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Abstract. We present a new evaluation framework for implicit and explicit (IMEX) Runge-Kutta timestepping schemes. The

new framework uses a linearized nonhydrostatic system of normal modes. We utilize the framework to investigate stability

of IMEX methods and their dispersion and dissipation for gravity, Rossby, and acoustic waves. We test the new framework

on a variety of IMEX schemes and use it to develop and analyze a set of 2nd order low-storage IMEX Runge-Kutta methods

with high CFL. We show that the new framework is more selective than the 2D acoustic system previously used in literature.5

Schemes that are stable for the 2D acoustic system are not stable for the system of normal modes.

1 Introduction

Differences in phase speeds between slow and fast waves in atmospheric models motivate development of timestepping

schemes with an implicit component, to avoid expensive time step restrictions imposed by fast waves on explicit methods.

The nonlinearity of the equations often imposes prohibitive cost on the solvers required by fully implicit methods, and hybrid10

implicit-explicit (IMEX) schemes that leverage the strengths of both have become common. Here, we develop a new framework

for evaluating IMEX methods for atmospheric modeling.

We follow approaches from Durran and Blossey (2012); Weller et al. (2013); Lock et al. (2014); Rokhzadi et al. (2018), and

others to present an evaluation framework that is simpler than a full 3D model while still containing the challenges associated

with the presence of both slow and fast modes. Our framework is based on the normal mode analysis for systems introduced15

in Thuburn et al. (2002a, b) and Thuburn and Woollings (2005).

We focus on IMEX Runge-Kutta (RK) methods and their use in our primary application, the High Order Method Modeling

Environment (HOMME) dynamical core (Dennis et al., 2012; Taylor et al., 2020). HOMME is the nonhydrostatic atmospheric

dynamical core of the U. S. Dept. of Energy Exascale Earth System Model’s (E3SM) (Rasch et al., 2019) atmosphere com-

ponent. HOMME is formulated in Horizontally-Explicit Vertically-Implicit (HEVI) form and is well-suited for IMEX RK20

schemes where terms that carry vertically propagating acoustic waves are treated implicitly.

We adapt the techniques of Thuburn and Woollings (2005), hereafter TW2005, to the specific system of equations and

prognostic variables in HOMME as well as other dynamical cores. Namely, we use a system of normal modes for a mass-based

vertically-Lagrangian coordinate system with a Lorenz-staggered vertical discretization. We construct a spacetime operator for

this system and study its properties, including stability, dispersion, and dissipation. Compared to previously used 2D acoustic25

system and the compressible Boussinesq equations (Durran and Blossey, 2012; Weller et al., 2013; Lock et al., 2014; Rokhzadi
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et al., 2018), this system provides more complexity and more closely resembles the equations used in modern dynamical cores.

It contains a full set of modes: east- and west-propagating acoustic and gravity waves and westward-propagating Rossby waves.

It is linearized about a hydrostatic reference state and uses the common constant pressure boundary condition at the model top.

Using the new framework, we develop a family of second order, high CFL, low storage IMEX RK schemes and analyze30

their suitability for operational use in E3SM’s high resolution science campaigns.

The remainder of this paper is structured as follows. In Section 2 we present the linearized system of equations associated

with our formulation of the nonhydrostatic dynamics equations and compute its spacial numerical dispersion properties. Section

3 introduces the spacetime operator and describes our analysis of its numerical stability properties. In Section 4 we compare

the stability diagrams of several schemes and develop a new family of IMEX RK methods with desirable stability and storage35

properties. In Section 4.4 we investigate convergence of IMEX methods with respect to vertical resolution. Section 5 concludes.

2 Linearized system for normal modes

In this section we define the linearized system of equations that corresponds to the HOMME nonhydrostatic dynamics model.

We recover analytical and numerical frequencies for spacial discretization of the system and confirm that the discretization

(which we broadly define here to include choice of prognostic variables, equation of state, boundary conditions, and staggering)40

is nearly optimal. Therefore, later the system can be used to investigate properties of IMEX spacetime operators.

2.1 Description of the system

In Thuburn et al. (2002a, b) and TW2005, the Euler equations for a dry adiabatic atmosphere are simplified to study normal

modes. Various approximations about the geometry and Coriolis terms are made, and the systems are linearized about a hydro-

static reference state at rest. Furthermore, TW2005 presents such systems for different choices for thermodynamic variables,45

vertical coordinates, and equations of state. We use a vertical coordinate based on hydrostatic pressure (Laprise, 1992), where

hybrid pressure levels are located on constant s surfaces, and s is the vertical Lagrangian coordinate satisfying ṡ= 0, follow-

ing Lin (2004). Therefore, we adopt system (20)-(24) in TW2005 for the shallow atmosphere approximation and a Lagrangian

vertical coordinate:

ut = fv−
(

1

ρr
∂p

∂x
+
∂φ

∂x

)
(1)50

vt = −fu−
(

1

ρr
∂p

∂y
+
∂φ

∂y

)
(2)

wt = −g σ
σr
− 1

σr
∂p

∂θ
(3)

φt = gw (4)

σt = −σr
(
∂u

∂x
+
∂v

∂y

)
(5)

Here u, v, and w are velocity components, p is pressure, ρ is density, φ is geopotential, g is the gravity constant, f is the55

Coriolis parameter, σ is pseudo-density defined with respect to the vertical coordinate (see Taylor et al. (2020) for details), and
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θ is potential temperature. The superscript r denotes variables defined by reference profiles of a linearized hydrostatic steady

state with constant temperature T0. The subscript t denotes partial differentiation with respect to time. Variables u, v, w, φ, p,

and σ are first-order perturbed quantities, about the reference state, as follows from linear analysis.

After substituting single mode solutions in which each field is proportional to exp(ikxx+ ilyy− iωt), this formulation is60

equivalent to the system of equations (20)–(24) in isentropic coordinate from TW2005. With inclusion of the β-effect as in

equations (55)–(56) of TW2005, this system is as follows:

−iωu = fv+
ikx
K2

βu− ikx
(
p

ρr
+φ

)
(6)

−iωv = −fu+
ikx
K2

βv− ilx
(
p

ρr
+φ

)
(7)

−iωw = −g σ
σr
− pθ
σr

(8)65

−iωφ = gw (9)

−iωσ = −σr(ikxu+ ilxv) (10)

with linearized equation of state (EOS)

p

pr
=

1

1−κ
σ

σr
− 1

1−κ
φθ
φrθ

. (11)

We also retain a version of system (6)–(10) with time derivatives in the left hand side:70

ut = fv+
ikx
K2

βu− ikx
(
p

ρr
+φ

)
(12)

vt = −fu+
ikx
K2

βv− ilx
(
p

ρr
+φ

)
(13)

wt = −g σ
σr
− pθ
σr

(14)

φt = gw (15)

σt = −σr(ikxu+ ilxv) (16)75

In addition to the variables and constants defined above, κ=R/cp is a thermodynamic constant and kx and lx are horizontal

wavenumbers withK2 = k2
x+l2x. Here and later in the text, the subscript x in kx and lx does not denote differentiation in x. We

keep such notations to be consistent with notations for horizontal and vertical wavenumbers introduced in Weller et al. (2013);

Lock et al. (2014). The subscript θ denotes partial differentiation with respect to potential temperature. In (6)–(10) , (11), and

(12)–(16) variables ρr, σr, pr, and derivative φrθ are variables defined by the reference profile of a linearized hydrostatic steady80

state with constant temperature T0. Variables u, v, w, φ, p, and σ are first-order perturbed quantities about the reference state.

All variables are scalar quantities.

We note that since θ̇ = 0, the linear system associated with the TW2005 isentropic model is equivalent to the linear system

derived with a vertically-Lagrangian coordinate. We use the same bottom boundary condition (BC) φ= 0 for systems (6)–(10)

and (12)–(16) as in TW2005, but a different top BC. We replace the rigid lid boundary condition with a constant pressure85
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boundary condition, which for perturbed pressure variable becomes ptop = 0. This BC is more typical for a mass-based vertical

coordinate.

We define meridional wave number lx = 0, temperature of reference state T0 = 250 K, depth of domain in vertical D = 105

m, Coriolis parameters β = 1.619× 10−11 s−1m−1 and f = 1.031× 10−4 s−1, gravitational acceleration g = 9.80616 ms−2,

and thermodynamic constants R= 287.05 Jkg−1K−1 and cp = 1005.0 Jkg−1K−1.90

To study dispersion properties of system (6)–(10) we choose horizontal wavenumber kx = 2π/106 m−1 and set the number

of vertical levels nlev = 20. Dispersion and dissipation diagrams of the spacetime operators are also computed with the same

nlev and kx to match frequencies and eigenvectors of the spacetime operators with ones from the spacial discretization.

To form a spacetime operator using Eqs. (12)–(16) and study the stability of IMEX schemes, we set nlev = 72, to emulate the

default configuration of E3SM, and vary kx throughout a representative parameter space resolvable by anticipated high reso-95

lution models. In regimes where stability is controlled by Courant-Friedrichs-Lewy (CFL) condition associated with acoustics

modes, we desire an IMEX method where the stability will not depend on the number of vertical levels. In Sect. 4.4 we study

the stability of IMEX schemes for varying number of vertical levels.

2.2 Analytic frequencies and dispersion relations

The problem of finding frequencies ω in system (6)-(10) is equivalent to investigating a spectrum of a differential operator.100

Since we replace boundary conditions at the top of the model, we obtain slightly different dispersion relation for internal modes

compared to previous work. And, in contrast with TW2005, there are no external modes in our system.

To derive the dispersion relation from (6)–(10) , we follow Sect. 3 of TW2005 and Thuburn et al. (2002b). The dispersion

relation is independent of the choice of vertical coordinate and is most easily found using the height coordinate, z. In TW2005

the hydrostatic equation, elimination, and use of the EOS yield the ODE, Eq. (57)105

(∂z +A)(∂z +B)p+C = 0 (17)

where the constants A and B are related to the static stability and sound speed, respectively, of the isothermal reference state

and C(ω) is a cubic function of the frequency ω. Expressions for A,B, and C are defined as in TW2005, equation (58). As in

TWS2002b, we make the change of variable p̃= p exp
(

(A+B)z
2

)
to obtain

p̃zz + ap̃= 0, a(ω) = C(ω)− (B−A)2

4
. (18)110

In our setting, ODE (18) has bottom boundary condition

p̃z +
B−A

2
p̃= 0 (19)

at z = 0 and top boundary condition p̃= 0 at z =D.

We first assume a > 0. Cases a < 0, a= 0 are discussed below. With m=
√
a and solution of form p̃(z) = c1 sin(mz) +

c2 cos(mz), we recover internal modes. From the top boundary condition we recover

0 = p̃(D) = c1 sin(mD) + c2 cos(mD) ⇒ c2 =−c1 tan(mD).
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From the bottom boundary condition we recover

0 = p̃z(0) +
B−A

2
p̃(0) = c1m+ c2

B−A
2

⇒ c2 =−c1
2m

B− 1
.

Combining, we obtain a condition on wavenumber m:

tan(mD) =
2m

B−A
. (20)115

In TW2005, internal modes obey m= nπ/D, where n > 0 is the mode number. In (20), for large m wavenumbers are close to
nπ
D + π

2D , where n is a positive integer.

Due to the nonlinearity of (20) with respect to m, wavenumbers m obeying (20) are found numerically in Matlab by solving

Eq. (20) for the first nlev values of mi, i ∈ {1, . . . ,nlev}, nlev = 20. We recover three wave branches, acoustic, gravity, and

Rossby, by solving the quintic equation120

a(ω) = C(ω)− (B−A)2

4
=m2

i , (21)

that follows from substituting a=m2
i in Eq. (18), and solving for ω for each mi. Three branches of internal waves are plotted

as solid blue lines in Fig. 1.

External modes are derived assuming a < 0 in Eq. (18). Solutions are then represented by p̃(z) = c1e
mz + c2e

−mz , m=
√
−a. This leads to equation125

tanh(mD) =
2m

B−A
(22)

which does not have a solution: rewrite it as tanh(m̃) = 2m̃
(B−A)D with m̃=mD. Since 2

(B−A)D > 3, the line 2m̃
(B−A)D and

the curve tanhm̃ do not intersect except at the origin. The origin is not a solution since we assumed a < 0 and thus m 6= 0.

Similarly, choice a= 0 cannot have solutions satisfying boundary conditions for our particular value of D.

Analytically, one can recover external modes if depth of the domain, D, is bigger. We searched for values m in Eq. (22)130

for D = 40000 m and D = 50000 m and used these values in Eq. (21). We obtained five real roots with magnitudes of order

10−6, 10−3, and 10−2, as expected. We were unable to locate external modes in discretized systems with large domain sizes.

To search, we examined eigenvalues and eigenvectors (external modes have zero vertical structure in vertical velocity).

2.3 Numerical frequencies for HOMME discretization

To discretize the right hand side of systems (12)–(16) and (6)–(10) vertically in space, we use a Lorenz staggering and place u,135

v, and σ at the midpoints of the model’s nlev vertical levels and φ and w its nlev + 1 level interfaces. This staggering is denoted

[wz,uvσ]. Due to the choice of boundary conditions, φ and w are zero at the bottom of the domain; therefore, we solve only

for their nlev interface values, excluding bottom interface. The total vector length in the discretized system is 5nlev.

Our placement of variables requires four discrete operators: one to interpolate φ from interfaces to midlevels, one to approx-

imate the derivative φθ at midlevels, one to interpolate σ from midlevels to interfaces, and one to approximate the derivative140

pθ on interfaces. Derivatives are formed using second-order finite differencing with constant level spacing, ∆θ. Interpolation
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Figure 1. Analytical and numerical dispersion relation for system (6)–(10) . Solid blue curves, from top to bottom, are acoustic, gravity

and Rossby branches of analytical solutions for ω. Blue diamonds are negative numerical eigenvalues and red stars are positive numerical

frequencies ω.

to and from midlevels is implemented via simple averaging of neighbor values. Applying these operators at each level and

interface, we can now write the discretization of system (12)–(16) as a matrix equation,

U t = MU . (23)

Matrix M is of size 5nlev× 5nlev. The eigenvalues of M are discrete representations of quantities −iω in (6)–(10) and eigen-145

vectors of M correspond to three branches of waves, Rossby, gravity, or acoustic.

We compute the numerical eigenvalues of M with Matlab, then match a vertical mode to each numerical eigenvalue. To find

a vertical mode, we wrote a routine to count zeros in an imaginary eigenvector part that corresponds to w. For the five smallest

wavenumbers we diagnose n= 1/3 manually. A few solutions for highest wavenumbers for Rossby and gravity waves become

oscillatory and counting zeros for them is inaccurate. We diagnose them using monotonicity of numerical eigenvalues.150

The numerical dispersion relation for the discretization of system (6)–(10) is plotted in Fig. 1, with blue diamonds for

westward propagating waves with ω < 0 and red stars for eastward propagating waves with ω > 0. As in TW2005, system

[wz,uvσ], which is characterized by its staggering, choice of prognostic variables, and EOS, is in category 2b. Categories for

discretizations are defined in TW2005. The most optimal category is category 1 for methods with numerical dispersion very

close to analytical. The next most optimal methods belong to the set of Category 2 methods. Category 2b methods have a near155

optimal dispersion relation with overestimated Rossby frequencies, as shown in Fig. 1, where numerical frequencies for the

Rossby branch for large mode numbers are bigger by absolute value (Rossby frequencies are negative) than their analytical

counterparts.
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3 Stability of IMEX methods from eigenvalues of a spacetime operator

In the previous section we evaluated the properties of the spatial discretization for system (6)–(10) . We now combine the160

spatial discretization with a temporal discretization and then evaluate the resulting spacetime operator.

3.1 Spacetime operator

Similarly to Weller et al. (2013) and Lock et al. (2014), we form a spacetime operator from system (12)–(16) and compute its

spectrum numerically. To be stable, the eigenvalues of the spacetime operator should lie on or inside of the unit circle.

The spacetime operator is defined by the underlying IMEX scheme. Given a linear ODE165

yt = Sy +Ny, (24)

where S and N are the stiff and nonstiff parts already discretized in space. The spacetime operator Q can be formed from the

double Butcher tableau of explicit (left) and implicit (right) tables associated with a particular IMEX scheme,

c A

bT

ĉ Â

b̂T
.

Here A denotes the explicit matrix for an IMEX scheme and has no relation with constant A used in Sect. 2.2. We keep both

notations as is due to their use in literature.

Matrices A = {aj1j2} and Â = {âj1j2}, j1, j2 = 1, ...,ν, ν is number of stages, and vectors c = {cj1} and ĉ = {ĉj1} that

determine the location of internal stages obey cj1 =
∑
j2
aj1j2 and ĉj1 =

∑
j2
âj1j2 . Weight vectors are b = {bj2} and b̂ =170

{b̂j2}. Upper-diagonal and diagonal coefficients of the explicit matrix by definition are zero, aj1j2 = 0, j1 ≤ j2. We are only

interested in diagonally implicit Runge-Kutta (DIRK) methods, therefore, for the implicit matrix âj1j2 = 0, j1 < j2.

Later we refer to order of accuracy conditions for IMEX schemes, as defined, for example, in Rokhzadi et al. (2018). First-

order conditions are∑
j1

bj1 =
∑
j1

b̂j1 = 1. (25)175

Second-order conditions include the 1st-order conditions and contain conditions for each table and coupling conditions for

explicit and implicit tables,∑
j1

bj1cj1 =
∑
j1

b̂j1 ĉj1 =
∑
j1

b̂j1cj1 =
∑
j1

bj1 ĉj1 =
1

2
. (26)

For details on how to construct a spacetime operator see Lock et al. (2014), Eq. (29) or (41), where the spacetime operator is

either a scalar or a 3x3 matrix and is called an amplification factor. Here, the spacetime operator is a (5nlev)× (5nlev) matrix.180

To form a spacetime operator from system (12)–(16) we should define its stiff and nonstiff parts. For the stiff part, represented

by matrix S, we consider the right-hand side terms of the equations for vertical velocity and geopotential,

−g σ
σr
− pθ
σr

and gw.
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It can be shown analytically (Steyer et al., 2019) or numerically, using Matlab scripts for this project, that eigenvalues of S

coincide with frequencies for acoustic waves. All other terms in the right-hand side of Eqs. (6)–(10) contribute to the nonstiff

matrix N. Unlike in the 2D acoustic system (Lock et al., 2014), the spectrum of N does not coincide with the slow modes of

system (12)–(16) and N is not linear in kx, in the sense that N 6= kxN0 for some constant operator N0.

3.2 Stability diagrams185

To investigate the numerical stability of timestepping schemes it is common to refer to the 2D acoustics system (Weller et al.,

2013; Lock et al., 2014; Steyer et al., 2019)

yt =−ikx


0 0 1

0 0 0

c2s 0 0

y− ikz


0 0 0

0 0 1

0 c2s 0

y (27)

with horizontal wave number kx, vertical wave number kz , kx = 2π/Tx and kz = 2π/Tz for wavelengths Tx and Tz . In this

system, the spacetime operator has three eigenvalues which we denote by λ. They are functions of Cx and Cz , λ= λ(Cx,Cz),190

for Courant numbers Cx = cskx∆t and Cz = cskz∆t, where cs is the speed of sound and kx and kz are horizontal and vertical

wavenumbers, respectively. The full stability diagram can then be plotted as a function of Cx and Cz or related quantities.

The relation λ= λ(Cx,Cz) does not hold for system (12)–(16) and its corresponding spacetime operator. In this system, the

eigenvalues are functions of three parameters, λ= λ(kx,∆t,nlev). For each kx and ∆t, there are 5nnlev eigenvalues. To study

the stability properties in this three-dimensional parameter space, we consider two regimes. We first set nlev = 72, to emulate195

the default configuration of E3SM, and vary kx throughout a representative parameter space resolvable by anticipated high

resolution models. In the second regime, we fix kx to the highest frequency resolvable by a model with 3 km grid spacing and

consider a range of vertical levels. As we are interested in IMEX methods that treat vertical acoustic waves implicitly, an ideal

method should remain stable for all choices of nlev.

In the first regime, we plot stability diagrams with horizontal wavelength Tx on the horizontal axis and ∆t on the vertical200

axis. We vary Tx from approximately 2 to 220 km and the time step range from 0.5 to 400 s. For each kx and ∆t we compose a

spacetime operator that corresponds to a particular IMEX method. The operator’s eigenvalues are computed numerically using

one of Matlab’s solvers. The largest (by magnitude) eigenvalue is saved to an array which is then plotted on a stability diagram.

We declare a spacetime operator stable if its maximum eigenvalue is less than 1+εtol, with εtol = 10−12. In our diagrams, stable

regions are colored white.205

3.3 Diagrams for dispersion and dissipation

Knowing the eigenpairs (−iωk,mk) of the space operator M as in Eq. (23) and the eigenpairs (λj ,qj) of the IMEX spacetime

operator Q we recover additional properties of each IMEX scheme.
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For small timesteps ∆t we expect the relationship between the space operator M and the spacetime operator Q constructed

for ∆t step to be210

qj 'mk and λj = lje
−iω̃j∆t (28)

for some real lj > 0 and real ω̃j . We also expect each pair (qj ,mk) to be uniquely matched.

Ideally, lj = 1 and ω̃j = ωk, that is, there are no dissipation or dispersion errors from timestepping. In practice, we observe

at least some numerical dissipation from applying IMEX, especially for acoustic waves.

To make dissipation/dispersion diagrams, we use the Munkres algorithm (Munkres, 1957) and its Matlab implementation215

(Cao, 2020 (accessed March 22, 2020) to uniquely match each qj with mk using the cost function −<mk,qj>
|mk||qj | , where < ·, ·>

denotes an inner product. Then we examine corresponding eigenvalue λj from the spacetime operator and compute its absolute

value lj and its ω̃i from Eq. (28). More on dissipation/dispersion diagrams is in Sect. 4.3 where we apply them for a family of

IMEX methods M2.

4 Selectiveness of new framework220

In Sect. 4.1 we provide an example of a scheme that appears to be stable for many practical choices of time steps if it is analysed

with system (27) but is unstable for these timesteps if analysed with system of normal modes (12)–(16) . We also apply the

new framework for two schemes presented in Giraldo et al. (2013) and Rokhzadi et al. (2018).

4.1 Scheme M1

In tables (29) we present a 6-stage IMEX scheme based on one of the explicit Runge-Kutta methods in Kinnmark, I. and225

Gray, W. (1984b). The explicit table, (29), left, is a low storage, 3nd order method with high CFL of
√

15≈ 4. We construct the

implicit table, (29), right, using a backward Euler method for all implicit stages except the last one. The last stage is constructed

to have three positive coefficients, including a nonzero coefficient on main diagonal of matrix Â and to obey the 2nd order

convergence conditions for IMEX, (25)-(26). The method has the same time locations of explicit and implicit internal stages

and is 2nd order accurate. It satisfies a stiffly accurate condition, that is, the last row of Â matches components of b̂.230

0 0 0 0 0 0 0

1/5 1/5 0 0 0 0 0

1/5 0 1/5 0 0 0 0

1/3 0 0 1/3 0 0 0

1/2 0 0 0 1/2 0 0

1 0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 0 0

1/5 0 1/5 0 0 0 0

1/5 0 0 1/5 0 0 0

1/3 0 0 0 1/3 0 0

1/2 0 0 0 0 1/2 0

1 5/18 5/18 0 0 0 8/18

5/18 5/18 0 0 0 8/18

(29)
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4.1.1 Plotting details

We plot three stability diagrams for the M1 scheme: Fig. 2(a) with axes (kx∆t,kz∆t) and Fig. 2(b) with (Tx,∆t) axes for 2D

acoustics system (27) and Fig. 2(c) with (Tx,∆t) axes for system of normal modes (12)–(16) . In Fig. 2(a) the x-axis kx∆t

varies from 10−4 to 100.1 and the y-axis kz∆t varies from 10−4 to 102. For spacing we use logarithmic scale and 100 sampling235

points. As in Lock et al. (2014) and Steyer et al. (2019), for each pair of kx∆t and kz∆t spacetime operator from Eq. (27) is

computed using IMEX method M1 given by tables (29).

Figures 2(b) and 2(c) use the horizontal wavenumber kx that corresponds to wavelengths Tx. In the figures, Tx varies from

approximately 2 km to 220 km with logarithmic spacing for 100 sampling points. Since the acoustic system (27) requires kz ,

for Fig. 2(b) we make kz span the range K0 = kx× [10−2,104]. On the y-axis, the timestep varies from 0.5 s to 400 s with240

logarithmic spacing for 100 sampling points. For each pair of (kx,∆t), we compute a set of spacetime operators based on

kz ∈K0 via the same procedure as for Fig. 2(a). If for each kz operator is stable, then point (Tx,∆t) is stable in Fig. 2(b). We

chose to plot Tx wavelengths on x-axes of stability diagrams instead of wavenumbers to make it easier to identify horizontal

resolutions.

Figure 2(c) is generated identically to Fig. 2(b) except that its results come from the system (12)–(16) . Since its spatially245

discretized version is discretized in vertical direction, there is no need to define kz .

Stability diagrams are not scaled by number of stages in IMEX methods.

4.1.2 Stability of M1

When using stability diagrams in Figs. 2(a,b) based on the 2D acoustic system, as in Lock et al. (2014), the scheme appears

stable for reasonable timesteps and resolutions as indicated by the large white (stable) regions. Both figures show that stability250

of the IMEX scheme is the same as the stability of its explicit table, which is defined by Courant number SM1 ≈ 4, as follows.

In Fig. 2(a) a straight vertical line going through a point kx∆t= SM1 remains in the white region, and in Fig. 2(b) the stable

(white) region lies below the straight line with slope 1, that goes through point that corresponds to values (SM1/(cskx),∆t).

Indeed, approximate values Tx = 2000 m, ∆t= 4 s, kx = 0.0031 m−1, and cs = 317 ms−1, which is value of speed of sound

of the constant reference state in system (12)–(16) , satisfy the last condition.255

However, in Fig. 2(c), timesteps based solely on the stability of the explicit table in (29) are not stable. That is, the 2D

acoustic system in Eq. (27) does not have enough complexity to indicate that the method can be unstable in practice. Compared

to Eq. (27), the system of normal modes contains a full set of modes: east- and west-propagating acoustic and gravity waves

and westward-propagating Rossby waves. It is linearized about a non-constant hydrostatic reference state and has commonly

used constant pressure boundary condition at the model top.260

4.2 Schemes ARK2(2,3,2)(Giraldo et al., 2013) and IMEX-SSP2(2,3,2)(Rokhzadi et al., 2018)

In Rokhzadi et al. (2018) one of ARK2(2,3,2) methods from Giraldo et al. (2013) is compared to a new scheme, IMEX-

SSP2(2,3,2). The family of ARK2(2,3,2) schemes is characterized by parameter a32 in the explicit table (Giraldo et al., 2013).

10



0.1 1 2 34

0.1

1
2
4

10-14

10-12

10-10

10-8

10-6

10-4

10-2
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(b) 2D acoustics system, (Tx,∆t) axes
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(c) System of normal modes, (Tx,∆t) axes

Figure 2. Example of selectiveness of the new framework using M1 method: stability diagram (c) based on system of normal modes deems

scheme M1 as unstable for practical applications, while stable timesteps in stability diagrams (a,b) based on 2D acoustic system look

acceptable.

In Rokhzadi et al. (2018) authors choose the method with a32 = 1
6 (3 + 2

√
2), which we denote here as ARK2(2,3,2)(1).

Rokhzadi et al. (2018) apply optimization to derive an ARK2 method with improved accuracy, stability, and strong stability265

preserving (SSP) properties as compared to ARK2(2,3,2)(1) for a linear wave equation, the 2-D acoustics system, the com-

pressible Boussinesq equations, and the van Der Pol equation as in Durran and Blossey (2012), Weller et al. (2013), and Lock

et al. (2014). We compare these two methods and method ARK2(2,3,2) with a32 = 0.85 (which we denote ARK2(2,3,2)(2))

using our system of normal modes (12)–(16) . We conclude that ARK2(2,3,2)(2) and IMEX-SSP2(2,3,2) have very similar

stability properties, as shown in Fig. 3 (b) and (c), but the stable (white) region for ARK2(2,3,2)(1) is significantly smaller, as270

shown in Fig. 3 (a).
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(b) ARK2(2,3,2)(2)
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(c) IMEX-SSP2(2,3,2)

Figure 3. Schemes analyzed in (Rokhzadi et al., 2018) and ARK2(2,3,2)(2) scheme: (a) ARK2(2,3,2)(1) (b) ARK2(2,3,2)(2) (c) IMEX-

SSP2(2,3,2)

4.3 Set of low storage, high CFL IMEX schemes M2

We develop a set of M2 methods using a 2nd order, explicit, low-storage, CFL of 4 Runge-Kutta scheme from Kinnmark, I. and

Gray, W. (1984a). Low storage, high CFL methods developed in Kinnmark, I. and Gray, W. (1984a) and Kinnmark, I. and Gray,

W. (1984b) are used in HOMME, the nonhydrostatic atmospheric dynamical core of the U. S. Dept. of Energy Exascale Earth275

System Model’s (E3SM) atmosphere component. It is practical to extend existing explicit RK schemes to IMEX RK methods.

We analyze stability, dispersion, and dissipation properties of M2 schemes using the system of normal modes (12)–(16) .

4.3.1 Definitions

We start with the 2nd order explicit table, (30), left, from one of methods in Kinnmark, I. and Gray, W. (1984a). For the implicit

table, (30), right, we choose the same times for internal stages and make all but last implicit stages backward Euler. Internal280

backward Euler stages provide stability and do not affect 2nd order accuracy conditions for IMEX given by Eqs. (25)-(26).

M2 methods vary by their last implicit stage only. We require the last implicit stage to obey a stiffly accurate condition and

have only nonnegative entries in its table. The last stage is defined by the vector d, whose entries correspond to the last row

of the implicit Butcher tableau, as shown in table (30), right. Moreover, here we only consider schemes with at most three

nonzero entries of d due to considerations about computational cost. In practice, using IMEX method in a 3D model with285
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Name Last stage Vector d Order

M2a d= (3/11,0,3/11,0,0,5/11) 2

M2b d= (0,0,3/5,0,0,2/5) 2

M2c d= (2/7,2/7,0,0,0,4/11) 2

M2be backward Euler d= (0,0,0,0,0,1) 1

M2cn Crank-Nicolson d= (1/2,0,0,0,0,1/2) 2

M2cno Crank-Nicolson with offcentering d= (1/2− 0.02,0,0,0,0,1/2+0.02) 1
Table 1. Set of schemes M2

topography will require storing geopotential and vertical velocity terms for each internal stage that corresponds to dj1 6= 0,

j1 < ν. Therefore, we focus on methods that limit such storage space.

0 0 0 0 0 0 0

1/4 1/4 0 0 0 0 0

1/6 0 1/6 0 0 0 0

3/8 0 0 3/8 0 0 0

1/2 0 0 0 1/2 0 0

1 0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 0 0

1/4 0 1/4 0 0 0 0

1/6 0 0 1/6 0 0 0

3/8 0 0 0 3/8 0 0

1/2 0 0 0 0 1/2 0

1 d1 d2 d3 d4 d5 d6

d1 d2 d3 d4 d5 d6

(30)

where

(d1,d2,d3,d4,d5,d6) = d.

We consider the 1st- and 2nd-order variants of M2 methods listed in Table 1.

Variants M2a, M2b, M2c (M2c is introduced in Steyer et al. (2019)) are 2nd order methods with good stability properties;290

their dispersive and dissipative characteristics are different, as shown below in Fig. 4. Variants M2be and M2cn are the two

extremes of the M2 family. In M2be the last stage is the backward Euler method, so the scheme is expected to be the most

stable but also the most dissipative method as it is 1st order accurate. Method M2cn, with Crank-Nicolson for the last stage,

presumably has no dissipation for hyperbolic problems like ours. We also analyze method M2cno, where the last stage is

Crank-Nicolson with off-centering, since off-centering is a common practice to stabilize timestepping schemes (Durran and295

Blossey, 2012; Staniforth et al., 2006).

4.3.2 Stability diagrams and dispersion/dissipation diagrams

Stability diagrams of the M2 schemes are shown in Figs. 4(a-c) and 5(a-c) which used plotting procedures described in Sect.

4.1.1. There, we plot numerical frequencies of space operator Q and spacetime operator M to evaluate how numerical timestep-

ping methods, IMEX, preserve frequencies ω from space discretization Q. In other words, due to hyperbolicity of our system300
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(12)–(16) exact time integration would conserve the frequencies. Inexact IMEX time integration will introduce errors, which

we evaluate below. We also evaluate numerical damping introduced by IMEX since exact time integration does not introduce

damping. Note that we compare properties of the spacetime operator to properties of space operator integrated exactly in time,

we do not compare solutions of the spacetime operator to analytical solutions of system (12)–(16) . This is because we want to

investigate the numerical errors due solely to the timestepping methods.305

Dispersion/dissipation plots are shown below the stability diagrams, for the spacetime operator Q with eigenpairs (λj ,qj), in

Figs. 4(d-f) and 5(d-f). In each figure, ∆t= 50 s and nlev = 20. There, top plots show numerical frequencies λj vs vertical mode

number. Red diamonds are numerical frequencies of the space operator for east- and west-propagating acoustic waves. Blue

squares represent east- and west-propagating gravity waves for the space operator. Black diamonds are frequencies for west-

propagating Rossby waves for the space operator. Red stars, blue plus signs, and black stars are for corresponding branches310

of spacetime operator. Vertical mode number and wave characterization are obtained from uniquely matching eigenvector qj

with its counterpart, eigenvector mk, of space operator M (also computed for 20 vertical levels).

Bottom plots in Figs. 4(d-f) and 5(d-f) show the amplification factors of eigenvalues, |λj |, for the spacetime operator.

There, red stars, blue plus signs, and black stars are for acoustic, gravity, and Rossby waves correspondingly. Each plot shows

amplification factors near 1 for gravity and Rossby waves, with additional damping of the acoustic modes. We discuss these315

differences further in the next section.

4.3.3 Analysing the M2 schemes

Due to their different final stages, the M2 schemes have different stability properties and dispersive and dissipative characteris-

tics. To evaluate stability, we focus on regions of smallest spatial resolutions and highest wavenumbers, since those are regions

where nonhydrostatic effects are most prominent. Thus stability evaluation is easy: bigger stable (white) regions translate to320

larger stable ∆t for those methods.

As expected, due to the presence of the last backward-Euler stage in the implicit table, the M2be scheme is the most stable.

Recall that analytically for hyperbolic problems, the backward Euler method is unconditionally stable and is very dissipative.

For the M2be method, the largest stable ∆t at Tx = 2 km is approximately 4 sec, which is at least 2× larger than the largest

stable ∆t for the other schemes.325

It is desirable to have an IMEX method with stability properties similar to the stability properties of an explicit method

used for a non-stiff part of the system (24). In other words, it is desirable to be able to integrate a nonhydrostatic system using

an IMEX method with a timestep as large as the timestep used to integrate a hydrostatic system using an explicit Runge-

Kutta method. Therefore we compared the stability of IMEX method M2be with the stability of the Runge-Kutta method

consisting of the explicit table in M2be (let’s call this method MExplicit), when it was applied to the non-stiff part of equation330

(24). The stability region of M2be in Fig. 5(a) is almost as big as the stability region of MExplicit (not shown here) up to a

minor difference at approximate wavelength Tx = 220 km. That is, the stability region of M2be is the biggest region we could

possibly get from an IMEX scheme whose explicit table is part of the M2 set.
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(a) Stability diagram for M2a
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(b) Stability diagram for M2b
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Figure 4. Properties of M2 schemes: Stability diagrams and dispersion/dissipation

It is harder to rank schemes using dispersion/dissipation diagrams. All schemes preserve dispersion and dissipation relations

for gravity and Rossby waves to a high degree. They perform very differently for acoustic waves. Method M2be has the biggest335

dissipation rates for acoustics waves and is the only scheme that does not have regions of negative group velocity for acoustic

waves. Method M2cn is its opposite: it has no damping of acoustic waves while errors in acoustic frequencies are much larger.

M2cno, a 1st order variation of M2cn, has dispersion errors very similar to M2cn while introducing low-degree dissipation into

acoustic waves.

Since acoustic waves can be considered insignificant for atmospheric applications due to their low energy, one is tempted to340

discard numerical errors in the dispersion and dissipation of acoustic waves. However, there is an argument (Thuburn, 2012)

that correct representation of even energetically weak waves in atmosphere is crucial for restoration of hydrostatic balance.

Among other 2nd order schemes, M2a, M2b and M2c, it is hard to declare a clear winner. Due to its smaller largest stable

∆t at Tx = 2 km and big dispersion errors, M2a may be less competitive. Comparing M2b and M2c, M2b has slightly larger
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Figure 5. Properties of M2 schemes: Stability diagrams and dispersion/dissipation

maximum stable ∆t at Tx = 2 km, its errors in dispersion for acoustics waves are smaller, but its dissipation rates are larger.345

Indeed, its dissipative rates are probably what cause its better stability compared to M2c. However, depending on evaluation

criteria, M2c can be viewed as a better scheme than M2b. For example, it has smaller dissipation rates and its dispersion is very

similar to Crank-Nicolson’s method, which is widely used for hyperbolic problems.

4.3.4 Role of the implicit table

We chose to limit our search for a suitable M2 method by varying only the vector d in the implicit table. Since the 2nd350

order accuracy conditions for M2 family depend only on the last implicit stage, we make all other implicit stages, stages 2-5,

backward Euler to presumably maximize stability. One could also try to use Crank-Nicolson or offcentered Crank-Nicolson

methods for implicit stages 2-5.
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To understand how the implicit stages influence dissipation of acoustic waves, we consider the expression for the final

solution of Eq. (24) using Lock et al. (2014), Eq. (15), and the definition of M2 family in Eq. (30):355

yn+1 = yn + ∆tN(y(5), tn + ∆t) + d1 ∆t S (yn, tn) + d2 ∆t S

(
y(2), tn +

1

4
∆t

)
+ d3 ∆t S

(
y(3), tn +

1

6
∆t

)
(31)

+ d4 ∆t S

(
y(4), tn +

3

8
∆t

)
+ d5 ∆t S

(
y(5), tn +

1

2
∆t

)
+ d6 ∆t S

(
y(6), tn + ∆t

)
. (32)

Scheme M2cn, given by its final implicit stage (d1, ...,d6) = (1/2,0,0,0,0,1/2), does not have dissipation. For M2cn, the

solution yn+1 is influenced by intermediate implicit stages 2-5 only via the nonstiff term. Also, its final implicit stage is

represented by the Crank-Nicolson method, known to be nondissipative for hyperbolic problems. We conclude that both of360

these facts contribute to the lack of dissipation in M2cn. Scheme M2be has final implicit stage (d1, ...,d6) = (0,0,0,0,0,1)

which gives the backward Euler method. Similarly to the backward Euler method for hyperbolic problems, M2be is very

dissipative.

We suggest that dispersion and dissipation of acoustics waves can be tuned by working only with the implicit table of any

method.365

4.4 Stability properties with respect to vertical resolution

For an explicit timestepping method, the most restrictive CFL condition is usually that associated with the vertically propagat-

ing acoustic waves and the stable timestep would decrease linearly with ∆z =D/nlev. Ideally, with an implicit treatment of

vertical acoustic waves, an IMEX method should remain stable as nlev is increased and the stability should be controlled only

by the CFL condition associated with the horizontal resolution.370

To analyze this aspect of various IMEX methods, we fix kx to the highest frequency resolvable by a model with 3 km grid

spacing and vary the number of vertical levels from nlev = 20 to nlev = 100. We plot the method’s stability as a function of

nlev using a logarithmic scale (up to rounding to the nearest integer) and 50 sampling points. Stability diagrams are made very

similarly to the ones in Fig. 4, with only difference of the horizontal axis, which now defines nlev. We vary ∆t from 1 to 10 sec

with logarithmic spacing and 100 samples. Note that the horizontal axis is not defined by a vertical wavenumber, kz , because375

for any fixed resolution ∆z the model supports waves with many vertical wavenumbers.

Figure 6 contains stability diagrams for schemes M1, ARK2(2,3,2)(1), ARK2(2,3,2)(2), and M2b. For schemes M1 and

ARK2(2,3,2)(1) the stability is independent of ∆z, as desired, only for up to approximately nlev = 57 (∆z ' 175 m). In

Figs. 6(a,b) the stable region for approximate interval nlev ∈ [20,57] (∆z ∈ [175,500] m) is under a straight line with some

∆t= ∆t0. For finer ∆z stability regions lie below a line with a constant slope for both schemes.380

In contrast, for methods ARK2(2,3,2)(2) and M2b, stability is always controlled by the horizontal resolution: in Fig. 6(c) the

stable region is below horizontal line ∆t0 ' 7.2 sec. To further support this conclusion, we also computed eigenvalues of the

spacetime operator for method M2b, ∆t= 7 sec, and a few large values of nlev up to 600. The spacetime operator for all large

nlev was stable.

17



100 125 175 250 500
1

2

4

8

10

10-14

10-12

10-10

10-8

10-6

10-4

10-2

(a) Method M1

100 125 175 250 500
1

2

4

8

10

10-14

10-12

10-10

10-8

10-6

10-4

10-2

(b) ARK2(2,3,2)(1)

100 125 175 250 500

1

2

4

8
10

10-14

10-12

10-10

10-8

10-6

10-4

10-2

(c) ARK2(2,3,2)(2)

100 125 175 250 500
1

2

4

8

10

10-14

10-12

10-10

10-8

10-6

10-4

10-2

(d) M2b

Figure 6. Stability diagrams with respect to varying nlev

We do not present stability diagrams for ∆z studies for other methods from this paper because they are identical to Fig.385

6(c) up to the value of ∆t0. That is, stability of methods IMEX-SSP2(2,3,2) and M2 methods is controlled by the horizontal

wavelengths.

5 Conclusions

We developed a new framework to evaluate IMEX RK methods for atmospheric modeling. The framework uses a system of

normal modes and is proven to be simple but more selective than the 2D acoustics system used in literature. For example, the390

M1 method from Sect. 4.1 appears to be stable for a large set of timesteps and resolutions when using the 2D acoustics system.

If the method is evaluated with the system of normal modes, it is unstable for the same set of timesteps and resolutions.
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The new framework gives us insight to develop a set of second-order, low storage, high CFL IMEX RK methods to use in

atmospheric dynamical cores. Furthermore, we use spacetime operator built with the system of normal modes to investigate

dispersion and dissipation of IMEX RK schemes for three types of waves, gravity, Rossby, and acoustic.395

One extension of this work would be to investigate selectiveness of the framework based not on the system of normal modes

(12)–(16) but on a system of compressible Boussinesq equations as in Durran and Blossey (2012).
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Appendix not to be shown

Deriving Eq. (18)475

Start with (Thuburn and Woollings, 2005), Eq. 57 (i did not check if (57) is correct):

(∂z +A)(∂z +B)p+C = 0, with BC at both ends (∂z +B)p= 0,

where

A=N2/g, B = g/c2, C =
{

1/c2 +
(
K2 + kβ/ω

)[
f2− (ω+ kβ/K2)

]−1
}

(ω2−N2).

Here p seems to not be rescaled yet by any exponents. Now we try to get rid of 1st order terms: Consider p̃= s= pekz ,

k = (A+B)/2. Then

p = e−kzs (33)

pz = e−kz(sz − ks) (34)

pzz = e−kz(szz− 2ksz + k2s) (35)480

and the original eqn. becomes

pzz + (A+B)pz + (AB+C)p= e−kz(...) = 0,

where what’s in pars is

szz + sz(−2k+ (A+B)) + s(k2− (A+B)k+AB+C) = 0.

With k = (A+B)/2, sz multiplier is zero, s multiplier is

−(B−A)2/4 +C

and eqn. becomes

p̃zz +
(
C − (B−A)2/4

)
p̃= 0
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For BC term,

(∂z +B)p= e−kz(sz − ks+Bs) = e−kz(∂z + (B−A)/2)s= 0,

that is

p̃z +
B−A

2
p̃= 0.

Recover int/ext modes

For now use s= p̃. Say, a=m2 > 0, m> 0, s= c1 sin(mz) + c2 cos(mz) and for BC then we have: For top s= 0 and

s(D) = c1 sin(mD) + c2 cos(mD) = 0

which leads to

c2 =−c1 tan(mD).

For bottom we have

sz(0) + ((B−A)/2)s(0) = c1m+ c2(B−A)/2 = 0

and so

c2 =−c1
2m

B−A
.

All together

−c2 = tan(mD) =
2m

B−A
.

When m is large, it gets close to pi/2 +nπ.

When m is found numerically, we then solve

m2 = a= C(ω)− (B−A)2

4

for ω values.

Now, case a < 0, take −a=m2, m> 0: Then s= em

...485

Converting vectors to/from height coordinate

Consider function in height coordinate:

f(z) = fr(z) + εf̃(z)

and similarly, the same function but in θ coordinate:

f(z) = g(θ) = gr(θ) + νg̃(θ).

Now take

z = z(θ0 + δθ) = z(θ0) + δ
dz

dθ
.
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Thus

f(z(θ0 + δθ)) = fr(z(θ0 + δθ)) + εf̃(z)

and

f(z(θ0 + δθ)) = fr(z(θ0)) + δ · df
r

dz
· dz
dθ

+ εf̃(z(θ)) = gr(θ) + νg̃(θ).

Comparing small terms we get
dfr

dz
· dz
dθ

+ f̃(z(θ)) = g̃(θ).

Compare this to eqn 62 in TW2005 (the same). Since wr in height is zero, it is true that w = 0 (w is perturbation) in isotermal

system.

Scalar Stability Function

Consider IMEX with implicit and explicit time levels

c = (c1, c2, c3, c4, c5, c6)

and last stage is the same as summation vector,

w = (w1,w2,w3,w4,w5,w6).

In our case,

c = (0, c2, c3, c4, c5,1).

We are trying to derive a simplified proxy to investigate stability of IMEX. For that we assume that we integrate eqn yt = λy

from yn to yn+1 with timestep ∆t. Consider stages for implicit table,

y(j), j = 1, ...,6.

In our case, y(1) = yn and y(6) = yn+1. Since all stages besides the 6th one are BE, we have

y(j) = yn + cj∆tλy
(j)

which is the same as

y(j) =
1

1− cj∆tλ
yn

for j = 2,3,4,5. The last stage is given by

yn+1 = yn + ∆t

6∑
j=1

wjλy
(j) = yn + ∆tλ

(
w1y

n +w2
1

1− c2∆tλ
+ ...

)
.

Introducing ∆tλ= s, complex, we get

yn+1 = yn + s

(
w1 +

w2

1− c2s
+

w3

1− c3s
+

w4

1− c4s
+

w5

1− c5s

)
yn +w6sy

n+1.
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Then

yn+1 = yn
(

1 + sw1 +
sw2

1− c2s
+

sw3

1− c3s
+

sw4

1− c4s
+

sw5

1− c5s

)
/(1−w6s)

and our stability function is (
1 + sw1 +

sw2

1− c2s
+

sw3

1− c3s
+

sw4

1− c4s
+

sw5

1− c5s

)
/(1−w6s).

We can impose 2nd order conditions on w and condition
∑
wj = c6 = 1.490
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Unwrap IMEX stages

Following ODE with ’slow’ (s) and ’fast’ (f) parts

yt = s(y,t) + f(y,t)

and definition of IMEX in

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.654.5100&rep=rep1&type=pdf

Runge-Kutta IMEX schemesfor the Horizontally Explicit/Vertically Implicit (HEVI) solution of wave equations

eqns. 2-3, we use M2 explicit and implicit tables to write each stage separately:495

y(1) = yn (36)

y(2) = yn + ∆t
1

4
s(y(1), tn + 0) + ∆t

1

4
f

(
y(2), tn +

1

4
∆t

)
(37)

y(3) = yn + ∆t
1

6
s

(
y(2), tn +

1

4
∆t

)
+ ∆t

1

6
f

(
y(3), tn +

1

6
∆t

)
... (38)

Note that for intermediate stages like y(2), we solve explicit and implicit parts separately

y
(2)
1 = yn + ∆t

1

4
s(y(1), tn + 0) (39)500

y(2) = y
(2)
1 + ∆tf

(
y(2), tn +

1

4
∆t

)
(40)

The final solution is

yn+1 = y(6) = yn + ∆ts
(
y(5), tn + ∆t

)
(41)

+ d1∆tf (yn, tn) (42)

+ d2∆tf

(
y(2), tn +

1

4
∆t

)
(43)505

+ d3∆tf

(
y(3), tn +

1

6
∆t

)
(44)

+ d4∆tf

(
y(4), tn +

3

8
∆t

)
(45)

+ d5∆tf

(
y(5), tn +

1

2
∆t

)
(46)

+ d6∆tf
(
y(6), tn + ∆t

)
(47)
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