
We appreciate comments from the two reviewers. We addressed each comment below, listing the original comment and
our reply, and in the new draft (attached). Two significant changes are expansion of Sect 2.1 and inclusion of a different
ARK2(2,3,2) method, as was pointed by E. Constantinescu. We added the new method, with a32=0.85 (in explicit table), to
the repository and to the draft.

Due to the requirement from GMDD to have "(1) comments from referees/public, (2) author’s response, and (3) author’s5
changes in manuscript" we insert old and new text in the response, not in the manuscript. This makes numbering of some
formulas inconsistent with the new draft. Also, some references cannot be addressed properly, but we believe the changes are
still clear.

We list Reviewers’ general comments, then their individual comments in bold, then our responses and the changes we have
made in the manuscript. The old text is in blue, the revised text is in red.10

1 Reviewer 1

Reviewer1 general comments:
The authors present a new framework for the evaluation of IMEX methods for atmospheric applications where a linearized

nonhydrostatic system of normal modes is used. Several IMEX methods are tested with the new framework. Tests with the
new framework are compared to tests with the acoustic system. All presented IMEX methods are investigated with regard to15
stability. M2 methods which are a special type of IMEX methods are described. They are also investigated with regard to dis-
persion and dissipation properties. The authors present an intersting work on the suitability of IMEX methods for atmospheric
applications which can contribute to the understanding of the numerical methods. I have the feeling that the sections where the
new framework is described could contain more details. A few suggestions can be found in the section "Specific comments".

– Comments 1 and 2: section 2.1: It might help the readers if the linearized system without substituting the single20
mode solution was written down. The same section system (6)-(7): It might contribute to a better understanding
if you explained how the system (6)-(7) can be obtained from the linearized system. For better clarity, you might
want to write down the whole system.
Reply: Thank you. We added a version of system (1)-(5) before substituting the single mode solution. We also sig-
nificantly extended explanation of this and other systems in Sec 2.1 to address the Reviewer’s general comments. We25
expanded system (6)-(7) and added a clarification about it.

OLD (blue)
We use a vertical coordinate based on hydrostatic pressure (Laprise, 1992), where hybrid pressure levels
are located on constant s surfaces, and s is the vertical Lagrangian coordinate satisfying ṡ= 0, following
Lin (2004). After linearization and substituting single mode solutions in which each field is proportional30
to exp(ikx+ ily− iωt), this formulation is equivalent to the system of equations (20)–(24) in isentropic
coordinate from TW2005. With inclusion of the β-effect as in equations (55)–(56) of TW2005, this system is
as follows:

−iωu = fv+
ikx
K2

βu− ikx
(
p

ρr
+φ

)
(1)

−iωv = −fu+
ikx
K2

βv− ilx
(
p

ρr
+φ

)
(2)35

−iωw = −g σ
σr
− pθ
σr

(3)

−iωφ = gw (4)
−iωσ = −σr(ikxu+ ilxv) (5)
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with linearized equation of state (EOS)

p

pr
=

1

1−κ
σ

σr
− 1

1−κ
φθ
φrθ
.

We also retain a version of system (14)–(18) with time derivatives in the left hand side:

ut = fv+
ikx
K2

βu− ikx
(
p

ρr
+φ

)
(6)40

... (7)
σt = −σr(ikxu+ ilxv) (8)

Here u, v, and w are velocity components, p is pressure, ρ is density, φ is geopotential, kx and lx (here sub-
script x does not denote differentiation in x) are horizontal wavenumbers with K2 = k2

x + l2x, g is the gravity
constant, κ=R/cp is a thermodynamic constant, σ is pseudo-density defined with respect to the vertical45
coordinate (see Taylor et al. (2020) for details), and θ is potential temperature. The superscript r denotes vari-
ables defined by reference profiles of a linearized hydrostatic steady state with constant temperature T0. The
subscript t denotes partial differentiation with respect to time. The subscript θ denotes partial differentiation
with respect to potential temperature. Other variables are first-order perturbed quantities, about the reference
state, as follows from linear analysis. All variables are scalar quantities.50

NEW (red)
In Thuburn et al. (2002a, b) and TW2005, the Euler equations for a dry adiabatic atmosphere are simplified
to study normal modes. Various approximations about the geometry and Coriolis terms are made, and the
systems are linearized about a hydrostatic reference state at rest. Furthermore, TW2005 presents such systems
for different choices for thermodynamic variables, vertical coordinates, and equations of state. We use a55
vertical coordinate based on hydrostatic pressure (Laprise, 1992), where hybrid pressure levels are located
on constant s surfaces, and s is the vertical Lagrangian coordinate satisfying ṡ= 0, following Lin (2004).
Therefore, we adopt system (20)-(24) in TW2005 for the shallow atmosphere approximation and a Lagrangian
vertical coordinate:

ut = fv−
(

1

ρr
∂p

∂x
+
∂φ

∂x

)
(9)60

vt = −fu−
(

1

ρr
∂p

∂y
+
∂φ

∂y

)
(10)

wt = −g σ
σr
− 1

σr
∂p

∂θ
(11)

φt = gw (12)

σt = −σr
(
∂u

∂x
+
∂v

∂y

)
(13)

Here u, v, and w are velocity components, p is pressure, ρ is density, φ is geopotential, g is the gravity65
constant, f is the Coriolis parameter, σ is pseudo-density defined with respect to the vertical coordinate (see
Taylor et al. (2020) for details), and θ is potential temperature. The superscript r denotes variables defined
by reference profiles of a linearized hydrostatic steady state with constant temperature T0. The subscript t
denotes partial differentiation with respect to time. Variables u, v, w, φ, p, and σ are first-order perturbed
quantities, about the reference state, as follows from linear analysis.70

After substituting single mode solutions in which each field is proportional to exp(ikxx+ ilyy− iωt), this
formulation is equivalent to the system of equations (20)–(24) in isentropic coordinate from TW2005. With
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inclusion of the β-effect as in equations (55)–(56) of TW2005, this system is as follows:

−iωu = fv+
ikx
K2

βu− ikx
(
p

ρr
+φ

)
(14)

−iωv = −fu+
ikx
K2

βv− ilx
(
p

ρr
+φ

)
(15)75

−iωw = −g σ
σr
− pθ
σr

(16)

−iωφ = gw (17)
−iωσ = −σr(ikxu+ ilxv) (18)

with linearized equation of state (EOS)

p

pr
=

1

1−κ
σ

σr
− 1

1−κ
φθ
φrθ

. (19)80

We also retain a version of system (14)–(18) with time derivatives in the left hand side:

ut = fv+
ikx
K2

βu− ikx
(
p

ρr
+φ

)
(20)

vt = −fu+
ikx
K2

βv− ilx
(
p

ρr
+φ

)
(21)

wt = −g σ
σr
− pθ
σr

(22)

φt = gw (23)85

σt = −σr(ikxu+ ilxv) (24)

In addition to the variables and constants defined above, κ=R/cp is a thermodynamic constant and kx and
lx are horizontal wavenumbers with K2 = k2

x + l2x. Here and later in the text, the subscript x in kx and lx
does not denote differentiation in x. We keep such notations to be consistent with notations for horizontal and90
vertical wavenumbers introduced in Weller et al. (2013); Lock et al. (2014). The subscript θ denotes partial
differentiation with respect to potential temperature. In (14)–(18) , (19), and (20)–(24) variables ρr, σr, pr,
and derivative φrθ are variables defined by the reference profile of a linearized hydrostatic steady state with
constant temperature T0. Variables u, v, w, φ, p, and σ are first-order perturbed quantities about the reference
state. All variables are scalar quantities.95

– Comment 3: section 2.1 equation (8): Would you give some additional details to explain where equation (8) comes
from?
Reply: Eqn (8) is derived in references TW2005 and Thuburn et al. (2002b). We rewrote the corresponding paragraph to
provide more details and the change of variable that was used.

OLD (blue)100

To derive the dispersion relation, we follow Sect. 3 of TW2005 and Thuburn et al. (2002b). The dispersion re-
lation is independent of the choice of vertical coordinate and is most easily found using the height coordinate,
z. The hydrostatic equation, elimination, and use of the EOS yield the ODE

p̃zz + ap̃= 0, a(ω) = C(ω)− (B−A)2

4
, (25)
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where p̃= p exp
(

(A+B)z
2

)
is a change of variable, the constantsA andB are related to the static stability and105

sound speed, respectively, of the isothermal reference state and C(ω) is a cubic function of the frequency ω.
A,B, and C are defined as in TW2005, equation (58). In our setting, the ODE has bottom boundary condition

p̃z +
B−A

2
p̃= 0 (26)

at z = 0 and top boundary condition p̃= 0 at z =D.110

NEW (red)
To derive the dispersion relation from (14)–(18) , we follow Sect. 3 of TW2005 and Thuburn et al. (2002b).
The dispersion relation is independent of the choice of vertical coordinate and is most easily found using the
height coordinate, z. In TW2005 the hydrostatic equation, elimination, and use of the EOS yield the ODE,
Eq. (57)115

(∂z +A)(∂z +B)p+C = 0 (27)

where the constants A and B are related to the static stability and sound speed, respectively, of the isothermal
reference state and C(ω) is a cubic function of the frequency ω. Expressions for A,B, and C are defined as
in TW2005, equation (58). As in TWS2002b, we make the change of variable p̃= p exp

(
(A+B)z

2

)
to obtain

p̃zz + ap̃= 0, a(ω) = C(ω)− (B−A)2

4
. (28)120

In our setting, ODE (28) has bottom boundary condition

p̃z +
B−A

2
p̃= 0 (29)

at z = 0 and top boundary condition p̃= 0 at z =D.

– Comment 4: the same section lines 91-96: Equation (9) describes a boundary condition. Could you discuss how
this boundary conditions is related to c1, c2 (line 93 and 94) and equation (10)?125

Reply: To make it more clear, we included derivation of equation (10) using coefficients c1, c2.

OLD (blue)
With m=

√
a and solution of form p̃(z) = c1 sin(mz) + c2 cos(mz), we recover internal modes. Instead of

internal modes with vertical wavenumber m= nπ/D, where n > 0 is the mode number, as in TW2005, we
obtain solutions with wavenumber m obeying130

tan(mD) =
2m

B−A
. (30)

NEW (red)
With m=

√
a and solution of form p̃(z) = c1 sin(mz) + c2 cos(mz), we recover internal modes. From the

top boundary condition we recover

0 = p̃(D) = c1 sin(mD) + c2 cos(mD) ⇒ c2 =−c1 tan(mD).

From the bottom boundary condition we recover

0 = p̃z(0) +
B−A

2
p̃(0) = c1m+ c2

B−A
2

⇒ c2 =−c1
2m

B− 1
.
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Combining, we obtain a condition on wavenumver m:

tan(mD) =
2m

B−A
. (31)135

In TW2005, internal modes obeym= nπ/D, where n > 0 is the mode number. In (31), for largemwavenum-
bers are close to nπ

D + π
2D , where n is a positive integer.

– Comment 5: the same section line 96-98: In line 96 the wavenumbers m are defined by equation (10), where A, B
and D are constant, right? Then you write " Wavenumbers are found numerically in Matlab by solving Eq. (10)
for mi ∈ 1, ...nlev,nlev = 20." Why do you need the mi?140

Reply: Thank you. There was a typo in the text implying that mi are integers. We fixed the typo and explained that m
are satisfying eqn. (10) and since the equation is nonlinear due to presence of a tangent, we use a numerical method in
Matlab to find first few numbers m.

OLD (blue)
Wavenumbers m are found numerically in Matlab by solving Eq. (31) for mi ∈ {1, . . . ,nlev}, nlev = 20.145

NEW (red)
Due to the nonlinearity of (31) with respect to m, wavenumbers m obeying (31) are found numerically in
Matlab by solving Eq. (31) for the first nlev values of mi, i ∈ {1, . . . ,nlev}, nlev = 20.

– Comment 6: section 2.3 line 124: The eigenvalues of M are not exactly the same as the iω in system (1)-(5).
Reply: Yes, thank you. We wrote the following new (red) wording about eigenvalues of matrix M.150

OLD (blue)
To discretize (20)–(24) vertically in space, we use a Lorenz staggering and place...
The eigenvalues of M are −iω and its eigenvectors correspond to three branches of waves, Rossby, gravity
or acoustic.
NEW (red)155

To discretize the right hand side of systems (20)–(24) and (14)–(18) vertically in space, we use a Lorenz
staggering and place u, v, and σ at the midpoints of the model’s nlev vertical levels and φ and w its nlev + 1
level interfaces.
The eigenvalues of M are discrete representations of quantities −iω in (14)–(18) and eigenvectors of M
correspond to three branches of waves, Rossby, gravity, or acoustic.160

– Comment 7: section 2.3 line 132: Would you explain what category 2b is?
Reply: We clarified how Category 2b is defined and explained why our method is Category 2b.

OLD (blue)
The numerical dispersion relation for the discretization of system (14)–(18) is plotted on Fig. ?? with blue
diamonds for westward propagating waves with ω < 0 and red stars for eastward propagating waves with ω >165
0. As in TW2005, system [wz,uvσ] which is characterized by its staggering, choice of prognostic variables
and EOS, is in category 2b. This category has a near optimal dispersion relation with overestimated Rossby
frequencies.
NEW (red)
The numerical dispersion relation for the discretization of system (14)–(18) is plotted in Fig. ??, with blue di-170
amonds for westward propagating waves with ω < 0 and red stars for eastward propagating waves with ω > 0.
As in TW2005, system [wz,uvσ], which is characterized by its staggering, choice of prognostic variables,
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and EOS, is in category 2b. Categories for discretizations are defined in TW2005. Categories for discretiza-
tions are defined in TW2005. The most optimal category is category 1 for methods with numerical dispersion
very close to analytical. The next most optimal methods belong to the set of Category 2 methods. Category175
2b methods have a near optimal dispersion relation with overestimated Rossby frequencies, as shown in Fig.
??, where numerical frequencies for the Rossby branch for large mode numbers are bigger by absolute value
(Rossby frequencies are negative) than their analytical counterparts.

– Comment 8: section 4.2.1 line 230-131: Can you give details about the differences between the normal mode
system and the acoustic system that explain the unstable behaviour in Figure 2(c)?180

Reply: We added text to highlight differences between the 2d acoustic system and the system of normal modes. The
system of normal modes has all waves presented in the atmosphere, Rossby, gravity and acoustic, and is linearized
around non-constant hydrostatic profile. It has realistic boundary conditions at the top and the bottom of the domain.

OLD (blue)
That is, Eq. (??) does not have enough complexity to indicate that the method can be unstable in practice.185

NEW (red)
That is, the 2D acoustic system in Eq. (??) does not have enough complexity to indicate that the method can be
unstable in practice. Compared to Eq. (??), the system of normal modes contains a full set of modes: east- and
west-propagating acoustic and gravity waves and westward-propagating Rossby waves. It is linearized about
a non-constant hydrostatic reference state and has commonly used constant pressure boundary condition at190
the model top.

– Comment 9 (also addressing Comment 14): section 4.3 line 241-242: Is there a motivation that explains why the
authors use the scheme from Kinnmark, I. and Gray, W. (1984a)? Does this scheme have any specific properties?
Reply: Kinnmark and Gray’s methods are attractive due to their low storage and high CFL. We added text about this in
Sec. 4.3195

OLD (blue)
We develop a set of M2 methods using a 2nd order, explicit, low-storage, CFL of 4 Runge-Kutta scheme from
Kinnmark, I. and Gray, W. (1984a). We analyze M2 schemes using system of normal modes (20)–(24) .
NEW (red)
We develop a set of M2 methods using a 2nd order, explicit, low-storage, CFL of 4 Runge-Kutta scheme from200
Kinnmark, I. and Gray, W. (1984a). Low storage, high CFL methods developed in Kinnmark, I. and Gray,
W. (1984a) and Kinnmark, I. and Gray, W. (1984b) are used in HOMME, the nonhydrostatic atmospheric
dynamical core of the U. S. Dept. of Energy Exascale Earth System Model’s (E3SM) atmosphere component.
It is practical to extend existing explicit RK schemes to IMEX RK methods. We analyze stability, dispersion,
and dissipation properties of M2 schemes using the system of normal modes (20)–(24) .205

– Comment 10: section 4.3.3 line 288-289: „Its stability region in Figure 5(a) coincides with stability region of its
explicit table“. Would you explain which scheme is described by the explicit table? Why is the stability region of
that method so large?
Reply: Thank you. We added an explanation about ’explicit table’ methods and a comment on how the last backward
Euler stage (an unconditionally stable timestepping method for hyperbolic problems) makes method M2be most stable210
among M2 methods.

OLD (blue)
As expected, M2be scheme is the most stable. Its largest stable ∆t at Tx = 2 km is approximately 4 sec,
which is at least 2× larger than the largest stable ∆t for the other schemes. Its stability region in Fig. ??(a)
coincides with stability region of its explicit table (not shown here) up to a minor difference at approximate215
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wavelength Tx = 220 km. That is, the stability region of M2be is the biggest region we could possibly get
from an IMEX scheme whose explicit table is part of the M2 set.
NEW (red)
As expected, due to the presence of the last backward-Euler stage in the implicit table, the M2be scheme is the
most stable. Recall that analytically for hyperbolic problems, the backward Euler method is unconditionally220
stable and is very dissipative. For the M2be method, the largest stable ∆t at Tx = 2 km is approximately 4
sec, which is at least 2× larger than the largest stable ∆t for the other schemes.
It is desirable to have an IMEX method with stability properties similar to the stability properties of an explicit
method used for a non-stiff part of the system (??). In other words, it is desirable to be able to integrate a
nonhydrostatic system using an IMEX method with a timestep as large as the timestep used to integrate a225
hydrostatic system using an explicit Runge-Kutta method. Therefore we compared the stability of IMEX
method M2be with the stability of the Runge-Kutta method consisting of the explicit table in M2be (let’s
call this method MExplicit), when it was applied to the non-stiff part of equation (??). The stability region
of M2be in Fig. ??(a) is almost as big as the stability region of MExplicit (not shown here) up to a minor
difference at approximate wavelength Tx = 220 km. That is, the stability region of M2be is the biggest region230
we could possibly get from an IMEX scheme whose explicit table is part of the M2 set.

– Comment 11: section 4.3.3 Figure 4 and Figure 5: How would you compare the methods from Figure 4 to the
methods from Figure 5? Is there a difference that explains why they show up in different tables?
Reply: Could we assume you meant ’show up in different figures’, not ’in different tables’? Both Figure 4 and 5 contain
only methods M2. Methods M2 are defined in table 1. We used two figures for methods M2 because of space that plots235
need to occupy; it is not possible to fit all plots for M2 methods into one figure.

– Comment 12 and 13: section 4.3.4 line 310: Would you explain the function s(z)? What does this function tell
us? the same section line 313-314: „we speculate that stability of any M2 method is directly related to amount of
dissipation provided by the last stage coefficients d.“ Would you explain this sentence? Did you have Figure 5(a)
in mind? In Figure 5(a) the stability region is large, but the dissipation rates for the acoustic waves are big. Would240
you say that dissipation is unaffected by the other stages?
Reply: Thank you. We clarified conclusions in affected paragraphs. We realized that discussion about s(z) is not adding
to discussion and removed the notation.

Re: "We speculate that stability of any M2 method is directly related to amount of dissipation provided by the last stage
coefficients d." – while this is true for the family of M2 methods, where we only vary the last implicit stage, this statement245
does not provide any insight; and we removed it.

Re: "Would you say that dissipation is unaffected by the other stages?" – in the revised text we gave some clarification
to this question using schemes M2be and M2cn as examples. Thank you again for these questions.

OLD (blue)
We choose to limit our search for a good M2 method by varying only the vector d in the implicit table. If250
one wants to perform a more comprehensive search for additional members of the M2 family of schemes
with explicit table from (??), left, the first step would be to focus on stability and dispersive and dissipative
properties of the implicit table (??), right. In this case it is standard to form a function s(z), where z is
complex and often chosen to be purely imaginary due to strong hyperbolicity of systems of atmospheric
dynamics. Here, since 2nd order accuracy conditions for methods M2 depend only on the last implicit stage,255
we make all other implicit stages backward Euler to presumably maximize stability.
As a next step, from observing the stability and dispersion/dissipation diagrams in Figs. ??, ?? we speculate
that stability of any M2 method is directly related to amount of dissipation provided by the last stage coeffi-
cients d. That is, choices where |s(z)| is smaller would lead to bigger stability regions in stability diagrams.
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In the M2 methods, dispersion and dissipation of gravity and Rossby waves do not seem to be affected by260
the implicit table, in particular, they seem insensitive to the most dissipative backward Euler stages 2 to 5.
On the contrary, acoustic waves are affected by the implicit table and its last, 6th, implicit stage. We make a
suggestion that dispersion and dissipation of acoustics waves can be tuned only by working with the implicit
table of any method.
NEW (red)265
We chose to limit our search for a suitable M2 method by varying only the vector d in the implicit table.
Since the 2nd order accuracy conditions for M2 family depend only on the last implicit stage, we make all
other implicit stages, stages 2-5, backward Euler to presumably maximize stability. One could also try to use
Crank-Nicolson or offcentered Crank-Nicolson methods for implicit stages 2-5.
To understand how the implicit stages influence dissipation of acoustic waves, we consider the expression for270
the final solution of Eq. (??) using Lock et al. (2014), Eq. (15), and the definition of M2 family in Eq. (??):

yn+1 = yn + ∆tN(y(5), tn + ∆t) + d1 ∆t S (yn, tn) + d2 ∆t S

(
y(2), tn +

1

4
∆t

)
+ d3 ∆t S

(
y(3), tn +

1

6
∆t

)
(32)

+ d4 ∆t S

(
y(4), tn +

3

8
∆t

)
+ d5 ∆t S

(
y(5), tn +

1

2
∆t

)
+ d6 ∆t S

(
y(6), tn + ∆t

)
. (33)

Scheme M2cn, given by its final implicit stage (d1, ...,d6) = (1/2,0,0,0,0,1/2), does not have dissipation.275
For M2cn, the solution yn+1 is influenced by intermediate implicit stages 2-5 only via the nonstiff term.
Also, its final implicit stage is represented by the Crank-Nicolson method, known to be nondissipative for
hyperbolic problems. We conclude that both of these facts contribute to the lack of dissipation in M2cn.
Scheme M2be has final implicit stage (d1, ...,d6) = (0,0,0,0,0,1) which gives the backward Euler method.
Similarly to the backward Euler method for hyperbolic problems, M2be is very dissipative.280
We suggest that dispersion and dissipation of acoustics waves can be tuned by working only with the implicit
table of any method.

– Comment 14: section 5 Conclusion: You presented several IMEX methods. When you consider your findings, can
you evaluate the different methods with respect to the applicability for atmospheric applications? How would you
evaluate the M2 methods?285

Reply: This is also addressed in Comment 9. Part of our work focused on family of M2 methods because its explicit
table is one of RK methods used in HOMME. It is reasonable to extend the current explicit scheme in the dycore (in our
case, HOMME) to an IMEX method, to keep desirable properties of the explicit method, in particular, low storage and
high CFL, and to maintain common software framework for hydrostatic and nonhydrostatic models.

– Technical corrections from Reviewer 1, Comment 1: Figures 2-6: Please check the labelling of the color bars.290

Reply: We are not sure what’s wrong with color bars; they have value labels.

– Technical corrections from Reviewer 1, Comment 2: section 3.3 line 187: Is ω̃j real or complex? Would you shift
the tilde.
Reply: Thanks, fixed.

OLD (blue)295
For small timesteps ∆t we expect the relationship between the space operator M and the spacetime operator
Q constructed for ∆t step to be

qj 'mk and λj = lje
−iω̃j∆t (34)

for some real lj > 0 and complex ω̃j .
NEW (red)300
... for some real lj > 0 and real ω̃j .
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2 Reviewer 2

Reviewer 2 general comments:
The paper is well introduced and clear in its scope and goals. I think some clarifications are in order and I have a few minor

comments in reading order as follows.305

– Comment 1: Why are acoustic waves highlighted in the abstract and later? In particular in a HEVI implementa-
tion one hopes that the vertical acoustic waves are dissipated.
Reply: We tend to disagree that the best scenario is when acoustic waves are heavily dissipated. As noted by Thuburn,
proper representation of all waves, including energetically insignificant acoustic and gravity waves, contributes to restora-
tion of the hydrostatic balance in the atmosphere. This is why in M2 family we presented more dissipative (M2be) and310
less dissipative methods. However, we are still in search for setups or idealized tests where strong or weak dissipation of
acoustic waves, or their dispersive properties, would make a difference.

– Comment 2: Formulation of the problem in Sec. 2.1: It would be great if variables are defined as scalars or vectors
also please list the missing part of (6)-(7) so that this study is more self-contained and easier to follow. It should
be clarified if subscripts are derivatives like in (8) or not.315

Reply: Thank you. We added more details about subscripts and scalars (all variables presented in the systems in Sec 2.1
are scalars); this overlaps with the reply and changes for Reviewer 1, Comment 1.

– Comment 3: Sec 2.2: please clarify "spectrum of ODE" on line 81. Also it may be better to spell out BC on line
108 so it’s not viewed as B*C
Reply: Thanks. We replaced ODE with ’differential operator’. We replaced BC on line 81 with ’boundary conditions’.320

OLD (blue)
The problem of finding frequencies ω in system (14)-(18) is equivalent to investigating a spectrum of an ODE.
NEW (red)
The problem of finding frequencies ω in system (14)-(18) is equivalent to investigating a spectrum of a
differential operator.325

OLD (blue)
Similarly, choice a= 0 cannot have solutions satisfying BC for our particular value of D.
NEW (red)
Similarly, choice a= 0 cannot have solutions satisfying boundary conditions for our particular value of D.

– Comment 4: Scheme ARK2(2,3,2) is misrepresented in Rokhzadi et al. (2018). The ARK2(2,3,2) is a family of330
methods parametrized by coefficient a32 in the explicit part. Rokhzadi et al. (2018) picked up the one used in
the numerical experiments. This was chosen for accuracy considerations: explicit part of ARK2(2,3,2) is order 3
for linear terms and it minimizes errors globally, while maintaining L-stability. The implicit part of ARK2(2,3,2)
with these properties is unique (no free parameters to optimize). A closer read of Giraldo et al. (2013) reveals
that a32=0.5 provides more stability in certain regimes of the compound IMEX method. Choosing a32=0.85 for335
instance produces that corresponds to Fig. 3(a) in the manuscript and looks really similar with results in Fig 3(b),
does it not? Also, corresponds to Fig. 6(b) in the manuscript. As a side note, ARK2(2,3,2) with a32=0.5 has a
significantly higher SSP coefficient than IMEX-SSP2(2,3,3) - explicit radius is 1.7 and implicit 2.41 as opposed
to IMEX-SSP2(2,3,2). But SSP is not relevant here or in the study by Rokhzadi et al. (2018) unless a monotonic
discretization is being used and discontinuous solutions develop. As Giraldo et al. (2013) note in their study they340
did not observe remarkable differences for ARK2(2,3,2) methods with different a32 in practice but it may have
had an impact on other regimes that were not tested exhaustively. I realize that the authors rely on the previous
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(a) ARK2(2,3,2)(1)
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(b) ARK2(2,3,2)(2)
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(c) IMEX-SSP2(2,3,2)

Figure 1. Schemes analyzed in (Rokhzadi et al., 2018) and ARK2(2,3,2)(2) scheme: (a) ARK2(2,3,2)(1) (b) ARK2(2,3,2)(2) (c) IMEX-
SSP2(2,3,2)

study. My only ask here is to acknowledge that only one method out of the ARK2(2,3,2) family has been used as
it is hard to go back and fix previous published studies.
Reply: Thank you. We added method ARK2(2,3,2) with a32=0.85 to the manuscript. As you pointed out, stability plots345
look good for this method. We modified Figure 3 and Figure 6 with plots as shown below. Figure 3 now has new plot
(b). Figure 6 also has new plot (c). We also found a typo in line 337 (original draft) and fixed it, ’M1’ should be ’M2b’.

We also modified corresponding text and the repository, and updated Zenodo record for it. Thanks again for pointing this
out.

OLD (blue)350

In Rokhzadi et al. (2018) the ARK2(2,3,2) method from Giraldo et al. (2013) is compared to a new scheme,
IMEX-SSP2(2,3,2). Rokhzadi et al. (2018) apply optimization to derive an ARK2 method with improved
accuracy, stability, and strong stability preserving (SSP) properties as compared to ARK2(2,3,2) for a lin-
ear wave equation, the 2-D acoustics system, the compressible Boussinesq equations, and the van Der Pol
equation as in Durran and Blossey (2012), Weller et al. (2013), and Lock et al. (2014). We compare the two355
methods using our system of normal modes (20)–(24) and similarly conclude that IMEX-SSP2(2,3,2) is more
stable: the stable (white) region in stability diagram for ARK2(2,3,2) in Fig. 1 (a) is significantly smaller that
the stable region for IMEX-SSP2(2,3,2) in Fig. 1 (b).
NEW (red)
In Rokhzadi et al. (2018) one of ARK2(2,3,2) methods from Giraldo et al. (2013) is compared to a new360
scheme, IMEX-SSP2(2,3,2). The family of ARK2(2,3,2) schemes is characterized by parameter a32 in the
explicit table (Giraldo et al., 2013). In Rokhzadi et al. (2018) authors choose the method with a32 = 1

6 (3 +

2
√

2), which we denote here as ARK2(2,3,2)(1). Rokhzadi et al. (2018) apply optimization to derive an
ARK2 method with improved accuracy, stability, and strong stability preserving (SSP) properties as com-
pared to ARK2(2,3,2)(1) for a linear wave equation, the 2-D acoustics system, the compressible Boussinesq365
equations, and the van Der Pol equation as in Durran and Blossey (2012), Weller et al. (2013), and Lock
et al. (2014). We compare these two methods and method ARK2(2,3,2) with a32 = 0.85 (which we denote
ARK2(2,3,2)(2)) using our system of normal modes (20)–(24) . We conclude that ARK2(2,3,2)(2) and IMEX-
SSP2(2,3,2) have very similar stability properties, as shown in Fig. 1 (b) and (c), but the stable (white) region
for ARK2(2,3,2)(1) is significantly smaller, as shown in Fig. 1 (a).370
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(a) Method M1
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(b) ARK2(2,3,2)(1)
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(c) ARK2(2,3,2)(2)
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(d) M2b

Figure 2. Stability diagrams with respect to varying nlev

OLD (blue)
Figure 2 contains stability diagrams for schemes M1, ARK2(2,3,2), and M2b. For schemes M1 and ARK2(2,3,2)
the stability is independent of ∆z, as desired, only for up to approximately nlev = 57 (∆z ' 175 m). In Figs.
2(a,b) the stable region for approximate interval nlev ∈ [20,57] (∆z ∈ [175,500] m) is under a straight line
with some ∆t= ∆t0. For finer ∆z stability regions lie below a line with a constant slope for both schemes.375

In contrast, for method M2b, stability is always controlled by the horizontal resolution: in Fig. 2(c) the stable
region is below horizontal line ∆t0 ' 7.2 sec. To further support this conclusion, we also computed eigen-
values of the spacetime operator for method M1, ∆t= 7 sec, and a few large values of nlev up to 600. The
spacetime operator for all large nlev was stable.
We do not present stability diagrams for ∆z studies for other methods from this paper because they are380
identical to Fig. 2(c) up to the value of ∆t0. That is, stability of methods IMEX-SSP2(2,3,2) and M2 methods
is controlled by the horizontal wavelengths.
NEW (red)
Figure 2 contains stability diagrams for schemes M1, ARK2(2,3,2)(1), ARK2(2,3,2)(2), and M2b. For schemes
M1 and ARK2(2,3,2)(1) the stability is independent of ∆z, as desired, only for up to approximately nlev = 57385
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(∆z ' 175 m). In Figs. 2(a,b) the stable region for approximate interval nlev ∈ [20,57] (∆z ∈ [175,500] m)
is under a straight line with some ∆t= ∆t0. For finer ∆z stability regions lie below a line with a constant
slope for both schemes.
In contrast, for methods ARK2(2,3,2)(2) and M2b, stability is always controlled by the horizontal resolution:
in Fig. 2(c) the stable region is below horizontal line ∆t0 ' 7.2 sec. To further support this conclusion, we390
also computed eigenvalues of the spacetime operator for method M2b, ∆t= 7 sec, and a few large values of
nlev up to 600. The spacetime operator for all large nlev was stable.
We do not present stability diagrams for ∆z studies for other methods from this paper because they are
identical to Fig. 2(c) up to the value of ∆t0. That is, stability of methods IMEX-SSP2(2,3,2) and M2 methods
is controlled by the horizontal wavelengths.395

– Comment 5: I cannot tell if the stability diagrams are scaled or not by the number of stages or if they should be.
Reply: They are not. We do not think they should be scaled by number of stages. We added a comment about it in Sect.
4.1.1.

OLD (blue)
Since its spatially discretized version is discretized in vertical direction, there is no need to define kz .400

NEW (red)
Since its spatially discretized version is discretized in vertical direction, there is no need to define kz .
Stability diagrams are not scaled by number of stages in IMEX methods.

ALSO ADDED
added to acknowledgement:405

The authors thank an anonymous reviewer and Emil Constantinescu for their valuable comments and suggestions.
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