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Abstract. In this paper, we present a parallel version of the finite element model of the Arctic Ocean (FEMAO) configured

for the White sea and based on the MPI technology. This model consists of two main parts: an ocean dynamics model and a

surface ice dynamics model. These parts are very different in terms of the amount of computations because the complexity

of the ocean part depends on the bottom depth, while that of the sea-ice component does not. In the first step, we decided to

locate both submodels on the same CPU cores with the common horizontal partition of the computational domain. The model5

domain is divided into small blocks, which are distributed over the CPU cores using Hilbert-curve balancing. Partition of the

model domain is static (i.e., computed during the initialization stage). There are three baseline options: single block per core,

balancing of 2D computations and balancing of 3D computations. After showing parallel acceleration for particular ocean and

ice procedures, we construct the common partition, which minimizes joint imbalance in both submodels. Our novelty is using

arrays shared by all blocks that belong to a CPU core instead of allocating separate arrays for each block, as is usually done.10

Computations on a CPU core are restricted by the masks of not-land grid nodes and block-core correspondence. This approach

allows us to implement parallel computations into the model that are as simple as when the usual decomposition to squares is

used, though with advances of load balancing. We provide parallel acceleration of up to 996 cores for the model with resolution

500× 500× 39 in the ocean component and 43 sea-ice scalars, and we carry out detailed analysis of different partitions on the

model runtime.15

1 Introduction

The increasing performance and availability of multiprocessor computing devices makes it possible to simulate complex natural

systems with high resolution, while taking into account important phenomena and coupling comprehensive models of various

subsystems. In particular, more precise, accurate, and full numerical description of processes in seas and oceans have become

possible. There are now models of seas that can simulate currents, dynamics of thermohaline fields, sea ice, pelagic ecology,20

benthic processes, and so on; see, for example, review Fox-Kemper et al. (2019).

The finite-element model of the Arctic Ocean (FEMAO; Iakovlev, 1996, 2012) has been developed since the 1990s and it

has been adjusted to the White Sea (Chernov, 2013; Chernov et al., 2018). The model domain is a part of the cylinder over

sphere (i.e., the Cartesian product of a region on the Earth surface to a vertical segment). The coordinates are orthogonal, with
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the axes directed to the East, to the South, and downwards. The horizontal grid is structured and rectangular because finite25

elements are defined on triangles composing rectangles, see Iakovlev (1996). Points that correspond to the land are excluded

from the computations using a mask of "wet" points. The z-coordinate is used as the vertical axis. Therefore, for each 2D-grid

node, there is the number of actually used vertical layers. In case of significantly variable depth, the number of levels also

varies, see figure 1. In contrast, sea ice and sea surface computations are depth-independent. The presence of both 2D and 3D

calculations complicates balancing of the computations for the full model.30

The original code was written in Fortran-90/95 and it did not allow computation in parallel. Our goal is to develop a parallel

version of the model based on the MPI technology without the need to make significant changes in the program code (i.e.,

preserve loops structure, mask of wet points, but benefit from load balancing). Consequently, we developed a library that

performs a partition of the 2D computational domain and organizes communication between the CPU cores.

In numerical ocean models, the baseline strategy is to decompose domain into squares (Madec et al., 2015) or into small35

blocks, with consequent distribution over the processor cores (Dennis, 2007, 2003; Chaplygin et al., 2019). Both approaches

allow to preserve the original structure of the loops and utilize the direct referencing of neighbouring grid nodes on rectangular

grids. Decomposition into small blocks is more attractive from the viewpoint of load balancing, especially for z-coordinate

models. Blocks can be distributed using the METIS (Karypis, 1998) software or simpler algorithms, such as Hilbert curves

(Dennis, 2007). Note that some modern ocean models can also benefit from unstructured mesh usage, where there is no need for40

the mask of wet points; see for example Koldunov et al. (2019a). In addition, some ocean models omit masking of wet points,

see Madec et al. (2015). This implies increase in the number of computations, but benefits from less control-flow interruptions

that give rise to better automatic vectorization of loops.

In sections 2-4 we provide model configuration and organization of the calculations in the non-parallel code on structured

rectangular grid. In section 5 we describe parallelization approach, which preserves original structure of the loops. Domain45

decomposition is carried out in two steps: first the model domain is divided into small blocks and then these blocks are dis-

tributed between CPU cores. For all blocks belonging to a given core a “shared” array is introduced, and mask of computational

points restricts calculations. Partition could be of arbitrary shape, but blocks allow us to reach the following benefits: simple

balancing algorithm (Hilbert curves) can be applied as the number of blocks along a given direction is chosen to be a power

of 2; boundary exchanges can be easily constructed for arbitrary halo width, but smaller than the block size. In section 6 we50

report parallel acceleration on different partitions for particular 2D and 3D subroutines and the whole model.

2 The White Sea

The White Sea is a relatively small (about 500 km×500 km) and shallow (67 m is the mean depth with a maximal depth of

not more than 340 m) semi-closed sea in the Arctic Ocean basin, located in the North-Western part of Russia and included in

its territorial waters. Its area is 90000 km2. The White Sea plays an important role for economy of the neighbouring regions55

(Filatov et al., 2007).
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Figure 1. The number of depth layers in the White Sea model; the vertical grid has step 5 m up to the 150 m deep and then 10 m up to the

240 m.

The White sea consists of several parts, including four bays and a narrow shallow strait called Gorlo that separates one part

of the sea from the other. The coastline of the sea is quite complex, which means that the rectangle (almost a square) of the

Earth’s surface that contains the sea has only about one third of the water area.

The White Sea is a convenient model region to test the numerical algorithms, software, and mathematical models that are60

intended to be used for the Arctic Ocean. First, low spatial step and relatively high maximum velocities demand, due to the

Courant stability condition, a rather small temporal step. This makes it difficult to develop efficient algorithms, stable numerical

schemes, and ensure performance using the available computers. Second, because this model is less dependent on the initial

data, it makes the test simulations easier because the only liquid boundary is needed to set the initial-boundary data. Finally,

the White Sea’s relatively small inertia enables to check correctness of the code by rather short simulations, which are able to65

demonstrate important features of the currents.

3 The model and the software

A time step in the FEMAO model consists of several procedures, see algorithm 1. The model uses the physical-process splitting

approach, so that geophysical fields are changed by each procedure that simulates one of the geophysical processes.

The matrix of the System of Linear Algebraic Equations (SLAE) is sparse and it contains 19 non-zero diagonals that cor-70

respond to adjacent mesh nodes within a finite element. The matrix does not vary in time and it is precomputed before the

time step loop. The most time-consuming steps for the sequential code version were: 3D advection of scalars, 2D advection

of sea-ice fields and solving the SLAE for the sea level. The simple Characteristic-Galerkin Scheme (Zienkiewicz and Taylor,

2000) is used for the 3D and 2D advection terms.
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Algorithm 1 Time step algorithm for FEMAO

1: Forcing (i.e., preparation of river runoff, atmospheric data, shortwave radiation, boundary values, etc.);

2: Dynamics of the sea ice, including melting and freezing, interaction of sea-ice floes, and also evaluating the velocity of two-dimensional

ice-drift;

3: Sea-ice advection by this drift velocity;

4: Advection of 3D scalars, such as temperature and salinity;

5: Vertical diffusion of the scalars with sources due to heating, ice melting/freezing, and so on;

6: Dynamics of 3D horizontal current velocity;

7: Solving the SLAE for the sea level;

8: Evaluating the vertical velocity.

The local 1D sea ice thermodynamics is based on the 0-layer model (Semtner, 1976; Parkinson and Washington, 1979)75

with some modifications in lateral melting and surface albedo (Yakovlev, 2009). There are 14 categories of ice thickness

(gradations), the mechanical redistribution and the ice strength are identical to the CICE (Hunke et al., 2013). The elastic-

viscous plastic scheme (EVP; Danilov et al., 2015) with modification for the relaxation time scales (Wang et al., 2016) is

used for the sea ice dynamics (see also the Appendix 3 in Koldunov et al., 2019b). Sea ice is described by distribution of

its compactness (concentration) and ice volume for each gradation. In addition, snow-on-ice volume for each gradation is80

evaluated. Therefore, there are 43 2D sea-ice scalars: ice and snow volume for 14 gradations and sea-ice compactness for

15 ones (including water). Because there are 39 vertical layers in an ocean component, the set of all of the sea-ice data is

comparable to a single 3D scalar.

The tested version of the model has a spatial resolution of 0.036◦E, 0.011◦N, which is between 1.0 and 1.3 km along parallels

and 1.2 km along a meridian. The number of 2D grid nodes is 500× 500, and only 33% of them are "wet" (84542). The time85

step is 100 s. The vertical step is 5 m up to 150 m deep and then 10 m up to 300 m. In fact, in the bathymetry data (ETOPO;

Amante and Eakins, 2009) the deepest point of the sea more shallow than it really is, which reduces the actual maximum depth

to 240 m. Comparison of available bathymetry data for the White Sea is given in Chernov and Tolstikov (2020) in table 1.

4 Organization of the calculations in non-parallel code

Computations in the ocean and sea-ice components are performed using three-dimensional arrays, such as a(i, j,k) or b(i, j,m),90

where i, j represent the horizontal grid indices, k represents the depth-layer, andm represents the ice gradation. The differential

operators are local: only neighbouring grid nodes—that is, a(i± 1, j± 1,k)—are used.

Typical differential operators in the ocean component are organized as shown in algorithm 2, where Nx = 500,Ny = 500

and K(i, j) is the number of depth layers. For land points, K(i, j) = 0, and K(i, j) ∈ [3,39] with approximate mean value 12

for the remaining "wet” points, see figure 1.95
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Algorithm 2 Typical 3D calculation loop

1: for j = 1,Ny do

2: for i= 1,Nx do

3: for k = 1,K(i, j) do

4: a(i, j,k) = ...

5: end for

6: end for

7: end for

Differential operators in the ice component are shown in algorithm 3, where M = 14 or 15 is the number of ice gradations

and mask(i, j) is the logical mask of wet points. The percentage of wet points is 33 %.

Algorithm 3 Typical 2D calculation loop

1: for j = 1,Ny do

2: for i= 1,Nx do

3: if mask(i, j) then

4: for m= 1,M do

5: b(i, j,m) = ...

6: end for

7: end if

8: end for

9: end for

Note that arrays in Fortran are arranged in the column-major order, so the first index i is linear in memory. The presented

arrangement of indices is common for ocean models (see, for example, NEMO documentation; Madec et al., 2015). The loops

arrangement is utilized from the original code. Although another arrangement may be more efficient, it does not affect the100

parallelization approach given later on. In spite of the fact that inner loop does not have stride-1 access, we can speculate that

it allows for possible automatic vectorization over m index and corresponds to minimal control flow interruptions due to false

mask(i, j) values.

5 Modifications of the non-parallel code

In this section we describe the partitioning algorithm of the model domain into subdomains, each corresponding to a CPU core,105

and subsequent modifications of the single-core calculations, which require only minor changes of algorithms 2 and 3. Grid

partition is performed in two steps: model domain is decomposed into small blocks and then these blocks are distributed over

CPU cores in such a way that computational load imbalance is minimized. We utilize common grid partition for both sea-ice and

ocean submodels, and provide theoretical estimates of the load imbalances resulting from the application of different weight
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Figure 2. Three types of partition. Different processor cores are separated by a black line. Hilbert partitions are based on a grid of nb×nb =

128× 128 blocks. Colours can repeat. Black rectangle in figure for hilbert3d partition corresponds to a "shared" array allocated for blocks

belonging to a given CPU core.

functions in the balancing problem. Partition is calculated during the model initialization stage, as our balancing algorithm110

(Hilbert curves) is computationally unexpensive. Also, we guarantee that the partition is the same each time the model is run,

if parameters of the partitioner were not modified.

Computational domain [1,Nx]× [1,Ny] is separated into nb×nb blocks. If integer division is impossible, then block sizes

are nx(ib, jb) =Nx div nb, ny(ib, jb) =Ny div nb, where ib, jb ∈ [1,nb] are horizontal indices of the blocks. The other points

are distributed over the first blocks: nx(ib, jb) + = 1, where ib ∈ [1,Nx mod nb], jb ∈ [1,nb] and ny(ib, jb) + = 1, where115

ib ∈ [1,nb], jb ∈ [1,Ny mod nb]. The set of indices corresponding to a block is denoted by Ω(ib, jb) = [is(ib, jb), ie(ib, jb)]×
[js(ib, jb), je(ib, jb)].

To formulate a balancing problem, we must assign weights of computational work to each block and then distribute them

among Np available CPU cores in such a way that all cores have the same amount of work to do, or as close to this as possible,

but provided that the “quality” of the partition is kept. Connectivity of subdomains (by subdomain we refer to a set of blocks120

belonging to a CPU core) or minimum length of the boundary can be chosen as possible criteria for the quality of a partition.

The weight for a block is the sum of weights corresponding to grid points in the range Ω(ib, jb). The following weights are

chosen for 2D and 3D computations, respectively:

w2d(i, j) = mask(i, j), (1)

w3d(i, j) =K(i, j)/mean(K), (2)125

where "mean" operation is applied over wet points.
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5.1 Trivial 1block partition

For a fixed nb, one can find the number of “wet” blocks (i.e., blocks with at least one not-land point). In this partition, the

number of cores Np is equal to the number of wet blocks and each CPU core gets exactly one block, see figure 2. Varying nb,

possible values of Np can be found.130

5.2 Hilbert curve partition

For nb being a power of 2, the Hilbert curve connecting all the blocks can be constructed (Bader, 2012). This gives a one-

dimensional set of weights that is balanced using the simplest algorithm. The sum of the blocks’ weights on p core is denoted

by Wp. In spite of the fact that the Hilbert curve possesses the locality property (i.e., close indices on the curve correspond

to close indices on the grid), it may not provide a partition into connected subdomains if there are a lot of land blocks. To135

overcome the problem of possible loss of connectivity, we perform the following optimization procedure, see algorithm 4.

Algorithm 4 Optimization of partition

1: remove_not_connected_subdomains();

2: for iter = 1,Niter do

3: balance_all_ranks();

4: remove_not_connected_subdomains();

5: end for

Function remove_not_connected_subdomains() finds the connected subdomain with the maximum work for each

CPU core and sends other blocks to neighbouring cores. Function balance_all_ranks() tries to send bordering blocks

for each core to neighbouring cores to minimize the maximum work on both cores: max(Wp,Wp′)→min, where Wp, Wp′

are for the work on the current CPU core and on a neighbouring core, respectively. The number of iterations is user-defined140

and we choose Niter = 15, which is usually enough to reach convergence. Note that optimization does not guarantee to find a

global optimum and function remove_not_connected_subdomains() may increase LI. Thus, we choose the iteration

with the best balancing. The need for partitioning into connected subdomains comes from the intention to increase percentage

of the wet points on CPU cores due to the data structure used; see the following section for a definition of the "shared" array.

The described algorithm performs partitioning into connected subdomains with Load Imbalance, which is145

LI = 100% · max(Wp)−mean(Wp)

mean(Wp)
, p ∈ [1,Np], (3)

not more than 10% in most cases. This is an acceptable accuracy because partitioning itself is not the main objective of the

article.

We have implemented two baseline partitions: hilbert2d (with weights w2d) and hilbert3d (with weights w3d), see figure 2.

As one can see, hilbert2d divides the computational domain on quasi-uniform subdomains, while hilbert3d locates many CPU150

cores in high-depth regions and few cores in shallow water. Minimum and maximum number of blocks on a core can be found
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Figure 3. Blocks belonging to a CPU core in colour and borders of allocated array by thick line. maskp(i, j) = 1 in coloured blocks and 0

elsewhere.

in tables 2, 3. When one of these partitions is applied to the whole coupled ocean-ice model, it balances one submodel and

unbalances another. Table 2 shows that balancing of 2D computations ("LI 2D"→min) leads to imbalance in 3D computations

("LI 3D" ≈ 200%) and table 3 shows the opposite behaviour with "LI 2D" ≈ 300%. These values are close to the estimates

given in appendix A and defined by the ratio between minimum, maximum and mean integer depth. The presented LI values155

imply a slowdown of one of the submodels by three to four times because LI increases runtime (T ) compared to optimal one

(Topt) in the following way:

T = (LI + 1)Topt. (4)

A compromise for both submodels can be found by considering a combination of weights:

w2d3d = w2d + γ0w3d, (5)160

where γ0 ≈ 3 is a ratio of run times for ocean and ice submodels on one CPU core. A partition of this type is denoted by

hilbert2d3d. While this weight is optimal for "overlapping" computations of two code sections with different complexity, it

is also the optimal weight for "non-overlapping" code sections (i.e., separated by blocking MPI exchanges). We show this in

appendix B with corresponding estimates of LI for 2D (130%) and 3D (34%) computations.
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5.3 Data structure and MPI exchanges165

After partitioning has been performed, we get a set of blocks for each CPU core p, Ip = {(ib, jb)}. "Shared" data arrays are

allocated for all blocks belonging to a CPU core with the following range of indices (excluding halo):

ips = min(is(Ip)), ipe = max(ie(Ip)), (6)

jps = min(js(Ip)), jpe = max(je(Ip)), (7)

a(ips : ipe, j
p
s : jpe , :). (8)170

An example of the shared array size is shown by rectangle in figure 2 for a particular CPU core. We introduce a mask of grid

points belonging to a CPU core (maskp(i, j)). Correspondence between blocks, shared array and the mask is clarified in figure

3. Introducing this mask does not increase the complexity of the algorithms because the mask of the wet points already exists

in the original code and it is simply modified. Finally, only minor modifications of the original loops are necessary:

1,Nx→ ips , i
p
e, (9)175

1,Ny→ jps , j
p
e , (10)

K(i, j)→K(i, j) ·maskp(i, j), (11)

mask(i, j)→mask(i, j) ·maskp(i, j). (12)

Usually, see Dennis (2007, 2003), arrays are allocated for each block separately. This has the following advantages:

– More efficient cache usage;180

– If the number of blocks is large enough to get proper balancing, then there is no need for maskp(i, j), thus giving advance

in vectorization and so on.

It also introduces some drawbacks:

– Overheads for copying block boundaries (small blocks like 4× 4 are prohibited);

– Many modifications of the original code are necessary, especially in service routines, I/O, and so on.185

Consequently, the main strength of our approach is the ability to incorporate balancing while keeping the original program

code as simple as for the trivial 1block partition. We expect that a "shared" array may be not optimal for near-land CPU cores

with ∼ 20% of wet points because of non-efficient cache usage. An example of such a core is shown by the rectangle in figure

2. An experimental study of runtime dependence on % of wet points will be carried out.

Borders of blocks neighbouring with other CPU cores are sent using MPI. The following optimizations are applied to reduce190

the exchange time:

– All blocks’ boundaries adjacent to a given CPU core are copied to a single buffer array, which is sent in one MPI_Send

call.
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Table 1. The model with 1block partition; "nb×nb" is the grid of blocks; "LI 2D" and "LI 3D" are load imbalances (3) for weights w2d and

w3d, respectively. "LI iceadvect" and "LI advect3D" are LIs computed based on the runtime of corresponding functions without exchanges;

"days / 24 hours" is the number of computed days for one astronomical day.

CPU cores 1 32 78 149 306 595 993

nb ×nb 12 72 122 172 262 382 502

LI 2D, % 0 93 62 53 37 28 17

LI iceadvect, % 0 80 57 50 40 30 19

LI 3D, % 0 341 317 380 313 278 274

LI advect3D, % 0 339 324 340 349 290 291

days / 24 hours 8 79 219 360 864 1763 2556

– If possible, a diagonal halo exchange is included into cross exchanges with extra width.

– There is an option to send borders of two or more model fields in one MPI_Send call.195

– Borders in the sea component are sent up to K(i, j) depth (i.e., only the actually used layers are transmitted).

The first three bullets reduce latency cost in many cores and the final bullet reduces bandwidth limitations.

5.4 Parallel solver of the SLAE

As we have already mentioned, the time-implicit equation for the free surface is reduced to a SLAE with sparse 19-diagonal

matrix. This is solved by a parallel implementation of Bicgstab algorithm preconditioned by block-ILU(0) with overlapping200

blocks, see Saad (2003). ILU(0) preconditioner preserves the 19-diagonal matrix structure, where matrix blocks are defined

for each CPU core and correspond to wet points plus a band of border points of width 2. Because blocks are defined by the

partition, the convergence rate depends on the number of CPU cores. Nevertheless, we have found that in the range from 1 to

996 CPU cores, it is sufficient to perform 6 to 10 iterations in order to reach the relative residual ‖Ax− b‖/‖b‖ ≤ 10−6.

6 Numerical experiments205

Our experiments were performed on the cluster of Joint Supercomputer Center of the Russian Academy of Sciences1. Each

node includes two 16-core processors Intel Xeon E5-2697Av4 (Broadwell). The software code was compiled by the Intel

Fortran Compiler ifort 14.0.1 with the optimization option -O2. Low-core simulations were performed for three model days

(2592 time steps). The model on 993 CPU cores is launched for 30 days, with subsequent rescaling of the results. During the

first day, we call an MPI_Barrier function to measure performance of particular procedures with and without exchanges.210

During the last two days, an MPI_Barrier is omitted and overall performance is assessed. The number of cores for tests

1http://www.jscc.ru/
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Table 2. Same as table 1, but for hilbert2d partition; min and max operations are applied over CPU cores; column "estimate" shows theoretical

LI given in appendix A.

CPU cores 1 32 78 149 306 595 993 estimate

nb ×nb 12 642 1282 1282 1282 1282 1282

min blocks 1 41 62 34 17 8 5

max blocks 1 61 103 54 30 17 11

min % of wet points 33 20 23 28 27 22 19

LI 2D, % 0 9 8 7 4 12 28
0

LI iceadvect, % 0 11 19 12 10 19 27

LI 3D, % 0 147 195 205 213 222 255
225

LI advect3D, % 0 145 200 217 242 235 264

days / 24 hours 8 129 278 523 890 1826 2511

Table 3. Same as table 2, but for hilbert3d partition.

CPU cores 1 32 78 149 306 595 993 estimate

nb ×nb 12 642 642 1282 1282 1282 1282

min blocks 1 14 5 11 5 2 1

max blocks 1 186 80 155 93 55 39

min % of wet points 33 25 22 22 22 26 25

LI 2D, % 0 237 288 268 312 311 313
300

LI iceadvect, % 0 238 297 298 373 337 328

LI 3D, % 0 5 7 3 12 15 29
0

LI advect3D, % 0 31 21 18 16 23 36

days / 24 hours 8 131 338 691 1216 2232 3143

are guided by the 1block partition method, which is highly restricted in the allowable number of cores. We first show how the

most time-consuming functions corresponding to ocean and ice submodels accelerate for three partitions: 1block, hilbert2d

and hilbert3d (see figure 2). We then study overall performance of the model using four partitions, including hilbert2d3d with

combined weights (5).215

The maximum grid size of blocks for our model is nb×nb = 128× 128 because the MPI exchange width is limited by

the block size, while the SLAE solver requires exchange of width 2. Note that due to the data structure that we used, the

performance of Hilbert-type partitions is almost insensitive to nb at moderate number of CPU cores. Nevertheless, nb may

be tuned by hand to decrease the complexity of the partition optimization procedure or to increase the percentage of the wet
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Table 4. Same as table 2, but for hilbert2d3d partition; "estimate" is given in appendix B.

CPU cores 1 32 78 149 306 595 993 estimate

nb ×nb 12 642 642 1282 1282 1282 1282

min blocks 1 16 6 14 6 3 2

max blocks 1 112 53 104 64 38 23

min % of wet points 33 22 14 23 23 27 24

LI 2D, % 0 95 126 131 130 142 139
130

LI iceadvect, % 0 119 138 150 156 150 145

LI 3D, % 0 19 27 26 27 41 66
34

LI advect3D, % 0 24 34 32 29 48 72

days / 24 hours 8 180 403 811 1615 2718 3463
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Figure 4. Speedup compared to one core for two functions: advect3D and iceadvect. Solid/dashed lines correspond to measurements

with/without MPI exchanges, respectively. Different partitions are shown in colour (1block, hilbert2d, and hilbert3d).
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Figure 5. Scatter plot: percentage of wet points on a core – advect3D runtime (without MPI exchanges, for 1 model day). Each point

corresponds to one CPU core. Figures correspond to hilbert3d partition with different numbers of CPU cores.

points on a core. In runs with many CPU cores, we use the maximum available number of blocks to get better balancing. The220

parameters that we used in the experiments are given in tables 1, 2, 3, 4.

6.1 Speedup of scalar and ice advection

Advection of scalars (advect3D, depth-dependent) and ice (iceadvect, depth-independent) are the most time-consuming

procedures in ocean and ice submodels, respectively. In the following, we will show that hilbert3d partition is appropriate for

advect3D and hilbert2d for iceadvect.225

Speedup for mentioned procedures is given in figure 4. Dashed lines correspond to measurements of code sections between

MPI exchanges and show how pure computations accelerate. Pure computations in advect3D accelerate linearly for hilbert3d

partition, while pure computations in iceadvect—superlinearly for the hilbert2d partition. Superlinearity (parallel efficiency

is greater than 100% when "doubling" the number of cores) occurs in the range of cores 1− 149, and we have investigated the

possible reasons for this using the open access Intel Advisor profiler. We have found that on 1 core the most time demanding230

memory requests are the DRAM data upload, while on 149 cores most memory requests correspond to the L1 cache. Thus,

superlinearity can be partially explained by the better cache utilization when the number of cores increases. Note that more

local memory access pattern (MAP) can decrease the limitations caused by the memory requests and can be achieved by

incorporating stride-1 access for the inner loop indices, but we leave this point for optimizations in the future.

Speedup including MPI exchanges is shown in figure 4 with solid lines. The function advect3D is only slightly limited by235

MPI exchanges on 993 cores: its speedup on the partition hilbert3d falls from 940 to 640 when exchanges are accounted for.

Meanwhile, iceadvect loses speedup from 1540 to 576 after accounting for exchanges on hilbert2d partition. Both functions
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Figure 6. Scatter plot: number of computational points for 3D calculations on a core – advect3D runtime (without MPI exchanges, for 1

model day). Each point corresponds to one CPU core. Solid lines show the average values along x and y axes. Figures correspond to hilbert3d

partition with different numbers of CPU cores.

have identical number of exchanges, but advect3D is more computationally expensive. Consequently, we explain worse

performance of iceadvect by lower ratio of number of operations to the number of points to exchange. Similar bottleneck

due to exchanges in 2D dynamics is reported in Koldunov et al. (2019a). The hilbert2d partition has a slight advantage (about240

15–20%) over the 1block partition for both functions (see solid lines). In total, as we expected, the hilbert3d partition is

suitable for advect3D function, and its acceleration is two to three times more efficient than when 1block/hilbert2d partitions

are used. Also, hilbert2d/1block partitions show two to four times faster iceadvect function compared to hilbert3d partition.

The different accelerations are strongly connected to balancing of computations. To check partition-based ("LI 3D" and "LI

2D") and runtime-based ("LI advect3D" and "LI iceadvect", correspondingly) Load Imbalance for 3D and 2D computations,245

see tables 1, 2, 3. Note that theoretical and practical LI are moderately close to each other, which confirms our choice of

weights (1), (2) for these functions. Also note that the data structure and organization of the calculations are appropriate for

load balancing.

Further analysis reveals that the runtime-based LI could be 4–25% more than the partition-based one, see tables 2, 3. This

may be connected to overheads introduced by non-efficient organization of memory. We allocate a shared array for all blocks250

belonging to a CPU core and near-land cores may have only 20 % of the wet points (see tables 2, 3), which can lead to an

increase in cache misses. Figure 5 shows a scatter plot for % of the wet points vs advect3D runtime without exchanges

(each point corresponds to some CPU core). One can clearly see that on a moderate number of cores (149) the computations

are limited by the core with the smallest % of the wet points, which has the maximal runtime. Figure 6 additionally shows

that spread in runtime cannot be explained by the difference in the number of computational points, i.e. partitioning algorithm255
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Figure 8. Relative contribution of different code sections to runtime; "ocean" – all procedures corresponding to ocean submodel including

advect3D, "ice" – ice submodel including iceadvect, "processing" – computation of statistics, "I/O" – input/output with scatter-gather

functions; "SLAE" – matrix inverse and RHS preparation; "other" – simple service procedures.

works well for 149 cores. Although organization of the calculations may slightly limit model efficiency on a moderate number

of cores, it does not limit the model efficiency on 993 cores, where major part of the advect3D runtime spread is explained

by the imperfect balancing (see figure 6), but not the data structure (see figure 5). Stagnation of the balancing procedure is

evident from the fact that the minimum number of blocks located on a CPU core is 1 for 993 cores, see table 3. Note that

computational subdomain corresponding to one CPU core is small enough: on average, it has 9× 9 horizontal points with 12260

vertical levels for 993 cores.

6.2 Speedup of the full model

The coupled ocean-ice model is launched on the same CPU cores for both submodels with the common horizontal partition.

Input/output functions are sequential and utilize gather-scatter operations, which are given by our library of parallel exchanges.
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Figure 9. Absolute contribution of different code sections to runtime on 993 CPU cores.

Speedup for the full model compared to one CPU core is given in figure 7. Maximum speedup, approximately 430, corresponds265

to the partition with combined weights (hilbert2d3d) on 993 cores. Compared to the simplest partition (1block), hilbert2d3d

model is 115% faster on 149 cores and 40% faster on 993 cores. Partition hilbert2d3d also gives an advantage over partitions

balancing purely 2D and 3D computations (hilbert2d, hilbert3d). On 993 CPU cores, the parallel exchanges in this model have

the following contribution to the runtime: 20% for boundary exchanges, 18% for gather-scatter and 6.5% for Allreduce.

The relative contribution of different code sections to runtime is given in figure 8. In the case of perfect scaling of all270

procedures, the relative contribution must be the same as the number of CPU cores rises. For partitions 1block and hilbert2d,

we see a slowdown of the ocean component. Partition hilbert3d suffers from the slowdown of the ice component. Finally,

the closest preservation of time distribution is found for hilbert2d3d model. We did not pay much attention to code section

"processing" because, although it accelerates, its computational cost could be reduced. Section "I/O" gradually saturates due

to gather-scatter operations, which consume 85% of I/O runtime on 993 CPU cores. The new parallel solver ("SLAE") has fast275

convergence and low computational cost, but suffers from Allreduce operations: in our implementation each iteration demands

five MPI_Allreduce calls, which account for 60% of "SLAE" code section runtime on 993 cores.

Absolute values of code sections’ runtime for 1 model day are shown in figure 9. In comparison to hilbert3d partition,

combining of weights (hilbert2d3d) reduces the cost of the ice component, while keeping ocean component almost without

changes (see also tables 4, 3 for load imbalance values). In addition, section "processing" reduces its runtime because it contains280

many not fully optimized service functions that are sensitive to stretching of the horizontal area covered by a CPU core: such

stretching is done by the hilbert3d partitioner.

Simulated years per wall-clock day (SYPD) for the best configuration (hilbert2d3d, 993 cores) is 3463/365≈ 9.5, see table

4. A direct comparison with other coupled ocean-ice models cannot be achieved because our configuration is rare. However,

we can rescale the performance (rSYPD) of time step efficiency of the global models in the following way:285

rSY PD = SY PD
Nmesh

NFEMAO
mesh

∆tFEMAO

∆t

NFEMAO
p

Np
, (13)

where we take into consideration different numbers of horizontal mesh wet points (Nmesh), CPU cores (Np) and time step (∆t),

but we neglect different numbers of vertical levels and differences in formulation of the ice dynamics. As follows from table 5,
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rSYPD is of the order of 10 for all of the ocean-ice models that we have presented, including FEMAO. While this characteristic

cannot rate models over their efficiency, we argue that our parallel configuration is comparable to existing parallel ocean-ice290

models.

Table 5. Efficiency of time step loop for FEMAO model compared to global ocean-ice models. Rescaled SYPD (rSYPD, (13)) accounts

for difference in the number of horizontal mesh points, CPU cores and time step. Original values are published in Koldunov et al. (2019a);

Huang et al. (2016); Ward (2016), but we took our values directly from table 3 in Koldunov et al. (2019a).

Model Mesh points ·106 Cores Time step, s SYPD rSYPD

POP 5.8 16875 173 10.5 24.4

FESOM2/STORM 5.6 13828 600 15.9 12.5

NEMO 0.9 3840 1440 25.3 4.8

MOM5.1 0.9 3840 1800 21.6 3.3

FESOM2/farc 0.6 2304 900 56.2 19

FEMAO 0.085 993 100 9.5 9.5

7 Conclusions

In this paper, we present a relatively simple approach to accelerate the FEMAO ocean-ice model based on rectangular structured

grid with advances of load balancing. The modifications that had to be introduced into the program code are identical to

those that were required by the simplest decomposition on squares. The only demand on the model to be accelerated by this295

technique is marking computational points by a logical mask. In the first step, we utilize the common partition for ocean and ice

submodels. For a relatively “small” model configuration, 500× 500 horizontal points, we reach parallel efficiency of 60 % for

particular functions (3D scalar advection using 3D-balancing approach and 2D ice advection using 2D-balancing approach) and

43% for the full model (using combined weight approach) on 993 CPU cores. We show that balancing the 3D computations

leads to unbalanced 2D computations, and vice versa. Consequently, further acceleration may be achieved by performing300

computations of 2D and 3D components on distinct groups of CPU cores with different partitions. Nevertheless, high parallel

efficiency of 3D scalar advection itself is a great advance for future applications of the model, especially for the version with a

pelagic ecology submodel (Chernov et al., 2018), where more than 50 3D scalars (biogeochemical concentrations) are added

to the thermohaline fields.

Note that while the parallel approach that we have presented here can be implemented into the model in relatively simple305

way, the code of the library of parallel exchanges can be rather complex (see Supplements).
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Code availability. The version of FEMAO model used to carry out simulations reported here can be accessed from https://doi.org/10.5281/

zenodo.3977346. The parallel exchanges library with a simple example computing the heat equation is archived on Zenodo https://doi.org/

10.5281/zenodo.3873239.

Appendix A: Estimating the load imbalance for hilbert2d and hilbert3d partitions310

Let us introduce two functions of bathymetry (defined by integer depth K(i, j)) with the corresponding values for our model:

ρmax(K) =
max(K)

mean(K)
=

39

12
= 3.25, (A1)

ρmin(K) =
mean(K)

min(K)
=

12

3
= 4, (A2)

here and below, "mean", "min" and "max" operations correspond only to wet points. These values define how balancing

of 2D computations affects 3D computations imbalance, and vice versa. Let S and V be sets of surface and ocean points,315

correspondingly; Sp and Vp be sets of these points belonging to a CPU core p; | · | be the number of points in a set. The number

of 3D points can be expressed via 2D ones: |V |=
∑
{i,j}∈SK(i, j) = |S| ·mean{i,j}∈SK(i, j).

When balancing of 2D computations is used (hilbert2d), surface points are distributed among processors in roughly equal

size (|Sp|= |S|/Np). Then, for 3D computations, the ratio of maximum work to mean work among cores is defined as:

Wmax

Wmean
=

maxp(|Vp|)
meanp(|Vp|)

=
maxp(mean{i,j}∈Sp

K(i, j))

meanp(mean{i,j}∈Sp
K(i, j))

≈ ρmax, (A3)320

and the corresponding load imbalance is

LI =
Wmax−Wmean

Wmean
= ρmax− 1 = 225%. (A4)

When balancing of 3D computations is used (hilbert3d), ocean points are distributed among processors in roughly equal size

(|Vp|= |V |/Np). Then, for 2D computations, the ratio of maximum work to mean work is defined as:

Wmax

Wmean
=

maxp(|Sp|)
meanp(|Sp|)

=
maxp(|Vp|/mean{i,j}∈Sp

K(i, j))

meanp(|Sp|)
=

|V |/|S|
minp(mean{i,j}∈Sp

K(i, j))
≈ ρmin, (A5)325

and the corresponding load imbalance is

LI =
Wmax−Wmean

Wmean
= ρmin− 1 = 300%. (A6)

Appendix B: Finding the optimal weight for non-overlapping 2D and 3D calculations

Let W be a full computational work and let it be distributed between 3D (W 3d) and 2D (W 2d) computations with ratio γ0:

W =W 2d+W 3d ∼ (1+γ0)W 2d. Our goal is to find weight function w(i, j), which corresponds to minimal joint (2D and 3D)330

Load Imbalance. We use the notation presented in the previous appendix and we define the "number of computational points

corresponding to weight": |V w|=
∑
{i,j}∈Sw(i, j).
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Figure A1. Load Imbalance for the full model L(w), as a function of w(γ) = w2d + γw3d; γ0 = 3.

Assuming equipartition with respect to this weight (|V w
p |= |V w|/Np), we can derive LI for 2D calculations:

W 2d
max

W 2d
mean

=
maxp|Sp|
meanp|Sp|

≈ ρmin(w), (B1)

and for 3D calculations:335

W 3d
max

W 3d
mean

=
maxp|Vp|
meanp|Vp|

=
maxp(|Sp| ·mean{i,j}∈Sp

K(i, j))

meanp(|Sp| ·mean{i,j}∈Sp
K(i, j))

=

maxp

(
mean{i,j}∈Sp

(K(i, j)))

mean{i,j}∈Sp
(w(i, j)))

)
meanp

(
mean{i,j}∈Sp

(K(i, j)))

mean{i,j}∈Sp
(w(i, j)))

) ≈ ρmax(K/w). (B2)

Finally, assuming that 2D and 3D computations are non-overlapping (i.e., the maximum work is under summation), "Load

Imbalance" for the full model:

LI(w) =
Wmax−Wmean

Wmean
=
ρmin(w) + γ0ρmax(K/w)

1 + γ0
− 1. (B3)

For a given bathymetry K(i, j), ratio γ0 = 3 and special type of weight function w(γ) = w2d + γw3d, LI(w(γ)) can be340

plotted numerically for different values of γ, see figure A1. The minimum of this function corresponds to the choice γ = γ0 = 3,

and LI for 2D and 3D computations in this case are 130% and 34%, respectively.
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