::
yields

::
is665

:::
well

::::::
suited

::
to

::::
the

::::::::
slumping

:::::::::
dynamics.

::::::::
However

:::
and

:::
as

:::::::::
mentioned

:::
by

:::::::::::::
Simpson (2017)

:
,
::::
such

::::::
return

::::::::
mapping

::
is

::::
only

:::::
valid

:::::
under

:::
the

:::::::::
assumption

::
of
::

a
::::::::::::
non-associated

::::::::
plasticity

::::
with

:::
no

:::::::::
volumetric

::::::
plastic

:::::
strain.

:::::
This

::::::::
particular

::::
case

::
of

::::::::
isochoric

::::::
plastic

30

:::::::::::
deformations

::::
rises

:::
the

::::
issue

::
of
::::::::::

volumetric
:::::::
locking.

::
In

:::
the

:::::
actual

::::::::::::::
implementation,

::
no

::::::::::::
regularization

:::::::::
techniques

:::
are

::::::::::
considered.

::
As

::
a
::::::
result,

:::
the

:::::::
pressure

::::
field

::::::::::
experience

:::::
severe

:::::::
locking

:::
for

::::::::
isochoric

::::::
plastic

::::::::::::
deformations.

::::
One

::::
way

::
to
:::::::::

overcome
:::::::
locking

:::::::::::
phenomenons

::::::
would

::
be

::
to

:::::::::
implement

:::
the

::::::::::::
regularization

::::::::
technique

:::::::
initially

::::::::
proposed

:::
by

::::::::::::::::::
Coombs et al. (2018)

::
for

::::::::::
quasi-static670

:::::
sMPM

::::
and

:::::::
GIMPM

::::::::::::::
implementations.

:

::::::::
Regarding

:::
the

:::::::::::
elasto-plastic

:
collapsedemonstrates the abilities of the solver , considering both the number of iterations per

seconds and its accuracy with respect to ,
:::
the

:::::::::
numerical

::::::
results

::::::::::
demonstrate

:::
the

::::::
solver

::
to

::
be

::
in

:::::::::
agreement

::::
with

::::
both

:
previous

experimental and numerical results
::::::::::::::::::::::::::::::
(Huang et al., 2015; Bui et al., 2008).

:::::
This

:::::::
confirms

::::
the

:::::
ability

:::
of

:::
the

::::::
solver

::
to

:::::::
address

:::::::::::
elasto-plastic

:::::::
problems. However, this case indicates that extreme deformations are fatal for both cpGIMP and CPDI2q unless a675

domain update based on the determinant of the deformation gradient is chosen for the cpGIMP variant. Nevertheless, a splitting

algorithm was
::
the

::::::
choice

::
of

:::::::
whether

:::
to

:::::
update

:::
or

:::
not

:::
the

:::::::
material

::::
point

:::::::
domain

:::::::
remains

:::::::
critical.

::::
Such

:::::::
question

:::::::
remains

:::::
open

:::
and

::::::
would

::::::
require

:
a
:::::

more
::::::::
thorough

:::::::::::
investigation

::
of

:::
the

:::::::::
suitability

::
of

:::::
each

::
of

:::::
these

::::::
domain

::::::::
updating

:::::::
variants.

::::::::::::
Nevertheless,

::
the

:::::::::
uGIMPM

::::::
variant

::
is

:
a
:::::
good

::::::::
candidate

:::::
since,

::
i)

:
it
::
is

::::
able

::
to

::::::::
reproduce

:::
the

:::::::::::
experimental

::::::
results

::
of

::::::::::::::
Bui et al. (2008)

::::
and,

::
ii)

::
it

::::::
ensures

::::::::
numerical

::::::::
stability.

::::::::
However,

:::
one

:::
has

:::
to

::::
keep

::
in

::::
mind

:::
its

::::::
limited

:::::
range

::
of

:::::::::
suitability

::::::::
regarding

:::
the

::::::::::
deformation

::::::
modes680

:::::::
involved.

::
If
::
a

:::::::::
cpGIMPM

::
is

:::::::
selected,

:::
the

:::::::
splitting

::::::::
algorithm

:
proposed in Gracia et al. (2019); Homel et al. (2016) , and it could

be implemented to mitigate the material point domain stretch.

In addition, the computational efficiency reached by the solver is higher than expected and is even higher in the elastic

case with respect to what was reported by Sinaie et al. (2017). This confirms the efficiency of MATLAB for solid mechanics

problems, provided a reasonable amount of time is spent on the vectorization of
::::::
amount

::
of

::::::::
distortion

:::::::::::
experienced

:::
by

:::
the685

:::::::
material

::::
point

::::::::
domains

::::::
during

:::::::::::
deformation.

:::
We

::::
did

:::
not

:::::::
selected

:::
the

:::::::
domain

::::::::
updating

::::::
method

::::::
based

::
on

::::
the

::::::
corners

:::
of

:::
the

::::::
domain

::
as

::::::::
suggested

::
in
::::::::::::::::::
Coombs et al. (2020).

::::
This

::
is

:::::::
because

::::
such

::::::
domain

::::::::
updating

::::::
method

::::::::::
necessitates

::
to

:::::::
calculate

:::::::::
additional

:::::
shape

::::::::
functions

:::::::
between

:::
the

:::::::
corners

::
of

:::
the

:::::::
domain

:::
of the MPM algorithm

::::::
material

:::::
point

::::
with

:::::
their

:::::::::
associated

:::::
nodes.

:::::
This

:::::
results

::
in

:::
an

::::::::
additional

::::::::::::
computational

:::::
cost.

:::::::::::
Nevertheless,

::::
such

::::::
variant

::
is

::
of

:::::::
interest

:::
and

::::::
should

::
be

:::::::::
addressed

::
as

::::
well

:::::
when

:::
the

:::::::::::
computational

::::::::::::
performances

:::
are

:::
not

:::
the

::::
main

:::::::
concern.690

The elasto-plastic slump also demonstrates the solver to be efficient in capturing complex dynamics in the field of geomechanics.Moreover,

the CDPI2q solution showed that the algorithm proposed by Simpson (2017) returns stresses when the material yields and is

well suited to the slumping mechanics
::::::::::::
computational

::::::::::
performance

::::::
comes

::::
from

:::
the

:::::::::
combined

:::
use

::
of

:::
the

::::::::::
connectivity

:::::
array

::::
p2N

::::
with

:::
the

::::::
built-in

:::::::
function

::::::::::::::
accumarray(

::
)

::
to

:
i)
::::::::::

accumulate
:::::::
material

:::::
point

:::::::::::
contributions

::
to

::::
their

:::::::::
associated

::::::
nodes

::
or,

:::
ii)

::
to

:::::::::
interpolate

:::
the

::::::
updated

:::::
nodal

::::::::
solutions

::
to

:::
the

:::::::::
associated

:::::::
material

::::::
points.

::::::
When

:
a
:::::::
residual

:::::::::::
performance

:
is
::::::::
resolved,

:::
an

::::::
overall695

::::::::::
performance

::::
gain

:::::
(e.g.,

:::
the

::::::
amount

::
of

::::
it/s)

::
of

:::
28

:
is
::::::::
reported.

:::
As

::
an

::::::::
example,

:::
the

::::::::
functions

::::::::::::
p2nsolve.m

:::
and

::::::::::
mapN2p.m

:::
are

::
24

::::
and

::
22

:::::
times

:::::
faster

::::
than

:::
an

:::::::
iterative

::::::::
algorithm

:::::
when

:::
the

:::::::
residual

:::::::::::
performance

::
is

::::::::
achieved.

::::
The

::::::
overall

:::::::::::
performance

::::
gain

:
is
:::
in

::::::::
agreement

:::
to

::::
other

:::::::::
vectorised

:::::
FEM

::::::
codes,

:::
i.e.,

::::::::::::::::::::
O’Sullivan et al. (2019)

:::::::
reported

::
an

::::::
overall

::::
gain

:::
of

::::
25.7

:::
for

:
a
:::::::::
optimised

:::::::::
continuous

:::::::
Galerkin

:::::
finite

:::::::
element

::::
code.

However, as mentioned by Simpson (2017), such return mapping is valid only under the assumption of a non-associated700

plasticity with no volumetric plastic strain
:::
An

:::::::
iterative

:::::::::::::
implementation

::::::
would

::::::
require

::::::::
multiple

:::::
nested

::::::::
for-loops

::::
and

:
a
::::::

larger

::::::
number

::
of

:::::::::
operations

::
on

:::::::
smaller

:::::::
matrices,

::::::
which

::::::
increase

:::
the

:::::::
number

::
of

:::::
BLAS

:::::
calls,

::::
thus

:::::::
inducing

:::::::::
significant

:::::
BLAS

:::::::::
overheads

31

:::
and

:::::::::
decreasing

:::
the

::::::
overall

::::::::::
performance

::
of

:::
the

::::::
solver.

::::
This

::
is

::::::
limited

::
by

::
a
::::::::
vectorised

:::::
code

::::::::
structure.

:::::::
However

::::
and

::
as

::::::
showed

:::
by

::
the

::::::
matrix

::::::::::::
multiplication

:::::::
problem,

:::
the

:::
L2

:::::
cache

::::
reuse

::
is

:::
the

:::::::
limiting

:::::
factor

::::
and,

:
it
:::::::::
ultimately

:::::
affects

:::
the

::::
peak

:::::::::::
performance

::
of

:::
the

:::::
solver

:::
due

::
to

:::::
these

::::::::
numerous

:::::::::::::
RAM-to-cache

:::::::::::::
communications

:::
for

:::::
larger

::::::::
matrices.

:::::
Such

:::::::
problem

::
is

::::::
serious

::::
and,

::
its

::::::::
influence

::
is705

:::::::::::
demonstrated

::
by

:::
the

:::::::
delayed

:::::::
response

::
in

:::::
terms

::
of

:::::::::::
performance

::
for

:::
the

:::::::
function

::::::::::::::::::
constitutive.m.

::::::::
However,

:::
we

::::
also

::::
have

::
to

:::::::
mention

:::
that

:::
the

::::::
overall

:::::::
residual

::::::::::
performance

::::
was

:::::::
resolved

::::
only

:::
for

:
a
::::::
limited

::::
total

:::::::
number

::
of

:::::::
material

::::::
points.

:::
The

:::::::::::
performance

::::
drop

::
of

:::
the

:::::::
function

:::::::::::::::::
constitutive.m

::
has

:::::
never

::::
been

::::::::
achieved.

::::::::::::
Consequently,

:::
we

::::::
suspect

:::
an

::::::::
additional

::::::::
decrease

::
of

::::::
overall

:::::::::::
performances

::
of

:::
the

:::::
solver

:::
for

:::::
larger

::::::::
problems.

Our numerical investigations revealed that a domain-based approach in MPM fails when extremely large plastic deformations710

are involved
:::
The

::::::
overall

:::::::::::
performance

:::::::
achieved

:::
by

:::
the

:::::
solver

::
is
::::::
higher

::::
than

::::::::
expected

::::
and,

::
is

::::
even

::::::
higher

::::
with

::::::
respect

::
to

:::::
what

:::
was

:::::::
reported

:::
by

::::::::::::::::
Sinaie et al. (2017).

::::
We

::::::::::
demonstrate

::::
that

:::::::::
MATLAB

::
is

::::
even

:::::
more

:::::::
efficient

::::
than

::::
Julia, i.e., the elasto-plastic

collapse. This can be avoided when a domain update based on the determinant of the deformation gradient is chosen
:
a

::::::::
minimum

::::
2.86

::::::::::
performance

::::
gain

:::::::
achieved

:::::::::
compared

::
to

:
a
::::::
similar

::::
Julia

:::::::
CPDI2q

::::::::::::::
implementation.

:::
This

::::::::
confirms

:::
the

::::::::
efficiency

::
of

:::::::::
MATLAB

::
for

:::::
solid

:::::::::
mechanics

::::::::
problems,

::::::::
provided

:
a
:::::::::
reasonable

:::::::
amount

::
of

::::
time

::
is

::::
spent

:::
on

:::
the

:::::::::::
vectorisation

::
of

:::
the

::::::::
algorithm.715

We also

6 Conclusions

:::
We have demonstrated the capability of MATLAB as an efficient language in regard to a material point method (MPM)

implementation in an explicit or implicit formulation when bottleneck operations (e.g., calculations of the shape function or

material point contributions) are vectorized. The MATLAB performances surpass those reached by an
:::::::
properly

:::::::::
vectorised.

::::
The720

:::::::::::
computational

::::::::::::
performances

::
of

:::::::::
MATLAB

::
are

:::::
even

:::::
higher

::::
than

:::::
those

:::::::::
previously

:::::::
reported

::
for

::
a
::::::
similar

:::::::
CPDI2q implementation

in Julia, provided that built-in functions such as accumarray() are used. However, the numerical efficiency naturally

decreases with the level of complexity of the chosen MPM variant (sMPM, GIMPM or CPDI/CPDI2q).

The vectorization tasks
::::::::::
vectorisation

::::::::
activities

:
we performed provide a fast and efficient MATLAB-based solver; however,

the algorithmic structure
::::
MPM

::::::
solver.

:::::
Such

:::::::::
vectorised

::::
code

:
could be transposed to a more efficient language, such as the725

C-CUDA language, that is known to efficiently take advantage of vectorized
:::::::::
vectorised operations.

As a final word, a future implementation of a poro-elasto-plastic mechanical solver could be applied to complex geomechan-

ical problems such as landslide dynamics while benefiting from a faster numerical implementation in C-CUDA, thus resolving

high three-dimensional resolutions in an
:
a

:::::
decent

::::
and affordable amount a time.

Code availability. The fMPMM-solver developed in this study is licensed under the GPLv3 free software licence. The latest version of the730

code is available for download from Bitbucket at: https://bitbucket.org/ewyser/fmpmm-solver/src/master/ (last access: October 6, 2020). The

fMPMM-solver archive (v1.0 and v1.1) is available from a permanent DOI repository (Zenodo) at: https://doi.org/10.5281/zenodo.4068585

(Wyser et al., 2020). The fMPMM-solver software includes the reproducible codes used for this study.

32

https://bitbucket.org/ewyser/fmpmm-solver/src/master/
https://doi.org/10.5281/zenodo.4068585

Appendix A: Acronyms

Table A1. Acronyms used throughout the manuscript

PIC Particle-in-Cell

FLIP FLuid Implicit Particle

FEM Finite Element Method

sMPM standard Material Point Method

GIMPM Generalized Material Point Method

uGIMPM undeformed Generalized Material Point Method

cpGIMPM contiguous particle Generalized Material Point Method

CPDI Convected Particle Domain Interpolation

CPDI2q Convected Particle Domain Interpolation 2nd order quadrilateral

33

Appendix B:
:::::::::::::
fMPMM-solver

:::::::::
Variables735

Table B1.
::::::
Variables

::
of
:::

the
:::::::
structure

:::::
arrays

::
for

:::
the

::::
mesh

::::
meD

::
and

:::
the

::::::
material

:::::
point

:::
mpD

:::
used

::
in

::::
Code

::::::::
Fragment

:
1
::
&

:
2
:::::
shown

::
in
::::
Figs.

::
4
::
&

:
5.
::::
nDF

::::
stores

:::
the

::::
local

:::
and

:::::
global

::::::
number

::
of

::::::
degrees

::
of

:::::::
freedom,

:::
i.e.,

:::::
nDF=[

:::::::::::
nNe,nN*DoF].

:::
The

:::::::
constant

:::::
nstr

:
is
:::

the
::::::
number

::
of

:::::
stress

:::::::::
components,

::::::::
according

::
to

::
the

:::::::
standard

:::::::
definition

::
of

:::
the

::::::
Cauchy

::::
stress

:::::
tensor

::::
using

:::
the

::::
Voigt

:::::::
notation,

::::
e.g.,

::::::::::::::::
σp = (σxx,σyy,σxy).

Variable Description Dimension

meD.

:::
nNe

::::
nodes

::
per

:::::::
element

:::
(1)

::
nN

: ::::::
number

:
of
:::::

nodes
: :::

(1)

:::
DoF

:::::
degree

::
of

:::::::
freedom

:::
(1)

:::
nDF

:::::
number

::
of

::::
DoF

::::::
(1,2)

:
h

::::
mesh

::::::
spacing

::::::::
(1,DoF)

:
x

:::
node

:::::::::
coordinates

: ::::::
(nN,1)

:
y

:::
node

:::::::::
coordinates

: ::::::
(nN,1)

:
m

::::
nodal

::::
mass

: ::::::
(nN,1)

:
p

::::
nodal

::::::::
momentum

: :::::::::::
(nDF(2),1)

:
f

::::
nodal

::::
force

: :::::::::::
(nDF(2),1)

mpD.

:
n

:::::
number

::
of
:::::
points

: :::
(1)

:
l

::::::
domain

::::::::
half-length

::::::::
(np,DoF)

:
V

::::::
volume

::::::
(np,1)

:
m

::::
mass

::::::
(np,1)

:
x

::::
point

::::::::
coordinates

: ::::::::
(np,DoF)

:
p

::::::::
momentum

: ::::::::
(np,DoF)

:
s

::::
stress

: ::::::::::
(np,nstr)

:
S

::::
basis

::::::
function

: ::::::::
(np,nNe)

:::
dSx

:::::::
derivative

::
in

:
x
: ::::::::

(np,nNe)

:::
dSy

:::::::
derivative

::
in

:
y
: ::::::::

(np,nNe)

:
B

:
B
:::::
matrix

: :::::::::::::::::
(nstr,nDF(1),np)

34

Author contributions. EW wrote the original manuscript and developed, together with YP, the first version the solver (fMPMM-solver, v1.0).

YA provided technical supports, assisted EW in the revision of the latest version of the solver (v1.1) and corrected specific parts of the solver.

EW and YA wrote together the revised version of the manuscript. MJ and YP supervised the early stages of the study and provided guidance.

All authors have reviewed and approved the final version of the paper.

Competing interests. The authors declare that they have no conflicts of interest.740

Acknowledgements.
::::
Yury

::::::::::
Alkhimenkov

:::::::
gratefully

:::::::::::
acknowledges

::
the

::::::
support

::::
from

::
the

:::::
Swiss

::::::
National

::::::
Science

:::::::::
Foundation

:::::
(grant

::
no.

:::::::
172691).

:::
Yury

:::::::::::
Alkhimenkov

:::
and

::::
Yury

::
Y.

::::::::::
Podladchikov

::::::::
gratefully

::::::::::
acknowledge

::::::
support

::::
from

::
the

:::::::
Russian

::::::
Ministry

::
of

::::::
Science

:::
and

::::::
Higher

::::::::
Education

::::::
(project

:::
No.

:::::::::::::::
075-15-2019-1890). The authors gratefully thank Johan Gaume for his comments that contributed to improve the overall quality

of the manuscript.

35

References745

Abe, K., Soga, K., and Bandara, S.: Material point method for coupled hydromechanical problems, Journal of Geotechnical and Geoenvi-

ronmental Engineering, 140, 04013 033, 2014.

Acosta, J. L. G., Vardon, P. J., Remmerswaal, G., and Hicks, M. A.: An investigation of stress inaccuracies and proposed solution in the

material point method, Computational Mechanics, 65, 555–581, 2020.

Anderson Jr, C. E.: An overview of the theory of hydrocodes, International journal of impact engineering, 5, 33–59, 1987.750

Bandara, S. and Soga, K.: Coupling of soil deformation and pore fluid flow using material point method, Computers and geotechnics, 63,

199–214, 2015.

Bandara, S., Ferrari, A., and Laloui, L.: Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point

method, International Journal for Numerical and Analytical Methods in Geomechanics, 40, 1358–1380, 2016.

Bardenhagen, S., Brackbill, J., and Sulsky, D.: The material-point method for granular materials, Computer methods in applied mechanics755

and engineering, 187, 529–541, 2000.

Bardenhagen, S. G. and Kober, E. M.: The generalized interpolation material point method, Computer Modeling in Engineering and Sciences,

5, 477–496, 2004.

Baumgarten, A. S. and Kamrin, K.: A general fluid–sediment mixture model and constitutive theory validated in many flow regimes, Journal

of Fluid Mechanics, 861, 721–764, 2019.760

Beuth, L., Benz, T., Vermeer, P. A., and Więckowski, Z.: Large deformation analysis using a quasi-static material point method, Journal of

Theoretical and Applied Mechanics, 38, 45–60, 2008.

Bird, R. E., Coombs, W. M., and Giani, S.: Fast native-MATLAB stiffness assembly for SIPG linear elasticity, Computers & Mathematics

with Applications, 74, 3209–3230, 2017.

Bui, H. H., Fukagawa, R., Sako, K., and Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of765

geomaterial using elastic–plastic soil constitutive model, International journal for numerical and analytical methods in geomechanics, 32,

1537–1570, 2008.

Charlton, T., Coombs, W., and Augarde, C.: iGIMP: An implicit generalised interpolation material point method for large deformations,

Computers & Structures, 190, 108–125, 2017.

Coombs, W. M. and Augarde, C. E.: AMPLE: A Material Point Learning Environment, Advances in Engineering Software, 139, 102 748,770

2020.

Coombs, W. M., Charlton, T. J., Cortis, M., and Augarde, C. E.: Overcoming volumetric locking in material point methods, Computer

Methods in Applied Mechanics and Engineering, 333, 1–21, 2018.

Coombs, W. M., Augarde, C. E., Brennan, A. J., Brown, M. J., Charlton, T. J., Knappett, J. A., Motlagh, Y. G., and Wang, L.: On Lagrangian

mechanics and the implicit material point method for large deformation elasto-plasticity, Computer Methods in Applied Mechanics and775

Engineering, 358, 112 622, 2020.

Cortis, M., Coombs, W., Augarde, C., Brown, M., Brennan, A., and Robinson, S.: Imposition of essential boundary conditions in the material

point method, International Journal for Numerical Methods in Engineering, 113, 130–152, 2018.

Dabrowski, M., Krotkiewski, M., and Schmid, D.: MILAMIN: MATLAB-based finite element method solver for large problems, Geochem-

istry, Geophysics, Geosystems, 9, 2008.780

Davis, T. A.: Suite Sparse, https://people.engr.tamu.edu/davis/research.html, 2013.

36

https://people.engr.tamu.edu/davis/research.html

de Koster, P., Tielen, R., Wobbes, E., and Möller, M.: Extension of B-spline Material Point Method for unstructured triangular grids using

Powell–Sabin splines, Computational Particle Mechanics, pp. 1–16, 2020.

de Souza Neto, E. A., Peric, D., and Owen, D. R.: Computational methods for plasticity: theory and applications, John Wiley & Sons, 2011.

de Vaucorbeil, A., Nguyen, V., and Hutchinson, C.: A Total-Lagrangian Material Point Method for solid mechanics problems involving large785

deformations, 2020.

Dunatunga, S. and Kamrin, K.: Continuum modelling and simulation of granular flows through their many phases, Journal of Fluid Mechan-

ics, 779, 483–513, 2015.

Dunatunga, S. and Kamrin, K.: Continuum modeling of projectile impact and penetration in dry granular media, Journal of the Mechanics

and Physics of Solids, 100, 45–60, 2017.790

Fern, J., Rohe, A., Soga, K., and Alonso, E.: The material point method for geotechnical engineering: a practical guide, CRC Press, 2019.

Gan, Y., Sun, Z., Chen, Z., Zhang, X., and Liu, Y.: Enhancement of the material point method using B-spline basis functions, International

Journal for numerical methods in engineering, 113, 411–431, 2018.

Gaume, J., Gast, T., Teran, J., van Herwijnen, A., and Jiang, C.: Dynamic anticrack propagation in snow, Nature communications, 9, 1–10,

2018.795

Gaume, J., van Herwijnen, A., Gast, T., Teran, J., and Jiang, C.: Investigating the release and flow of snow avalanches at the slope-scale using

a unified model based on the material point method, Cold Regions Science and Technology, 168, 102 847, 2019.

Gracia, F., Villard, P., and Richefeu, V.: Comparison of two numerical approaches (DEM and MPM) applied to unsteady flow, Computational

Particle Mechanics, 6, 591–609, 2019.

Guilkey, J. E. and Weiss, J. A.: Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the800

finite element method, International Journal for Numerical Methods in Engineering, 57, 1323–1338, 2003.

Homel, M. A., Brannon, R. M., and Guilkey, J.: Controlling the onset of numerical fracture in parallelized implementations of the material

point method (MPM) with convective particle domain interpolation (CPDI) domain scaling, International Journal for Numerical Methods

in Engineering, 107, 31–48, 2016.

Huang, P., Li, S.-l., Guo, H., and Hao, Z.-m.: Large deformation failure analysis of the soil slope based on the material point method,805

computational Geosciences, 19, 951–963, 2015.

Iaconeta, I., Larese, A., Rossi, R., and Guo, Z.: Comparison of a material point method and a galerkin meshfree method for the simulation

of cohesive-frictional materials, Materials, 10, 1150, 2017.

Leavy, R., Guilkey, J., Phung, B., Spear, A., and Brannon, R.: A convected-particle tetrahedron interpolation technique in the material-point

method for the mesoscale modeling of ceramics, Computational Mechanics, 64, 563–583, 2019.810

Moler, C.: MATLAB Incorporates LAPACK, https://ch.mathworks.com/de/company/newsletters/articles/matlab-incorporates-lapack.html?

refresh=true, 2000.

Nairn, J. A.: Material point method calculations with explicit cracks, Computer Modeling in Engineering and Sciences, 4, 649–664, 2003.

Ni, R. and Zhang, X.: A precise critical time step formula for the explicit material point method, International Journal for Numerical Methods

in Engineering, 121, 4989–5016, 2020.815

O’Sullivan, S., Bird, R. E., Coombs, W. M., and Giani, S.: Rapid non-linear finite element analysis of continuous and discontinuous galerkin

methods in matlab, Computers & Mathematics with Applications, 78, 3007–3026, 2019.

37

https://ch.mathworks.com/de/company/newsletters/articles/matlab-incorporates-lapack.html?refresh=true
https://ch.mathworks.com/de/company/newsletters/articles/matlab-incorporates-lapack.html?refresh=true
https://ch.mathworks.com/de/company/newsletters/articles/matlab-incorporates-lapack.html?refresh=true

Sadeghirad, A., Brannon, R. M., and Burghardt, J.: A convected particle domain interpolation technique to extend applicability of the material

point method for problems involving massive deformations, International Journal for numerical methods in Engineering, 86, 1435–1456,

2011.820

Sadeghirad, A., Brannon, R., and Guilkey, J.: Second-order convected particle domain interpolation (CPDI2) with enrichment for weak

discontinuities at material interfaces, International Journal for numerical methods in Engineering, 95, 928–952, 2013.

Simpson, G.: Practical finite element modeling in earth science using matlab, Wiley Online Library, 2017.

Sinaie, S., Nguyen, V. P., Nguyen, C. T., and Bordas, S.: Programming the material point method in Julia, Advances in Engineering Software,

105, 17–29, 2017.825

Steffen, M., Kirby, R. M., and Berzins, M.: Analysis and reduction of quadrature errors in the material point method (MPM), International

journal for numerical methods in engineering, 76, 922–948, 2008a.

Steffen, M., Wallstedt, P., Guilkey, J., Kirby, R., and Berzins, M.: Examination and analysis of implementation choices within the material

point method (MPM), Computer Modeling in Engineering and Sciences, 31, 107–127, 2008b.

Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A.: A material point method for snow simulation, ACM Transactions on Graphics830

(TOG), 32, 1–10, 2013.

Sulsky, D., Chen, Z., and Schreyer, H. L.: A particle method for history-dependent materials, Computer methods in applied mechanics and

engineering, 118, 179–196, 1994.

Sulsky, D., Zhou, S.-J., and Schreyer, H. L.: Application of a particle-in-cell method to solid mechanics, Computer physics communications,

87, 236–252, 1995.835

Vardon, P. J., Wang, B., and Hicks, M. A.: Slope failure simulations with MPM, Journal of Hydrodynamics, 29, 445–451, 2017.

Vermeer, P. A. and De Borst, R.: Non-associated plasticity for soils, concrete and rock, HERON, 29 (3), 1984, 1984.

Wallstedt, P. C. and Guilkey, J.: An evaluation of explicit time integration schemes for use with the generalized interpolation material point

method, Journal of Computational Physics, 227, 9628–9642, 2008.

Wang, B., Hicks, M., and Vardon, P.: Slope failure analysis using the random material point method, Géotechnique Letters, 6, 113–118,840

2016a.

Wang, B., Vardon, P., and Hicks, M.: Investigation of retrogressive and progressive slope failure mechanisms using the material point method,

Computers and Geotechnics, 78, 88–98, 2016b.

Wang, B., Vardon, P. J., Hicks, M. A., and Chen, Z.: Development of an implicit material point method for geotechnical applications,

Computers and Geotechnics, 71, 159–167, 2016c.845

Wang, L., Coombs, W. M., Augarde, C. E., Cortis, M., Charlton, T., Brown, M., Knappett, J., Brennan, A., Davidson, C., Richards, D., et al.:

On the use of domain-based material point methods for problems involving large distortion, Computer Methods in Applied Mechanics

and Engineering, 355, 1003–1025, 2019.

Więckowski, Z.: The material point method in large strain engineering problems, Computer methods in applied mechanics and engineering,

193, 4417–4438, 2004.850

Wyser, E., Alkhimenkov, Y., Jayboyedoff, M., and Podladchikov, Y.: fMPMM-solver, https://doi.org/10.5281/zenodo.4068585, https://doi.

org/10.5281/zenodo.4068585, 2020.

York, A. R., Sulsky, D., and Schreyer, H. L.: The material point method for simulation of thin membranes, International journal for numerical

methods in engineering, 44, 1429–1456, 1999.

38

https://doi.org/10.5281/zenodo.4068585
https://doi.org/10.5281/zenodo.4068585
https://doi.org/10.5281/zenodo.4068585
https://doi.org/10.5281/zenodo.4068585

Zhang, X., Chen, Z., and Liu, Y.: The material point method: a continuum-based particle method for extreme loading cases, Academic Press,855

2016.

39

