Dear Dr. Hisashi Sato,

Thank you very much for taking time to handle our paper (gmd-2020-179). We are grateful to the Reviewers for their valuable comments and suggestions. We have the pleasure of enclosing a revised version of the manuscript titled "Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)" and a detailed response to the Reviewers' comments below. We hope that the revised manuscript has been strengthened for publication in *Geoscientific Model Development*.

In the responses below, we have addressed each of the Reviewers' comments in detail. The comments from each Reviewer are noted as "R" (e.g., R1) while each comment is noted as "C" (e.g., C1) to better index all comments. The line numbers indicated refer to the revised manuscript (clear version). In the manuscript (with track changes), the updates are colored in red and the deletions are strikethrough in blue. We hope the manuscript is now suitable for publication in *Geoscientific Model Development*. Please do not hesitate to contact us if you require any further information.

Sincerely yours, Zhipin Ai (on behalf of co-authors)

Response to Reviewer 1

Respon	se to Reviewer 1	
No.	Comment	Response
R1C1	The paper discusses some enhancements to the H08 global hydrologic model to simulating bioenergy yield over a history. The authors compare the results to previous assessments and some observed yield values around the globe. The paper is a good contribution, and I recommend its publication. However, the paper has several sections that require some additional clarity/details. Below I provide a detailed summary of some of these issues.	Deer Reviewer, thank you very much for taking time to carefully read our manuscript. We are pleased to see your recommendation for publication. Your valuable comments enabled us to clarify a number of points that we previously unaware of, and we hope that we have increased the quality of the manuscript substantially. We have revised the paper by trying to incorporate all relevant comments and remarks. We have also tried to respond to all the comments meticulously as you may see below. Please find our responses to each comment below
R1C2	It is not clear how this work builds on previous work by the authors (Yamagata et al. 2018 and Wu et al. 2019) or by the work of Trybula et al 2015.	We apologize for the unclear description. Here, let us further explain how our work builds on that of Yamagata et al. (2018), Wu et al. (2019), and Trybula et al. (2015). In the whole, the first bioenergy crop implementation in H08 was conducted by Yamagata et al. (2018). Using outputs from the same model employed by Yamagata et al. (2018), Wu et al. (2019) predicted future global bioenergy potential. Our study is a substantial upgrade to the portion of Yamagata et al. (2018) purely dedicated to the improvement of bioenergy crop modeling. In this upgrade, we referred the parameters reported by Trybula et al. (2015), which provided crop parameters for the leaf area development curve. To be specifically, in the work of Yamagata et al. (2018), the bioenergy crop modeling was realized in two steps. First, crop parameters (see the old values in Table 2) for <i>Miscanthus</i> (refer to <i>Miscanthus</i> <i>giganteus</i> in this study) and switchgrass (refer to <i>Panicum virgatum</i> in this study)

		were adopted based on the settings of the
		SWAT model 2012 version (Arnold et al
		2013) However the default parameters
		could not well reflect the characteristics for
		Missourthus and switch groups and sould load
		<i>Miscaninus</i> and switchgrass and could lead
		to serious bias based on the result in
		Trybula et al. (2015). Second, because both
		Miscanthus and switchgrass are perennial,
		the potential heat unit was set as unlimited
		(see the old values in Table 2). However,
		this potential heat unit is far from the
		observations reported by Trybula et al.
		(2015) (see the new values in Table 2).
		Here, further enhancements were therefore
		conducted as follows. First, we changed the
		leaf area development curve by adopting
		the potential heat unit (Hun) and leaf area
		related parameters (dpl1 and dpl2)
		proposed by Trybula et al. (2015). The
		potential heat unit can determine both the
		total cropping days and the leaf
		development. Here, we set it at 1,830 and
		1,400 degrees for Miscanthus and
		switchgrass, respectively, as recommended
		by Trybula et al. (2015) based on their field
		observations. This modification changed
		the original heat unit index (Ihun) and the
		development of the leaf area index curve.
		Second, we modified the algorithm for
		water stress that was used to regulate the
		radiation use efficiency. We took the ratio
		of actual evapotranspiration to potential
		evanotranspiration as the water stress
		factor for any point in the simulation
		similar to the description of the soil
		moisture deficit used in other studies
		(Anderson et al. 2007 · Vao et al. 2010)
		Third and the most important we
		conducted a systematic parameter
		calibration and evaluation for both
		Miscanthus and switcherass with the best
		available data
P1C2	Patter documentation of the methodale	Thank you We have added the equations
KIU5	section to allow for some built life in the li	mank you, we have added the equations
	section to allow for reproducibility including	related to yield estimation to Section 2.1;

	the equations, and the explanation of the various parameters. A schematic would be also help.	added an explanation of the parameters in Table 1, and provided the original values of the parameters in Table 2. In addition, we have described the original implementation of bioenergy crops in Section 2.2; rephrased the calibration process in Section 2.2; revised Fig.1 to include both the submodules of H08 and the specific biophysical processes of crop module; and improved Fig. 2 by adding the climate zone
		information originally presented in Fig. S6 to better illustrate the site locations.
R1C4	Sections 2.1 and 2.2 leave the reader wondering about the specifics of the two-step approach discussed, and how the adopted enhancements build on the previous approach. These two sections deserve more details of the methodology with greater levels of details that what is being offered. This will help the reader understand exactly how this work differs and builds on the two previous studies by the team, how to interpret the results and the difference between the 'original' and 'enhanced' versions of H08 (figure 3), how to interpret the various variables shown in Table 1, and to facilitate reproducibility.	We agree with the Reviewer's concern and have largely revised the Sections 2.1 and 2.2. The main modifications are as follows: we added the most important equations used for crop yield modeling to Section 2.1; we revised Section 2.2 to illustrate the original implementation of the bioenergy crop (two-step approach) in H08 and our enhancement; we included the original parameter settings in Table 2 and the physical meanings of the parameters in Table 1; and we clarified the six submodules of H08 in Section 2.1 and revised Fig.1 by adding a schematic diagram of the connections for each submodule.
R1C5	The paper shows some validation results for the rainfed module, and not for the irrigation module, but then show results for both when simulating both globally. The validation step for the irrigated module should be shown and discussed in the main text.	Thank you for this good suggestion. We have moved the validation results (site- level) with irrigation in Fig. 6. The main text has been edited as follows (lines 240– 246): "We also investigated the performance under the irrigated condition (shown in Fig. 6). We used the reported observed yields for ten sites globally (Table S3). We found that the simulated yields were within or close to the observed yields for five sites located in China, the UK, and France (see Table S3), but were overestimated for the remaining sites. This was due to the assumption of irrigation. H08 assumes that irrigation is fully applied to crops

		and hence the yield represents the maximum potential yield under irrigation condition. Therefore, if the reported yield is within the range of the simulated yield between rainfed and irrigated conditions, it is considered reasonable. This was found to be the case, as shown in Fig. 6."
		We also included the validation results with irrigation (country-level) in Fig. S3, which indicates good performance. The corresponding text is on lines 268–270:
		"An additional comparison under the irrigated condition is presented in Fig. S3. The correlation coefficient of the yield simulated by H08 and LPJmL, as shown in the scatterplot (Fig. S3), was 0.95. A t-test showed that the correlation was significant at the 0.01 level."
R1C6	I would suggest shortening the title. How about something like "Simulating second- generation bioenergy crop yield using the global hydrologic model H08"	We have shortened the title to "Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)".
R1C7	Line 4. Why is Miscanthus capitalized and italic but not switchgrass?	<i>Miscanthus</i> denotes <i>Miscanthus giganteus</i> and switchgrass indicates <i>Panicum</i> <i>virgatum</i> in this study. <i>Miscanthus</i> is the genus to which the studied species belongs, which is always capitalized and italicized in Binomial nomenclature. Therefore, we have used this conventional expression (capitalized and italicized) for <i>Miscanthus</i> . The same expression has been used in previous reports such as Trybula et al. (2015).
R1C8	Line 7: 'enhanced H08' Doesn't H08 keep track of different version numbers that can be used here instead of calling something an enhanced model version?	Thank you. We have changed 'enhanced H08' to 'H08 (v.bio1)'.
R1C9	Line 13: Add a sentence into the abstract to introduce the term BECCS if you are going to start the introduction section with this term. Preferably, I would suggest confining the framing around bioenergy crops rather	Thank you for noting this issue that we previously unaware of. We have taken your suggestion to focus on the bioenergy crop plantation and removed the abbreviation of BECCS.

	than BECCS since the latter term never appears again in the text.	
R1C10	Lines 26, 30, 34: LPLmL should be LPJmL	We have corrected this error.
R1C11	Lines 30-32: It is not just LPJmL based on the following paragraph. It is also H08 based on the two recent publications using H08 (Yamagata et al. 2018 and Wu et al. 2019).	Thank you. We have added H08 here.
R1C12	Line 34: change 'biogeny' to bioenergy	We have corrected this error.
R1C13	Line 41: Hanasaki et al 2008a/b are repeated twice in the list.	This citation is listed as "(Hanasaki et al., 2008a, 2008b, 2010, 2018a, 2018b)". We checked and did not find any repeated citations.
R1C14	Line 44: the reference Wu et al. 2019 is missing in the list of references at the end.	The reference to Wu et al. 2019 was listed on lines 446–448 of the original manuscript. Sorry, we noted that it is not in an alphabetical order and we have now put it after the reference of Weedeon et al. (2014).
R1C15	Lines 49-50: I would suggest omitting the sentence "However, it is noted that the model performance for the simulated bioenergy crop yield was not validated at all" as an argument to justify the novelty of the work. I doubt the authors are claiming that the previous two studies using H08 with representation of bioenergy yield ignored properly validating the model and this study contributes this novelty. I would suggest that authors replace this sentence with an explanation of how the new work builds on the two- step approach documented in the two previous papers (Yamagata et al. 2018 and Wu et al. 2019).	We agree with the Reviewer's concern and suggestion. The novelty of this paper lies in its systematic parameter calibration using the best available multi-site data. The first bioenergy crop implementation in H08 (Yamagata et al., 2018). Using the same bioenergy crop scheme, another recent study also used H08 estimates of yield for <i>Miscanthus</i> and switchgrass to predict global bioenergy potential (Wu et al., 2019). Our paper is based on the work of Yamagata et al. (2018). We have rephrased the sentence as follows (lines 47–48): "Based on the work of Yamagata et al. (2018), here we improved the bioenergy crop simulation in H08 by performing a systematic parameter calibration for both <i>Miscanthus</i> and switchgrass using the best available data."
R1C16	Line 61: 'The six sub-modules', You have not introduced what those six submodules are yet. I would start by listing them or at least list them in () right after this phrase.	Thank you. We have added the six submodules to the sentence, as follows (lines 62–64):

		"The six sub-modules (land surface hydrology
		river routing crop growth reservoir operation
		environmental flow requirements and
		anthronogenic water withdrawal) are coupled in
		a unique way (Fig. 1a) "
	Line 75. Lyould expend on this section to	a unique way (Fig. 1a).
	Line 75: I would expand on this section to	we have rephrased the emancement
	snow the two-step approach here before	section and included the two-step approach
	talking about model enhancements in the	as follows (lines $125-133$):
	next section (2.2). Even if those were	
	presented in the two previous publications, I	1 ne original bioenergy crop implementation in
	would at least include them in SI to make this	H08 (Yamagata et al., 2018) was conducted in
	manuscript a standalone piece.	two steps. First, crop parameters (see the old
		values in Table 2) for Miscanthus (refer to
		Miscanthus giganteus in this study) and
		switchgrass (refer to <i>Panicum virgatum</i> in this
		study) were adopted based on the settings from
		the SWAT model 2012 version (Arnold et al.,
		2013). However, the default parameters did not
R1C17		reflect the characteristics for Miscanthus and
		switchgrass well, which could lead to serious
		bias based on the result in Trybula et al. (2015).
		Second, maturity was defined by either
		undergoing an autumn freeze (i.e., the air
		temperature was below the minimum
		temperature for growth) or the exceedance of
		the maximum of 300 continuous days of
		growth. Because both Miscanthus and
		switchgrass are perennial, the potential heat
		unit was set as unlimited (see the old values in
		Table 2). However, this unlimited potential heat
		unit is far from the observations (see the new
		values in Table 2) reported by Trybula et al.
		(2015)."
	Lines 76-85: I would suggest including all the	We have added the equations and text
	equations and steps for how yield is	related to yield simulation. Since this
R1C18	simulated to shed more light about the	addition is quite long, we have not included
	method and to allow reproducibility of the	it here; please see details in Section 2.1.
	approach.	
	Line 90: 'as an output item' Are you saying	You are correct. We have added a new
R1C19	that can you simulate water consumption as a	output variable for water consumption to
	new output variable? It is not clear.	the crop module.
	Line 91: 'Fifth, we fixed the bug in the	The bug is related to the improper use of
R1C20	original code'. What Bug? One could say 'we	".eq." in place of ".ge." Since this is too
	fixed a bug in the original code'. But this is	

	so vague and does not really give the reader	trivial to report, we have taken your
	any additional information. I would suggest	suggestion removed it from the main text.
	dropping the fifth point. Such details are best	
	documented in SI.	
	Lines 105-110: can you mention the number	We have added the numbers and years on
	of data points and years being used?	lines 169–175, as follows:
R1C21	of data points and years being used:	"To independently calibrate and validate the performance of H08 in simulating the bioenergy yield, we collected and compiled up- to-date site-specific (varied from 1986 to 2011) and country-specific (varied from 1960 to 2010) yield data from both observations and simulations (Clifton-Brown et al., 2004; Searle and Malins, 2014; Heck et al., 2016; Kang et al., 2014; Li et al., 2018a). For <i>Miscanthus</i> , the yield data used covered 72 sites (64 rainfed and 8 irrigated; observed) and 15 countries (simulated). The simulated country- specific data is from MISCANMOD and LPJml. For switchgrass, the yield data used covered 57 sites (55 rainfed and 2 irrigated; observed) and 16 countries (simulated). The simulated country-specific data are from HPC- EPIC and LPIml."
R1C22	Line 115: what variable is being calibrated here? H08 simulates many output variables. How does the calibration process ensure that the adopted calibration process does not offer a gain in better matching one variable at the expense of another variable? For example, did the authors calibrate runoff first and then yield, or is it done all at once? If it is the latter, then showing some results on runoff would be necessary. I am not asking the authors to necessarily do additional work, but rather to	Here, we calibrated the five key parameters of radiation use efficiency (be), maximum leaf area index (blai), base temperature (Tb), maximum daily accumulation of temperature (Hunmax), and minimum temperature for planting (TSAW) that influence the yield simulation in the crop module. The standard H08 model uses a priori parameters; therefore we did not calibrate other variables such as runoff in the land surface hydrology module.
R1C23	Line 117: 'the enhanced h08'. Does this mean that the second simulation was only done for the enhanced model?	You are correct. This simulation is used to analyze the effect of irrigation on yield, water consumption, and water use efficiency. Based on your suggestion (R1C34), we have reorganized the

		simulation setting section as follows (lines
		187–193):
		"After calibration, four different kinds of simulation were run with different purposes. The first simulation was conducted using the original model without irrigation to investigate its performance. The second simulation was conducted using the enhanced model without irrigation to investigate its performance under rainfed condition. The third simulation was conducted using the enhanced model with irrigation to investigate its performance under rainfed condition. The third simulation was conducted using the enhanced model with irrigated condition. These three simulations were conducted at a daily scale with annual meteorological data from WFDEI for the period 1979–2016. The last simulation was conducted using identical model settings to the third one, except using different meteorological data from S14FD for the period 1979–2013. Note that irrigation in this study means uniform
	Lines 124 125: A bit unclear Was the	unconstrained irrigation."
R1C24	Lines 124-125: A bit unclear. Was the calibration done as a multi-objective optimization process to optimize both the RMSE and R values. For example, how do you decide an optimal parameter set when the two goodness-of-fit variables disagree? Figure 3 only shows RMSE, so I would suggest that you stick to this one and drop the R coefficient. Also, it is not clear if observed data is available for several individual years or only a single average year is available. If a time series exists, then I would suggest using goodness-of-fit measures such as Nash- Sutcliffe.	we apologize for the unclear description. Let us further explain the method. From a statistics perspective, root mean square error (RMSE) measures the standard deviation of prediction errors compared to the observations. The correlation coefficient (R) measures the correlation between the prediction and observation. Here, we gave the priority to RMSE, as it is a better metric for measuring errors in the predicted yield compared to R. We have added a figure showing the variations of RMSE and the corresponding R values in Fig. S1. It shows good agreement between the lowest RMSE and corresponding relatively high R.
		The majority of the yield data fall within a single period instead of an individual year. Thank you for the suggestion of using the Nash-Sutcliffe model efficiency

		coefficient, we did not use it due to the lack
		of time-series yield data.
R1C25	irrigated'. Please rephrase.	(line 216):
		"because only a few sites were irrigated"
R1C26	Line 139: 'previous reports' Please add citations to support this claim. The single sentence that comes afterward is insufficient. What about other parameters?	Thank you for noting this issue. We have rephrased the sentence by adding a citation, as follows (line 217): "These values are similar to those of Trybula et al. (2015)"
		Other variables, such as base temperature, and maximum leaf area indices are also similar to those of Trybula et al. (2015).
R1C27	Lines 140-145: how does this work differ from Trybula et al 2015? This is not discussed in the intro. Also given that the adopted approach follows the SWAT implementation in Trybula et al 2015, and almost all of the parameters taken from the literature are also taken from Trybula et al 2015, would not it guarantee that you get similar parameter values for the other calibrated values to match those in Trybula et al 2015? What about other studies?	We apologize for this, let us further explain it here. Basically, we conducted a global calibration and evaluation with the best available data, while the work of Trybula et al. (2015) is based on one site observation and validation. The work of Trybula et al. (2015) is the first report of updating the SWAT for bioenergy crop simulation based on field observations. It provides a valuable reference for our study, as the crop module of H08 is similar to that of SWAT. Therefore, in our model enhancement process, the crop parameters related to leaf area development (potential heat unit, optimum temperature, maximum leaf area index, and two complex number; see details in Table 1) were based on their field observations (Trybula et al., 2015). For other parameters, including radiation use efficiency (be), maximum leaf area index (blai), base temperature (Tb), maximum daily accumulation of temperature for planting (TSAW), we conducted a systematic multi-site calibration and evaluation based on the parameter ranges reported in other studies

		(see Table 3). Our finalized parameters
		obtained through this approach are
		generally similar to those reported in
		Trybula et al. (2015), and are well within
		the range of other studies, as shown in
		Table 3.
	Lines 148-154: although the results are better	Site-specific yield simulation and
	than the original version, the results still seem	validation of traditional crops is a major
	to show a tendency to underestimate based on	challenge for global models (Müller et al.,
	the results shown in figure 3.	2017), notwithstanding the bioenergy crop,
		which are being added to existing global
		models. For example, underestimation or
		overestimation have been reported in other
		global models like LPJml and ORCHIDEE
		that including the bioenergy crops. We
		added a new figure (Fig.3) of the calibrated
		results. It illustrates very good
		performance. Fig. 4 shows the validation of
		the model. Although it shows much better
		performance than the original simulation, it
		also shows a tendency toward
		underestimation. However, if we
		separately analyze each site, as shown in
		Fig. 5, most yield estimates were similar to
D1C29		or within the observed yield ranges.
KIC28		Therefore, our simulation appears to be
		reasonable at the global scale. We have
		further quantified the bias to illustrate the
		improvement of the model and rephrased
		the text as follows (lines 229–238):
		"Deinte im a contamplet communication cimulated
		Points in a scatterplot comparing simulated
		yields derived from the enhanced H08 with
		observed yields are well distributed along the
		1:1 line. It can be seen that the performance of
		the engine H08 For Missenthus the line of
		the original Hos. For <i>Miscantnus</i> , the bias of
		original model ranged from -84% to 80% with
		a mean of -52% , while the bias of the enhanced
		model ranged from -39% to 53% with a mean
		01 - 9%. For switchgrass, the bias for original
		model ranged from $-/8\%$ to 358% with a mean
		of 25% , while the bias for the enhanced model
		ranged from -52% to 109% with a mean of $-$

		7%. Note that it also shows a tendency toward
		underestimation for some sites, especially for
		Miscanthus. More detailed site-specific results
		are shown in Figs. 5a (Miscanthus) and Fig. 5b
		(switchgrass). To depict the uncertainties in the
		observed yield, the minimum and maximum
		observed yields are shown as error bars in Fig.
		5. It was found that the simulated yields were
		within or close to the range of the observed
		yields. The simulated relative error was
		randomly distributed, was substantially smaller
		than the range of the observed yields, and
		showed no climatic bias."
	Line 158: 'well at sites 1, 2, and 10' so how	There are ten sites with irrigation. We have
	many sites are under irrigation? You should	modified the sentence, as follows (lines
	mention it here.	240–241):
R1C29		
RIC2)		"We also investigated the performance under
		the irrigated condition (shown in Fig. 6). We
		used the reported observed yields for ten sites
		globally (Table S3)."
	Lines 166-175: Did you drop the missing	First, we did not drop the missing values.
	value from the significance test analysis (e.g.,	Note that the yield from MISCANMOD is
	Finland in Fig 5d, Mongolia in Fig 5e)? I am	reported with yield less than 10 Mg ha ⁻¹ yr
	still unsure whether the yield values from the	¹ excluded (Clifton-Brown et al., 2004);
	other studies are average values over a	therefore, we used the same method to
	particular period, and if it is the same period	make the comparison consistent. As the
	as in this study.	simulated yield for Finland is less than 10
		Mg ha ⁻¹ yr ⁻¹ , therefore there are no values
		for Finland. For Mongolia, our estimated
		value was 0.4 Mg ha ⁻¹ yr ⁻¹ and was rounded
		to 0 Mg ha ⁻¹ yr ⁻¹ .
R1C30		
		Second, based on your comment below
		(R1C32), we moved the text related to the
		study period, as follows (on lines 253-
		256):
		The periods of climate data used as inputs
		were 1960–1990, 1980–2010, and 1982–2005
		Ior MISCANNIOD, HPC-EPIC, and LPJmL,
		respectively. Here, the comparisons were
		conducted using exactly the same period as that
		of HPC-EPIC and LPJmL. For MISCANMOD,

		however, we used the data from 1979–1990 due
		to data availability."
R1C31	Lines 188-189: 'This can also be inferred from the validation results in Heck et al. (2016)' Please elaborate.	We have added an explanation, as follows (lines 276–277):
		"This can also be inferred from the validation results (Fig. 1a) in Heck et al. (2016) since the
		LPJml-simulated yield is close to the yield of <i>Miscanthus</i> compared to those of switchgrass."
	Lines 196-201: This information should appear earlier in the manuscript, so the reader is left wondering about such details. Also, if	As noted in a previous reply (R1C30), we have moved this text to the beginning of the section. Unfortunately, all values reported
	there is annual data from the other studies, then why not look at the timeseries instead of	in previous studies are in mean annual terms. We used the average values for each
R1C32	simply comparing the average value over a time period? To say a model can capture the	component to ensure consistent
	long term mean over different basins is one	••mparison.
	level of validation, but to say that the model can also capture the interannual variability of	
	yield from year to year, then this is a much	
R1C33	Lines 203-220: This section comes as s surprise as it was not mentioned earlier as part of the framing of the paper in the front sections.	We apologize. This section shows the spatial distribution of yield, which is helpful for clarifying its geographical differences among climate zones. Based on your suggestion, we have added a sentence (in bold below) to notify readers of this information in the last paragraph of the Introduction Section, as follows (lines 51–
		55):
		"The following sections of this paper will: 1) describe the default biophysical process of the crop module in H08, 2) explain the
		enhancement of H08 for <i>Miscanthus</i> and switchgrass, 3) evaluate the enhanced
		performance of the model in simulating yields
		spatial distributions of the yield of
		Miscanthus and switchgrass, and 5) illustrate
		the effects of irrigation on the yield, water
		consumption, and WUE (defined here as the
		<i>Miscanthus</i> and switchgrass."

	Line 206: It is confusing how many	Thank you for this constructive suggestion.
	simulations were done in the study. The	We have reorganized the simulation setting
	authors talk about two simulations twice, but	in Table S1 and the description is now as
	are referring to different ones. I would	follows (on lines 187–193):
	suggest including an experimental design	
	section as part of the methodology section to	"After calibration, four different kinds of
	explain the different simulations to be	simulation were run with different purposes.
	conducted over a historical period	The first simulation was conducted using the
	(rainfed/irrigated, original/enhanced,).	original model without irrigation to investigate
		its performance. The second simulation was
		conducted using the enhanced model without
R1C34		irrigation to investigate its performance under
RICST		rainfed condition. The third simulation was
		conducted using the enhanced model with
		irrigation to investigate its performance under
		irrigated condition. These three simulations
		were conducted at a daily scale with annual
		meteorological data from WFDEI for the period
		1979–2016. The last simulation was conducted
		using identical model settings to the third one,
		except using different meteorological data from
		S14FD for the period 1979–2013. Note that
		irrigation in this study means uniform
		unconstrained irrigation."
	Lines 211-220: The validation results shown	Following your comment (R1C5), we have
	and discussed in the main body of the	added validation results under irrigated
	manuscript only talk about the rainfed	condition, as noted in a previous reply
		······································
	simulations. It is unconvincing to skip the	(R1C5). The results are comparable to
	simulations. It is unconvincing to skip the validation step for the irrigation module, and	(R1C5). The results are comparable to previous reports, as the discussion on lines
	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using	(R1C5). The results are comparable to previous reports, as the discussion on lines 307–310:
	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this	(R1C5). The results are comparable to previous reports, as the discussion on lines 307–310:
R1C35	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due
R1C35	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very
R1C35	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from previous studies.	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very similar to those simulated by LPJmL (Beringer
R1C35	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from previous studies.	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very similar to those simulated by LPJmL (Beringer et al., 2011). At the continental scale (e.g., E.g., E.g.,
R1C35	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from previous studies.	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very similar to those simulated by LPJmL (Beringer et al., 2011). At the continental scale (e.g., Europe), yield increases were located mainly in
R1C35	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from previous studies.	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very similar to those simulated by LPJmL (Beringer et al., 2011). At the continental scale (e.g., Europe), yield increases were located mainly in southern Europe, consistent with the findings
R1C35	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from previous studies.	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very similar to those simulated by LPJmL (Beringer et al., 2011). At the continental scale (e.g., Europe), yield increases were located mainly in southern Europe, consistent with the findings obtained using MISCANMOD (Clifton-Brown
R1C35	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from previous studies.	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very similar to those simulated by LPJmL (Beringer et al., 2011). At the continental scale (e.g., Europe), yield increases were located mainly in southern Europe, consistent with the findings obtained using MISCANMOD (Clifton-Brown et al., 2004)."
R1C35	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from previous studies.	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very similar to those simulated by LPJmL (Beringer et al., 2011). At the continental scale (e.g., Europe), yield increases were located mainly in southern Europe, consistent with the findings obtained using MISCANMOD (Clifton-Brown et al., 2004)." This is a very good point. Yes, it is based and the wide of the second sec
R1C35	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from previous studies.	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very similar to those simulated by LPJmL (Beringer et al., 2011). At the continental scale (e.g., Europe), yield increases were located mainly in southern Europe, consistent with the findings obtained using MISCANMOD (Clifton-Brown et al., 2004)." This is a very good point. Yes, it is based on all grid cells belonging to specific
R1C35 R1C36	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from previous studies.	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very similar to those simulated by LPJmL (Beringer et al., 2011). At the continental scale (e.g., Europe), yield increases were located mainly in southern Europe, consistent with the findings obtained using MISCANMOD (Clifton-Brown et al., 2004)." This is a very good point. Yes, it is based on all grid cells belonging to specific climate zones. However, we used the
R1C35 R1C36	simulations. It is unconvincing to skip the validation step for the irrigation module, and then show results and draw conclusions using that irrigation modeling capability. In this section, results from this study are shown, but they are not contrasted with estimates from previous studies.	 (R1C5). The results are comparable to previous reports, as the discussion on lines 307–310: "The spatial distributions of yield increases due to irrigation simulated by H08 were very similar to those simulated by LPJmL (Beringer et al., 2011). At the continental scale (e.g., Europe), yield increases were located mainly in southern Europe, consistent with the findings obtained using MISCANMOD (Clifton-Brown et al., 2004)." This is a very good point. Yes, it is based on all grid cells belonging to specific climate zones. However, we used the results for grid cells with yield higher than

	based on a grid-level analysis, why not plot	Based on your suggestion, we constructed
	the results for all the grids and show a scatter	a scatterplot diagram between yield and
	plot (yield on the y-axis, and aridity or some	aridity (shown below). However, we found
	other index that allows for distinguishing	it difficult to directly differentiate the effect
	among the different climate zones on the x-	of climate. Meanwhile, our current figures
	axis)? This would allow the authors to fit a	clearly show the differences among
	line to the data and talk about the results in a	different climate zones. This section
	more compelling way	provides additional analysis of the
	more compening way.	provides additional analysis of the
		predicted yield, which may not affect the
		main conclusion of this study. Therefore,
		please let us retain the original presentation
		of these results.
		60 Rainfed Miscanthus
		-(^ 40 + 40 + 40 + 40 + 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -
		0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
		Aridity Aridity 30 Deinfed switchesses 30 Irrigated switchesses
		$\frac{1}{\sqrt{25}}$ 25 Rainieu swichgrass $\frac{1}{\sqrt{25}}$ 25 iningateu swichgrass $\frac{1}{\sqrt{25}}$ 25 iningateu swichgrass
		⁴ 5 15 W) p 10
		¹ / _₹ 5 5 0
		0 2 4 6 8 0 2 4 6 8 Aridity Aridity
	Line 241: 'WUE, which is defined in this	We have defined this term in the
	study as the ratio of yield to water	introduction, as follows (lines 54-55):
	consumption' This should have appeared the	
R1C37	first time the term is mentioned in the	"5) illustrate the effects of irrigation on the
	manuscript.	yield, water consumption, and WUE (defined
	1	here as the ratio of yield to water consumption)
		of Miscanthus and switchgrass."
	Line 246: 'The WUE values for Miscanthus	We are sorry for using the incorrect word;
	were higher than those for switchgrass, which	it should be "consistent", as the results are
D1C20	is inconsistent with values in previous	similar (WUE of Miscanthus is higher than
к1038	reports' Please add a sentence to articulate	that of switchgrass). We have therefore
	why?	changed the word "inconsistent" to
		"consistent".
	Line 263: 'which was useful for optimizing	We have changed the sentence, as follows
	bioenergy land with better consideration of	(lines 361–362):
D1020	water protection' – I am not sure what this	
RIC39	means?	"which was useful for bioenergy land-scenario
		design. For example, more land can be
		allocated to the areas with greater WUE."
	Lines 266: 'and our results are reproducible	Thank you for noting this issue. We have
R1C40	with the transparent parameter disclosed.	deleted the sentence.
	I	1

	Just sharing the parameters sets does not	
	guarantee reproducibility. I would suggest	
	omitting that phrase.	
	Line 277: why was not this yield map used in	We have added this yield map to the
	the previous sections as part of the validation	Method Section 2.4, as follows (lines 182–
	exercise? Also, I would suggest moving	184):
	figure S7 out of SI and into the main text.	
		"A global yield map of <i>Miscanthus</i> and
		switchgrass that was generated using a random-
		forest algorithm (Li et al., 2020) was also used
		to compare the results. This yield map provides
		because it is largely constrained by the
		observed vield ranges denoting the vields
		achievable under current technologies (Li et al.,
		2020)."
		We also moved the corresponding result
		into the main text to Result Section 3.4, as
		follows:
		"As shown in Fig. 8, we compared our
		simulation with the latest available global
R1C41		bioenergy crop yield map, generated from
		observations using a random-forest (RF)
		algorithm (Li et al., 2020). This RF yield map
		provides a benchmark for evaluating model
		performance because it is largely constrained
		by the observed yield ranges, denoting the
		yields achievable under current technologies
		(Li et al., 2020). As shown in Fig. 6a and Fig. 8b there were small differences between our
		estimated vield and RF vield for switchgrass.
		whereas larger differences were found for
		Miscanthus, especially in tropical regions.
		There is a similar case for ORCHIDEE, as
		shown in Fig. S21 in Li et al. (2020). We also
		compared the differences in the mean values for
		Miscanthus and switchgrass because they are
		not distinguished in LPJmL. As shown in Fig.
		sc and Fig. 8d, the differences between our
		lower than those between the LDIm
		estimations and RF vields. In summary our
		esumations and KF yields. In summary, our

		estimations were well within the ranges of those
		of ORCHIDEE and LPJml."
R1C42	Figure 4: To be consistent with the black error bars, the blue/red ones should also reflect max/min. Also, why include all the years for observations? Should not these be for the years for which there is an associated observed yield value?	We have included the maximum and minimum values for <i>Miscanthus</i> (red) and switchgrass (blue) in the revised manuscript. Since the observed yields are from varying periods, we followed the methods of Heck et al. (2016), Beringer et al. (2011), and Li et al. (2018), comparing the mean simulated yield within a historical period to the observed yield. This was done in part due to missing records of harvest
	Figure 7. why is the yearis for nonal h flinned	year for some observations.
	Figure /: why is the y-axis for panel b flipped	we agree with your suggestion and have
	around as if the values should be negative? I	modified the y-axis in Fig. 76.
R1C43	would suggest keeping it consistent with the	
	other two panels (0 at the bottom left corner,	
	and the bar chart goes upward for positive	
	values).	The shares W/s have shares shares shares shares shares shares a share share share share shares share
R1C44	Table 1: Please add another column to define	I nank you. We have added a new table to
	the different parameters and what they mean	show the definition and physical meaning.
	physically.	For details, please see Table 1.

References:

- Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., and Neitsch, S. L. (Eds.): SWAT 2012 Input/Output Documentation, Texas Water Resources Institute, USA, 2013.
- Beringer, T. I. M., Lucht, W., and Schaphoff, S.: Bioenergy production potential of global biomass plantations under environmental and agricultural constraints, GCB Bioenergy, 3, 299–312, https://doi:10.1111/j.1757-1707.2010.01088.x, 2001.
- Clifton-Brown, J. C., Stampfl, P. F., and Jones, M. B.: Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions, Glob. Change Biol., 10, 509–518, https://doi:10.1111/j.1529-8817.2003.00749.x, 2004.
- 4. Hanasaki, N., Inuzuka, T., Kanae, S., Oki, T.: An estimation of global virtual. water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model, J. Hydrol., 384, 232–244, https://doi.org/10.1016/j. jhydrol.2009.09.028, 2010a.
- Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007–1025, https://doi:10.5194/hess-12-1007-2008, 2008a.
- Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 2: Applications and assessments, Hydrol. Earth Syst. Sci., 12, 1027– 1037, https://doi:10.5194/hess-12-1027-2008, 2008b.
- Hanasaki, N., Yoshikawa, S., Pokhrel, Y., Kanae, S.: A global hydrological simulation to specify the sources of water used by humans, Hydrol. Earth Syst. Sci., 22, 789–817, https://doi:10.5194/hess-22-789-2018, 2018a.

- Hanasaki, N., Yoshikawa, S., Pokhrel, Y., and Kanae, S.: A quantitative investigation of the thresholds for two conventional water scarcity indicators using a state-of-the-art global hydrological model with human activities, Water Resour. Res., 54, 8279–8294, https://doi.org/10.1029/2018WR022931, 2018b.
- Heck, V., Gerten, D., Lucht, W., and Boysen, L. R.: Is extensive terrestrial carbon dioxide removal a 'green' form of geoengineering? A global modelling study, Glob. Planet. Change, 137, 123–130, https://doi:10.1016/j.gloplacha.2015.12.008, 2016.
- 10. Li, W., Ciais, P., Makowski, D., and Peng, S.: A global yield dataset for major lignocellulosic bioenergy crops based on field measurements, Sci. Data, 5, 180169, https://doi:10.1038/sdata.2018.169, 2018a.
- Li, W., Yue, C., Ciais, P., Chang, J., Goll, D., Zhu, D., Peng, S., and Jornet-Puig, A.: ORCHIDEE-MICT-BIOENERGY: an attempt to represent the production of lignocellulosic crops for bioenergy in a global vegetation model, Geosci. Model Dev., 11, 2249–2272, https://doi.org/10.5194/gmd-11-2249-2018, 2018b.
- Li, W., Ciais, P., Stehfest, E., van Vuuren, D., Popp, A., Arneth, A., Di Fulvio, F., Doelman, J., Humpenöder, F., Harper, A. B., Park, T., Makowski, D., Havlik, P., Obersteiner, M., Wang, J., Krause, A., and Liu, W.: Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale, Earth Syst. Sci. Data, 12, 789–804, https://doi.org/10.5194/essd-12-789-2020, 2020.
- Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., de Wit, A., and Yang, H.: Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications, Geosci. Model Dev., 10, 1403–1422, https://doi.org/10.5194/gmd-10-1403-2017, 2017.
- 14. Searle, S. Y., and Malins, C. J.: Will energy crop yields meet expectations?, Biomass Bioenerg., 65, 3–12, https://doi:10.1016/j.biombioe.2014.01.001, 2014.
- Trybula, E. M., Cibin, R., Burks, J. L., Chaubey, I., Brouder, S. M., and Volenec, J. J.: Perennial rhizomatous grasses as bioenergy feedstock in SWAT: parameter development and model improvement, GCB Bioenergy, 7, 1185–1202, https://doi:10.1111/gcbb.12210, 2015.
- Yamagata, Y., Hanasaki, N., Ito, A., Kinoshita, T., Murakami, D., and Zhou, Q.: Estimating water-food-ecosystem trade-offs for the global negative emission scenario (IPCC-RCP2.6), Sustainability Sci., 13(2), 301–313, https://doi:10.1007/s11625-017-0522-5, 2018.
- Wu, W., Hasegawa, T., Ohashi, H., Hanasaki, N., Liu, J., Matsui, T., Fujimori, S., and Takahashi, K.: Global advanced bioenergy potential under environmental protection policies and societal transformation measures, GCB Bioenergy, 11(9), 1041–1055, https://doi.org/10.1111/gcbb.12614, 2019.

Response to Reviewer 2

Respon	Response to Reviewer 2		
No.	Comment	Response	
R2C1	This manuscript enhanced the capability of a global hydrological model named H08in simulating two perennial bioenergy crops, Miscanthus and switchgrass. The results were validated against site-level and country-level observed crop yields. The enhanced model is applied to simulate the impact of irrigation on crop water consumption and water use efficiency compared to rainfed condition. This study makes contribution to study the impact of large-scale deployment of bioenergy crops on water resources. However, I have some major comments as listed below.	Deer Reviewer, thank you very much for taking time to carefully read our manuscript. We are pleased to see your agreement on the contributions of this paper. Your valuable comments enabled us to clarify a number of points that we previously unaware of, and we hope that we have increased the quality of the manuscript substantially. We have revised the paper by trying to incorporate all relevant comments and remarks. We have also tried to respond to all the comments meticulously as you may see below. Please find our responses to each comment below	
R2C2	Model validation: This study only validates the simulated yield results against observations for Miscanthus and switchgrass. While the main contribution/innovation of this study is on hydrological applications, this study didn't validate any variables for the water cycle, including evapotranspiration, runoff, and irrigation. With-out such validations, I feel difficult to be convinced for the reliability of the simulated results for crop water consumption and WUE.	Thank you for noting this issue. As you mentioned, we validated the simulated yield because our primary goal in this study was to improve the simulation of bioenergy crop yield in the H08 global hydrological model. Note that variables related to the water cycle, such as river discharge, terrestrial water storage, and water withdrawal have been thoroughly validated in a series of previous studies (Hanasaki et al., 2008a, 2008b, 2018). Here, we noted this has not been explicitly described in the manuscript, we therefore added it on lines 60–62. To address this question as well as possible, we compared our simulation of irrigation water consumption/withdrawal (on-going study) with previous reports (as shown in the table below), and found that our simulation is well within the range of existing reports. Because WUE is calculated using yield and water consumption, we believe that our estimates of WUE is also reasonable.	

			Studies Beringer et al. (2011) Bonsch et al. (2016) Yamagata et al. (2018) Heck et al. (2018) Jan et al. (2018) Stenzel et al. (2019) Our study Note: ** refers to water c	Irrigation water consumption/with drawal [km ³ yr ⁻¹] 1481~3880** 3350*** 1910** > 2334** 3000~9000** 587~2946** 2187**/3929*** consumption; ***	
R2C3	Study innovation: The Introduction didn't well motivate the study and present the novelty/uniqueness of this study. For example, the argument "However, it is noted that the model performance for the simulated bioenergy crop yield was not validated at all." is a little bit difficult to be taken as an innovation of this study. And almost all the parameter values were directly taken from Trybula et al. 2015, which makes me wonder what are the main differences/improvements of this current study compared to Trybula et al. 2015? Given the difference between H08 used in this study and SWAT used in Trybula et al. 2015, can the authors justify the applicability of directly using SWAT's parameter values?	This the y only CLM both rive limi of bioe the have Mise disti is Sep bioe diff yiel mod simu base Illin but unte the	s is a good point. Le uniqueness of our st y few models, such M5 include global n bioenergy and sch r routing or water tation severely rest models to address energy–water tradeo future. Moreover, e some limitations <i>canthus</i> and swi inguished and instea used to paramete arate parametrizati energy crops co energy simulation, a erences in plant cha d. Second, CLM5 ha dified and valida ulation of <i>Miscanth</i> ed on observations to is Energy Farm (0 global validation of ested. Third, H08 ha original model restimations or under	et us further exp audy here. Curren as LPJml, H08, implementation nemes for irrigat r withdrawal. T ricts the applica ss possible glo offs or synergie these three mo s. First, in LP itchgrass are ad a general C4 g rize both spect ion of these uld enhance as they show m racteristics and c as been successf ated for sepa thus and switchg at the University Cheng et al., 20 r application rem as two weakness produces appa erestimations, an	lain htly, and s of ion, This tion bbal s in dels Jml, not rass cies. two the ajor crop fully rate rass y of 20), nain s: 1) rent d 2)

		the original assumptions of potential heat units are unrealistic. Our study addressed these gaps and issues through systematic parameter calibration using the best available data. We have rephrased the introduction and provided further details on lines 30–50. About the second question, the work of Trybula et al. (2015) is the first report of updating the SWAT for bioenergy crop simulation based on field observations. It provides a valuable reference for our study, as the crop module in H08 is similar to that of SWAT. Therefore, in our model enhancement process, the crop parameters related to leaf area development (potential heat unit, optimum temperature, maximum leaf area index, and two complex numbers; see details in Table 1) were based on their field observations (Trybula et al., 2015). For other important parameters, such as radiation use efficiency (be), maximum leaf area index (blai), base temperature (Tb), maximum daily accumulation of temperature for planting (TSAW), we conducted systematic calibration based on the ranges reported for that parameter in previous studies (see Table 3). The results demonstrated that the finalized parameter scheme is applicable to global simulation of bioenergy vield. It is possible to use
		bioenergy yield. It is possible to use SWAT's parameter because the crop module structure of H08 is similar to that of SWAT
	Model description: This study only describes	Based on your suggestion, we have largely
	the crop module in H08 without much	revised the methods section, as follows.
	descriptions for the hydrological module in	First, we added the model structure to Fig.
R2C4	the model, especially given the important	1. The relevant hydrological processes are
	role of hydrological processes in this study.	descripted on lines 62–69:
	$(e \sigma)$ using new meteorological dataset)	"The six sub-modules (land surface hydrology
	were not well described in the methods	river routing, crop growth, reservoir operation,

	section, such as how WUE is calculated,	environmental flow requirements, and
	how irrigation works, and how many	anthropogenic water withdrawal) are coupled in
	simulations were conducted in total and their	a unique way (Fig. 1a). The land surface module
	respective purposes.	can simulate the main water cycle components, such as evapotranspiration and runoff. The former is used in the crop module, and the latter is used in the river routing and environmental flow modules. The agricultural water demand simulated by the crop module and the streamflow simulated by the river routing and reservoir operation modules finally enter into the withdrawal module. Note that the crop module is independent, except for the water stress calculations, which require evapotranspiration and potential evapotranspiration inputs from the land surface hydrology module."
		Second, we added a description of the additional S14FD meteorological data on lines 164–166.
		"Another meteorological dataset for the period 1979–2013 in S14FD (Iizumi et al. 2017) with the same spatial resolution was also used to check the stability of results to input meteorological data."
		Third, we added the equations used for yield calculation on lines 79–123. Fourth, we described the calculation of WUE on lines 195–201. Fifth, we added a description on irrigation in lines 77–78. Sixth, we modified the simulation setting descriptions on lines 187–193. Sine these additions are quite long, we have not included them here; please see details in the specific lines noted above.
	Paper organization: The main context is	Thank you. We have reorganized the paper.
	missing many important information (e.g.,	as follows. First, we added a schematic
D2C5	sensitivity test results, model descriptions,	figure to show the submodules of H08 as
R2C3	equations). Many important information and	Fig. 1a. The corresponding text is on lines
	results were given in the SI rather than	62-69. Second, we added the equations
	directly presented in the main context. The	used for yield calculation of the crop

	methods section is missing descriptions for	module on lines 79-123. Third, we
	the simulations conducted in this study and	described the sensitivity analysis in Section
	many new simulations came out suddenly in	2.7 and the result are presented in Table S5.
	the Results sections. It will be necessary to	Fourth, we rephrased the simulation setting
	reorganize the paper and move some	description in Section 2.5 and added a
	important information from SI to the main	summary table (Table S1). Fifth, we added
	context.	meteorological data (S14FD) in Section 2.3.
		Sixth, we moved the original Fig. S5 and
		Fig. S7 to the main text (see Fig. 5 and Fig.
		7, respectively, in the revised manuscript)
		and added corresponding text to Section 3.2
		and 3.4.
	Limitation in discussion: the current results	Thank you for this very good suggestion.
	and discussions are quite limited. For	The enhanced model strongly reduced the
	example, quantitative evaluations for model	yield bias for both Miscanthus and
	improvements were missing. What are the	switchgrass. Also, as noted in previous
	improvements of the enhanced H08	reports (Cheng et al., 2020), Miscanthus and
	compared to its old version which uses C4	switchgrass have longer growing seasons
	grass to characterize switchgrass and	than maize. Here, we compared our results
	Miscanthus? One of the most important	with reported growing season days. We
	features of switchgrass and Miscanthus is	added a discussion of these differences, as
	their perennial features and longer growing	follows (lines 354–357):
R2C6	seasons, but this study didn't have any	
	discussions on this kind of perspectives.	"Compared with the original H08, our enhanced
		model markedly decreased the mean bias (from
		-52% to $-9%$ for <i>Miscanthus</i> , from 25% to $-7%$
		for switchgrass). Moreover, the growing seasons
		for <i>Miscanthus</i> (145–165) and switchgrass
		(101-114) during the period 2009–2011 at the
		Water Quality Field Station of the Purdue
		University Agronomy Center are consistent with
		the values of 140 and 120 reported in Trybula et
	Lines 21.26: Actually, CLM5 also has the	al. (2013). We have added CLM5, as follows (lines 20
	irrigation scheme and river routing and	22).
	CLM5 also includes both bioenergy crops	52).
R2C7	and the water cycle	"However, among these models, only a few,
1007	and the water cycle.	such as LPJml. H08. and CLM5 include the
		global implementation of schemes for irrigation,
		river routing or water withdrawal."
	Line 34: typo, should be "bioenergy and the	Thank you. We have corrected the typo.
R2C8	water cycle"	

	Line 61: I am curious does it mean H08 can	You are correct. For global standard
	only simulate hydrological processes and	simulation (default setting), hydrological
	crop growth as a 0.5 degree and at a daily	processes and crop growth can presently be
	scale? How about other spatial and temporal	simulated only at the 0.5-degree and daily.
	resolutions? Can H08 simulate GPP and	Regional versions have higher spatial
	LAI? If so, how about the simulation results	resolution (5 arc-minutes) (Hanasaki et al.,
	for GPP and LAI?	2020). As the land surface hydrological
		model of H08 is the first generation that
		hased on the bucket model (Manabe et al
		1969) GPP and LAL are not estimated in the
		land surface model. This is different from
		the I PImI and CI M5 which are a dynamic
R2C9		vegetation model and a latest generation
K2C7		land surface vegetation model respectively
		and they do simulate GPP and I AI. In the
		crop module of H08 it calculates the yield
		and I AI I AI is coded as a medium variable
		in the process of yield calculation but is not
		an output item in current model version
		Since our primary goal here is the
		improvement and validation of bioenergy
		crop yield please let us retain current model
		version. We will consider your comment
		and modify the code in future model
		development
	Lines 61 61: What are the six sub modules?	We have added a description of the six
	Lines 61-64: What are the six sub-modules?	We have added a description of the six submodules after the term on lines 60.62
	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (a.g.	We have added a description of the six submodules after the term on lines 60-62.
	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g.,	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram
	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes) as not every reader is familier	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included
P 2C10	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation
R2C10	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08.	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the grop module on lines 80, 120. A full
R2C10	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08.	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require
R2C10	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08.	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words and is available
R2C10	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08.	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words, and is available alsowhere (Hapasaki et al. 2008a 2008b
R2C10	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08.	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words, and is available elsewhere (Hanasaki et al., 2008a, 2008b, 2018)
R2C10	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08.	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words, and is available elsewhere (Hanasaki et al., 2008a, 2008b, 2018).
R2C10	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08. Line 75: what is single-irrigated and double- irrigated mapn?	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words, and is available elsewhere (Hanasaki et al., 2008a, 2008b, 2018). Single-irrigated indicates that the irrigated land is used only for one grop per year
R2C10 R2C11	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08. Line 75: what is single-irrigated and double- irrigated mean?	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words, and is available elsewhere (Hanasaki et al., 2008a, 2008b, 2018). Single-irrigated indicates that the irrigated land is used only for one crop per year, while dauble irrigated refers to irrigated
R2C10 R2C11	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08. Line 75: what is single-irrigated and double- irrigated mean?	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words, and is available elsewhere (Hanasaki et al., 2008a, 2008b, 2018). Single-irrigated indicates that the irrigated land is used only for one crop per year, while double-irrigated refers to irrigated
R2C10 R2C11	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08. Line 75: what is single-irrigated and double- irrigated mean?	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words, and is available elsewhere (Hanasaki et al., 2008a, 2008b, 2018). Single-irrigated indicates that the irrigated land is used only for one crop per year, while double-irrigated refers to irrigated land planted with two crops per year.
R2C10 R2C11	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08. Line 75: what is single-irrigated and double- irrigated mean? Line 85: what is "substantially" mean? Can	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words, and is available elsewhere (Hanasaki et al., 2008a, 2008b, 2018). Single-irrigated indicates that the irrigated land is used only for one crop per year, while double-irrigated refers to irrigated land planted with two crops per year. Here, substantially represents a large difference batware the medified (1820 %C
R2C10 R2C11 R2C12	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08. Line 75: what is single-irrigated and double- irrigated mean? Line 85: what is "substantially" mean? Can you quantify the changes?	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words, and is available elsewhere (Hanasaki et al., 2008a, 2008b, 2018). Single-irrigated indicates that the irrigated land is used only for one crop per year, while double-irrigated refers to irrigated land planted with two crops per year. Here, substantially represents a large difference between the modified (1830 °C
R2C10 R2C11 R2C12	Lines 61-64: What are the six sub-modules? It will be great if the authors can add more descriptions for the H08 model (e.g., calculations/illustrations for the hydraulic processes), as not every reader is familiar with H08. Line 75: what is single-irrigated and double- irrigated mean? Line 85: what is "substantially" mean? Can you quantify the changes?	We have added a description of the six submodules after the term on lines 60-62. We have also added a schematic diagram showing the connections among submodules as Fig. 1a. We have included the equations related to the yield simulation in the crop module on lines 80–120. A full description of the H08 model would require thousands of words, and is available elsewhere (Hanasaki et al., 2008a, 2008b, 2018). Single-irrigated indicates that the irrigated land is used only for one crop per year, while double-irrigated refers to irrigated land planted with two crops per year. Here, substantially represents a large difference between the modified (1830 °C for <i>Miscanthus</i> , and 1400 °C for

		<i>Miscanthus</i> and switchgrass) potential heat units.
R2C13	Section 2.2: Can you change some descriptions into equations? For example, how did you calculate the output item for water consumption and WUE? If they are already in the supplementary materials, it will be great if you can move some key equations to the main context. What is the bug in the original code?	We added the equations related to the yield calculation on lines 79–123. Water consumption is calculated as actual evapotranspiration. The bug is related to the improper use of ".eq." in place of ".ge." As this bug is too trivial to report, we have removed it from text.
R2C14	Section 2.5: How is irrigation calculated in H08, such as the irrigated area and irrigated amount?	Our intention was to determine the general effects of irrigation on bioenergy crop yield and the variations among different climate zones. Therefore, we assumed a whole grid is irrigated for bioenergy crop production. The irrigation water amount in H08 is defined as the supply of water other than precipitation to maintain soil moisture above 75% of field capacity during the cropping period.
R2C15	Line 23 under section 2.5: since 1944 simulations were conducted, can you give more results for the ensemble runs rather than just present the one with lowest RMSE? For example, what are the uncertainty ranges for the calibrations? What are the sensitivity results for all the calibrated parameters? Here the authors only mentioned the most sensitive parameter names in line 20 but no results were given to support it.	We have added a new figure (Fig. 3) to illustrate the performance of the enhanced model after calibration, which shows good agreement with the observations. We have also added a new figure (Fig. S1) showing the variations of root mean square error (RMSE) and corresponding correlation coefficient (R) values used for the calibration. The uncertainty range of each parameter is listed in Table 3. We also calculated the sensitivity and summarized the results in Table S5. Among the five parameters we calibrated, radiation use efficiency was the most sensitive parameter to the results, followed by base temperature. This finding is consistent with the sensitivity results reported by Trybula et al. (2015).
R2C16	Line 38 in section 3.1: change to "because only few sites were irrigated".	We have changed the text, as follows (line 216): "because only a few sites were irrigated"

	Line 38 in section 3.1: can you add reference	We have rephrased the sentence and added
	after the "previous reports"?	a citation, as follows (line 217):
R2C17		
		"These values are similar to those of Trybula et
		al. (2015)."
	Line 50 in section 3.2: can the authors add	We have quantified the bias and rephrased
	more quantitative results and discuss the	the text as follows (lines 231–233):
	reasons/mechanisms for why the over- and	
	under-estimations have been addressed in	"For <i>Miscanthus</i> , the bias of original model
	the enhanced H08? Actually Miscanthus is	ranged from -84% to 80% with a mean of -52% ,
	still underestimated in the enhanced H08,	while the bias of the enhanced model ranged
	why?	from -59% to 53% with a mean of -9% . For
		switchgrass, the bias for original model ranged
		from -78% to 338% with a mean of 25%, while
		the bias for the enhanced model ranged from –
		52% to 109% with a mean of $-7%$."
		One immediate second for the immediate
		One important reason for the improved blas
		is the adjustment of the potential heat unit
		Trubula at al (2015) This parameter
		adjustment would shange the group loof group
		development and also the aboveground
		biomass accumulation. As for switchgrass
		another important reason is the decrease of
R2C18		radiation use efficiency which can largely
		address the overestimation.
		Note that site-specific yield simulation and
		validation of traditional crops is a major
		challenge for global models (Müller et al.,
		2017), notwithstanding the bioenergy crop,
		which are being added to existing global
		models. For example, underestimation or
		overestimation have also been reported in
		other global models like LPJml and
		ORCHIDEE that including the bioenergy
		crops. We added a new figure (Fig.3) of the
		calibrated results. It illustrates very good
		performance. Fig. 4 shows the validation of
		the model. Although it shows much better
		performance than the original simulation, it
		also shows a tendency toward
		underestimation. However, if we separately
		analyze each site, as shown in Fig. 5, most

		yield estimates were similar to or within the
		observed yield ranges. Therefore, our
		simulation appears to be reasonable at the
		global scale.
	Line 58 in section 3.2: what are sites 1, 2,	We have modified the text, as follows (lines
	and 10? Can you refer to more specific	240–242):
	names or descriptions for those sites, as these	
R2C19	site numbers are not quite meaningful?	"We also investigated the performance under the
		irrigated condition (shown in Fig. 6). We used
		the reported observed yields for ten sites
		globally (Table S3). We found that the simulated
		yields were within or close to the observed
		yields for five sites located in China, the UK,
		and France (see Table S3)"
	Line 59 in section 3.2: again, adding	We have added a description of the
	irrigation scheme in H08 in the methods	irrigation scheme on lines 77–78:
	section will be helpful.	
R2C20		"Irrigation in H08 is defined as the supply of
		water other than precipitation to maintain soli
		moisture above 75% of field capacity during the
	Line 64 in section 2.2: the two negative ware	We enclosize for the unclear description
	similar but what are the implications? What	I et us further clarify the text here First we
	are the differences between the two	aimed to test the stability of the modelling
	meteorological datasets? Also, it makes me	results by varying the meteorological
	wonder how many simulations or how many	inputs The results indicated that our
	kinds of simulations were conducted in this	simulation is quite stable. The S14FD
	study? This new simulation with additional	dataset is reported to be more accurate than
	meteorological dataset never mentioned in	WFDEI for representing the observed
	the methods section. I will suggest the author	temperature and precipitation extremes in
	add a new table or at least a new paragraph	recent decades (1961–2000 and 1979–
	in the methods section to better illustrate the	2008) (Iizumi et al., 2017). Second, four
R2C21	simulations conducted in this study,	types of simulations were conducted, and
	including their names, descriptions,	we have added a new table (Table S1) and
	differences, purposes, etc.	rephrased the text to describe the
		simulations as follows (lines 187–193):
		"After calibration, four different kinds of
		simulation were run with different purposes.
		The first simulation was conducted using the
		original model without irrigation to investigate
		its performance. The second simulation was
		conducted using the enhanced model without
		irrigation to investigate its performance under

		rainfed condition. The third simulation was
		conducted using the enhanced model with
		irrigation to investigate its performance under
		irrigated condition. These three simulations
		were conducted at a daily scale with annual
		meteorological data from WFDEI for the period
		1979–2016. The last simulation was conducted
		using identical model settings to the third one,
		except using different meteorological data from
		S14FD for the period 1979–2013. Note that
		irrigation in this study means uniform
		unconstrained irrigation."
	Section 3.3: can you add those correlation	Thank you. We have added the
R2C22	and significant level values in Figure 5 as	corresponding correlations and significance
10022	well?	values
	Line 10 in section 3.4. grammar error for the	Thank you for letting us know about this
	sentence	issue This section now reads as follows
	sentence	(line 307):
		(inte 507).
		"indicating that irrigated yield was more than
		double the rainfed vield."
R2C23		
		We have revised the whole manuscript
		further, and have employed the professional
		English proofreading service from
		Textcheck
		(http://www.textcheck.com/en/text/page/in
		<u>dex</u>).
	Line 55-58 in section 3.6: again, how is the	In response to the Reviewer's previous
	current results compared to old H08 which	comment (R2C6), we have added the
	uses C4 grass to represent Miscanthus and	following discussions (lines 354-357):
	switchgrass?	
		"Compared with the original H08, our enhanced
R2C24		model markedly decreased the mean bias (from
		-52% to $-9%$ for <i>Miscanthus</i> , from 25% to $-7%$
		for switchgrass). Moreover, the growing seasons
		for Miscanthus (145-165) and switchgrass
		(101-114) during the period 2009-2011 at the
		Water Quality Field Station of the Purdue
		University Agronomy Center are consistent with
		the values of 140 and 120 reported in Trybula et
		al. (2015)."

R2C25	Line 63-65 in section 3.6: I doubt the	We apologize. We have added CLM5 to the
	argument that the enhanced H08 is the only	introduction and modified this sentence, as
	model that can simultaneously simulate	follows (lines 362–364):
	Miscanthus and switchgrass with	
	consideration of water management, as	"In summary, our enhanced model provides a
	CLM5 also has this capability.	new tool that can simultaneously simulate
		Miscanthus and switchgrass with consideration
		of water management"
	Tables 1 and 2: could you add the long name	This is a good point. We have added a new
	or descriptions for these parameters? What is	table (Table 1) to describe the parameters,
	"step" mean in Table 2?	and their full names and descriptions can be
R2C26		found there. The term "step" refers to the
		increment of the parameter within the range
		of our calibration. We have changed the
		term "step" to "increment".
	Figure 1: could you add a flow chart or	We have added a schematic diagram to
DOC 27	schematic figure for the hydrological	show the structure and connection of the
R2C27	processes in H08 or the overall model	submodules as Fig. 1b.
	structure?	
	Figure 3: can the authors decrease the	Thank you for this useful suggestion. We
	maximum magnitudes for figure b and d, like	have modified the maximum value of the
	to be 40, since no data exceeds 40 and right	axis as you suggested. Since we had used
R2C28	now most of the points are centered to a very	red and blue colors to distinguish
	small range? And can the authors add a third	Miscanthus and switchgrass, we used
	axis (e.g., different colors) to distinguish the	different shapes (see the legend for Fig. 4)
	locations/climate zones for the points?	to identify the climate zone of each point.
R2C29	Figure 6: it will be helpful to add a title name	This is a good point. We have added a title
	in the figure, e.g., (a) Rainfed Miscanthus.	name in the upper right conner of the figure.
		For details, please see Fig. 9.
R2C30	Figure 7: it may be helpful to move Figure	Thank you for this useful suggestion. We
	S6 to the main context and combined with	have moved Fig. S6 to the main text and
	Figure 2 to better illustrate the methods	combined it with Fig. 2 to better illustrate
	section. But the authors can decide after	the method. By doing this, we now include
	revise the methods section.	both climate zone and site location in Fig. 2.

References:

- Beringer, T. I. M., Lucht, W., and Schaphoff, S.: Bioenergy production potential of global biomass plantations under environmental and agricultural constraints, GCB Bioenergy, 3, 299–312, https://doi:10.1111/j.1757-1707.2010.01088.x, 2001.
- Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. GCB Bioenergy 8, 11-24 (2016).

- Cheng, Y., Huang, M., Chen, M., Guan, K., Bernacchi, C., Peng, B., and Tan, Z.: Parameterizing perennial bioenergy crops in Version 5 of the Community Land Model based on site-level observations in the Central Midwestern United States, J. Adv. Model. Earth Syst., 12(1), 1–24, https://doi.org/10.1029/2019MS001719, 2020.
- Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007–1025, https://doi:10.5194/hess-12-1007-2008, 2008a.
- Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 2: Applications and assessments, Hydrol. Earth Syst. Sci., 12, 1027– 1037, https://doi:10.5194/hess-12-1027-2008, 2008b.
- Hanasaki, N., Yoshikawa, S., Pokhrel, Y., Kanae, S.: A global hydrological simulation to specify the sources of water used by humans, Hydrol. Earth Syst. Sci., 22, 789–817, https://doi:10.5194/hess-22-789-2018, 2018a.
- Hanasaki, N., H. Kamoshida, H. Matsuda (2020), H08 Manual User's Edition Supplement 3: Regional Application -Case Study of the Korean Peninsula, 40 pp, National Institute for Environmental Studies, Tsukuba, Japan.
- Heck, V., Gerten, D., Lucht, W., and Boysen, L. R.: Is extensive terrestrial carbon dioxide removal a 'green' form of geoengineering? A global modelling study, Glob. Planet. Change, 137, 123–130, https://doi:10.1016/j.gloplacha.2015.12.008, 2016.
- 9. Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nature Climate Change 8, 151-155 (2018).
- Iizumi, T., Takikawa, H., Hirabayashi, Y., Hanasaki, N., and Nishimori, M.: Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes. JGR Atmospheres, 122, 7800-7819, https://doi.org/10.1002/2017JD026613, 2017.
- Jans, Y., Berndes, G., Heinke, J., Lucht, W. & Gerten, D. Biomass production in plantations: Land constraints increase dependency on irrigation water. GCB Bioenergy 10, 628-644 (2018).
- Li, W., Yue, C., Ciais, P., Chang, J., Goll, D., Zhu, D., Peng, S., and Jornet-Puig, A.: ORCHIDEE-MICT-BIOENERGY: an attempt to represent the production of lignocellulosic crops for bioenergy in a global vegetation model, Geosci. Model Dev., 11, 2249–2272, https://doi.org/10.5194/gmd-11-2249-2018, 2018.
- Manabe, S.: Climate and the ocean circulation 1: The atmo- spheric circulation and the hydrology of the Earth's surface, Mon. Weather Rev., 97-11, 739–774, 1969.
- Stenzel, F., Gerten, D., Werner, C. & Jägermeyr, J. Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environmental Research Letters 14 (2019).
- Trybula, E. M., Cibin, R., Burks, J. L., Chaubey, I., Brouder, S. M., and Volenec, J. J.: Perennial rhizomatous grasses as bioenergy feedstock in SWAT: parameter development and model improvement, GCB Bioenergy, 7, 1185–1202, https://doi:10.1111/gcbb.12210, 2015.
- Yamagata, Y., Hanasaki, N., Ito, A., Kinoshita, T., Murakami, D., and Zhou, Q.: Estimating water-food-ecosystem trade-offs for the global negative emission scenario (IPCC-RCP2.6), Sustainability Sci., 13(2), 301–313, https://doi:10.1007/s11625-017-0522-5, 2018.

Enhancement and validation of the state-of-the-art global hydrological model H08 (v.bio1) to Ssimulatinge second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)

Zhipin Ai¹, Naota Hanasaki¹, Vera Heck², Tomoko Hasegawa³, Shinichiro Fujimori⁴

¹Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba 305-8506, Japan

²Potsdam Institute for Climate Impact Research, Telegraphenberg A 31, Potsdam 14473, Germany

³Department of Civil and Environmental Engineering, Ritsumeikan University, 56-1, Toji-in Kitamachi, Kita-ku, Kyoto 603-8577, Japan

⁴Department of Environmental Engineering, Kyoto University, Building C1-3, C-cluster, Kyoto-Daigaku-Katsura, Nishikyoku, Kyoto 615-8504, Japan

Correspondence to: Zhipin Ai (ai.zhipin@nies.go.jp)

yield from two dedicated herbaceous bioenergy crops, Miscanthus and switchgrass. Site-specific evaluations showed that the 5 enhanced model had the ability to simulate yield for both Miscanthus and switchgrass, with the calibrated yields being well within the ranges of the observed yield. Independent country-specific evaluations further confirmed the performance of the enhanced-H08 (v.bio1). Using this improved model, we found that unconstrained irrigation more than doubled the yield of theunder rainfed condition, but reduced the water use efficiency (WUE) by 32% globally. With irrigation, the yield in dry climate zones can exceed the rainfed yields in tropical climate zones. Nevertheless, due to the low water consumption in tropical areas, the highest WUE was found in tropical climate zones, regardless of whether the crop was irrigated. Our enhanced

model provides a new tool for the future assessment of bioenergy-water tradeoffs.

10

1 Introduction

BThe bioenergy with carbon capture and storage (BECCS) technology enables the production of energy without carbon emissions, while sequestering carbon dioxide from the atmosphere, producing negative emissions. Therefore, BECCS
bioenergy is considered an important technology in the push to achieve the 2-degree climate target (Smith et al., 2015). With ambitious climate policies, the demand for bioenergy in 2100 could reach 200–400 EJ per year, based on recent predictions (Rose et al., 2013; Bauer et al., 2018). However, large-scale deployment-plantating of bioenergy crops BECCS requires that water consumption to be doubled or even tripled, which would exacerbate the future water scarcity (Beringer et al., 2011;

Bonsch et al., 2016; Hejazi et al., 2015; Yamagata et al., 2018). Therefore, representation of bioenergy crops in global
 hydrological models is critical to better investigate elucidating the possible side effects of large-scale implementation of BECCSbioenergy.

Second-generation bioenergy crops, such as *Miscanthus* and switchgrass, are generally regarded as a dedicated bioenergy source due to thetheir high yield potential and their-lack of direct competition with food production (Beringer et al., 2011;
Yamagata et al., 2018; Wu et al., 2019). This is because *Miscanthus* and switchgrass are rhizomatous perennial C4 grasses, which have a high photosynthesis efficiency (Trybula et al., 2015). These two crops have been included in a series of models including Lund–Potsdam–Jena managed Land (LPJEml) (Beringer et al., 2011; Bondeau et al., 2007), H08 (Yamagata et al., 2018), ORCHIDEE (Li et al., 2018), the High-Performance Computing Environmental Policy Integrated Climate model (HPC-EPIC) (Kang et al., 2014; Nichols et al., 2011), the Community Land Model (version 5) (CLM5) (Cheng et al., 2020), MISCANMOD (Clifton-Brown et al., 2000; 2004), MISCANFOR (Hastings et al., 2009), Agricultural Production Systems Simulator (APSIM) (Ojeda et al., 2017), and the Soil & Water Assessment Tool (SWAT) (Trybula et al., 2015). However, among these models, only a few, such as LPJEml-and-, H08, and CLM5 includes the global implementation of the models to address the global bioenergy–water tradeoffs or synergies.

35

40

45

To the best of our knowledge, LPJml wasis the first global model that includes both biogenergy and the water cycle. It has therefore been widely used to quantify the water effects on water of the large-scale deployment-plantating of <u>BECCS</u> bioenergy crops in many previousearlier studies (Beringer et al., 2011; Heck et al., 2016; 2018; Bonsch et al., 2016; Janes et al., 2018; Stenzel et al., 2019). However, it should be noted that *Miscanthus* and switchgrass are not distinguished in LPLml, which instead uses a C4 grass to parameterize them. A separate parametrization for the two bioenergy crops could enhance the <u>BECCS</u>-bioenergy simulation since they showed totally different plant characteristics and crop yield (Heaton et al., 2008; Trybula et al., 2015; Li et al., 2018). CLM5 has been improved and validated for simulating *Miscanthus* and switchgrass separately based on observations at the University of Illinois Energy Farm (Cheng et al., 2020), but a global validation or application has not been reported. H08 is a global hydrological model that considers human activities, including reservoir operation, aqueduct water transfer, seawater desalination, and water abstraction for irrigation, industry, and municipal use (Hanasaki et al., 2008a, 2008b, 2010a, 2018a, 2018b). The first use of H08 to simulate the bioenergy crop yield was reported in an impact assessment of the effects of BECCS on water, land, and ecosystem services (Yamagata et al., 2018). Using an identical model to that of Yamagata et al. (2018), aAnother recent study also used H08 estimates of yield for Miscanthus and

50 (2018), here we improved the bioenergy crop simulation in H08 by performing a systematic parameter calibration for both *Miscanthus* and switchgrass using the best available data. However, it is noted that the model performance for the simulated bioenergy crop yield was not validated at all.

switchgrass yield to predict global advanced bioenergy potential (Wu et al., 2019). Based on the work of Yamagata et al.

- 55 The objective of this study was to enhance and validate the ability of H08 to simulate the second-generation herbaceous bioenergy crop yield. The following sections of this paper will: 1) describe the default biophysical process of the crop module in H08, 2) explain the enhancement of H08 for Miscanthus and switchgrass, 3) evaluate the enhanced performance of the model in simulating yields for *Miscanthus* and switchgrass, 4) map the spatial distributions of the yield of *Miscanthus* and switchgrass, and 54) illustrate the effects of irrigation on the yield, water consumption, and WUE (defined here as the ratio of 60
- yield to water consumption) of Miscanthus and switchgrass.

2 Materials and methods

2.1 H08 and its crop module

- H08 is a global hydrological model (Hanasaki et al., 2008a, 2008b). H08 that can simulate the basic natural and anthropogenic 65 hydrological processes as well as crop growth at a spatial resolution of 0.5° and at a daily interval (Hanasaki et al., 2008a, 2008b). Main variables related to the water cycle, such as river discharge, terrestrial water storage, and water withdrawal have been thoroughly validated in a series of previous studies (Hanasaki et al., 2008a, 2008b, 2018). H08 is consist of six submodules. The six sub-modules (land surface hydrology, river routing, crop growth, reservoir operation, environmental flow requirements, and anthropogenic water withdrawal) are coupled in a unique way (Fig. 1a). The land surface module can 70 simulate the main water cycle components, such as evapotranspiration and runoff. The former is used in the crop module, and
- the latter is used in the river routing and environmental flow modules. The agricultural water demand simulated by the crop module and the streamflow simulated by the river routing and reservoir operation modules finally enter into the withdrawal module. Note that the crop module is independent, except for the water stress calculations, which require evapotranspiration and potential evapotranspiration inputs from the land surface hydrology module. A graphical diagram illustrating these coupled 75

relationships can be found in Hanasaki et al. (2008b).

80

Figure 1b shows the basic biophysical process of the crop module in H08. The biomass accumulation is based on Monteith et al. (1977). The crop phenology development is based on daily heat unit accumulation theory. The harvest index is used to partition the grain yield. Regulating factors, including water and air temperature, are used to constrain the yield variation-(see supplementary material for information on the algorithms). The crop module can simulate the potential yield, crop calendar, and irrigation water consumption for 18 crops, including barley, cassava, cotton, peanut, maize, millet, oil palm, potato, pulses,

rape, rice, rye, sorghum, soybean, sugar beet, sugarcane, sunflower, and wheat. The parameters for these crops were taken from those of the SWAT model. To better reflect the agronomy practice, H08 divides each simulation cell into four sub-cells: rainfed, single-irrigated, double-irrigated, and other (i.e., non-agricultural land uses). Irrigation in H08 is defined as the supply 85 of water other than precipitation to maintain soil moisture above 75% of field capacity during the cropping period. To clarify

this as regards the function of the parameters we calibrated below, here we describe the algorithms in the crop module of H08. The crop module of H08 accumulates daily heat units (Huna(t)), which are expressed as the daily mean air temperature (T_a) greater than the plant's specific base temperature (*Tb*; given as a crop-specific parameter):

$$Huna(t) = T_a - Tb \tag{1}$$

90 Then the heat unit index (*Ihun*) is calculated as the ratio of accumulated daily heat units $\sum Huna(t)$ and the potential heat unit (Hun):

$$Ihun = \frac{\sum Huna(t)}{Hun}$$
(2)

When the accumulated daily heat units $\sum Huna(t)$ reach the potential heat unit (Hun) required for the maturity of the crop, the crop is mature and is harvested. During the growth period, the daily increase in biomass (ΔB) is calculated using a simple

95 photosynthesis model:

$$\Delta B = be * PAR * REGF \tag{3}$$

where *be* is radiation use efficiency, *PAR* is photosynthetically active radiation, and *REGF* is the crop regulating factor. *PAR* is calculated using shortwave radiation (*Rs*) and leaf area index (*LAI*) as follows:

$$PAR = 0.02092 * Rs * [1 - \exp(-0.65 * LAI)]$$
(4)

100 LAI is calculated according to the growth stage indicated by *Ihun*, if *Ihun* < $\lfloor dpl1 \rfloor * 0.01$,

$$LAI = \frac{(dpl1 - \lfloor dpl1 \rfloor) * lhun}{\lfloor dpl1 \rfloor * 0.01} * blai$$
(5)

if $\lfloor dpl1 \rfloor * 0.01 \leq Ihun < \lfloor dpl2 \rfloor * 0.01$,

$$LAI = \left\{ \left(dpl1 - \lfloor dpl1 \rfloor \right) + \frac{\left[\left(dpl2 - \lfloor dpl2 \rfloor \right) - \left(dpl1 - \lfloor dpl1 \rfloor \right) \right] * \left(lhun - \lfloor dpl1 \rfloor * 0.01 \right)}{\lfloor dpl2 \rfloor * 0.01 - \lfloor dpl1 \rfloor * 0.01} \right\} * blai$$
(6)

if
$$\lfloor dpl2 \rfloor * 0.01 \leq Ihun < dlai$$
,

$$105 \quad LAI = \left\{ \left(dpl2 - \lfloor dpl2 \rfloor \right) + \frac{\left[1 - \left(dpl2 - \lfloor dpl2 \rfloor \right) \right] * \left(lhun - \lfloor dpl2 \rfloor * 0.01 \right)}{dlai - \lfloor dpl2 \rfloor * 0.01} \right\} * blai$$

$$\tag{7}$$

if *dlai* < *Ihun*,

$$LAI = 16 * blai (1 - Ihun)^2 \tag{8}$$

where dpl1 and dpl2 are two complex numbers (see the definition in Table 1), blai is the maximum leaf area index.

REGF is calculated as:

$$110 \quad REGF = \min(Ts, Ws, Ns, Ps) \tag{9}$$

where Ts, Ws, Ns, and Ps are the respective stress factors for temperature, water, nitrogen, and phosphorous. Temperature stress (Ts) is calculated as an asymmetrical function according to the relationship between air temperature (T_a) and optimal temperature (To). When air temperature is below (or equal) the optimal temperature (To), Ts is calculated as:

$$Ts = exp\{ln(0.9) * [\frac{Ctsl(To-T_a)}{T_a}]^2\}$$
(10)

115 where *Ctsl* is the temperature stress parameter for temperature below *To*, and is calculated as:

$$Ctsl = \frac{To+Tb}{To-Tb} \tag{11}$$

When air temperature is above the optimal temperature, *Ts* is calculated as:

$$Ts = exp\{ln(0.9) * [\frac{(To - T_a)}{Ctsh}]^2\}$$
(12)

where *Ctsh* is the temperature stress parameter for temperature below *To*, and is calculated as:

$$120 \quad Ctsh = 2 * To - T_a - Tb \tag{13}$$

Water stress (Ws) is calculated as the ratio of actual evapotranspiration (Ea) to potential evapotranspiration (Ep) as:

$$Ws = \frac{Ea}{Ep} \tag{14}$$

The crop yield (Yld) is finally estimated from the aboveground biomass (Bag) using the crop-specific harvest index (Harvest) at the harvesting date as:

125
$$Bag = [1 - (0.4 - 0.2 * Ihun)] \sum \Delta B$$
 (15)

$$Yld = Harvest * \frac{WSF}{WSF + \exp(6.117 - 0.086*WSF)} * Bag$$
(16)

where *WSF* is the ratio of *SWU* (the accumulated actual plant evapotranspiration in the second half of the growing season), and *SWP* (the accumulated potential evapotranspiration in the second half of the growing season):

$$WSF = \frac{SWU}{SWP} * 100 \tag{17}$$

2.2 Enhancement of H08 for Miscanthus and switchgrass

- 135 The original bioenergy crop implementation in H08 (Yamagata et al., 2018) was conducted in two steps. First, crop parameters (see the old values in Table 2) for *Miscanthus* (refer to *Miscanthus giganteus* in this study) and switchgrass (refer to *Panicum virgatum* in this study) were adopted based on the settings from the SWAT model 2012 version (Arnold et al., 2013). However, the default parameters did not reflect the characteristics for *Miscanthus* and switchgrass well, which could lead to serious bias based on the result in Trybula et al. (2015). Second, maturity was defined by either undergoing an autumn freeze (i.e., the air
- 140 temperature was below the minimum temperature for growth) or the exceedance of the maximum of 300 continuous days of growth. Because both *Miscanthus* and switchgrass are perennial, the potential heat unit was set as unlimited (see the old values in Table 2). However, this unlimited potential heat unit is far from the observations (see the new values in Table 2) reported by Trybula et al. (2015). Here, further enhancements were made as follows. First, we changed the leaf area development curve by adopting the potential heat unit (Hun) and leaf area related parameters (dpl1 and dpl2) proposed by Trybula et al. (2015).
- 145 The potential heat unit can determine both the total cropping days and the leaf development. Here, we set the valuesit at 1,830 and 1,400 degrees for *Miscanthus* and switchgrass, respectively, as recommended by Trybula et al. (2015) based on their field observations. The dpl1 and dpl2 parameters (see Table 1), which were used for determining the leaf development curve, were also changed to the values suggested by Trybula et al. (2015). This modification substantially changed the original heat unit index (Ihun) and the development of the leaf area index curve. Second, we modified the algorithm for water stress that was
- 150 used to regulate the radiation use efficiency. We took the ratio of actual evapotranspiration to potential evapotranspiration as the water stress factor for any point in the simulation, similar to the description of the soil moisture deficit used in other studies

(Anderson et al., 2007; Yao et al., 2010). Third, we conducted parameter calibrations based on a series of simulations. The calibration process is presen ted belowin section 2.5, and the finalized parameter settings are given in Table 21 and section 3.1. ThirdFourth, we added as an new output variable for item the water consumption of *Miscanthus* and switchgrass to

- 155 analyze the water consumption and WUE in the crop sub-module. Fourthifth, we introduced the Köppen climate classification (see Fig. 2) into the source code to provide possible climate-specific analyses. Finally, we conducted parameter calibrations with the best available data. The calibration process is presented below, and the finalized parameter settings are given in Table 2-and Section 3.1. Fifth, we fixed the bug in the original code. For definitions and the functions of the above parameters, such as Hun, dpl1, dpl2, and Ihun, please see the algorithm descriptions in the supplementary material.
- 160

165

We conducted a calibration with five important parameters, the radiation use efficiency (be), maximum leaf area index (blai), base temperature (Tb), maximum daily accumulation of temperature (Hunmax), and minimum temperature for planting (TSAW). The specific parameter ranges and steps set in the calibration process are shown in Table 3. In total, 1,944 simulations were conducted for *Miscanthus* and switchgrass to test all combinations of the parameter sets. The simulations were conducted with the averaged daily meteorology data from WFDEI (1979-2016) for two reasons. First, using multi-year averaged metrology input can exclude the effect of extreme climate (low temperatures in early spring and late autumn) on the yield and this is recommended in the H08 manual (Hanasaki et al., 2010). Second, it can largely save the computation storage. The best parameter sets were selected using two steps: first, the lowest root mean square error (RMSE), and second, the highest correlation coefficient (R) of the simulated and observed yields within the lowest RMSE domain. Additional information on

- 170 correlation coefficient (R) of the simulated and observed yields within the lowest RMSE domain. Additional information on how these parameters affect the model can be found in the equations described in Section 2.1. To conduct the calibration and validation, the observed site-specific data were used to calibrate the model, and the simulated country specific data were used to validate the model. The site specific data covered different latitudes, with ranges from 7.0°S to 56.8°N for *Miscanthus* and 28.45°N to 51.8°N for switchgrass. The collected country specific data cover the three different
- 175 models: MISCANMOD, HPC EPIC, and LPJmL. This analysis provided an opportunity to illustrate yield latitude relationships as well as the limitations and performance of the model. In addition, we introduced the Köppen climate classification into the source code to provide possible climate specific analyses.

2.3 Model input data

- 180 The WATCH-Forcing-Data-ERA-Interim (WFDEI) global meteorological data (Weedon et al., 2014) from 1979 to 2016 were used in all simulations. The WFDEI data were based on the methodology used for WATer and global CHange (WATCH) forcing data by utilizing ERA-Interim global reanalysis data. The data cover the whole globe at a spatial resolution of 0.5°. Eight daily meteorological variables (air temperature, wind speed, air pressure, specific humidity, rainfall, snowfall, and downward shortwave and longwave radiation) were used to run H08. Another meteorological dataset for the period 1979–
- 185 2013 in of S14FD (Iizumi et al. 2017) with the same spatial resolution was also used to check the stability of results to input meteorological data.

2.4 Yield data

To independently calibrate and validate the performance of H08 in simulating the bioenergy yield, we collected and compiled up-to-date site-specific (varied from 1986 to 2011) and country-specific (varied from 1960 to 2010) yield data from both observations and simulations (Clifton-Brown et al., 2004; Searle and Malins, 2014; Heck et al., 2016; Kang et al., 2014; Li et al., 2018a). For *Miscanthus*, the yield data used covered 72 sites (64 rainfed and 8 irrigated; observed) and 15 countries (simulated). The simulated country-specific data is from MISCANMOD and LPJml. For switchgrass, the yield data used covered 57 sites (55 rainfed and 2 irrigated; observed) and 16 countries (simulated). The simulated country-specific data are
- 195 from HPC-EPIC and LPJml. A map showing the locations of the majority of sites under the rainfed condition and the corresponding climate zone is presented in Fig. 2. The data sites were predominantly distributed in Europe and the US. It should be noted that the sites are generally located in temperate and continental climate zones, with few located in the tropics and dry climate zones. Detailed lists of the sites from which the yields of *Miscanthus* and switchgrass were reported are documented in Tables S1 and S2 (for the rainfed condition) and Table S3 (for the irrigated condition) in the supplementary 200 material.

A global yield map of Miscanthus and switchgrass that was generated using a random-forest algorithm (Li et al., 2020) was also used to compare the results. This yield map provides a benchmark for evaluating model performance because it is largely constrained by the observed yield ranges, denoting the yields achievable under current technologies (Li et al., 2020).

205

2.5 Simulation and analysissetting

After calibration, Simulations were conducted at the daily scale with annual meteorological conditions within the period 1979-2016 (38 years). fFour different Two kinds of simulations were run with different purposes. The first simulation was conducted with using the land surface module and the crop moduleoriginal model without irrigation to calibrate and validatewith both

- 210 the original and enhanced H08-to investigate its original performance and calibrate the parametersperformance-models. The second simulation was also conducted using the land surface module and the crop module the enhanced model without irrigation to investigate its performance under rainfed condition. The third simulation was conducted using the enhanced model with irrigation to investigate its performance under irrigated condition. These three simulations were conducted at a daily scale with annual meteorological data from WFDEI for the period 1979-2016. The last simulation was conducted using identical
- 215 model settings to the third one, except using different meteorological data from S14FD for the period 1979–2013. Note that irrigation in this study means uniform unconstrained irrigation.

2.6 Water use efficiency

220 Water use efficiency (WUE) is an important indicator that shows the efficiency of crops in using water to produce biomass (Ai et al., 2020), which is useful in evaluating bioenergy crop performance (Zeri et al., 2013). Here, WUE is calculated as the ratio of yield to water consumption:

$$WUE = \frac{yield}{water\ consumption} \tag{18}$$

where yield and water consumption refer to the bioenergy crop yield (kg ha⁻¹ yr⁻¹) and the corresponding water consumption 225 (mm yr⁻¹) of *Miscanthus* and switchgrass.

2.7 Sensitivity analysis

To see the sensitivity of the calibrated variables to the yield simulation, we calculated the sensitivity index (S) (Cheng et al., 2020) value for each variable:

230
$$S = \sum \left| \frac{(V_s - V_{ref})/V_{ref}}{(P_s - P_{ref})/P_{ref}} \right|$$
(19)

where Vs and Vref is the calculated RMSE of the simulated and observed yields for the corresponding calibration simulations and the finalized simulation (with final fixed parameters in Table 2), P_s and p_{ref} are the parameter values for the corresponding calibration simulations and the finalized simulation.

235 **3** Results and discussion

3.1 Parameter calibration

The variation in RMSE and R for all 1944 simulations is presented in Fig. S1. Both RMSE and R have large ranges. Based on the optimal values of RMSE (4.68 and 3.16 Mg ha⁻¹ yr⁻¹ for *Miscanthus* and switchgrass, respectively) and R (0.67 and 0.53 for *Miscanthus* and switchgrass, respectively), we finalized the parameter set as shown in Table 24. The simulations presented

- 240 in the table are for rainfed conditions because only athe-few sites that-were irrigated. The radiation -use efficiency values wereas set at 38 and 22 (g MJ⁻¹ × 10) for *Miscanthus* and switchgrass, respectively. These values are similar to those of Trybula et al. (2015)previous reports. For example,, who recommended values of 41 (g MJ⁻¹ × 10) for *Miscanthus* and 17 (g MJ⁻¹ × 10) for switchgrass-were recommended by Trybula et al. (2015). The base temperatures wereas calibrated to be 8 and 10°C for *Miscanthus* and switchgrass, respectively. The base temperature is sensitive to the crop growing days. Ranges from 7 to 10°C
- for *Miscanthus* and from 8 to 12°C for upland switchgrass were suggested by Trybula et al. (2015). The calibrated values are within the above ranges. The maximum leaf area indices were calibrated at 11 and 8 for *Miscanthus* and switchgrass, respectively; these values were identical to those suggested by Trybula et al. (2015). Of the five parameters we calibrated, radiation use efficiency was the most sensitive parameter to the result, followed by the base temperature (see Table S5), this is consistent to the result of Trybula et al. (2015). As shown in Fig.3, the calibrated parameters performed well, since the scatter points are well distributed along the 1:1 line.
- 200 seatter points are wen distributed along the 1.1

3.2 Site-specific performance of enhanced H08

An overview of the performance of the enhanced H08 is provided in Fig. 43. The simulated yield is the annual average from 1986 to 2011. Points in a scatter-plot comparing the simulated yields derived- from the enhanced H08 with the observed yields wereare well distributed along the 1:1 line. It can be seen that the performance of the enhanced H08 was improved over that of the original H08, with the tendency of overestimation for switchgrass and underestimation for *Miscanthus* having been successfully fixed. For *Miscanthus*, the bias of original model ranged from –84% to 80% with a mean of –52%, while the bias of the enhanced model ranged from –59% to 53% with a mean of –9%. For switchgrass, the bias for original model ranged from –78% to 338% with a mean of 25%, while the bias for the enhanced model ranged from –52% to 109% with a mean of

- 260 -7%. Points in a seatter plot comparing the simulated yield from the enhanced H08 with the observed yield were well distributed along the 1:1 line. But-Note that it also shows a tendency toward underestimation for some sites, especially for *Miscanthus*. More detailed site-specific results are shown in Figs. 54a (*Miscanthus*) and Fig. 54b (switchgrass). To depict the uncertainties in the observed yield, the minimum and maximum observed yields were addedare shown as error bars in Fig. 54. It was found that the simulated yields were within or close to the range of the observed yields. The simulated relative error
- 265 was randomly distributed, was substantially smaller than the range of the observed yields, and showed no climatic bias. This implies that the combination of the Hun identified by Tryubula et al (2015) and the calibrated parameters of this study are valid for climate zones other than that of the midwestern US, where the Hun was observed. We also investigated the performance under the irrigated condition (shown in Fig. 6). We used the reported observed yields for ten sites globally (Table S3). To iInvestigateing the performance under the irrigated condition (shown in Fig. 6). We used the reported observed yields for ten sites globally (Table S3).
- 270 well at three sites the simulated yields wereasis within or close to the observed yields for five sites located in China, the UK, and France (see Table S3) (1, 2, and 10), but wereas out of range overestimated for the remaining sites at the other left seven five sites. This could be attributed was due to the assumptions of irrigation. H08 assumes that irrigation is fully applied to crops and hence the yield represents the maximum potential yield under irrigation condition. Therefore, if the reported yield is within the range of the simulated yield is that between rainfed and irrigated conditions erops, it is considered reasonable. This was
- 275 found to be the case, as shown in Fig. 65S1. To investigate the uncertainty in the meteorological data, a simulation using other meteorological data from the S14FD dataset (Iizumi et al. 2017) was conducted; the results are compared in Fig. S2. The comparison showed that the WFDEI driven result was very similar to that obtained with the S14FD data.

3.3 Country-specific performance of enhanced H08

- Figure 765 compares the yield simulated by the enhanced H08 with the collected independent country-specific yields simulated by MISCANMOD (Clifton-Brown et al., 2004), HPC-EPIC (Kang et al., 2014), and LPJmL (Heck et al., 2016). Here, the yield was simulated under rainfed conditions. The periods of climate data used as inputs were 1960–1990, 1980–2010, and 1982–2005 for MISCANMOD, HPC-EPIC, and LPJmL, respectively. Here, the comparisons were conducted using exactly the same period as that of HPC-EPIC and LPJmL. For MISCANMOD, however, we used the data from 1979–1990 due to
- data availability. For *Miscanthus*, the correlation coefficient of the yield simulated by H08 and MISCANMOD in the scatter plot (Fig. 75d) was 0.40. A t-test showed that the correlation was not significant at the 0.01 level. For consistency with the yield collected by MISCANMOD, any area within a country where the yield was less than 10 Mg ha⁻¹ yr⁻¹ was excluded from the analyses. Also, the land available for calculations was set as 10% of the pastureland and cropland. For switchgrass, the correlation coefficient of the yield simulated by H08 and HPC-EPIC in the scatter-plot (Fig. 75e) was 0.80. A t-test showed
- 290 that the correlation was significant at the 0.01 level. This indicates that the spatial pattern of the yield simulated by H08 was similar to that of HPC-EPIC. For example, both models produced high yields were found-in Brazil, Colombia, Mozambique, and Madagascar, while-and low yields were found in Australia and Mongolia-by both models.
- Miscanthus and switchgrass are not distinguished in LPJmL, and we therefore compared the mixed (mean, Miscanthus and switchgrass) yield of Miscanthus and switchgrass simulated by H08 and the C4 grass yield simulated by LPJmL. The correlation coefficient of the yield simulated by H08 and LPJmL in the scatter-plot (Fig. 75f) was 0.778. A t-test showed that the correlation coefficient of the yield simulated by H08 and LPJmL, as shown in the scatter-plot (Fig. S3), was 0.95. A t-test showed that the correlation coefficient of the yield simulated by H08 and LPJmL, as shown in the scatter-plot (Fig. S3), was 0.95. A t-test showed that the correlation was significant at the 0.01 level. The difference was mainly due to Colombia, Sudan, Mozambique, and Mexico, which are located in tropical zones. The difference in these countries was generally equal to the range of H08. For example, as shown in Fig. 75c, the yield in Colombia simulated by LPJmL was equal to the Miscanthus yield simulated by H08 (upper error bar). A separate comparison of the ensemble yield simulated by LPJmL, and the yield of Miscanthus and switchgrass simulated by H08 under both rainfed and irrigated conditions, is presented in Fig. S4. It can be seen that the yield
- of *Miscanthus* simulated by H08 was closer to the yield simulated by LPJml, which indicated-indicates that the LPJml-305 simulated yield was more likely to represent *Miscanthus*. This can also be inferred from the validation results (Fig. 1a) in Heck et al. (2016) since the LPJml-simulated yield is close to the yield of *Miscanthus* compared to those of switchgrass. It was difficult to determine which model performed better due to the lack of observed data in tropical zones. This also indirectly indicated the relatively large uncertainty of the existing simulations in tropical zones (Kang et al., 2014).
- 310 The differences in model structure, use of specific algorithms, and the input climate data (different periods and sources) can induce differences in the yield simulated by MISCANMOD, HPC-EPIC, LPJmL, and H08. With regard to model structure, MISCANMOD uses a Kriging interpolation method to derive the spatial yield from the original site yield, whereas H08, LPJmL, and HPC-EPIC use grid-based calculations. H08 considers the single harvest system in tropical areas, whereas LPJml considers a multiple harvest system. With regard to the specific algorithms used, the water stress used to regulate radiation-
- 315 use efficiency varies considerably among the models. The periods of climate data used as an input are 1960–1990, 1980–2010, and 1982–2005 for MISCANMOD, HPC EPIC, and LPJmL, respectively. Here, the comparison was conducted with exactly the same period of HPC EPIC and LPJmL. However, for MISCANMOD, we used the data from 1979–1990 in consideration of data availability. Note that the diffdifferenerencesees int meteorological data sources and spatial-temporal resolution would also contribute to these differences.
- 320

3.4 Further evaluation of the performance of enhanced H08

As shown in Fig. 8, we compared our simulation with the latest available global bioenergy crop yield map, generated from observations using a random-forest (RF) algorithm (Li et al., 2020). This RF yield map provides a benchmark for evaluating model performance because it is largely constrained by the observed yield ranges, denoting the yields achievable under current

- technologies (Li et al., 2020). As shown in Fig. 8a and Fig. 8b, there were small differences between our estimated yield and RF yield for switchgrass, whereas larger differences were found for *Miscanthus*, especially in tropical regions. There is a similar case for ORCHIDEE, as shown in Fig. S21 in Li et al. (2020). We also compared the differences in the mean values for *Miscanthus* and switchgrass because they are not distinguished in LPJmL. As shown in Fig. 8c and Fig. 8d, the differences between our estimations and the RF yields were generally lower than those between the LPJml estimations and RF yields. In summary, our estimations were well within the ranges of those of ORCHIDEE and LPJml.

3.54 Spatial distributions of the simulated yield under rainfed and irrigated conditions

Figure 986 shows the global yield distributions of *Miscanthus* and switchgrass. Under rainfed conditions, high yields are distributed in eastern US, Brazil, southern China, Africa, and Southeast Asia. To evaluate the response of yield to irrigation, we compared two-simulations results under rainfed and irrigated conditions. As shown in Figs. 986c and 986d, unconstrained irrigation greatly increased yields, especially for of areas in arid regions such as the western US, southern Europe, northeastern China, India, southern Africa, the Middle East, and coastal Australia. At the global scale, the increases (excluding the area with a polar climate) were 20.7 (from 16.8 to 37.5) Mg ha⁻¹ yr⁻¹ and 7.9 (from 7.4 to 15.3) Mg ha⁻¹ yr⁻¹ for *Miscanthus* and switchgrass, respectively, indicating that irrigated yieldion was more than doubles the rainfed yield-under-rainfed

- 340 conditions. The spatial distributions of yield increase increases due to the irrigation simulated by H08 being-were very similar to those at-simulated by LPJmL (Beringer et al., 2011). At the continental scale (e.g., Europe), the yield increases wereas located mainly in southern Europe, consistent with the findings obtained using MISCANMOD (Clifton-Brown et al., 2004). The yield response of yield to irrigation was weaker for switchgrass was weaker than that for *Miscanthus* (see Figs. 986b and 986d). This might be have been due to a smaller dependency on water for switchgrass having less dependency on water
- 345 compared with-to *Miscanthus* (McIsaac et al., 2010). *Miscanthus* growth has been reported to have a high water requirement due to titshe high yield, large leaf area index, and long growing season (McIsaac et al., 2010; Lewandowski et al. 2003). As a result, the *Miscanthus* yield is strongly influenced by water availability, and an annual rainfall of 762 mm yr⁻¹ is thought to be suitable for growth (Heaton et al., 2019). However, the precipitation in most locations is below this level, especially in arid and semi-arid regions (see Fig. S5 in the supplementary material). Therefore, irrigation plays a critical role in ensuring the optimum bioenergy crop yield in arid and semi-arid regions, especially for *Miscanthus*.

3.65 Effects of irrigation on yield, water consumption, and WUE in different climate zones

Climate is one of the main physical constraints of crop growth and yield. Figure 1097a shows the mean yield for *Miscanthus* and switchgrass in four different Köppen climate zones (see Fig. S6 in the supplementary material). For *Miscanthus*, a tropical climate (including the northern part of South America, central Africa, Southeast Asia, and southern India) produced the highest average yield of 33.0 Mg ha⁻¹ yr⁻¹. A temperate climate (including the eastern US, Europe, southern China, and the southern part of South America) produced the second highest average yield of 19.7 Mg ha⁻¹ yr⁻¹. Dry and continental climate zones had similar average yields of 8.3 and 6.2 Mg ha⁻¹ yr⁻¹, respectively. For switchgrass, a tropical climate had the highest yield, averaging 11.9 Mg ha⁻¹ yr⁻¹. For the other three climate types, the average yields averaged 9.0, 4.7, and 4.0 Mg ha⁻¹ yr⁻¹ for the temperate, continental, and dry climate zones, respectively. As shown in Fig. 1097a, irrigation greatly increased the yield, especially in dry climate zones, which had the largest yield increases of 44.2 and 15.7 Mg ha⁻¹ yr⁻¹ for *Miscanthus* and switchgrass, respectively. In contrast, irrigation had a relatively weak effect on yield in the tropical climate zone.

Figure 1097b shows the water consumption for both Miscanthus and switchgrass. The annual mean water consumption for of

365 Miscanthus was around 613 mm yr⁻¹ for the tropical climate zone (with a high yield of 33.0 Mg ha⁻¹ yr⁻¹), whereas it was 155 mm yr⁻¹ for a dry climate (with a low yield of 8.3 Mg ha⁻¹ yr⁻¹) under rainfed conditions. Under irrigated conditions, the largest increases in water consumption were 1,618 and 1,054 mm yr⁻¹ for *Miscanthus* and switchgrass in dry climate zones, respectively. With such a large amounts of irrigation, the yield in a dry climate zone can exceed that in a tropical climate zone under rainfed conditions. This highlights the yield-water tradeoff effects.

370

375

380

405

As shown in Figure 1097c, shows the WUE, which is defined in this study as the ratio of yield to water consumption. tThe WUE values of *Miscanthus* in a tropical climate wereas 53.8 kg DM ha⁻¹ mm⁻¹ H₂O, and 53.5, 48.2, and 47.0 kg DM ha⁻¹ mm⁻¹ H₂O, respectively, in dry, temperate, and continental climate zones under rainfed conditions. The respective WUE values of switchgrass were 41.2, 37.9, 30.4, and 29.7 kg DM ha⁻¹ mm⁻¹ H₂O in continental, dry, tropical, and temperate climate zones under rainfed conditions, respectively. The WUE values for *Miscanthus* were higher than those for switchgrass, which is inconsistent with values in previous reports (VanLoocke et al., 2012). With irrigation, the WUE decreased for both *Miscanthus* and switchgrass in all climate zones. Globally, excluding the area with a polar climate, the decreases were 14.2 (from 50.6 to 36.4) kg DM ha⁻¹ mm⁻¹ H₂O and 12.2 (from 34.8 to 22.6) kg DM ha⁻¹ mm⁻¹ H₂O for *Miscanthus* and switchgrass, respectively, indicating a reduction in the mean WUE values for *Miscanthus* and switchgrass of up to 32%. This is consistent with the current global WUE trend for crops, which is high for rainfed croplands but low for irrigated croplands. However, the general magnitude of this relationship changes if the site or regional scale is considered based on reports for wheat in Syria (Oweis et al., 2000) or for wheat and maize in the North China Plain (Mo et al., 2005). Note that it might be better to use a specific crop model to investigate water use efficiency/WUE at the site or watershed scale.

385 **3.76** Improvements, uncertainties and limitations

- Compared with earlier studies, our study made several important improvements. First, rather than using an approximation for C4 grass to represent *Miscanthus* and switchgrass in the LPJmL model, our enhanced H08 model simultaneously simulated the yields for of *Miscanthus* and switchgrass at the global scale. Compared with the original H08, our enhanced model markedly decreased the mean bias (from -52% to -9% for *Miscanthus*, from 25% to -7% for switchgrass). Moreover, the growing seasons for *Miscanthus* (145–165) and switchgrass (101–114) during the period 2009–2011 at the Water Quality Field
- 390 growing seasons for *Miscanthus* (145–165) and switchgrass (101–114) during the period 2009–2011 at the Water Quality Field Station of the Purdue University Agronomy Center are consistent with the values of 140 and 120 reported in Trybula et al. (2015). Second, the hydrological effects of bioenergy crop production implemented in our model are actually not incorporated in some other models; for example, we considered irrigation and analyzed water use efficiencyWUE, which was not implemented in ORCHIDEE-MICT-BIOENERGY (Li et al., 2018) and HPC-EPIC (Kang et al., 2014). Third, we investigated
- 395 the differences in yield, water consumption, and WUE for of both *Miscanthus* and switchgrass among different climate zones, which was useful for optimizing bioenergy land with better consideration of water protection for bioenergy land-scenario design. For example, more land can be allocated to the areas with greater WUE. In summary, our enhanced model is the only global hydrological model provides a new tool that can simultaneously simulate *Miscanthus* and switchgrass with consideration of water management (such as irrigation), although it currently considers only herbaceous bioenergy crops-only. From this
- 400 perspective, we firmly believe that our enhanced model contributes to the bioenergy crop modelling community and our results are reproducible with the transparent parameter disclosed.

There are still several uncertainties and limitations that need to be addressed in the future. First, the current yield estimations undoubtedly still contain uncertainties. To quantitatively describe such uncertainty, as shown in Fig. S7, we compared our simulation with the latest available global bioenergy crop yield map, generated from observations with a random forest (RF) algorithm (Li et al., 2020). This RF yield map provides a benchmark for evaluating model performance because it is largely

constrained by the observed yield ranges, denoting the yields achievable under current technologies (Li et al., 2020). As shown in Fig. S7a and Fig. 7b, small differences between our estimated yield and RF yield exist for switchgrass, whereas larger differences were found for *Miscanthu*, especially in tropical regions. There is a similar case for ORCHIDEE, as shown in Fig.

- 410 S21 in Li et al. (2020). We also compared the differences in the mean values for *Miscanthus* and Switchgrass because they are not distinguished in LPJmL. As shown in Fig. S7c and Fig. S7d, the differences between our estimations and the RF yield generally were lower than those between LPJml estimations and the RF yield. In summary, our estimations were well within the ranges of those of ORCHIDEE and LPJml. FirstSecond, the bioenergy crop yield simulated by H08 did not include constraints due to nutrients, such as nitrogen and phosphorus. Nutrient dynamics are influenced by complex site-specific soil
- conditions (soil type, temperature, wetness, carbon, etc.), which remain quite challenging to properly represent properly in global models. This is why similar assumptions and limitations occur in the latest bioenergy potential/yield studies (Li et al., 2018; Yamagata et al., 2018; Wu et al., 2019). AdditionallySecond, the effects of CO₂ fertilizer and technological advancements were not considered in the current simulations. Third, our simulation was conducted with historical meteorological drivers. Therefore, variations in-yield variations in future climate scenarios under different representative concentration pathways need to be examined. Fourth, the current irrigation levels were input to represent uniform unconstrained irrigation. Further evaluations need to consider the availability of renewable water sources, and planetary boundaries of land, food, and water (Heck et al., 2018). Finally, as with other models, like MISCANMOD (Clifton-Brown et al., 2004), SWAT (Neitsch et al., 2011), and LPJml (Bondeau et al., 2007), we adopted a crop-uniform water stress formulation. However, an earlier study indicated that the water stress could be crop-specific (Hastings et al., 2009). Additional
- 425

5 investigations of the water stress formulation for different bioenergy crops are needed.

4 Conclusion

In this study, we enhanced the ability of the H08 global hydrological model to simulate the yield of thea dedicated secondgeneration herbaceous bioenergy crops. The enhanced H08 model generally performed well in simulating the yield of both *Miscanthus* and switchgrass, with the estimations being well within the range of observations and other model simulations. To the best of our knowledge, this study is the first attempt to successfully enable a global hydrological model with consideration of water management, such as irrigation, to separately simulate the yield of *Miscanthus* and switchgrass separately. The enhanced model could be a good tool for the future assessments of the bioenergy–water tradeoffs. With-Using this tool, we quantified the effects of irrigation on yield, water consumption, and WUE for both *Miscanthus* and switchgrass in different climate zones. We found that irrigation more than doubled the yield in all areas under rainfed conditions and reduced the WUE by 32%. However, due to the low water consumption in tropical areas, the highest WUE was generally found in tropical climate

- zones, regardless of whether the crop was irrigated.
- Code and data availability. The code of the model used in this study is archived on Zenodo (https://zenodo.org/record/3521407#.XbjZqiXTZMB) under the Creative Commons Attribution 4.0 International License. Technical information about the H08 model and the input dataset are available from the following website: http: //h08.nies.go.jp.

Competing interests. The authors declare that they have no conflict of interest.

445

Author contribution. Naota Hanasaki designed this study. Zhipin Ai collected the data, developed the model code, and performed the simulations. Zhipin Ai prepared the manuscript, with contributions and comments from Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori.

Acknowledgments. This study was supportedfunded by the Environment Research and Technology Development Fund (JPMEERF20202005 and JPMEERF15S11418S-14) of the Environmental Restoration and Conservation Agency, Japan.

References

https://doi.org/10.1016/j.agrformet.2020.107935, 2020.

455

490

Ai, Z., Wang, Q., Yang, Y., Manevski, K., Yi, S., and Zhao, X.: Variation of gross primary production, evapotranspiration and water use efficiency for global croplands. Agric. For. Meteorol., 287, 107935,

- Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P. A.: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, JGR Atmospheres, 112, https://doi:10.1029/2006jd007506, 2007.
- Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., and Neitsch, S. L. (Eds.): SWAT 2012 Input/Output
 Documentation, Texas Water Resources Institute, USA, 2013.
- Bauer, N., Rose, S. K., Fujimori, S., Van Vuuren, D. P., Weyant, J., Wise, M., Cui, Y., Daioglou, V., Gidden, M. J., Kato, E., Kitous, A., Leblanc, F., Sands, R., Sano, F., Strefler, J., Tsutsui, J., Bibas, R., Fricko, O., Hasegawa, T., Klein, D., Kurosawa, A., Mima, S., Muratori, M.: Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Clim. Change, 1–16, https://doi.org/10.1007/s10584-018-2226-y, 2018.
- Beale C. V., Bint, D. A., Long, S. P.: Leaf photosynthesis in the C4-grass Miscanthus × giganteus, growing in the cool temperate climate of southern England, J. Exp. Bot., 47, 267–273, https://doi.org/10.1093/jxb/47.2.267, 1996.
 Beale, C. V., and Long, S. P.: Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant, Cell Environ., 18, 641–650, https://doi:10.1111/j.1365-3040.1995.tb00565.x., 1995.
- Beringer, T. I. M., Lucht, W., and Schaphoff, S.: Bioenergy production potential of global biomass plantations under environmental and agricultural constraints, GCB Bioenergy, 3, 299–312, https://doi:10.1111/j.1757-1707.2010.01088.x, 2001.
 Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679–706, https://doi:10.1111/j.1365-2486.2006.01305.x, 2007.
- Bonsch, M., Humpenöder, F., Popp, A., Bodirsky, B., Dietrich, J. P., Rolinski, S., Biewald, A., Lotze-campen, H., Weindl, I.,
 Gerten, D., and Stevanovic, M.: Trade-offs between land and water requirements for large-scale bioenergy production, GCB Bioenergy, 8(1), 11–724, https://doi:10.1111/gcbb.12226, 2016.

Cheng, Y., Huang, M., Chen, M., Guan, K., Bernacchi, C., Peng, B., and Tan, Z.: Parameterizing perennial bioenergy crops in Version 5 of the Community Land Model based on site-level observations in the Central Midwestern United States, J. Adv. Model. Earth Syst., 12(1), 1–24, https://doi.org/ 10.1029/2019MS001719, 2020.

- Clifton-Brown, J. C., Neilson, B., Lewandowski, I., and Jones, M. B.: The modelled productivity of Miscanthus×giganteus (GREEF et DEU) in Ireland, Ind. Crops Prod., 12, 97–109, https://doi:10.1016/S0926-6690(00)00042-X, 2000.
 Clifton-Brown, J. C., Stampfl, P. F., and Jones, M. B.: Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions, Glob. Change Biol., 10, 509–518, https://doi:10.1111/j.1529-8817.2003.00749.x, 2004.
- 485 Giannoulis, K. D., Karyotis, T., Sakellariou-Makrantonaki, M., Bastiaans, L., Struik, P. C., and Danalatos, N. G.: Switchgrass biomass partitioning and growth characteristics under different management practices, NJAS-Wageningen J. Life Sci., 78, 61– 67, https://doi.org/10.1016/j.njas.2016.03.011, 2016.

Hanasaki, N., Inuzuka, T., Kanae, S., Oki, T.: An estimation of global virtual. water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model, J. Hydrol., 384, 232–244, https://doi.org/10.1016/j. jhydrol.2009.09.028, 2010a.

Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007–1025, https://doi:10.5194/hess-12-1007-2008, 2008a.

Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for

495 the assessment of global water resources – Part 2: Applications and assessments, Hydrol. Earth Syst. Sci., 12, 1027–1037, https://doi:10.5194/hess-12-1027-2008, 2008b.

Hanasaki, N., Yoshikawa, S., Pokhrel, Y., Kanae, S.: A global hydrological simulation to specify the sources of water used by humans, Hydrol. Earth Syst. Sci., 22, 789–817, https://doi:10.5194/hess-22-789-2018, 2018a.

Hanasaki, N., Yoshikawa, S., Pokhrel, Y., and Kanae, S.: A quantitative investigation of the thresholds for two conventional
water scarcity indicators using a state-of-the-art global hydrological model with human activities, Water Resour. Res., 54,
8279–8294, https://doi.org/10.1029/2018WR022931, 2018b.

Hanasaki, N. and T. Yamamoto. H08 Manual User's Edition, 76 pp, National Institute for Environmental Studies, Tsukuba, Japan, 2010b.

Hastings, A., Clifton-Brown, J., Wattenbach, M., Mitchell, C. P., and Smith, P.: The development of MISCANFOR, a new
 Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions, GCB
 Bioenergy, 1, 154–170, https://doi:10.1111/j.1757-1707.2009.01007.x, 2009.

Heaton, E. A., Boersma, N., Caveny, J. D., Voigt, T. B., and Dohleman, F. G.: Miscanthus for biofuel production, available at: https://farm-energy.extension.org/miscanthus-miscanthus-x-giganteus-for-biofuel-production/, 2019.

Heaton, E. A., Dohleman, F. G., and Long, S. P.: Meeting US biofuel goals with less land: the potential of Miscanthus, Glob.
Change Biol., 14, 2000–2014, https://doi:10.1111/j.1365-2486.2008.01662.x, 2008.

- Heck, V., Gerten, D., Lucht, W., and Boysen, L. R.: Is extensive terrestrial carbon dioxide removal a 'green' form of geoengineering? A global modelling study, Glob. Planet. Change, 137, 123–130, https://doi:10.1016/j.gloplacha.2015.12.008, 2016.
- Heck, V., Gerten, D., Lucht, W., and Popp, A.: Biomass-based negative emissions difficult to reconcile with planetary
 boundaries, Nat. Clim. Change, 8, 151–155, https://doi:10.1038/s41558-017-0064-y, 2018.
- Hejazi, M. I., Voisin, N., Liu, L., Bramer, L. M., Fortin, D. C., Hathaway, J. E., Huang, M., Kyle, P., Leung, L. R., Li, H. Y., Liu, Y., Patel, P., Pulsipher, P. L., Rice, J. S., Tesfa, T. K., Vernon, C. R., Zhou, Y.: 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating, Proc. Natl. Acad. Sci. USA, 112(34), 10635–10640, https://doi.org/10.1073/pnas.1421675112, 2015.
- 520 Iizumi, T., Takikawa, H., Hirabayashi, Y., Hanasaki, N., and Nishimori, M.: Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes. JGR Atmospheres, 122, 7800-7819, https://doi.org/10.1002/2017JD026613, 2017. Kang, S., Nair, S. S., Kline, K. L., Nichols, J. A., Wang, D., Post, W. M., Brandt, C. C., Wullschleger, S. D., Singh, N., Wei, Y.: Global simulation of bioenergy crop productivity: analytical framework and case study for switchgrass, GCB Bioenergy,
- 6, 14–25, https://doi:10.1111/gcbb.12047, 2014.
 Lewandowski, I., Scurlock, J. M., Lindvall, E., and Christou, M.: The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe, Biomass Bioenerg., 25, 335–361, https://doi:10.1016/S0961-9534(03)00030-8, 2003.
- Li, W., Ciais, P., Makowski, D., and Peng, S.: A global yield dataset for major lignocellulosic bioenergy crops based on field
 measurements, Sci. Data, 5, 180169, https://doi:10.1038/sdata.2018.169, 2018a.
 - Li, W., Yue, C., Ciais, P., Chang, J., Goll, D., Zhu, D., Peng, S., and Jornet-Puig, A.: ORCHIDEE-MICT-BIOENERGY: an attempt to represent the production of lignocellulosic crops for bioenergy in a global vegetation model, Geosci. Model Dev., 11, 2249–2272, https://doi.org/10.5194/gmd-11-2249-2018, 2018b.

Li, W., Ciais, P., Stehfest, E., van Vuuren, D., Popp, A., Arneth, A., Di Fulvio, F., Doelman, J., Humpenöder, F., Harper, A.
B., Park, T., Makowski, D., Havlik, P., Obersteiner, M., Wang, J., Krause, A., and Liu, W.: Mapping the yields of

lignocellulosic bioenergy crops from observations at the global scale, Earth Syst. Sci. Data, 12, 789–804, https://doi.org/10.5194/essd-12-789-2020, 2020.

Madakadze, I. C., Stewart, K., Peterson, P. R., Coulman, B. E., Samson, R., and Smith, D. L.: Light interception, use-efficiency and energy yield of switchgrass (Panicum virgatum L.) grown in a short season area, Biomass Bioenerg., 15, 475–482, https://doi.org/10.1016/S0961-9534(98)00060-9, 1998.

Mclsaac, G. F., David, M. B., and Mitchell, C. A.: Miscanthus and switchgrass production in central Illinois: impacts on hydrology and inorganic nitrogen leaching, J. Environ. Qual., 39, 1790–1799, https://doi:10.2134/jeq2009.0497, 2010. Mo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y., and McVicar, T. R.: Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain, Ecol. Modell., 183, 301–

540

 545 322, https://doi:10.1016/j.ecolmodel.2004.07.032, 2005.
 Monteith, J. L., Moss, C. J., Cooke George, W., Pirie Norman, W., and Bell George Douglas, H.: Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London, B, Biol. Sci., 281, 277–294. https://doi:10.1098/rstb.1977.0140, 1977.

 Nichols, J., Kang, S., Post, W., Wang, D., Bandaru, V., Manowitz, D., and Zhang, X., Izaurralde, R.: HPC-EPIC for high
 resolution simulations of environmental and sustainability assessment, Comput. Electron. Agric., 79, 112–115, https://doi:10.1016/j.compag.2011.08.012, 2011.

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute, Texas, US, 2011.

Ojeda, J. J., Volenec, J. J., Brouder, S. M., Caviglia, O. P., and Agnusdei, M. G.: Evaluation of Agricultural Production Systems
 Simulator as yield predictor of *Panicum virgatum* and *Miscanthus x giganteus* in several US environments, GCB Bioenergy, 9, 796–816, https://doi:10.1111/gcbb.12384, 2017.

Oweis, T., Zhang, H., and Pala, M.: Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean environment, Agron. J., 92, 231–238, https://doi:10.2134/agronj2000.922231x, 2000.

Rose, S. K., Kriegler, E., Bibas, R., Calvin, K., Popp, A., van Vuuren, D. P., and Weyant, J.: Bioenergy in energy transformation and climate management, Clim. Change, 123, 477–493, https://doi:10.1007/s10584-013-0965-3, 2013.

Searle, S. Y., and Malins, C. J.: Will energy crop yields meet expectations?, Biomass Bioenerg., 65, 3–12, https://doi:10.1016/j.biombioe.2014.01.001, 2014.

Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, Volker., Shrestha,

G., Friedlingstein, P., Gasser, T., Grübler, A., Heidug, W. K., Jonas, M., Jones, C. D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J. R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., and Yongsung, C.: Biophysical and economic limits to negative CO2 emissions, Nat. Clim. Change, 6, 42–50, https://doi:10.1038/nclimate2870, 2015.

Trybula, E. M., Cibin, R., Burks, J. L., Chaubey, I., Brouder, S. M., and Volenec, J. J.: Perennial rhizomatous grasses as

bioenergy feedstock in SWAT: parameter development and model improvement, GCB Bioenergy, 7, 1185–1202, https://doi:10.1111/gcbb.12210, 2015.
 VanLoocke, A., Twine, T. E., Zeri, M., and Bernacchi, C. J.: A regional comparison of water use efficiency for *Miscanthus*,

switchgrass and maize, Agric. Forest Meteorol., 164, 82-95, http://dx.doi.org/10.1016/j.agrformet.2012.05.016, 2012.

van der Werf, H. M. G., Meijer, W. J. M., Mathijssen, E. W. J. M., and Darwinkel, A.: Potential dry matter production of
Miscanthus sinensis in the Netherlands, Ind. Crops Prod., 1, 203–210, https://doi:10.1016/0926-6690(92)90020-V, 1992.

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50(9), 7505–7514, https://doi.org/10.1002/2014WR015638, 2014.

Wu, W., Hasegawa, T., Ohashi, H., Hanasaki, N., Liu, J., Matsui, T., Fujimori, S., and Takahashi, K.: Global advanced bioenergy potential under environmental protection policies and societal transformation measures, GCB Bioenergy, 11(9),

1041-1055, https://doi.org/10.1111/gcbb.12614, 2019.

Yamagata, Y., Hanasaki, N., Ito, A., Kinoshita, T., Murakami, D., and Zhou, Q.: Estimating water-food-ecosystem trade-offs for the global negative emission scenario (IPCC-RCP2.6), Sustainability Sci., 13(2), 301–313, https://doi:10.1007/s11625-017-0522-5, 2018.

Yao, Y., Liang, S., Qin, Q., and Wang, K.: Monitoring drought over the conterminous United States using MODIS and NCEP Reanalysis-2 data, J. Appl. Meteorol. Climatol., 49(8), 1665–1680. https://doi:10.1175/2010jamc2328.1, 2010.
 Zeri, M., Hussain, M. Z., Anderson-Teixeira, K. J., Delucia, E., and Bernacchi, C. J.: Water use efficiency of perennial and annual bioenergy crops in central Illinois. J. Geophys. Res.: Biogeosciences, 118, 581–589. https://doi.org/10.1002/jgrg.20052, 2013.

590

Fig. 1 Schematic diagram showing the six submodules (a) and basic biophysical processes of the crop module (b) in the H08 model.

Fig. 2 Map showing the locations of the Miscanthus (red dots) and switchgrass (blue dots) sites under rainfed condition 600 and the Köppen climate zones. The specific categories are the 1 (light blue) tropical, 2 (light green) dry, 3 (light teal) temperate, 4 (light tan) continental, and 5 (light peach) polar climate zones.

Fig. 3 Overall comparison of the calibrated (Cal.) and observed (Obs.) yields for *Miscanthus* and switchgrass. The black
line is the 1:1 line.

Fig. 43 Overall comparison of the simulated (Sim.) and observed (Obs.) yields for *Miscanthus* and switchgrass,
 respectively. The simulated yields in (a) and (b) are from the original H08 model, whereas those in (c) and (d) are from the enhanced H08 model. The black line is the 1:1 line.

Fig. 54 Site-specific performance (presented with latitude increasing from the bottom of the vertical axis) and relative error of the simulated yield obtained using the enhanced H08 model compared with the observed yields for *Miscanthus* and switchgrass. The longitude and latitude of each location for *Miscanthus* and switchgrass are given in Tables S1 and S2, respectively. The thin "x" indicates the site's climate, where 1, 2, 3, and 4 refer to the tropical, dry, temperateure, and continental climate zones, respectively. Obs. means the observed mean yield. The black error black-bar in black color-represents the range of the observed minimum and maximum yield, respectively. The error-red or blue error bar

620 in red or blue color represents the range of the simulated minimum and maximum yield.the standard deviation of the simulated yield from 1979 to 2016.

Fig. 6 Site-specific performance (shown with increasing latitude from the bottom of the vertical axis) of the simulated yield (sim.) obtained using the enhanced H08 model compared with observed yields (obs.) for *Miscanthus* (mis.) and switchgrass (swc.) under irrigated condition. The longitude and latitude of each location ID for *Miscanthus* and switchgrass are given in Table S3. Obs. indicates the observed mean yield. The black error bar represents the range of the observed minimum and maximum yield. The red or blue error bar represents the range of the simulated minimum and maximum yield.

Fig. 765 An independent country-specific comparison of the yield simulated yield by the enhanced H08 model with those of three other models (MISCANMOD, HPC-EPIC, and LPJmL) for *Miscanthus* (a, d), switchgrass (b, e), and their combination (c, f), respectively. The H08 in (c, f) indicates the average yield of *Miscanthus* and switchgrass, and the upper and lower error bars in (c) represent the yields for *Miscanthus* and switchgrass, respectively.

Fig. 8 Comparison of the yield difference (simulated yields minus RF yields) between model simulations and the RF map (Li et al., 2020): a) for *Miscanthus* with the yield from H08 minus that from RF, b) for *switchgrass* with the yield from H08 minus that from RF, c) for the mean of *Miscanthus* and switchgrass with the yield from H08 minus that from RF, d) the ensemble yield of *Miscanthus* and switchgrass with the yield from RF.

Fig. 9876 Spatial distributions of the simulated yields (exceeds 2 Mg ha⁻¹ yr⁻¹) for *Miscanthus* (a, c) and switchgrass (b,
d) under rainfed (a, b) and irrigated (c, d) conditions, respectively. The units for the legends is are Mg ha⁻¹ yr⁻¹.

Fig. 10987 Variations in the average yield (a), crop water consumption (b), and water use efficiency (WUE) (c) for of *Miscanthus* and switchgrass under rainfed and irrigated conditions in four different Köppen climate zones (tropical,

dry, temperate, and continental climates) based on meteorology data collected from 1979 to 2016. The abbreviations *M*. and *S*. in the legend denote *Miscanthus* and switchgrass, respectively.

Parameter abbreviation	Full name	Physical meaning		
Uun	-	The value of potential heat units required for		
riuli	Potential heat unit	the maturity of the crop		
		The potential growth rate per unit of		
be	Radiation use efficiency	intercepted photosynthetically active		
		radiation		
То	Optimum temperature	The optimal temperature for plant growth		
Tb	Base temperature	The base temperature for plant growth		
blai	Maximum leaf area index	The maximum potential leaf area index		
dlai	Fraction of growing season	Same as the full name		
	when grown declines	First point on the optimal leaf area		
4-11	Committee much out	development curve. Before decimal: fraction		
apii	Complex number1	of growing season, after decimal: max		
		corresponding LAI.		
		Before decimal: fraction of growing season,		
della	Complex symbol	after decimal: max corresponding LAI.		
upiz	Complex humber2	Second point on the optimal leaf area		
		development curve.		
rdmx	Maximum Rooting Depth	Same as the full name		
Hunmay	Maximum daily	Same as the full name		
Hummax	accumulation of temperature	Same as the full hame		
TSAW	Minimum temperature for	Same as the full name		
	planting	Same as the full hame		

Bioenergy crop	Parameter	Old value	New v¥alue	Source
	Hun	9999	1,830	Trybula et al., (2015)
	be	39	38	Calibrated
	То	30	25	Trybula et al., (2015); Hastings et al.,
	10	50	23	(2009)
	Tb	10	8	Calibrated
Missauthus	blai	11.5	11	Calibrated
Miscaninus	dlai	0.85	1.1	Trybula et al., (2015)
	dpl1	10.2	10.1	Trybula et al., (2015)
	dpl2	50.95	45.85	Trybula et al., (2015)
	rdmx	4	3	Trybula et al., (2015)
	Hunmax	12.5	11.5	Calibrated
	TSAW	10.0	8.0	Calibrated
	Hun	9999	1,400	Trybula et al., (2015)
	be	47	22	Calibrated
	То	25	25	Trybula et al., (2015)
	Tb	12	10	Calibrated
	blai	6	8	Calibrated
Switchgrass	dlai	0.7	1	Trybula et al., (2015)
	dpl1	10.2	10.1	Trybula et al., (2015)
	dpl2	20.95	40.85	Trybula et al., (2015)
	rdmx	2.2	3	Trybula et al., (2015)
	Hunmax	12.5	15.5	Calibrated
	TSAW	10.0	8.0	Calibrated

Bioenergy crop	Parameter	Range	Increment <mark>Step</mark>	Unit	Reference
					Clifton-Brown et al., (2000); van
					der Werf et al., (1992); Beale and
	be	(30, 40)	2	$g \; MJ^{\text{-}1} \times 10$	Long, (1995); Heaton et al.,
					(2008); Trybula et al., (2015)
Miscanthus	h1-:	(0, 11)	1	22	Heaton et al., (2008); Trybula et
	blai	(9,11)	1	m-m-	al., (2015)
	Tb	(7,9)	1	°C	Beale et al., (1996); Trybula et al.,
					(2015)
	Hunmax	(11.5, 16.5)	1	°C	H08 Endogenous variable
	TSAW	(8, 10)	1	°C	H08 Endogenous variable
	be	(12, 22)	2	α MI ⁻¹ × 10	Heaton et al., (2008); Madakadze
		(12, 22)	2	g wij × 10	et al., (1998); Trybula et al., (2015)
					Trybula et al., (2015); Giannoulis
Switchgrass	blai	(6, 8)	1	$m^2 m^{-2}$	et al., (2016); Madakadze et al.,
					(1998); Heaton et al., (2008)
	Tb	(8, 10)	1	°C	Trybula et al., (2015)
	Hunmax	(11.5, 16.5)	1	°C	H08 Endogenous variable
	TSAW	(8, 10)	1	°C	H08 Endogenous variable

Supplementary material for:

Enhancement and validation of the state of the art global hydrological model H08 (v.bio1) to sSimulatinge second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)

Zhipin Ai¹, Naota Hanasaki¹, Vera Heck², Tomoko Hasegawa³, Shinichiro Fujimori⁴

²Potsdam Institute for Climate Impact Research, Telegraphenberg A 31, Potsdam 14473, Germany

³Department of Civil and Environmental Engineering, Ritsumeikan University, 56-1, Toji-in Kitamachi, Kita-ku, Kyoto 603-8577, Japan

⁴Department of Environmental Engineering, Kyoto University, Building C1-3, C-cluster, Kyoto-Daigaku-Katsura, Nishikyoku, Kyoto 615-8504, Japan

Correspondence to: Zhipin Ai (ai.zhipin@nies.go.jp)

¹Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba 305-8506, Japan

ID	Water management	Model	Meteorological dataset	Purpose
1	Rainfed	Original model	WFDEI	To evaluate the performance of the original H08.
2	Rainfed	Enhanced model	WFDEI	To evaluate the performance of the enhanced H08 under rainfed condition. To calculate water use efficiency.
3	Irrigated	Enhanced model	WFDEI	To evaluate the performance of the enhanced H08 under irrigated condition. To calculate water use efficiency.
4	Rainfed	Enhanced model	S14FD	To investigate the variability of the result.

ID	Country	Longitude	Latitude	Minimum yield [t ha ⁻¹ yr ⁻¹]	Maximum yield [t ha ⁻¹ yr ⁻¹]	Mean yield [t ha ⁻¹ yr ⁻¹]	Reference
1	Indonesia	107.70	-7.00	31.9	31.9	31.9	Blair et al. 1986
2	US	-97.10	36.10	12.4	13.1	12.8	Aravindhakshan et al. 2010
3	US	-88.67	37.45	18.0	42.3	30.2	Arundale et al., 2014a, 2014b; Heaton et al., 2008
4	Turkey	33.23	38.17	1.50	13.19	7.0	Acaroğlu and Aksoy, 2005
5	US	-88.39	38.38	19.00	47.00	31.4	Arundale et al., 2014a, 2014b; Heaton et al., 2008
6	US	-90.82	39.81	12.00	36.00	25.0	Arundale et al., 2014a, 2014b; Heaton et al., 2008
7	US	-88.23	40.08	22.0	45.5	33.8	Arundale et al., 2014a; Heaton et al., 2008
8	US	-88.19	40.17	17.00	24.10	20.6	Wang et al., 2012
9	US	-88.85	41.85	5.00	29.90	17.3	Arundale et al., 2014a, 2014b; Heaton et al. 2008
10	Italy	10.32	43.67	9.00	48.00	26.2	Angelini et al., 2009; Ercoli et al., 1999; o Di Nasso et al., 2011
11	Switzerland	9.13	47.57	14.00	14.00	14.0	Poeplau and Don, 2014
12	Germany	10.00	48.00	20.00	20.00	20.0	Lewandowski and Heinz, 2003
13	Austria	14.22	48.11	15.50	24.50	20.0	Schwarz, 1993
14	Germany	9.97	48.13	12.70	16.50	15.0	Lewandowski and Kicherer, 1997
15	Austria	14.15	48.14	13.20	24.40	18.8	Schwarz, 1993
16	Austria	16.39	48.18	0.80	21.50	12.5	Schwarz, 1993
17	Austria	15.55	48.19	2.00	23.84	14.9	Schwarz, 1993; Schwarz et al., 1994a
18	Austria	15.00	48.30	17.4	24.5	21.0	Schwartz, 1993
19	Germany	11.54	48.31	0.41	20.88	12.6	Schwarz et al., 1994b
20	Germany	10.26	48.49	1.11	23.42	13.4	Schwarz et al., 1994b
21	Germany	11.63	48.60	0.28	20.43	10.2	Schwarz et al., 1994b
22	Germany	9.00	48.70	19.9	26.4	23.2	Clifton-Brown et al., 2001a
23	Germany	8.93	48.73	14.50	18.00	16.3	Boehmel et al., 2008
24	Germany	8.92	48.75	5.60	30.50	13.7	Gauder et al., 2012
25	Germany	9.19	48.78	0.51	22.54	11.2	Schwarz et al., 1994b
26	Germany	8.10	49.00	17.00	17.00	17.0	Lewandowski el al., 2003
27	Germany	6.72	49.82	15.00	15.00	15.0	Poeplau and Don, 2014
28	France	3.00	49.87	19.00	28.00	23.1	Strullu et al., 2011
29	France	3.01	49.87	14.30	28.40	22.2	Cadoux et al., 2014
30	Germany	9.90	49.90	6.2	19.8	13.0	Kahle et al., 2001
31	Germany	10.77	50.97	15.00	15.00	15.0	Poeplau and Don, 2014
32	Blegium	3.80	51.00	0.50	25.70	12.1	Muylle et al., 2015
33	UK	-1.26	51.10	0.80	23.50	14.5	Price et al., 2004
34	Poland	22.63	51.23	0.44	29.43	13.1	Borkowska and Molas, 2013
35	Germany	6.70	51.50	17.5	28.8	23.2	Heaton et al. 2008
36	Germany	6.70	51.52	1.00	20.70	12.5	Himken et al., 1997
37	Germany	7.62	51.78	1.47	18.44	10.0	Schwarz et al., 1994b
38	UK	-0.40	51.80	9.8	17.8	13.8	Christian et al. 2008
39	UK	-2.64	51.80	13.00	24.00	18.0	Price et al., 2004
40	UK	-0.35	51.80	0.10	18.70	9.1	Clifton-Brown et al., 2001a
41	UK	-0.36	51.82	12.00	14.50	12.9	Richter et al., 2008

42	UK	-0.62	52.01	13.70	16.20	15.0	Richter et al., 2008
43	UK	-0.03	52.25	0.20	17.00	10.6	Price et al., 2004
44	Poland	16.92	52.42	5.50	23.70	11.2	Jezowski, 2008; Jezowski et al., 2011
45	UK	0.09	52.42	11.50	22.50	18.4	Price et al., 2004
46	UK	-4.02	52.43	0.30	17.20	10.6	Zatta et al., 2014
47	Germany	10.80	52.60	8.8	13.5	11.2	Kahle et al. 2001
48	Germany	8.26	52.61	2.10	20.02	10.1	Schwarz et al., 1994b
49	Germany	10.81	52.62	3.72	23.89	14.2	Schwarz et al., 1994b
50	Ireland	-7.83	52.65	4.20	16.30	11.5	Clifton-Brown et al., 2001b
51	Ireland	-7.27	52.67	2.00	15.80	9.4	Clifton-Brown et al., 2001b
52	Germany	8.81	52.68	3.46	19.01	9.6	Schwarz et al., 1994b
53	Netherlands	7.06	52.88	21.8	21.8	21.8	van der Werf et al. 1993
54	UK	-3.78	53.22	14.90	22.20	18.6	Price et al., 2004
55	Netherlands	6.95	53.30	13.00	13.00	13.0	Poeplau and Don, 2014
56	Poland	19.38	53.78	5.80	28.00	13.8	Jezowski et al., 2011
57	Germany	12.60	53.90	7.5	12.6	10.1	Kahle et al. 2001; Beuch et al., 2000
58	UK	-1.11	54.12	0.50	13.00	7.8	Price et al., 2004
59	UK	-0.64	54.12	0.50	16.00	7.3	Price et al., 2004
60	Denmark	9.12	54.90	6.20	14.00	10.0	Schwarz et al., 1994b
61	Sweden	14.00	56.00	0.10	24.70	6.6	Clifton-Brown et al., 2001a
62	UK	-3.06	56.46	10.20	10.20	10.2	Richter et al., 2008
63	Denmark	9.60	56.50	9.7	16.8	13.3	Clifton-Brown et al. 2001a, 2004; Lewandowski el al., 2003
64	Denmark	9.40	56.80	7.7	8.9	8.3	Jørgensen, 1997

Table S32. Location and	l yield of the sites	for switchgrass	(specified in Fig. 4) under rainfed condition.
	2	U		/

ID	Country	Longitude	Latitude	Minimum yield [t ha ⁻¹ yr ⁻¹]	Maximum yield [t ha ⁻¹ yr ⁻¹]	Mean yield [t ha ⁻¹ yr ⁻¹]	Reference
1	US	-97.70	28.45	4.50	13.00	7.8	Muir et al., 2001
2	US	-89.94	30.30	6.00	16.00	10.1	Arundale et al., 2014a, 2014b; Heaton et al., 2008
3	US	-87.32	32.00	1.52	12.07	5.9	Bransby et al., 1990
4	US	-98.20	32.23	1.50	21.50	9.9	Muir et al., 2001; Sanderson et al., 1999
5	US	-85.90	32.44	3.71	34.60	11.3	Ma et al., 2001; Sladden et al., 1991
6	US	-85.65	32.82	3.43	9.67	7.0	Bransby et al., 1990
7	US	-87.87	33.88	0.44	13.39	8.4	Bransby et al., 1990
8	US	-85.97	34.28	2.04	9.93	5.9	Bransby et al., 1990
9	US	-88.90	35.60	7.8	16.9	12.4	Lemus, 2004
10	US	-78.70	35.70	5.1	16.7	10.9	Lemus, 2004
11	US	-83.95	35.88	11.40	23.20	18.0	Reynolds et al., 2000
12	US	-84.00	35.90	11.2	24.9	18.1	Lemus, 2004
13	US	-97.07	36.12	8.31	13.82	11.0	Aravindhakshan et al., 2011
14	China	109.32	36.85	2.36	16.55	8.6	Xu et al., 2005, 2008
15	US	-78.23	36.92	5.20	8.60	7.5	Parrish et al., 1990
16	US	-87.80	37.10	8.4	17.0	12.7	Lemus, 2004
17	US	-80.40	37.20	9.5	27.4	18.5	Lemus, 2004
18	US	-88.67	37.45	7.80	18.00	11.2	Arundale et al., 2014a, 2014b; Heaton et al., 2008
19	China	118.49	37.46	3.46	4.51	3.8	Gao et al., 2016:
20	US	-77.97	38.02	7.00	16.20	11.6	Parrish et al., 1990:
21	US	-78.10	38.20	11.2	20.4	15.8	Lemus, 2004
22	US	-88.39	38.38	4.00	16.00	11.4	Arundale et al., 2014a, 2014b; Heaton et al., 2008
23	US	-88.96	38.95	4.00	15.00	9.7	Arundale et al., 2014a; Heaton et al., 2008
24	China	113.18	39.55	4.40	9.30	6.9	Xiong et al., 2008
25	US	-79.90	39.60	12.8	20.5	16.7	Lemus, 2004
26	US	-90.82	39.81	8.00	15.00	10.3	Arundale et al., 2014a, 2014b; Heaton et al., 2008
27	US	-75.38	39.92	2.82	12.50	7.0	Stout et al., 1988
28	US	-96.77	39.99	1.90	15.69	6.2	Sanderson et al., 1999
29	US	-88.23	40.08	10.60	18.00	14.1	Arundale et al., 2014a; Heaton et al., 2008
30	China	116.12	40.19	4.20	5.90	5.2	Hou et al., 2010
31	US	-78.00	40.70	3.3	9.4	6.4	Sanderson, 2008
32	US	-93.42	40.97	5.80	17.40	10.2	Anderson et al., 1994
33	US	-93.40	41.00	6.8	13.1	10.0	Lemus et al., 2002
34	US	-83.07	41.37	2.30	7.70	5.1	Wright, 1990; Wright and Turhollow, 2010
35	US	-83.05	41.50	3.00	9.00	5.4	Wright, 1990; Wright and Turhollow, 2010 Arundale et al. 2014a, 2014b: Heaton
36	US	-88.85	41.85	4.00	14.10	9.0	et al., 2008
37	US	-88.90	41.90	10.4	12.5	11.5	Heaton et al., 2008
38	US	-100.00	42.00	5.0	7.4	6.2	Schmer et al., 2010
39	US	-93.77	42.02	4.90	15.90	9.6	Anderson et al., 1994
40	US	-76.45	42.45	0.89	13.11	6.7	Pfeifer et al., 1990

41	US	-77.00	42.87	1.17	7.60	4.4	Pfeifer et al., 1990
42	US	-99.80	43.70	0.8	5.9	3.4	Mulkey et al., 2006
43	US	-100.00	44.00	4.2	8.8	6.5	Schmer et al., 2010
44	US	-96.70	44.20	1.0	6.0	3.5	Mulkey et al., 2006
45	US	-100.00	44.28	5.00	5.00	5.0	Hong et al., 2013
46	US	-96.77	44.32	7.50	7.50	7.5	Hong et al., 2013
47	Italy	11.50	44.40	7.9	11.5	9.7	Di Virgilio et al., 2007
48	US	-73.75	45.47	1.65	17.21	9.6	Madakadze et al., 1998a, 1998b, 1998c; 1999
49	US	-95.88	45.60	4.80	4.80	4.8	Hong et al., 2013
50	US	-97.23	46.65	3.50	12.80	9.4	Meyer et al., 1994
51	US	-97.02	46.95	7.30	10.30	9.0	Meyer et al., 1994
52	US	-100.00	47.00	5.6	5.8	5.7	Schmer et al., 2010
53	Germany	8.93	48.73	8.00	14.00	11.3	Meyer et al., 1994
54	Blegium	3.80	51.00	2.50	15.90	9.9	Muylle et al., 2015
55	UK	-0.35	51.80	1.19	13.97	6.8	Christian et al., 2002

Table S43. Location and yield of the sites for *Miscanthus* and switchgrass (specified in Fig. S1) under irrigated condition.

ID	Country	Longitude	Latitude	Minimum yield [t ha ⁻¹ yr ⁻¹]	Maximum yield [t ha ⁻¹ yr ⁻¹]	Mean yield [t ha ⁻¹ yr ⁻¹]	Reference
1	China	108.06	34.27	3.5	44.2	16.7	Ma et al., 2011
2	China	106.47	36.01	2.8	10.6	6.2	Ma et al., 2011
3	Italy	14.35	37.38	1.2	30.6	18.0	Mantineo et al., 2009
4	Italy	15.06	37.42	3.9	27.0	16.7	Cosentino et al., 2007
5	Turkey	32.5	38.0	12.0	13.2	12.6	Acarglu and Aksoy, 2005
6	Portugal	-9.22	38.72	4.6	37.8	17.1	Clifton-Brown et al., 2001a
7	Greece	22.75	39.40	20.0	31.4	25.6	Danalatos et al., 2007
8	France	3.00	49.88	4.8	32.5	7.7	Zub et al., 2011
9	UK	0.40	51.70	8.3	19.7	14.0	Beale and Long, 1995
10	UK	0.43	51.73	19.4	19.4	19.4	Beale and Long, 1995
Table S5. Sensitivity analysis results of the parameters for (a) Miscanthus and (b) switchgrass

Parameter	Sensitivity index		
	Miscanthus	switchgrass	
be	0.60	1.27	
Tb	0.40	0.66	
blai	0.03	0.17	
Hunmax	0.21	0.02	
TSAW	0.07	0.00	

Fig. S1 Variation of the RMSE and corresponding R for the calibration.

Fig. S1 Site-specific performance (shown with increasing latitude from the bottom of the vertical axis) of the simulated yield (sim.) obtained using the enhanced H08 model compared with observed yields (obs.) for *Miscanthus* (mis.) and switchgrass
(swe.) under irrigated condition. The longitude and latitude of each location ID for *Miscanthus* and switchgrass are given in Tables S3. Observation indicates the observed mean yield. The error bar (in black) represents the range of the observed minimum and maximum yield. The error bar (in red) represents the standard deviation of the simulated yield from 1979 to 2016.

Fig. S2 Box plots showing the first (lower line), median (solid line) and third (upper line) quartiles of the yield for observed (OBS.) and simulated (with meteorological data driven by WFDEI and S14FD) *Miscanthus* and Switchgrass. The mean value is indicated by the red line.

Fig. S3 Independent country-specific comparison of simulated yields from the enhanced H08 model and LPJmL under irrigated conditions.

50 Fig. S4 Country-specific comparison of the simulated yields of *Miscanthus* and Switchgrass from the enhanced H08 model with the ensemble yield of LPJmL under rainfed (a) and irrigated conditions (b), respectively.

Fig. S5 Spatial distribution of averaged annual precipitation (mm yr⁻¹) from 1979 to 2016.

55 Fig. S6 Five different kinds of Köppen climate zones based on the average meteorological data from 1979 to 2016. The specific categories are as follows: 1 (dark blue) for tropical climate zone; 2 (light blue) for dry climate zone; 3 (green) for temperature climate zone; 4 (yellow) for continental climate zone; 5 (red) for polar climate zone.

Fig. S7 Comparison of yield difference (simulated yield minus RF yields) between model simulations and the RF map (Li et
 al., 2020): a) for *Miscanthus* with the yield from H08 minus that from RF, b) for *Switchgrass* with the yield from H08 minus that from RF, c) for the mean of *Miscanthus* and Switchgrass with the yield from H08 minus that from RF, d) the ensemble yield of *Miscanthus* and Switchgrass with the yield from LPJml minus that from RF.

A brief description of the algorithms in crop growth sub-module of H08

To make it clear for the function of the parameters we calibrated, here we briefly describe the algorithms in the crop growth

65 sub-module of H08. The crop module of H08 accumulates daily heat units (Huna(t)), which are expressed as the daily mean air temperature (T_{α}) greater than the plant's specific base temperature (Tb; given as a crop specific parameter):

 $Huna(t) = T_a - Tb$ (1)

Then the heat unit index (*Ihun*) is calculated as the ratio of accumulated daily heat units $\sum Huna(t)$ and the potential heat unit (Hun):

(2)

(4)

70

 $\frac{Hun}{Hun} = \frac{\sum Huna(t)}{Hun}$

When the accumulated daily heat units $\Sigma Huna(t)$ reach the potential heat unit (Hun) required for the maturity of the crop, the crop is mature and is harvested. During the growth period, the daily increase in biomass (ΔB) is calculated using a simple photosynthesis model:

 $\Delta B = be * PAR * REGF$ (3)

75 Where be is radiation use efficiency, PAR is photosynthetically active radiation, and REGF is the crop regulating factor. PAR is calculated using shortwave radiation (Rs) and leaf area index (LAI) as follow:

PAR = 0.02092 * Rs * [1 - exp (-0.65 * LAI)]

LAI is calculated according to the growth stage indicated by *Ihun*, if *Ihun* < \dpl1 + 0.01,

$IAI = \frac{(dpl1-dpl1-)*hun}{dpl1-dpl1-)*hun} * blai$	(5)
Ldpl1+0.01	(5)

 $if \lfloor dpl1 \rfloor * 0.01 \leq Ihun < \lfloor dpl2 \rfloor * 0.01,$ 80

> $LAI = \left\{ \left(dpl1 - \lfloor dpl1 \rfloor \right) + \frac{\left[\left(dpl2 - \lfloor dpl2 \rfloor \right) - \left(dpl1 - \lfloor dpl1 \rfloor \right) \right] * \left(lhun - \lfloor dpl1 \rfloor * 0.01 \right)}{\lfloor dpl2 \rfloor * 0.01 - \lfloor dpl1 \rfloor * 0.01} \right\} * blai$ (6)

if $|dpl2| * 0.01 \leq Ihun < dlai$,

 $LAI = \left\{ \left(dpl2 - \lfloor dpl2 \rfloor \right) + \frac{\left[1 - \left(dpl2 - \lfloor dpl2 \rfloor \right)\right] * \left(lhun - \lfloor dpl2 \rfloor * 0.01 \right)}{dlai - \lfloor dpl2 \rfloor * 0.01} \right\} * blai$ (7)

85	$LAI = 16 * blai \left(1 - Ihun\right)^2$	(8)
	REGF is calculated as:	
	REGF = min (Ts, Ws, Ns, Ps)	(9)
	Where <i>Ts</i> , <i>Ws</i> , <i>Ns</i> , <i>Ps</i> is respectively the stress factors for temperature, water, nitrogen, and phosphorous. Temperature str	ess
	(Ts) is calculated as an asymmetrical function according to the relationship between air temperature (Ta) and optim	nal
90	temperature (To). When air temperature is below (or equal) optimal temperature (To), Ts is calculated as:	
	$Ts = exp\{ln(0.9) * [\frac{ctsl(To-Ta)}{Ta}]^2\} $ (10)
	Where <i>Ctsl</i> is the temperature stress parameter for temperature below to, and is calculated as:	
	$Ctsl = \frac{To+Tb}{To-Tb} \tag{(}$	11)
	When air temperature is above optimal temperature, <i>Ts</i> is calculated as:	
95	$T_{S} = exp\{ln(0.9) * [\frac{(To - Ta)}{Ctsh}]^{2}\} $ (12)
	Where <i>Ctsh</i> is the temperature stress parameter for temperature below to, and is calculated as:	
	$Ctsh = 2 * To - Ta - Tb \tag{(}$	13)
	Water stress (Ws) is calculated as the ratio of actual evapotranspiration (Ea) to potential evapotranspiration (Ep) as:	
	$W_S = \frac{Ea}{Ep} \tag{(1)}$	14)
100	As for nitrogen and phosphorous stress, currently we take it as neglectable since the bioenergy crop yield simulated by H00	8 is
	with no constrains of nutrient.	
	The crop yield (Yld) is finally estimated by the aboveground biomass (Bag) with crop specific harvest index (Harvest)) at
	the harvesting date as:	

 $Bag = [1 - (0.4 - 0.2 * Ihun)] \Sigma \Delta B$

(15)

Where WSF is a ratio of SWU (the accumulated actual plant transpiration in the second half of the growing season), and SWP (the accumulated potential evapotranspiration accumulated actual plant transpiration):

 $WSF = \frac{SWU}{SWD} * 100$

110 Reference

Acaroğlu, M. & Aksoy, A. Ş. The cultivation and energy balance of Miscanthus×giganteus production in Turkey. Biomass and Bioenergy 29, 42–48 (2005).

Anderson, I. C., Buxton, D. R. & Hallam, J. A. Selection of herbaceous energy crops for the western corn belt. Oak Ridge National Lab., TN (United States), (1994).

Angelini, L. G., Ceccarini, L., o Di Nasso, N. N. & Bonari, E. Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass and bioenergy 33, 635–643 (2009).

Aravindhakshan, S. C., Epplin, F. M., Taliaferro, C. M. Economics of switchgrass and miscanthus relative to coal as feedstock for generating electricity. Biomass Bioenerg 34(9): 1375-1383 (2010).

Aravindhakshan, S. C., Epplin, F. M. & Taliaferro, C. M. Switchgrass, Bermudagrass, Flaccidgrass, and Lovegrass biomass yield response to nitrogen for single and double harvest. biomass and bioenergy 35, 308–319 (2011).
 Arundale, R. A. et al. Yields of Miscanthus× giganteus and Panicum virgatum decline with stand age in the Midwestern USA. Gcb Bioenergy 6, 1–13 (2014a).

Arundale, R. A., Dohleman, F. G., Voigt, T. B. & Long, S. P. Nitrogen fertilization does significantly increase yields of stands

of Miscanthus× giganteus and Panicum virgatum in multiyear trials in Illinois. BioEnergy Res. 7, 408–416 (2014b).
 Beale, C. V & Long, S. P. Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates?
 Plant. Cell Environ. 18, 641–650 (1995).

Beuch, S., Boelcke, B. & Belau, L. Effect of the organic residues of Miscanthus× giganteus on the soil organic matter level of arable soils. J. Agron. Crop Sci. 184, 111–120 (2000).

Blair Gl, Ivory DA, Evans TR. Forages in Southeast Asian and South Pacific agriculture: proceedings of an international workshop held at Cisarua, Indonesia,19-23 August 1985, ACIAR Proceedings 1986. 12
 Boehmel, C., Lewandowski, I. & Claupein, W. Comparing annual and perennial energy cropping systems with different management intensities. Agric. Syst. 96, 224–236 (2008).

(16)

(17)

Borkowska, H. & Molas, R. Yield comparison of four lignocellulosic perennial energy crop species. Biomass and bioenergy

135 51, 145–153 (2013).

Bransby, D. I., Sladden, S. E. & Kee, D. E. Selection and improvement of herbaceous energy crops for the southeastern USA.
(Oak Ridge National Lab., TN (USA); Auburn Univ., AL (USA). Dept. of Agronomy and Soils, 1990).
Cadoux, S. et al. Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. Gcb Bioenergy 6, 425–438 (2014).

- Christian, D. G., Riche, A. B. & Yates, N. E. The yield and composition of switchgrass and coastal panic grass grown as a biofuel in Southern England. Bioresour. Technol. 83, 115–124 (2002).
 Christian, D. G., Riche, A. B. & Yates, N. E. Growth, yield and mineral content of Miscanthus× giganteus grown as a biofuel for 14 successive harvests. Ind. Crops Prod. 28, 320–327 (2008).
 Clifton-Brown, J. C. et al. Performance of 15 genotypes at five sites in Europe. Agron. J. 93, 1013–1019 (2001a).
- Clifton-Brown, J. C., Jones, M. B. & Breuer, J. Yield performance of M.× giganteus during a 10 year field trial in Ireland. Asp.
 Appl. Biol. 153–160 (2001b).

Clifton-brown, J. C., Stampfl, P. F. & Jones, M. B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Chang. Biol. 10, 509–518 (2004).

Cosentino, S. L., Patane, C., Sanzone, E., Copani, V. & Foti, S. Effects of soil water content and nitrogen supply on the
 productivity of Miscanthus× giganteus Greef et Deu. in a Mediterranean environment. Ind. Crops Prod. 25, 75–88 (2007).
 Danalatos, N. G., Archontoulis, S. V & Mitsios, I. Potential growth and biomass productivity of Miscanthus× giganteus as affected by plant density and N-fertilization in central Greece. Biomass and Bioenergy 31, 145–152 (2007).

Di Virgilio N, Monti A, Venturi G. Spatial variability of switchgrass (Panicum virgatumL.) yield as related to soil parameters in a small field. Field Crop Res. 101(2), 232–239 (2007)

- Ercoli, L., Mariotti, M., Masoni, A. & Bonari, E. Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. F. Crop. Res. 63, 3–11 (1999).
 Gao, L., Liu, J., Deng, B., Yang, F. & Zhang, Y. Effects of nitrogen level and harvest time on biomass yield and energy characteristics of switchgrass. Pratacultural Sci. 33, 110–115, [in Chinese] (2016).
 Gauder, M., Graeff-Hönninger, S., Lewandowski, I. & Claupein, W. Long-term yield and performance of 15 different
- Miscanthus genotypes in southwest Germany. Ann. Appl. Biol. 160, 126–136 (2012).
 Heaton, E. A., Dohleman, F. G. & Long, S. P. Meeting US biofuel goals with less land: the potential of Miscanthus. Global Chang. Biol. 14, 2000–2014 (2008).

Himken M, Lammel J, Neukirchen D, Czypionka-Krause U, Olfs H-W. Cultivation of Miscanthus under West European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil. 189(1), 117-26 (1997).

165 Hong, C. O., Owens, V. N., Lee, D. K. & Boe, A. Switchgrass, big bluestem, and indiangrass monocultures and their two-and three-way mixtures for bioenergy in the Northern Great Plains. BioEnergy Res. 6, 229–239 (2013). Hou, X., Fan, X., Zuo, H., Wu, J. & Li, Z. Effects of nitrogen fertilizer on the growth characteristics and biomass yield of bioenergy grasses on abandoned sand excavation lands. Acta Agrestia Sin. 18, 268-279, [in Chinese] (2010). Jeżowski, S. Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind. Crops Prod. 27, 65-170

68 (2008).

Jeżowski, S., Głowacka, K. & Kaczmarek, Z. Variation on biomass yield and morphological traits of energy grasses from the genus Miscanthus during the first years of crop establishment. Biomass and Bioenergy 35, 814-821 (2011). Jørgensen, U. Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass and Bioenergy 12, 155-169 (1997).

- 175 Kahle, P., Beuch, S., Boelcke, B., Leinweber, P. & Schulten, H.-R. Cropping of Miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter. Eur. J. Agron. 15, 171-184 (2001). Lemus R, Brummer EC, Moore KJ, Molstad NE, Burras CL, Barker MF. Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass Bioenerg. 23(6), 433-42 (2002). Lemus RW. Switchgrass as an Energy Crop: Fertilization, Cultivar, and Cutting Management. Dissertation 2004
- 180 Lewandowski, I. & Heinz, A. Delayed harvest of miscanthus-influences on biomass quantity and quality and environmental impacts of energy production. Eur. J. Agron. 19, 45-63 (2003). Lewandowski, I. & Kicherer, A. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. Eur. J. Agron. 6, 163–177 (1997).

Lewandowski, I. et al. Environment and harvest time affects the combustion qualities of genotypes. Agron. J. 95, 1274–1280

185 (2003).

195

Ma, Y., An, Y., Shui, J. & Sun, Z. Adaptability evaluation of switchgrass (Panicum virgatum L.) cultivars on the Loess Plateau of China. Plant Sci. 181, 638-643 (2011).

Ma, Z., Wood, C. W. & Bransby, D. I. Impact of row spacing, nitrogen rate, and time on carbon partitioning of switchgrass. Biomass and Bioenergy 20, 413–419 (2001).

190 Madakadze, I. C. et al. Leaf area development, light interception, and yield among switchgrass populations in a short-season area. Crop Sci. 38, 827-834 (1998a).

Madakadze, I. C. et al. Light interception, use-efficiency and energy yield of switchgrass (Panicum virgatum L.) grown in a short season area. Biomass and Bioenergy 15, 475-482 (1998b).

Madakadze, I. C., Coulman, B. E., Mcelroy, A. R., Stewart, K. A. & Smith, D. L. Evaluation of selected warm-season grasses for biomass production in areas with a short growing season. Bioresour. Technol. 65, 1–12 (1998c).

Madakadze, I. C., Stewart, K. A., Peterson, P. R., Coulman, B. E. & Smith, D. L. Cutting frequency and nitrogen fertilization effects on yield and nitrogen concentration of switchgrass in a short season area. Crop Sci. 39, 552–557 (1999). Mantineo, M., D'agosta, G. M., Copani, V., Patanè, C. & Cosentino, S. L. Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. F. Crop. Res. 114, 204–213 (2009).

- Meyer, D. W. Evaluation of herbaceous biomass crops in the northern Great Plains. (1994).
 Muir, J. P., Sanderson, M. A., Ocumpaugh, W. R., Jones, R. M. & Reed, R. L. Biomass production of 'Alamo'switchgrass in response to nitrogen, phosphorus, and row spacing. Agron. J. 93, 896–901 (2001).
 Mulkey V, Owens V, Lee D. Management of switchgrass-dominated Conservation Reserve Program lands for biomass production in South Dakota. Crop Sci. 46(2), 712-20 (2006).
- 205 Muylle, H. et al. Yield and energy balance of annual and perennial lignocellulosic crops for bio-refinery use: a 4-year field experiment in Belgium. Eur. J. Agron. 63, 62–70 (2015).

o Di Nasso, N. N., Roncucci, N., Triana, F., Tozzini, C. & Bonari, E. Seasonal nutrient dynamics and biomass quality of giant reed (Arundo donax L.) and miscanthus (Miscanthus x giganteus Greef et Deuter) as energy crops. Ital. J. Agron. 6, 24 (2011). Parrish, D. J., Wolf, D. D., Daniels, W. L., Vaughn, D. H. & Cundiff, J. S. Perennial species for optimum production of

210 herbaceous biomass in the Piedmont. (Oak Ridge National Lab., TN (USA); Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (USA), 1990).

Pfeifer, R. A., Fick, G. W., Lathwell, D. J. & Maybee, C. Screening and Selection of Herbaceous Species for Biomass Production in the Midwest/Lake States: Final Report 1985-1989. ORNL/Sub/85-27410/5, Submitt. to Biomass Feed. Dev. Program, Oak Ridge Natl. Lab. Oak Ridge, Tennessee (1990).

215 Poeplau, C. & Don, A. Soil carbon changes under Miscanthus driven by C4 accumulation and C3 decomposition-toward a default sequestration function. Gcb Bioenergy 6, 327–338 (2014).

Price, L., Bullard, M., Lyons, H., Anthony, S. & Nixon, P. Identifying the yield potential of Miscanthus x giganteus: an assessment of the spatial and temporal variability of M. x giganteus biomass productivity across England and Wales. Biomass and Bioenergy 26, 3–13 (2004).

220 Reynolds, J. H., Walker, C. L. & Kirchner, M. J. Nitrogen removal in switchgrass biomass under two harvest systems. Biomass and Bioenergy 19, 281–286 (2000).

Richter, G. M., Riche, A. B., Dailey, A. G., Gezan, S. A. & Powlson, D. S. Is UK biofuel supply from Miscanthus waterlimited? Soil Use Manag. 24, 235–245 (2008).

Sanderson M. A. Upland switchgrass yield, nutritive value, and soil carbon changes under grazing and clipping. Agron J. 100(3), 510-6 (2008).

225

Sanderson, M. A., Read, J. C. & Reed, R. L. Harvest management of switchgrass for biomass feedstock and forage production. Agron. J. 91, 5–10 (1999). Schmer MR, Mitchell RB, Vogel KP, Schacht WH, Marx DB. Spatial and temporal effects on switchgrass stands and yield in the Great Plains. Bioenerg Res. 3(2), 159-71 (2010).

Schwarz, H. Miscanthus sinensis 'giganteus' production on several sites in Austria. Biomass and Bioenergy 5, 413–419 (1993).
 Schwarz, H., Liebhard, P., Ehrendorfer, K. & Ruckenbauer, P. The effect of fertilization on yield and quality of Miscanthus sinensis 'Giganteus'. Ind. Crops Prod. 2, 153–159 (1994a).

Schwarz, K. U., Murphy, D. P. L. & Schnug, E. Studies of the growth and yield of Miscanthus× giganteus in Germany. Asp. Appl. Biol. 533–540 (1994b).

Sladden S, Bransby D, Aiken G. Biomass yield, composition and production costs for eight switchgrass varieties in Alabama.
 Biomass Bioenerg. 1(2), 119-22 (1991).

Stout, W. L., Jung, G. A. & Shaffer, J. A. Effects of soil and nitrogen on water use efficiency of tall fescue and switchgrass under humid conditions. Soil Sci. Soc. Am. J. 52, 429–434 (1988).

Strullu, L., Cadoux, S., Preudhomme, M., Jeuffroy, M.-H. & Beaudoin, N. Biomass production and nitrogen accumulation and

240 remobilisation by Miscanthus× giganteus as influenced by nitrogen stocks in belowground organs. F. Crop. Res. 121, 381– 391 (2011).

Van der Werf, H. M. G., Meijer, W. J. M., Mathijssen, E. & Darwinkel, A. Potential dry matter production of Miscanthus sinensis in The Netherlands. Ind. Crops Prod. 1, 203–210 (1992).

Wang, D. et al. Impact of nitrogen allocation on growth and photosynthesis of Miscanthus (Miscanthus× giganteus). Gcb Bioenergy 4, 688–697 (2012).

Wright, L. & Turhollow, A. Switchgrass selection as a 'model' bioenergy crop: a history of the process. Biomass and Bioenergy 34, 851–868 (2010).

Wright, N. A. Screening of herbaceous species for energy crops on wet soils in Ohio. in Advances in new crops. Proceedings of the first national symposium'New crops: research, development, economics', Indianapolis, Indiana, USA, 23-26 October

250 1988. 263–267 (Timber Press, 1990).

245

Xiong, S., Zhang, Q.-G., Zhang, D.-Y. & Olsson, R. Influence of harvest time on fuel characteristics of five potential energy crops in northern China. Bioresour. Technol. 99, 479–485 (2008).

Xu, B. C., Li, F. M. & Shan, L. Switchgrass and milkvetch intercropping under 2: 1 row-replacement in semiarid region, northwest China: Aboveground biomass and water use efficiency. Eur. J. Agron. 28, 485–492 (2008).

Xu, B., Shan, L. & Li, F. Aboveground biomass and water use efficiency of an introduced grass Panicum virgatum in the semi arid loess hilly-gully region. Acta Ecol. Sin. 25, 2206–2213, [in Chinese] (2005).
 Zatta, A., Clifton-Brown, J., Robson, P., Hastings, A. & Monti, A. Land use change from C3 grassland to C4 Miscanthus: effects on soil carbon content and estimated mitigation benefit after six years. Gcb Bioenergy 6, 360–370 (2014).

Zub, H. W., Arnoult, S. & Brancourt-Hulmel, M. Key traits for biomass production identified in different Miscanthus species

 $260 \qquad \text{at two harvest dates. Biomass and Bioenergy 35, 637–651 (2011).}$