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Abstract. Mitigating urban heat islands has become an important objective for many cities experiencing heat waves. Despite

notable progress, the spatial relationship between land use/land cover patterns and the distribution of air temperature remains

poorly understood. This article presents a reusable computational workflow to simulate the spatial distribution of air tem-

perature in urban areas from their land use/land cover data. The approach employs the InVEST urban cooling model, which

estimates the cooling capacity of the urban fabric based on three biophysical mechanisms, i.e., tree shade, evapotranspiration5

and albedo. An automated procedure is proposed to calibrate the parameters of the model to best fit air temperature observa-

tions from monitoring stations. In a case study in Lausanne, Switzerland, spatial estimates of air temperature obtained with the

calibrated model show that the urban cooling model outperforms spatial regressions based on satellite data. This represents two

major advances in urban heat island modeling. First, unlike in black-box approaches, the calibrated parameters of the urban

cooling model can be interpreted in terms of the physical mechanisms that they represent and can therefore help understanding10

how urban heat islands emerge in a particular context. Second, the urban cooling model requires only land use/land cover

and reference temperature data and can therefore be used to evaluate synthetic scenarios such as master plans, urbanization

prospects, and climate scenarios. The proposed approach provides valuable insights into the emergence of urban heat islands

which can serve to inform urban planning and assist the design of heat mitigation policies.

1 Introduction15

Since the industrial revolution, the earth has seen a global increase of temperature which has been especially prominent in urban

areas (Oke, 1973; Arnfield, 2003; Clinton and Gong, 2013). Such a trend concurs with an unprecedented growth of urban areas,

making contemporary cities a major source of landscape changes and greenhouse gas emissions (Angel et al., 2005; Grimm

et al., 2008; United Nations, 2015). By modifying the energy and water balance processes and influencing the movement of

air, urban surfaces alter local climatic characteristics, often resulting in warmer temperatures than its rural surroundings (Oke,20

1982). This phenomenon is known as the urban heat island (UHI) effect.
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The quantification of UHIs can be broadly divided into two main approaches (Schwarz et al., 2011), namely the canopy-

layer UHI, measured by the air temperature, usually at 2 m height (Stewart, 2011), and the surface UHI, measured by land

surface temperatures (LST) derived from remote sensing data (Voogt and Oke, 2003). The increasing availability of satellite

raster datasets has fostered a large body of research on the spatial distribution of LST and its relationship with the spatial25

composition and configuration of urban landscapes (Voogt and Oke, 2003; Zhou et al., 2019), which contrasts with the spatial

sparsity of meteorological stations that measure air temperature. Despite exhibiting some correlations, air temperature and LST

are essentially different physical quantities. Air temperature is closer to thermal comfort felt by humans, and can therefore be

employed to evaluate the influence of UHIs on key matters such as energy demand for air conditioning or human health.

Additionally, depending on the satellite overpass time, the differences between air temperature and LST can range from a30

few degrees (◦C) up to tens of degrees (Jin and Dickinson, 2010; Sobrino et al., 2012), which calls for special caution when

employing satellite-derived LST data for the study of UHIs.

Although notable studies have explored the relationship between satellite-derived LST raster data and air temperature mea-

surements to provide high-resolution insights of the canopy-layer UHI (Fabrizi et al., 2010; Schwarz et al., 2012; Anniballe

et al., 2014; Sheng et al., 2017; Shiflett et al., 2017), they have mostly focused on finding statistical relationships between UHIs35

and the spatial distribution of terrain features such as vegetation indices, without exploring how the observed patterns relate to

the biophysical mechanisms that explain canopy-layer UHI. Such a limitation is important when models are used in simula-

tions, for example to examine the effect of urban planning scenarios on air temperatures. As part of the Integrated Valuation of

Ecosystem Services and Tradeoffs (InVEST) software, a suite of spatial models to quantify and value the goods and services

from nature that sustain and fulfill human life (Sharp et al., 2020), an urban cooling model has been developed following recent40

research on the effects of surface materials and vegetation cover on UHI (Phelan et al., 2015; Zardo et al., 2017). The aim

of the urban cooling model is to simulate the spatial distribution of UHIs based on three key mechanisms, namely the shade

provided by trees, the evapotranspiration of urban vegetation and the albedo of the urban surface. In a preliminary application

of the model, Hamel et al. (2020) showed its capability to represent the spatial pattern of nighttime air temperature of the 2003

heatwaves in the Île-de-France region.45

The main objective of this study is to extend such preliminary experiments by proposing a reusable computational workflow

to apply the InVEST urban cooling model to predict the spatial distribution of air temperature in a given study area. The validity

of the simulated results is optimized by calibrating some key parameters to best fit a set of air temperature measurements from

monitoring stations. Additionally, the simulated spatial pattern of air temperature is compared with the one obtained with an

alternative approach, namely a spatial regression over features extracted from satellite data.50

2 Materials and methods

2.1 Study area

Situated at the western end of the Swiss Plateau and on the shores of the Lake Léman, Lausanne is the fourth largest Swiss

urban agglomeration with 420757 inhabitants as of January 2019 (Swiss Federal Statistical Office, 2018). As the second most
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important student and research center in Switzerland (after Zurich), the urban agglomeration of Lausanne has experienced55

substantial growth during recent decades, which has mostly occurred in the form of suburbanization (Bosch et al., 2020).

A notable geographic feature of Lausanne is its elevation difference of about 500 m between the lake shore at 372 m.a.s.l. and

the northeastern part of the agglomeration (see Figure 1 below). The area is characterized by a continental temperate climate

with mean annual temperatures of 10.9 ◦C and mean annual precipitation of 1100 mm, and a dominating vegetation of mixed

broadleaf forest.60

2.1.1 Spatial extent of the study

In line with urban economics and regional sciences, many works rely on administrative boundaries to define the spatial extent

of the study. However, the way in which boundaries are constructed overlooks the characteristic scales in which landscape

changes and environmental processes unfold, and might thus lead to equivocal results (Liu et al., 2014; Oliveira et al., 2014).

In consideration of such issues, the spatial extent for this study has been determined quantitatively by following the method65

employed in the Atlas of Urban Expansion (Angel et al., 2012). The core idea is that a pixel is considered part of the spatial

extent depending on the proportion of built-up pixels that surround it. In this study, a pixel is considered part of the spatial

extent when more than 15 % of the pixels that lay within a 500 m radius are built-up. Additionally, in order to evaluate how

temperatures change across the urban-rural gradient, the spatial extent has been extended by a 1000 m buffer. The above

procedure has been applied to the rasterized LULC map by means of the Python library Urban footprinter (Bosch, 2020c). The70

obtained spatial extent, displayed in Figure 1, has a surface of 112.46 km2.

2.2 Data

2.2.1 Land use/land cover data

The land use/land cover (LULC) maps have been obtained by rasterizing the vector geometries of the official cadastral survey

of August 2019 to the 10 m resolution. Such dataset is provided and maintained (i.e., weekly updated) by the cantonal ad-75

ministration of Vaud, and features the whole spatial extent of the canton of Vaud (Association pour le Système d’information

du Territoire Vaudois, 2018). The classification distinguishes 25 LULC classes which are relevant to the urban, rural and wild

landscapes encountered in Switzerland (Conference des Services Cantonaux du Cadastre, 2011). On the other hand, a 1 m

binary tree canopy mask has been derived from the SWISSIMAGE orthomosaic (Federal Office of Topography, 2019), by

means of the Python library DetecTree (Bosch, 2020a), which implements the methods proposed by Yang et al. (2009). The80

tree canopy mask of the spatial extent of the study is shown in Figure 1.

2.2.2 Elevation data

The elevation map for the study area, which is displayed in Figure 1, is extracted from the free version of the digital height

model of Switzerland (Federal Office of Topography, 2004), provided at the 200 m resolution by the Federal Office of Topog-

raphy.85
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(A) Spatial extent and urban pixels (B) Monitoring stations
Bourg-en-Lavaux
Bussigny
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Lausanne César-Roux
Lausanne Freiland
Lausanne Plaines-du-Loup
Marcelin
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Sorges

(C) Tree canopy (D) Digital elevation model (DEM)
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Figure 1. Study area. The upper left plot (A) shows the computed spatial extent (in orange) over the repartition of urban pixels (in black)

derived from the rasterized cadastral survey (Association pour le Système d’information du Territoire Vaudois, 2018). The upper right plot

(B) shows the locations of the air temperature measurement stations (see Appendix A2). The bottom row shows, for the computed spatial

extent of the study, (C) the tree canopy map derived from the SWISSIMAGE orthomosaic (Federal Office of Topography, 2019) and (D) the

altitude map derived from the free version of the digital height model of Switzerland (Federal Office of Topography, 2004). The basemap of

plots A, C and D is based on the World Shaded Relief (Copyright: ©2009 Esri). The basemap tiles of plot B have been provided by Stamen

Design, under CC BY 3.0, with data from OpenStreetMap, under ODbL.
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2.2.3 Satellite data

The satellite dataset consists of the 8 Landsat 8 images in 2018 and 2019 which do not feature clouds over the study area and

for days in which the maximum observed air temperature is over 25 ◦C (see the list of selected image tiles in Appendix A1).

Data from Landsat 7 has been excluded because of the scan line corrector malfunction.

2.2.4 Air temperature data90

A dataset of consistent air temperature measurements in the study area has been assembled by combining data from 11 stations

operated by various governmental and research sources, which are shown in Figure 1. The temporal resolution of the stations

ranges from 10 minutes to 30 minutes. Given that the UHI effect in Switzerland reaches its maximal intensity around 9 p.m.

(Burgstall, 2019), the remainder of this study evaluates it based on the air temperature observations of that hour.

2.3 Simulation with the InVEST urban cooling model95

The simulation of the spatial distribution of UHI employs the InVEST urban cooling model, version 3.8.0 (Sharp et al., 2020),

which is based on the heat mitigation provided by shade, evapotranspiration and albedo. The main inputs are a LULC raster

map, a reference evapotranspiration raster and a biophysical table containing model information of each LULC class of the

map. Each row of the biophysical table represents a LULC class, and features the following columns:

– lucode the LULC class code as represented in the LULC raster map100

– Shade a value between 0 and 1 representing the proportion of tree cover in such LULC class

– Kc the evapotranspiration coefficient

– Albedo a value between 0 and 1 representing the proportion of solar radiation directly reflected by the LULC class

– Green_area whether the LULC class should be considered a green area

– Building_intensity a value between 0 and 1 representing the ratio between floor area and land area (for nighttime105

simulations)

2.3.1 Model description

The data inputs described above are used to compute the cooling capacity index, which is based on the physical mechanisms

that contribute to cooling urban temperatures. More precisely, the cooling capacity index used in InVEST urban cooling model

builds upon the indices proposed by Zardo et al. (2017), which are based on shading and evapotranspiration, and extends them110

by adding a factor to account for the albedo. For each pixel i of the LULC raster map, the cooling capacity index is computed

as in:

CCi = wS ·Si +wAL ·ALi +wET ·ETIi (1)
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where Si, ALi and ETIi respectively represent the tree shading, albedo and evapotranspiration values of pixel i as defined in

the biophysical table, and wS , wAL and wET represent the weights attributed to each component respectively. The values of115

Si and ALi are retrieved from the biophysical table according to the LULC class k of the pixel i (see Appendix A3). The tree

shading is computed by overlaying the binary tree canopy mask with the rasterized LULC map so that for each LULC class k,

the shade coefficient Sk corresponds to the average proportion of tree cover over all the LULC pixels of class k, as in:

Sk =
1

|Ωk|
∑
j∈Ωk

xj (2)

where Ωk is the set of pixels of the tree canopy mask whose location corresponds to class k in the LULC raster, and xj is the120

value of pixel j of the the tree canopy mask, i.e., 1 if j corresponds to a tree and 0 otherwise. The albedo coefficients are based

on the local climate zone classification by Stewart and Oke (2012).

The evapotranspiration index ETI is computed as a normalized value of the potential evapotranspiration as in:

ETI =
Kc ·ETref
ETmax

(3)

where Kc is the evapotranspiration coefficient, ETref is the reference evapotranspiration raster for the period and area of125

interest and ETmax is the maximum evapotranspiration value observed in the area of interest.

In line with the studies of Nistor et al. (Nistor and Porumb, 2015; Nistor et al., 2016; Nistor, 2016), the evapotranspiration

coefficients are attributed to each LULC class by distinguishing four cases, namely the crop coefficient for single crops for

vegetation LULC classes, the water evaporation coefficient for surface water, the rock and soil evaporation coefficient for bare

soils and rocks, and evaporation coefficients for artificial LULC classes (e.g., urban areas). The evapotranspiration coefficients130

attributed to the LULC classes of the Swiss cadastral survey are listed in subsection A3.

Following the recommendations of Allen et al. (1998), the daily evapotranspiration ETref (in mm/day) has been estimated

for each pixel using the Hargreaves equation (Hargreaves and Samani, 1985) as in:

ETref = 0.0023 · (Tavg + 17.8) · (Tmax−Tmin)0.5 ·Ra (4)

where Tavg , Tmax and Tmin respectively correspond to the average, maximum and minimum Tair (in ◦C) of each day and Ra135

is the extraterrestrial radiation (in mm/day), which is in turn estimated for the latitude of Lausanne (i.e., 46.519833◦) for each

date following the methods of (Allen et al., 1998, Equation 21). The temperature values of each day have been extracted from

the inventory of gridded datasets provided by the Federal Office of Meteorology and Climatology (MeteoSwiss), which feature

the minimum, average and maximum daily Tair for the extent of the whole country at a resolution of 1 km. Such a dataset is

obtained by interpolating 100 Tair stations across Switzerland (including the MeteoSwiss Pully station of Figure 1) based on140

non-linear thermal profiles of major basins and non-Euclidean distance weighting that accounts for terrain effects (Frei, 2014).

In order to account for the cooling effect of large green spaces, the computed cooling capacity index of pixels that are part

of large green areas (> 2 ha) is adjusted as in:

CCgreeni =
∑
j∈Ωi

gi ·CCj · e−
d(i,j)
dcool (5)
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where gi is 1 when the pixel i is a green area and 0 otherwise (as defined in the biophysical table), d(i, j) is the distance145

between pixels i and j, dcool is a parameter that defines the distance over which a green space has a cooling effect, and Ωi is

the set of pixels whose distance to i is lower than dcool.

Then, a heat mitigation index is computed as:

HMi =

CCi if i is part of a large green area or CCi >CCgreeni

CCgreeni otherwise
(6)

In order to simulate the spatial distribution of Tair, the model requires two additional inputs. The first is the rural reference150

temperature Tref , where the UHI effect is not observed, e.g., in the rural surroundings of the city. The second is the magnitude

of the urban heat island effect UHImax, namely the difference between the rural reference temperature and the maximum Tair

observed in the city center. The two parameters are combined with HMi to compute the Ti for each pixel i of the study area

as in:

Tnomixi = Tref + (1−HMi) ·UHImax (7)155

Finally, the Tair values of each pixel Tnomixi are spatially averaged using a Gaussian function with a kernel radius r defined

by the user.

2.3.2 Calibration and evaluation of the model

To compare the InVEST urban cooling model with the spatial regression based on satellite features, the urban cooling model

is used to simulate the spatial distribution of Tair for the same 8 dates used to train the spatial regression model, i.e., the160

dates of the selected Landsat images. It is implicitly assumed that no significative LULC changes have occurred throughout

study period (i.e., from May 2018 to August 2019), and therefore all simulations depart from the same LULC raster, i.e., the

rasterized cadastral survey of the canton of Vaud as described above. Given the rugged terrain of the study area, the Tref has

been set as the minimum average Tair observed among the monitoring stations, while UHImax has been set as the difference

between the maximum average Tair observed among the monitoring stations and Tref . The values of Tref and UHImax for165

the 8 days considered in this study are displayed in Figure A1.

Although the documentation of the InVEST urban cooling model (Sharp et al., 2020) provides some suggested values

for several parameters of the model, their suitability depends strongly on the local geographic conditions of the study area.

Therefore, calibration of the parameters is required in order to better understand how the physical mechanisms beyond the

emergence of UHIs take place in the context of Lausanne. Following the manual calibration approach drafted by Hamel et al.170

(2020), the target parameters are the weights attributed to the tree shading wS , albedo wA and evapotranspiration wET , the

distance over which green spaces have a cooling effect dcool and the Tair mixing radius r. As an additional contribution, this

article implements an automated calibrated procedure based on simulated annealing optimization (Kirkpatrick et al., 1983)

that aims at the minimization of the R2 between the Tair values observed in the monitoring stations and those predicted by
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the model1. The parameter values suggested in the documentation of the model are set as the initial state of the simulation175

annealing procedure, which corresponds to a Tair mixing radius of r = 500 m, a green area cooling distance of dcool = 100 m,

and weights attributed to tree shading, albedo and evapotranspiration of wS = 0.6, wA = 0.2 and wET = 0.2 respectively. The

number of calibration iterations is set to 100.

Given that the Tref and UHImax parameters were here obtained from observations from each simulated day, metrics such as

the mean absolute error (MAE) and the root mean squared error (RMSE) are effectively constrained to the [0, UHImax] range,180

which affects the interpretation of these metrics. Therefore, in order to evaluate the ability of the InVEST urban cooling model

to spatially simulate UHIs, the coefficient of adjustment R2, MAE and RMSE of the calibrated model are compared with those

computed in two additional experiments. The first experiment consists in randomly sampling the Tair values from a uniform

distribution over the [Tref , UHImax] range of each date. In the second experiment, the Tair values of each date are randomly

sampled from a normal distribution with the mean and standard deviation of the Tair measurements of the monitoring stations.185

For both experiments, the three evaluation metrics are reported as their average over 10 runs.

2.4 Spatial regression of air temperature based on satellite data

The spatial regression to predict Tair from features derived from satellite data is performed over a raster dataset on a per-pixel

basis. A regression model is then trained to fit the observed Tair measurements by minimizing the error at the pixels that

correspond to the locations of the monitoring stations.190

The regression operates in each pixel with the Tair as the target variable, and the elevation, the LST and the normalized

difference water index (NDWI) (Gao, 1996) as independent variables. Additionally, to account for the influence of temperature

and moisture surface conditions of each pixel, the LST and NDWI are spatially averaged over a series of circular neighborhoods

with radii 200, 400, 600 and 800 m, thus reckoning 8 supplementary features. Based on previous research on the sensitivity of

the landscape patterns-UHI relationships to the spatial resolution (Weng et al., 2004; Song et al., 2014), the target resolution195

has been set to 200 m.

2.4.1 Computation of satellite-derived features

The estimation of LST from Landsat 8 images follows the methods of Avdan and Jovanovska (2016). On the one hand, the

data from the near-infrared (NIR) and red bands of Landsat 8 (i.e., bands 4 and 5 respectively) to compute the normalized

difference vegetation index (NDVI), which is then used to estimate the ground emissivity ελ. On the other hand, following the200

Landsat 8 data users handbook (Zanter, 2015), the data from the thermal band of Landsat 8 (i.e., band 10) is first converted to

top of atmosphere spectral radiance Lλ, from which brightness temperature BT is estimated (in ◦C) as in:

BT =
K2

ln((K1/Lλ) + 1)
− 273.15 (8)

1The calibration module has been designed as a reusable open-source Python package, see https://github.com/martibosch/invest-ucm-calibration
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where the K1 and K2 are band-specific thermal conversion constants embedded in the Landsat image metadata. Finally, the

ground emissivity ελ and the brightness temperature BT are used to compute the LST by inversion of Planck’s Law as in:205

LST =
BT

1 +λ · (BT/ρ) · ln(ελ)
(9)

where ρ= 1.438 · 10−2 m K is a constant computed as a product of Boltzmann constant and Planck’s constants divided by the

velocity of the light, and λ= 10.895 · 10−9 is the average of the limiting wavelengths of the thermal band.

The NDWI is computed from the green and near infrared (NIR) bands of Landsat 8 (i.e., bands 3 and 5 respectively) as in:

NDWI =
Xgreen−XNIR

Xgreen +XNIR
(10)210

2.4.2 Model selection and evaluation

Based on the work of Ho et al. (2014), three regression models have been considered, namely a multiple linear regression,

support-vector machine (SVM) and random forest. The accuracy of each regression model is assessed by means of a k-fold

cross-validation procedure, where the regression samples are first shuffled and partitioned into 3 folds. Then, for each fold k, a

regression model is trained using the other 2 folds and validated using the samples of such k fold. Finally, the model that shows215

the best validation score (i.e., the R2 averaged over 10 repetitions of the k-fold procedure) is selected. Additionally, the MAE

and RMSE are computed in order to evaluate the deviations between the observed Tair and the predictions of each model.

On the other hand, the importance of each feature is evaluated by computing its permutation importance (Breiman, 2001),

namely the average decrease of the regression accuracy when such feature is randomly shuffled. The training of the regression

models, cross-validation and permutation feature importance described above have been implemented by means of the Scikit-220

learn library (Pedregosa et al., 2011).

3 Results

3.1 Spatial regression of air temperature based on satellite data

When including all the samples, the R2 for the linear regression, SVM and random forest are respectively 0.832, 0.014 and

0.960, with MAE of 1.198, 2.671 and 0.580 ◦C, and RMSE of 1.508, 3.652 and 0.738 ◦C respectively. The coefficients225

suggest that SVM is not well suited for such a regression in this study area, whereas the linear regression and random forest

models obtain a very strong fit — the latter achieving the best performance. Nevertheless, the average cross-validation scores

suggest that the linear regression (average score R2 = 0.733) is more robust to missing data and also less likely to over-fit the

observations than the random forest regressor (average score R2 = 0.658). The remainder of the article thus considers only the

results obtained with a linear regression model trained with all the samples.230

The feature importances of the chosen linear regression model can be evaluated by means of an F-test (as implemented in

the Python library statsmodels (Seabold and Perktold, 2010), see B1. With a significance level of p= 0.05, the results of the

F-test suggest that the significant variables for the linear regression are the NDWI when spatially averaged over a 800m, 600m

9



400 500 600 700 800
Elevation [m]

4

2

0

2

4

T
T o

bs

16 18 20 22 24 26 28 30 32
Tobs

4

2

0

2

4

Date
2018-05-25
2018-06-19
2018-06-26
2019-06-13
2019-06-29
2019-07-24
2019-08-09
2019-08-25

Figure 2. Scatter plot of the spatial regression residuals (vertical axis) against the elevation of the monitoring station (horizontal axis of the

left plot) and the observed Tair (horizontal axis of the right plot), colored by the sample date. See Appendix B1.

and 400m radius (in decreasing order of significance). The following most significant variable is the NDWI spatially averaged

over a 200m radius (p= 0.071) and without spatial averaging (p= 0.231), and the LST spatially averaged over a 400m radius235

(p= 0.277). With a p= 0.420, the does not appear to be significant in this particular regression. The low significance obtained

for the LST features in this study might be attributable to the large time lag between the acquisition time of the Landsat images

(which ranges from 11:15 to 11:23 CET) and the time of the Tair measurements (i.e. 21:00 CET).

The relationship between the predicted and the observed values is displayed in Figure B1. The MAE and RMSE of 1.198 and

1.508 ◦C respectively demonstrate a stronger fit than the 1.82 and 2.31 ◦C obtained in the study of Ho et al. (2014) in Vancouver.240

The two plots of Figure 2 show the relationship between the elevation and Tobs of each sample and the regression errors. While

there is no discernable relationship regarding the elevation of the samples (i.e., the elevation of the monitoring stations), the

regression errors seem to be negatively correlated with Tobs. This pattern, which was also noted by Ho et al. (2014), indicates

that high temperature samples are systematically underestimated by the regression model whereas low temperature samples

are consistently overestimated.245

The series of predicted Tair maps for the 8 dates as well as the prediction errors at the locations of the monitoring stations

are displayed in Figure 3. While the range of temperatures exhibits important differences throughout the dates, the spatial

distribution of Tair is seemingly consistent. The highest temperatures persistently occur in the most urbanized areas, whereas

the lowest temperatures are take place in the higher elevations located east and north-east of the map. Finally, there seems to

be no discernable pattern in space nor time regarding the prediction errors at the monitoring stations.250

3.2 Simulation with the InVEST urban cooling model

The parameters of the model that result in the best fit of the station measurements are a Tair mixing radius of r = 236.02 m,

a green area cooling distance of dcool = 89.21 m, and the weights attributed to tree shading, albedo and evapotranspiration of

wS = 0.59, wA = 0.24 and wET = 0.17 respectively (see Appendix B2). The R2, MAE and RMSE of the calibrated model
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Figure 3. Maps of the Tair predicted by the spatial regression for the 8 dates. The points in the map correspond to the location of the

monitoring stations, and are colored according to the regression errors.

are respectively 0.903, 0.955 ◦C and 1.144 ◦C, which suggest a better model performance than randomly sampling from the255

station measurements. The latter yields aR2, MAE and RMSE of 0.573, 1.947 ◦C and 2.405 ◦C when sampling from a uniform

distribution and 0.550, 1.952 ◦C and 2.468 ◦C when sampling from a normal distribution. Furthermore, the values ofR2, MAE

and RMSE obtained with the calibrated parameters reveal a stronger fit than the spatial regression reported above.

The relationship between the Tair values at the monitoring stations simulated with the calibrated parameters and the actual

observed measurements is shown in Figure B2. The differences between Tair simulated at the monitoring stations and the260

observed values are plotted against the elevation and the observed temperatures Tobs in Figure 4. The pattern of such rela-

tionships is very similar to that observed in the spatial regression. On the one hand, there is no clear relationship between the

prediction error of the urban cooling model and elevation. On the other hand, the prediction errors exhibit a negative correla-

tion with the observed temperature, denoting a systematic tendency to both underestimate high temperatures and overestimate

low temperatures — the former being more prominent in this case, as noticeable from the asymmetry of the vertical axis in265

Figure 4.
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Figure 4. Scatter plot of the differences between the Tair simulated by the InVEST urban cooling model and the ones observed in the

monitoring stations (vertical axis) against the elevation of the monitoring station (horizontal axis of the left plot) and the observed Tobs

(horizontal axis of the right plot), colored by the sample date.

Figure 5. Maps of the Tair simulated by the InVEST urban cooling model for the 8 dates. The points in the map correspond to the location

of the monitoring stations, and are colored according to the simulation errors.
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The simulated Tair maps for the 8 dates and the prediction errors at the monitoring stations are shown in Figure 5. As in the

spatial regression, the temperature ranges show important differences across dates yet the same spatial pattern of Tair persists.

The simulated distribution of Tair shows its highest values in the center of Lausanne and along the most urbanized (and hence

less forested) zones along the main transportation axes, whereas the lowest temperatures are found in the forested areas located270

in the eastern and western extremes of the upper-half of the study area.

3.3 Model comparison

A comparison of the maps predicted by the spatial regression and the urban cooling model is displayed in Figure 6. In line with

the temporal consistency of the spatial patterns predicted by the two approaches respectively, the comparison maps also show

a spatial distribution of Tair that persists throughout the dates. Such spatial pattern is strongly reminiscent of the elevation275

maps (see Figure 1 above) and reflects the fact that the elevation is explicitly considered in the spatial regression but not in

the urban cooling model. The overall distribution of the Tair pixel differences between the two approaches follows a normal

distribution that ranges from -9.620 ◦C to 11.929 ◦C (respectively reflecting lower and higher temperatures predicted in the

spatial regression), which is considerably large range when compared to the small overall MAE and RMSE of both approaches.

Nonetheless, the way in which the histogram is centered around 0 ◦C suggests that the differences between the two approaches280

follow no particular correlation other than the spatial regression predicting more extreme Tair values, which is not surprising

considering that the range of Tair is systematically bounded in the urban cooling model by the Tref and UHImax parameters.

4 Discussion

The results obtained of this study suggest that both the spatial regression based on satellite data and the InVEST urban cooling

model are capable of predicting the spatial distribution of air temperature with a large degree of statistical determination.285

Furthermore, the fact that a similar spatial pattern is predicted by both models suggests that the biophysical mechanisms

embedded in the urban cooling model are well represented. If that is the case, the urban cooling model presents two central

advantages with respect to the spatial regression.

Firstly, unlike regressions and black-box approaches, the fact that the biophysical mechanisms that drive the emergence

of UHIs are represented explicitly allows for a physical interpretation of the parameters of the model. For example, in a290

comparative study of the relationship between the LST and the spatial configuration of trees in Baltimore and Sacramento,

Zhou et al. (2017) suggest that the distinctive results observed in each city might be related to how the shading of trees and

evapotranspiration contribute differently to urban cooling in the climatic context of each city. More precisely, they suggest

that in the dry climate of Sacramento, large patches of trees ameliorate the efficiency of the evapotranspiration, whereas with

the humid climate of Baltimore, the gains from the tree shading are likely more important. The urban cooling model provides295

a suitable mean to quantitatively address such matters, i.e., by calibrating the model in the two cities, we can explore the

weights obtained for each factor support such hypothesis. In the case study of Lausanne reported above, the weight attributed

to the tree shading wS = 0.59 is higher than the one attributed to the evapotranspiration wET = 0.17. This is consistent with
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Figure 6. Maps comparing the difference between the Tair predicted by the spatial regression T̂sr and the InVEST urban cooling model

T̂ucm for the 8 dates. See subsection B3.

the local climatic conditions being more similar in Lausanne and Baltimore than in Sacramento, yet the weights obtained in

this study might be partly determined by the initial solution provided. Nonetheless, to further understand this issue, validation300

and calibration of the InVEST urban cooling model in a broader variety of cities is required. Overall, the way in which the

calibrated parameters differ from the recommendations in the documentation of the model are in consonance with the particular

characteristics of Lausanne. More precisely, the smaller mixing radius and cooling distances are consistent with the uneven

relief of the study area.

The second major advantage of the urban cooling model is that once the model is calibrated for a given city, it can be used305

to evaluate synthetic scenarios such as those stemming from master plans, urbanization prospects or the like, and to spatially

design solutions. This kind of spatially-explicit evaluation of the impacts of alternative scenarios on ecosystem services is in

fact one of the central purposes of the InVEST suite of models (Tallis and Polasky, 2009). Statistical models like the spatial

regression are not well suited to such a purpose since they rely on features such as the LST that are hard to obtain other than

empirically.310
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The approach proposed in this article is nevertheless subject to some limitations that merit thoughtful consideration. On the

one hand, as acknowledged in its user guide (Sharp et al., 2020), the design of the InVEST urban cooling model presents a

number of limitations, the most relevant to this study being the simplified and homogeneous way in which the air is mixed

and the cooling effects of large green spaces. In complex terrains such as the Lausanne agglomeration, models with uniform

weighting of space show considerable deviations from the observed distribution of air temperature (Frei, 2014). On the other315

hand, the relationship between the calibration parameters and the resulting R2 is likely to define a complex optimization

landscape with multiple local optima. As a metaheuristic that strongly depends on random decisions, the simulated annealing

procedure is susceptible to convergence to local optima, arbitrarily leading to different solutions in each run. A sensitivity

analysis of the parameters of the urban cooling model as undertaken preliminarily by Hamel et al. (2020) for the Île-de-France

region could serve as a basis to improve the simulated annealing procedure by careful design of appropriate neighborhood320

search and annealing schedule. Finally, the approach of the present study based on observations at the moment of maximal

UHI intensity (i.e., 9 p.m. in Switzerland), however the factors that influence UHIs are likely to operate differently across the

diurnal UHI cycle. In fact, several studies point to distinct relationships between the spatial patterns of vegetation and daytime

and nighttime UHIs (Anniballe et al., 2014; Sheng et al., 2017; Shiflett et al., 2017; Hamel et al., 2020). Considering the nature

of the implications of UHI, e.g., energy consumption, work productivity or human health (Koppe et al., 2004; Santamouris325

et al., 2015; Zander et al., 2015), a sound understanding of the full diurnal UHI cycle becomes crucial towards the design of

robust solutions.

Nevertheless, the limitations on how the urban cooling model represents the spatial air mixing and the cooling effects of

green spaces seem hard to overcome with the current spatial sparsity of monitoring stations. Such major shortcoming, which

contrasts with the growing availability of high-resolution LST datasets, is one of the main reasons why most of the UHI studies330

have focused on the latter (Jin and Dickinson, 2010; Zhou et al., 2019). As illustrated in this article, spatial regressions based

on remote sensing features such as LST and NDWI do not necessarily replicate the air temperature measurements better than

biophysical models such as the InVEST urban cooling model. Therefore, improving the spatial density of the monitoring

network becomes an imperative for further enlightening of the UHIs phenomena.

5 Conclusions335

The present article presents a spatially-explicit approach to simulate UHIs with the InVEST urban cooling model, which is

based on three biophysical mechanisms, namely tree shade, evapotranspiration and albedo. The proposed approach shows

how LULC and air temperature data can be combined to calibrate the parameters of the model to best fit measurements from

monitoring stations by means of an automated procedure. The simulations performed for the urban agglomeration of Lausanne

show that the InVEST urban cooling model can outperform spatial regressions based on satellite-derived features such as LST,340

NDWI and elevation. The way in which both approaches consistently predict the highest temperatures in the most urbanized

parts of the agglomeration suggests that the enhancement of green infrastructure can be an effective heat mitigation strategy,

yet further exploration in other climatic contexts is required to fully understand this issue. To that end, the reusability of the
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computational workflow paves the way for further application of the urban cooling model to a broad variety of cities, which

can serve to improve the understanding of the UHI phenomena and support the design of heat mitigation strategies.345

Code availability. The code materials used in this article are available at https://doi.org/10.5281/zenodo.3970608 (Bosch, 2020b), and are

maintained in a GitHub repository at https://github.com/martibosch/lausanne-heat-islands.

Appendix A: Data

A1 Landsat tiles

The list of product identifiers of the Landsat image tiles are available as comma-separated value (CSV) file at https://github.350

com/martibosch/lausanne-heat-islands/blob/master/data/raw/landsat-tiles.csv

A2 Monitoring stations

Monitoring stations with their operator and their elevation in meters above sea level. The operators are: Agrometeo, Federal

roads office (ASTRA), Federal office for the environment (BAFU), General directorate for the environment of the Canton of

Vaud (DGE), and the Federal Institute of Forest, Snow and Landscape Research (WSL) (Rebetez et al., 2018). The source CSV355

file used in the computational workflow is available at https://github.com/martibosch/lausanne-heat-islands/blob/master/data/

raw/tair-stations/station-locations.csv.

A3 Biophysical table

The crop and water coefficients are based on Allen et al. (1998), while rock, soil and urban coefficients are derived from the

results of Grimmond and Oke (1999) in the city of Chicago. Given that the evapotranspiration of the vegetation and crops is360

subject to seasonal changes in temperate zones such as Switzerland (Allen et al., 1998), the values that correspond to the mid-

season estimation (June to August) in Nistor (2016). The albedo values are based on the work of Stewart and Oke (2012). The

shade column, which represents the proportion of tree cover of each LULC class, has been computed with a high resolution

tree canopy map of Lausanne and is therefore specific to the study area. Rows with a hyphen sign - in the shade column denote

that the corresponding LULC class is not present in the study area. The source CSV file used in the computational workflow is365

available at https://github.com/martibosch/lausanne-heat-islands/blob/master/data/interim/biophysical-table-shade.csv.
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A4 Reference temperatures and UHI magnitude
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Figure A1. Reference temperatures Tref (i.e., minimum Tair at 9 p.m. among the monitoring stations) and magnitude of the UHI UHImax

(i.e., difference between Tref and the maximum Tair at 9 p.m. among the monitoring stations) of the 8 dates considered in this study.

Appendix B: Results

B1 Spatial regression

The code of the spatial regression of air temperature from satellite data is available as a Jupyter Notebook (IPYNB) at https:370

//github.com/martibosch/lausanne-heat-islands/blob/master/notebooks/spatial-regression.ipynb.
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B1.1 Tables

Feature Coef. Std. error t P>|t| [0.025 0.975]

const 1.1760 3.369 0.349 0.728 -5.534 7.886

lst_0 0.4944 0.584 0.846 0.400 -0.669 1.658

ndwi_0 -6.1852 5.127 -1.206 0.231 -16.396 4.026

lst_200 -0.3267 0.885 -0.369 0.713 -2.089 1.435

ndwi_200 -28.5531 15.581 -1.833 0.071 -59.585 2.479

lst_400 -1.9332 1.765 -1.095 0.277 -5.449 1.583

ndwi_400 124.2456 46.749 2.658 0.010 31.138 217.353

lst_600 1.0526 2.963 0.355 0.723 -4.849 6.955

ndwi_600 -156.7220 55.931 -2.802 0.006 -268.119 -45.325

lst_800 1.7306 1.685 1.027 0.308 -1.626 5.087

ndwi_800 85.4412 22.732 3.759 0.000 40.167 130.715

elev -0.0026 0.003 -0.810 0.420 -0.009 0.004

Table B1. F-test of variable significance of the linear regression.

B1.2 Figures
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Figure B1. Scatter plot of the Tair predicted by the linear regression model trained with all the samples (vertical axis) versus the observed

measurements (horizontal axis).
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Figure B2. Scatter plot of the Tair values simulated with the InVEST urban cooling model (vertical axis) versus the observed measurements

(horizontal axis).

B2 Simulation with the InVEST urban cooling model

The code of the spatial simulation of air temperature with the InVEST urban cooling model is available as a Jupyter Notebook375

(IPYNB) at https://github.com/martibosch/lausanne-heat-islands/blob/master/notebooks/invest-urban-cooling-model.ipynb

B3 Comparison

The code used for the comparison of the spatial regression and simulation of air temperature is available as a Jupyter Notebook

(IPYNB) at https://github.com/martibosch/lausanne-heat-islands/blob/master/notebooks/comparison.ipynb
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