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Abstract. Eastern Boundary Upwelling Systems (EBUSs) are physically and biologically active regions of the ocean with

substantial impacts on ocean biogeochemistry, ecology, and global fish catch. Previous studies have used models of varying

complexity to study EBUS dynamics, ranging from minimal two-dimensional (2D) models to comprehensive regional and

global models. An advantage of 2D models is that they are more computationally efficient and easier to interpret than compre-

hensive regional models, but their key drawback is the lack of explicit representations of important three-dimensional processes5

that control biology in upwelling systems. These processes include eddy quenching of nutrients and meridional transport of nu-

trients and heat. The authors present a Meridionally Averaged Model of Eastern Boundary Upwelling Systems (MAMEBUS)

that aims at combining the benefits of 2D and 3D approaches to modeling EBUSs by parameterizing the key 3D processes in a

2D framework. MAMEBUS couples the primitive equations for the physical state of the ocean with a nutrient-phytoplankton-

zooplankton-detritus model of the ecosystem, solved in terrain following coordinates. This article defines the equations that10

describe the tracer, momentum, and biological evolution, along with physical parameterizations of eddy advection, isopycal

mixing, and boundary layer mixing. It describes the details of the numerical schemes and their implementation in the model

code, and provides a reference solution validated against observations from the California Current. The goal of MAMEBUS

is to facilitate future studies to efficiently explore the wide space of physical and biogeochemical parameters that control the

zonal variations in EBUSs.15

1 Introduction

Eastern Boundary Upwelling Systems (EBUSs) are among of the most biologically productive regions in the ocean, supporting

diverse ecosystems, and contributing to a significant portion of the global fish catch (Bakun and Parrish, 1982). The character-

istic wind-driven upwelling dominant in EBUSs is forced by an equatorward meridional wind stress that decreases toward the

shore, driving a zonal Ekman transport offshore. The resulting Ekman pumping brings cold, nutrient-rich water to the surface,20

fueling primary productivity (Jacox and Edwards, 2012; Chavez and Messié, 2009; Rykaczewski and Dunne, 2010).

The upwelling-favorable winds also drive baroclinic, equatorward geostrophic current, which sheds mesoscale eddies (Colas

et al., 2013). Together with offshore Ekman transport, mesoscale eddies redistribute nutrients zonally and subduct nutrients and

other tracers into the ocean subsurface (Capet et al., 2008; Gruber et al., 2011; Renault et al., 2016). The resulting cross-shore

gradient of nutrients at the surface supports a zonal variation in the abundance of phytoplankton, with high biomass and25
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chlorophyll nearshore, and low offshore (Chavez and Messié, 2009). The size structure of phytoplankton is similarly affected,

with larger cells with higher nutrient demand onshore, and smaller cells offshore (Cabre et al., 2013).

While these qualitative patterns of productivity are common to upwelling systems, previous studies have shown that pro-

ductivity varies substantially between EBUSs, but the causes of these inter-EBUS variations are not well understood. Possible

physical drivers of these inter-EBUS variations include the shape and strength of the wind stress curl, which set the upwelling5

strength and source depth (Bakun and Nelson, 1991; Jacox and Edwards, 2012). This in turn controls the energy transferred to

the baroclinic eddy field, modulating surface nutrient availability via the “eddy quenching” mechanism (Gruber et al., 2011;

Renault et al., 2016). Additionally, inter-EBUS variations may have biogeochemical origins, for example due differing subsur-

face oxygen inventories (Chavez and Messié, 2009).

Our understanding of these drivers is hindered in part by the observational limitations, and in part by the computational10

expense of regional models that can resolve the processes mentioned above. A range of models of varying complexity have

been used to study EBUSs, from minimal two-dimensional (2D) models (Jacox and Edwards, 2012; Jacox et al., 2014) to

comprehensive regional models (Shchepetkin and McWilliams, 2005; Chenillat et al., 2018). While 2D models require fewer

computational resources than comprehensive regional model studies, and thus allow a more comprehensive exploration of the

relevant parameter space, they lack the explicit representation of important physical processes that affect biology in upwelling15

systems (i.e. eddy-quenching and meridional transport of nutrients).

Here, we aim to close the current gap in understanding by developing an idealized, quasi-2D model of the physics and

biogeochemistry of EBUSs. The model includes parameterizations of the key three-dimensional processes, while retaining the

computational efficiency of a 2D model. The model is cast in a residual-mean framework (Plumb and Ferrari, 2005a) in terrain

following coordinates (Song and Haidvogel, 1994), and is referred to as the Meridionally Averaged Model of Eastern Boundary20

Upwelling Systems (MAMEBUS). A schematic of all the important processes in MAMEBUS is shown in Figure 1.

The rest of the paper is organized as follows. In Section 2, we describe the equations and physical parameterizations im-

plemented in MAMEBUS, including general formulation of tracer advection and diffusion, the time-dependent turbulent ther-

mal wind approximation of the momentum equations (T3W), eddy and boundary layer parameterizations, and our ecosystem

formulation. In Section 3, we detail the algorithms and discretizations, including mesh specification, vertical coordinate trans-25

formation, and time integration. In Section 4, we describe the implementation of MAMEBUS including the various options

available to the user, parameter choices, initialization, and output. In Section 5, we describe reference solutions for MAME-

BUS, discussing model sensitivities to changes in bathymetry, wind forcing, and surface heat fluxes. Finally, in Section 6 we

discuss further model development and future work.

2 MAMEBUS Framework30

MAMEBUS is comprised of a series of components that are necessary to capture physical-biogeochemical dynamics in EBUSs:

(1) explicit momentum conservation in form of geostrophic, hydrostatic, and Ekman balances implemented as part of the T3W
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Figure 1. A schematic of the essential components of the Meridionally Averaged Model of Eastern Bounday Upwelling Systems (MAME-

BUS). This schematic highlights some components that the user is able to control including the offshore restoring conditions, the eddy mixing

along isopycnals, the wind forcing, the surface mixed layer and bottom boundary layer parameterizations and grid spacing.

formulation; (2) eddies and their effect on material transport; (3) surface and bottom boundary layers; (4) nutrient and plankton

cycles in form of a size-structured "NPZD"-type model (Banas, 2011).

With the exception of the velocity field, all tracers in MAMEBUS evolve according to the following conservation equation:

∂c

∂t
=
∂c

∂t

∣∣∣∣
phys

+
∂c

∂t

∣∣∣∣
bio

+
∂c

∂t

∣∣∣∣
nct
, (1)

where the bar indicates a meridional average. The key physical tracer that follows Equation (1) is temperature, θ, which serves5

as the thermodynamic variable in our model. We choose temperature as our thermodynamic variable because of its important
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effects on biogeochemistry (Sarmiento and Gruber, 2006). The biogeochemical tracers that are affected by the biogeochemical

evolution term, ∂tc
∣∣
bio, are a limiting nutrient N (here expressed in nitrogen units, akin to nitrate); a phytoplankton tracer, P;

a zooplankton tracer, Z; and a detrital pool, D. The non-conservative terms, ∂tc
∣∣
nct, represent physical sources and sinks of

tracers, including surface fluxes, restoring at the offshore boundary, and optional restoring throughout the domain.

2.1 Tracer evolution5

We first formulate an evolution equation for the meridionally-averaged concentration of an arbitrary tracer c. We assume that

c evolves according to a combination of advection by the three-dimensional ocean flow and diffusion by microscale mixing

processes,

∂c

∂t

∣∣∣∣
phys

=−∇3 · (u3c)︸ ︷︷ ︸
advection

+∇3 · (κdia∇3c)︸ ︷︷ ︸
mixing

, (2)

Here u3 is the three-dimensional velocity vector, ∇3 is the three-dimensional gradient operator, and κdia the microscale dif-10

fusivity. In (2) we have assumed that the velocity field is nondivergent, i.e. ∇3 ·u3 = 0. We further assume that u3 and c

have already been averaged over a short timescale to exclude fluctuations associated with microscale eddies, whose effects

are parameterized via the microscale mixing term (e.g. Aiki and Richards, 2008). We further simplifiy (2) by assuming that

horizontal tracer gradients are small compared with vertical gradients, i.e. ∂zc� ∂xc,∂yc, as is typical for oceanic scales of

evolution (e.g. Vallis, 2017). This implies that the microscale mixing acts primarily in the vertical, i.e.,15

∂c

∂t

∣∣∣∣
phys
≈−∇3 · (u3c) +

∂

∂z

(
κdia

∂c

∂z

)
. (3)

We now reduce the dimensionality of (3) by taking a meridional average, which we denote via an overbar,

•=
1

Ly

Ly∫
0

•dy. (4)

Here Ly is the meridional length of the region of interest and y is the meridional coordinate. Though we refer to this average

as “meridional” throughout the text, for the purpose of comparison with EBUSs in nature this average might be thought of20

instead as an along-coast average, or as an average following isobaths, under the assumption that the additional metric terms

introduced by such coordinate transformations are negligible. We next perform a Reynolds decomposition of the velocity and

tracer fields,

u = u + u′, (5a)

c= c+ c′, (5b)25

where primes ′ denote perturbations from the meridional average. Taking a meridional average of (3) then yields

∂c

∂t

∣∣∣∣
phys

= −∇ · (uc)︸ ︷︷ ︸
mean advection

−∇ ·
(
u′c′
)︸ ︷︷ ︸

eddy flux

− 1

Ly

[
vc
]Ly

0︸ ︷︷ ︸
meridional advection

+
∂

∂z

(
κdia

∂c

∂z

)
︸ ︷︷ ︸

mixing

. (6)
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Here we have used (5a)–(5b) and the property that perturbations vanish under the average, i.e. u′ = c′ = 0. We further define

∇≡ ∂xx̂+∂z ẑ as the zonal/vertical gradient operator, and u = ux̂+wẑ as the zonal/vertical velocity vector. The square bracket

indicates the difference between vc at the northern and southern boundaries of the domain of integration, i.e.[
vc
]Ly

0
= vc

∣∣∣
y=Ly

− vc
∣∣∣
y=0

. (7)

In its current form, Equation (6) cannot be solved prognostically for c because it includes correlations between perturbation5

quantities, i.e. the eddy tracer flux u′c′. Assuming that these perturbations are associated with mesoscale eddies, we parameter-

ize the eddy tracer flux following Gent and McWilliams (1990) and Redi (1982). Specifically, we decompose the eddy tracer

flux into advection of the mean tracer c by “eddy-induced velocity” u? and diffusion of c along the mean buoyancy surfaces

(see Burke et al., 2015),

∇ ·
(
u′c′
)

=∇ · (u?c)−∇ ·
(
κiso∇‖c

)
. (8)10

Here ∇‖ denotes the gradient along mean buoyancy surfaces (see §2.2. A more detailed derivation of (8) is given in Ap-

pendix A. We additionally simplify the meridional tracer advection term by assuming that ∂v/∂y ≈ 0, i.e. that the meridional

tracer flux convergence is dominated by meridional tracer gradients, and that correlations between κdia and c are negligible,

i.e. that the meridionally averaged vertical diffusive tracer flux serves to diffuse c downgradient. With these simplifications, the

full equation for the physical evolution of tracers is given by,15

∂c

∂t

∣∣∣∣
phys

= −∇ · (uc)︸ ︷︷ ︸
mean advection

− v

Ly

[
c
]Ly

0︸ ︷︷ ︸
meridional advection

−∇ · (u∗c)︸ ︷︷ ︸
eddy advection

−∇ ·
(
κiso∇‖c

)︸ ︷︷ ︸
eddy stirring

+∂z (κdia∂zc)︸ ︷︷ ︸
mixing

. (9)

The terms on the right-hand side of (9) are discussed further in the following sections: in Section 2.2 we discuss the evolution

of the mean velocity u via the momentum equations, and in Section 2.3 we discuss the sub-gridscale parameterizations, i.e.

eddy advection, eddy stirring and mixing.

2.2 Momentum Evolution Equations20

To evolve a meridionally-averaged tracer c using (9), the meridionally-averaged velocity field u3 is required. This velocity field

is evolved in MAMEBUS by solving a simplified form of the hydrostatic Boussinesq momentum and continuity equations with

a linear equation of state (Vallis, 2017),

∂u

∂t
=−u3 · ∇3u+ fv− ∂φ

∂x
+

∂

∂z

(
κdia

∂u

∂z

)
, (10a)

∂v

∂t
=−u3 · ∇3v− fu−

∂φ

∂y
+

∂

∂z

(
κdia

∂v

∂z

)
, (10b)25

∂φ

∂z
= b, (10c)

∇3 ·u3 = 0, (10d)

b= gαθ. (10e)
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Here, φ= p/ρ0 is the dynamic pressure, where ρ0 is an arbitrary reference density, b is the buoyancy, θ is the potential

temperature, α is the thermal expansion coefficient (assumed constant), g is the gravitational constant and f is the Coriolis

parameter. Note that we have assumed that momentum is mixed by microscale turbulence following the same diffusivity κdia

as tracers (see Section 2.1), i.e. that the turbulent Prandtl number (e.g. Kays, 1994) is exactly equal to one.

As in Section 2.1, we now meridionally average (10a)–(10e) to obtain evolution equations for u and v, and thus implicitly5

also for w. This yields the following set of averaged equations:

∂ū

∂t
= fv− ∂φ̄

∂x
+

∂

∂z

(
κdia

∂ū

∂z

)
, (11a)

∂v̄

∂t
=−fu− 1

Ly

[
φ
]Ly

0
+

∂

∂z

(
κdia

∂v̄

∂z

)
, (11b)

∇ · ū = 0, (11c)

∂φ̄

∂z
= b, (11d)10

b= gαθ. (11e)

Here, we have made the frictional-geostrophic approximation (e.g. Edwards et al., 1998), assuming that the Rossby number

of the flow is small (e.g. Vallis, 2017) and thus that momentum advection (second terms from the left in (10a)–(10b)) is

negligible compared to other terms in the momentum equation. This assumption may indeed have some limitations in upwelling

regions with steep topography and strong stratification. Lentz and Chapman (2004) show that in the cross-shelf momentum15

flux divergence balances the wind-stress and supports an on shore return flow, which can impact nitrate concentrations on the

shelf (Jacox and Edwards, 2011).

On the other hand, we have retained the time-evolution terms (leftmost terms in (10a)–(10b)) to allow forward evolution

of the horizontal velocity fields; if these terms were neglected then these terms would need to be computed diagnostically

at each time step. The resulting system is almost identical to the time-dependent turbulent thermal wind (T3W) equations20

(Dauhajre and McWilliams, 2018), a time-varying extension of the turbulent thermal wind balance (Gula et al., 2014), which

was developed to explain the circulation of submesoscale fronts. The meridional pressure gradient in (11a) is imposed, rather

than solved for prognostically, and is assumed to be set by the larger-scale subtropical gyre circulation encompassing the

EBUS, which expicitly differs from the work done in Dauhajre and McWilliams (2018) which focuses on more rapid time

varying evolution on smaller scales. Together with the tracer advection equation for potential temperature (i.e. (9) with c= θ),25

(11a)–(11e) comprise a closed set of equations for the physical evolution of MAMEBUS.

In (11c) we have invoked the earlier assumption that ∂v/∂y ≈ 0 (see Section 2.1), such that the averaged velocity field is

nondivergent in the x/z plane. This implies that the zonal/vertical velocity field can be related to a mean streamfunction ψ via

u=−∂ψ
∂z

, w =
∂ψ

∂x
. (12)

These relationships allow us to calculate ψ, and thus w, from u, subject to the boundary conditions30

ψ = 0 at z = 0,z = ηb(x). (13)
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Here z = ηb(x) is the mean sea floor elevation.

Additional boundary conditions are required to solve (11a)–(11e) prognostically. Specifically, we require that the vertical

turbulent stress in (11a)–(11b) matches the wind stress applied at the sea surface and the drag stress at the sea floor, with the

latter formulated via a linear drag law. Formally, these boundary conditions are

κdia
∂u

∂z
= 0, κdia

∂v

∂z
=
τy

ρ0
at z = 0, (14a)5

κdia
∂u

∂z
= ru, κdia

∂v

∂z
= rv at z = ηb(x). (14b)

Here r is a linear drag coefficient and τ̄y is the meridional wind-stress.

2.3 Physical parameterizations

In this section we describe the parameterization of unresolved microscale mixing in the tracer evolution Equation (9) and the

horizontal momentum Equations (11a)–(11b), and of mesoscale eddy advection and stirring in (9). This amounts to parameter-10

izing the diapycnal diffusivity κdia, the isopycnal diffusivity κiso, and the eddy velocity u?.

2.3.1 Diapycnal Mixing

We formulate the diapycnal mixing coefficient κdia as a sum of four distinct contributing processes: surface mixed layer turbu-

lence (κsml), bottom boundary layer turbulence (κbbl), turbulence due to convective overturns within the water column (κconv),

and background mixing due to internal wave breaking (κbg). Formally, we write15

κdia(x,z, t) = κsml(x,z) +κbbl(x,z) +κconv(x,z, t) +κbg(x,z). (15)

The terms on the right-hand side of (15) are discussed in turn in the following paragraphs.

The diapycnal diffusivity in the surface mixed layer, κsml, is prescribed to have the same structure as that used in the K-

profile parameterization (KPP) of Large et al. (1994). However, for simplicity, the mixed layer depth Hsml(x) and maximum

magnitude κsml(x) are prescribed functions, rather than depending on the local surface forcing. The vertical profile of κdia in20

the surface mixed layer, i.e. −Hsml < z < 0, is given by

κsml(x,z) = κ0smlGKPP(σsml), (16)

where the dimensionless surface mixed layer vertical coordinate σsml =−z/Hsml is defined such that 0≤ σsml ≤ 1 within the

mixed layer. The structure function GKPP(σsml) is given by,

GKPP(σ) =


27

4
σsml(1−σsml)

2, 0≤ σsml ≤ 1,

0, σsml ≥ 1,

(17)25

following Large et al. (1994) and Troen and Mahrt (1986). The scaling factor 27/4 ensures that GKPP(σsml) has a maximum of

1 for 0< σsml < 1.
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The diapycnal diffusivity in the bottom boundary layer, κbbl, is prescibed in the same way as κsml, but over the depth range

ηb < z < ηb +Hbbl(x). Thus, analogous to (16), we prescribe

κbbl(x,z) = κ0bblGKPP(σbbl), (18)

where the dimensionless bottom boundary layer vertical coordinate is defined as σbbl = (z− ηb)/Hbbl.

At any point in space and time at which the water column is statically unstable, i.e. when N2 < 0, we increase the value of5

κdia is increased locally to parameterize the effect of density-driven convection. That is, we prescribe κconv following

κconv =

κ
0
conv, N2 < 0,

0, N2 ≥ 0.
(19)

Finally, the background diapycnal mixing, κbg(x,z), is simply prescribed as a constant background diffusivity. There are

other that can be used (e.g. St. Laurent et al. (2002)), but we opt for simplicity in the first version of this model.

2.3.2 Eddy advection and isopycnal mixing10

We now discuss the formulation of the eddy advection and isopycnal mixing terms in (9). As discussed in Section 2.1, we follow

the assumptions and formalism of the Gent and McWilliams (1990) and Redi (1982) parameterizations, which are commonly

used in ocean models that do not explicitly resolve mesoscale eddies (e.g. Gent, 2011). These parameterizations assume that

eddy-induced fluxes of buoyancy and tracer diffusion are directed along isopycnal slopes, and so must be augmented in the

ocean’s surface mixed layer (SML) and bottom boundary layer (BBL). Here the isopycnal slopes become very steep and15

isopycnals incrop at the sea surface and floor (Tréguier et al., 1997). MAMEBUS therefore uses a modified form of the Ferrari

et al. (2008) boundary layer parameterization, in which eddy buoyancy and tracer fluxes are rotated through the SML and

BBL in order to enforce vanishing eddy-induced mass and tracer fluxes through the boundaries. Here we summarize salient

properties of this scheme, and in Appendix C we highlight differences between our scheme and that of Ferrari et al. (2008).

The eddy-induced velocity u? = (u?,w?), introduced in (8), is nondivergent by construction (see Appendix A) and so we20

write it as

u? =−∂ψ
?

∂z
, w? =

∂ψ?

∂x
, (20)

where ψ? is the “eddy streamfunction”. This advecting streamfunction is assumed to be the same for all tracers, which is

accurate in the limit of small-amplitude fluctuations of the velocity and tracer fields (Plumb, 1979), and takes the form

ψ? = κgmSgm. (21)25

Here κgm is the Gent–McWilliams diffusivity and the Sgm is the is the Gent–McWilliams slope. The latter is conventionally set

equal to the mean isopycnal slope (Gent and McWilliams, 1990),

Sint =−∂xb/∂zb. (22)
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However we allow Sgm to diverge from Sint in the SML and BBL, in part to ensure that the no-flux surface and bottom boundary

conditions are satisfied (Ferrari et al., 2008)

ψ? = 0 at z = 0, z = ηb(x). (23)

Specifically, we prescribe

Sgm =


Ssml, −Hsml(x)< z < 0,

Sint, ηb(x) +Hbbl(x)< z <−Hsml(x),

Sbbl, ηb(x)< z < ηb(x) +Hbbl(x),

(24)5

The formulation of the modified slopes Ssml and Sbbl are discussed below in Sections 2.3.2.1 and 2.3.2.2.

The isopycnal mixing operator serves to mix tracers down their mean gradients, in a direction that is parallel to mean

isopycnal surfaces in the ocean interior, following Redi (1982). This may be written component-wise as

∇ ·
(
κiso∇‖c

)
=

∂

∂x

(
κiso

∂c

∂x
+κisoSiso

∂c

∂z

)
+

∂

∂z

(
κisoSiso

∂c

∂x
+κisoS

2
iso
∂c

∂z

)
, (25)

where Siso denotes the slope of the surface along which the tracer is to be mixed and is assumed to be small (Siso� 1). Similar10

to Sgm, this slope is conventionally set equal to the mean isopycnal slope Sint, but we apply modifications to the formulation of

Siso in the SML and BBL to ensure that there is zero eddy-induced tracer flux through the domain boundaries, i.e.

κiso∇‖c · n̂ = 0 at z = 0, z = ηb(x), (26)

where n̂ is a unit vector oriented perpendicular to the sea surface or sea floor. Specifically, we prescribe

Siso =


Ssml, −Hsml(x)< z < 0,

Sint, ηb(x) +Hbbl(x)< z <−Hsml,

S̃bbl, ηb(x)< z < ηb(x) +Hbbl(x).

(27)15

Thus Sgm and Siso are identical everywhere above the BBL. The need for a distinction within the BBL is explained below in

Sections 2.3.2.1 and 2.3.2.2.

2.3.2.1 Surface Mixed Layer

We now discuss the formulation of Ssml, the effective isopycnal slope in the surface mixed layer. Following Ferrari et al. (2008),

we construct Ssml in a way that avoids singularities due to the vanishingly small vertical buoyancy gradients, and thus near-20

infinite isopycnal slopes, that occur in the mixed layer. This is achieved by using the vertical buoyancy gradient at the base of

the mixed layer to define the effective slope as

Ssml =−Gsml(σsml)
∂xb

∂zb|z=−Hsml

, (28)
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where σsml =−z/Hsml is a dimensionless vertical coordinate for the SML, as in Section 2.3.1. The corresponding eddy stream-

function (21) is identical to that of Ferrari et al. (2008),

ψ? =−κgmGsml(σsml)
∂xb

∂zb|z=−Hsml

, z ≥−Hsml. (29)

The structure function Gsml(z) is required to enforce continuity of the vertical tracer fluxes and flux divergences at the

surface and at the base of the mixed layer. For example, (23) requires that Gsml vanish at the surface:5

Gsml(0) = 0. (30)

We further require that the eddy streamfunction and eddy residual tracer fluxes be continuous at the base of the SML, i.e. that

Ssml = Sint, which requires that

Gsml(1) = 1. (31)

Finally, we require continuity of the divergence of the eddy tracer flux in order to avoid producing singularities at the SML10

base. The zonal and vertical components of the eddy tracer flux are

u′c′ = κgmSgm
∂c

∂z
−κiso

(
∂c

∂x
+Siso

∂c

∂z

)
, (32a)

w′c′ =−κgmSgm
∂c

∂x
−κisoSiso

(
∂c

∂x
+Siso

∂c

∂z

)
. (32b)

It may be shown that continuity of∇ ·u′c′ across z =−Hsml is guaranteed if

∂Ssml

∂z

∣∣∣∣
z=−H+

sml

=
∂Sint

∂z

∣∣∣∣
z=−H−sml

=⇒ G′sml(1) =
Hsml

λsml
(33)15

where λsml = ∂zzb/∂zb|z=−Hsml is a vertical lengthscale for eddy motions at the base of the mixed layer.

The simplest form for Gsml(z) that satisfies conditions (30), (31) and (33) is a quadratic function of depth,

Gsml(σsml) =−
(

1− Hsml

λsml

)
σ2

sml +

(
2− Hsml

λsml

)
σsml. (34)

Equation (34) is currently implemented in MAMEBUS. A more sophisticated form of Gsml that arguably has stronger physical

motivation is given by Ferrari et al. (2008). They split the SML into a true mixed layer, in which Gsml varies linearly (and so20

the eddy velocity is approximately uniform), overlying a transition layer, in which Gsml(σsml) varies quadratically.

2.3.2.2 Bottom boundary layer

The scheme described above for the SML relies on the fact that the ocean surface is approximately flat, which allows the same

effective slopes Ssml to be used for Sgm and Siso. The sloping sea floor requires separate BBL slopes, Sbbl and S̃bbl, and structure

functions, Gbbl and G̃bbl to satisfy the required conditions of no volume nor tracer flux through the boundary, i.e. (23) and (26).25

10



Analogous to the SML, we define the effective slope Sbbl as

Sbbl =−Gbbl(σbbl)
∂xb

∂zb|z=ηb+Hbbl

, (35)

where σbbl = (z− ηb(x))/Hbbl(x) is the BBL vertical coordinate, as in Section 2.3.1. The eddy streamfunction in the BBL is

therefore

ψ? =−κgmGbbl(σbbl)
∂xb

∂zb|z=ηb+Hbbl

, z ≤ ηb +Hbbl. (36)5

To satisfy the condition of zero volume flux through the sea floor, (23), the effective slope must vanish at z = ηb(x), which

requires

Gbbl(0) = 0. (37)

To ensure continuity of the eddy streamfunction at the top of the BBL, we require that Sbbl approach Sint, i.e.

Gbbl(1) = 1. (38)10

Finally, to ensure continuity of the eddy bolus velocity, we require that the gradient of Sgm be continuous at z = ηb+Hbbl. This

imposes a constraint analogous to (33) on Gbbl,

G′bbl(1) =−Hbbl

λbbl
, (39)

where λbbl = bzz/bz
∣∣
z=ηb+Hbbl

is a vertical lengthscale for eddies at the top of the BBL. To satisfy (37)–(39), we select a

quadratic form for the structure function Gbbl(σbbl),15

Gbbl(σbbl) =−
(

1 +
Hbbl

λbbl

)
σ2

bbl +

(
2 +

Hbbl

λbbl

)
σbbl. (40)

However, the effective slope Sbbl can no longer be used to define Siso in the BBL: (26) requires that the effective slope be

aligned with the bottom slope at the sea floor, Sb = ∂xηb at z = ηb. We must therefore employ a modified effective slope S̃bbl

in the isopycnal mixing operator, as expressed in Equation (27). We define S̃bbl as

S̃bbl = Sbbl +
(

1− G̃bbl(z)
)
Sb, (41)20

where G̃bbl(σbbl) is a modified structure function that also vanishes at the ocean bed,

G̃bbl(0) = 0. (42)

Continuity of the eddy tracer fluxes at the top of the BBL requires that

G̃bbl(1) = 1. (43)
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Finally, continuity of the eddy flux divergence is enforced by

∂G̃bbl

∂z

∣∣∣∣∣
z=ηb+Hbbl

= 0. (44)

To satisfy (42)–(44), we select a quadratic form for the structure function G̃bbl(σbbl),

G̃bbl(σbbl) = σbbl(2−σbbl). (45)

2.4 Biogeochemical Model Formulation5

The current biogeochemical model implemented in MAMEBUS is an NPZD (nutrient, phytoplankton, zooplankton, and detri-

tus) model. This NPZD model is modeled after the size-structured AstroCAT (Banas, 2011) and Darwin models (Ward et al.,

2012). For the purpose of this paper, we reduced the size structured ecosystem model to a single phytoplankton and zooplank-

ton size classes, while preserving the option to run multiple size classes in future versions of the model. We also includes a

detritus variable, which allows for sinking and export of organic matter away from the euphotic zone, and redistribution of10

nutrients in the water column.

The biogeochemical equations in MAMEBUS are formulated similarly to previous NPZD models, but cast in terms of

the meridionally-averaged nutrient, phytoplankton, zooplankton and detrirus concentrations. We neglect additional terms that

would be introduced by first formulating the equations and then taking the meridional average, e.g. covariances of the type

P ′Z ′. This assumption is partially predicated on the idea that zonal gradients in biogeochemical tracers (e.g. nutrients and15

chlorophyll) are much stronger than meridional gradients, as supported by observations and models (Fiechter et al., 2018). For

example, Venegas et al. (2008) show that average chlorophyll concentrations during the upwelling season vary approximately

two-fold in the Northern California Current System, whereas observations from CalCOFI (Figure 7) show variations by an order

of magnitude between nearshore and offshore stations. Alongshore gradients in chlorophyll are observed along the coast, where

they are driven by wind and topographic variations; however they are generally much smaller than the gradient between the20

coast and the offshore region (Fiechter et al., 2018). We recognize that this is a simplification of the true variability in EBUSs,

but we consider it appropriate on average over the entire upwelling system, in particular within the idealized MAMEBUS

framework, and plan to reassess it in future work.

We drop the bar notation indicating a meridional average for this section, with the understanding that all variables denote

meridionally-averaged quantities. In the following, we include size dependent uptake and grazing, along with variable sinking25

speeds for detritus, to retain essential size-dependent biogeochemical interactions and export fluxes. This will facilitate a future

introduction of multiple size classes in the model. All variables and coefficients are given in Table 1. We note that all of the

parameter values and equations described below measure time in days, whereas more generally MAMEBUS measures time

in seconds; appropriate conversions are made in the model code to ensure dimensional consistency. The main conservation
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Table 1. Parameters and values used in the ecosystem model implemented in MAMEBUS. Coefficients without explicit references are chosen

by the user.

Parameter Value Units Description Reference

Ip 0.45 Fraction of light available for photosynthesis (PAR) Moore et al. (2001)

kc 0.01 1/(mmol N)m Absorption coefficient for photosynthesis Moore et al. (2001)

kp 3 mmol N/m3 Half saturation coefficient for phytoplankton grazing Banas (2011)

kw 0.04 1/m Absorption coefficent for water Moore et al. (2001)

∆` 0.25 log10µm Width of grazing profile Banas (2011)

`p 5 µm Length (ESD) of phytoplankton cell

`z 10 µm Length (ESD) of zooplankton cell

λ 0.33 Biomass assimilation efficiency

Qsw 340 W/m2 Surface irradiance Moore et al. (2001)

rT 0.05 1/◦C Temperature dependence of nutrient uptake Ward et al. (2012)

rremin 0.04 1/d Remineralization rate Ward et al. (2012)

T0 10 oC Reference temperature

µp 0.02 Phytoplankton mortality as a fraction of growth rate Banas (2011)

µz 0.97 – 12.57 m3/(mmol N d) Density dependent zooplankton mortality Edwards and Bees (2001)

wsink 10 m/d Sinking speed of detritus

equations for biogeochemical tracers are:

∂N

∂t

∣∣∣∣
bio

=−U(N,I,T,P ) +R(D), (46a)

∂P

∂t

∣∣∣∣
bio

= U(N,I,T,P )−G(P,Z)−M(P ), (46b)

∂Z

∂t

∣∣∣∣
bio

= λG(P,Z)−M(Z), (46c)

∂D

∂t

∣∣∣∣
bio

=M(P ) +M(Z) + (1−λ)G(P,Z)− ∂

∂z
wsinkD−R(D), (46d)5

where T (◦C) is the model temperature, I (W/m2) is the local irradiance profile, N (mmol N/m3) is nitrate concentration,

P (mmol N/m3) is phytoplankton concentration, Z (mmol N/m3) is zooplankton concentration, and D (mmol N/m3) is the

detritus concentration. The terms on the right-hand sides of (46a)–(46d) are explained in the following subsections.

2.4.1 Nutrient Uptake

Common controls on phytoplankton population are bottom-up limitation (i.e. nutrient control), and top-down grazing by zoo-10

plankton (Sarmiento and Gruber, 2006). We formulate bottom-up controls using typical choices for light- and temperature-

dependent terms, and Michaelis-Menten uptake (Sarmiento and Gruber, 2006). The functional form of uptake is given by:

13



Table 2. Parameters and values used in the ecosystem model implemented in MAMEBUS. Coefficients without explicit references are chosen

by the user.

Parameter Value Units Description Reference

au 2.6 1/d Uptake rate Tang (1995)

bu -0.45 Scaling parameter for uptake Tang (1995)

ag 26 1/d Grazing rate Hansen et al. (1994)

bg -0.4 Scaling parameter for grazing Hansen et al. (1994)

ao 0.65 µm Optimal predator-prey length scale Hansen et al. (1994)

bo 0.56 Scaling parameter for optimal predator-prey interaction Hansen et al. (1994)

U(N,I,T,P ) = ϕ(I)ϕ(T )Umax N

N + kN
P, (47)

where ϕ(I) and ϕ(T ) are light and temperature limiting functions, respectively. The light attenuation is modeled by integrating

the Beer-Lambert Law, following Moore et al. (2001),

∂I(z)

∂z
=−kparI(z), where I0 = I(z = 0) =QswIp, (48a)5

kpar = kw +P · kc, (48b)

and the light-dependent uptake function is modeled following Sarmiento and Gruber (2006),

ϕ(I) =
I(z)√

I20 + I(z)2
. (49)

The temperature component of the uptake function is,

ϕ(T ) = e−rT (T−T0). (50)10

The maximum uptake rate is an allometric relationship defined as,

Umax = au

(
`p
`0

)bu
, (51)

where `p is the user-determined phytoplankton size expressed as equivalent spherical diameter (ESD), and `0 = 1µm is a

normalized length scale, with all allometrically defined variable listed in Table 2. While there are other options for the bases of

these allometric relationships outlined in this section, (eg. cell volume), we make the decision to use ESD as a measure of cell15

size. Finally, the half saturation coefficient is kN = 0.1 mmol N/m3.

2.4.2 Grazing

Top-down processes are represented by zooplankton grazing on phytoplankton. Andersen et al. (2016) noted that there is an

optimal length scale for active predation and grazing, as a strategic trade-off for optimal biomass assimilation. We make the
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assumption that the biomass assimilation of phytoplankton by zooplankton also follows Michaelis-Menten dynamics, then the

functional form of grazing is given by

G(P,Z) =Gmax ϑP

kP +ϑP
Z, (52)

where the maximum grazing rate is defined by an allometric relationship defined as,

Gmax = ag

(
`z
`0

)bg
. (53)5

where d−1 represents a “per day” quantity. We define a Gaussian distribution about an optimal grazing length-scale following

Banas (2011),

ϑ= exp

(
−

log10(`p)− log10(`opt)

∆`

)
, (54)

where ∆` sets the width of the optimal grazing profile, and defines a band of grazing about the optimal prey size, `opt. By

allowing for a variable band of grazing, we are able to control the assimilation efficiency of phytoplankton by zooplankton10

through direct preferential grazing. Accordingly, we model the optimal prey size based on a preferential grazing profile centered

about an optimal predator-prey length scale,

`opt = ao

(
`z
`0

)bo
. (55)

2.4.3 Mortality

Mortality closure terms often set important internal dynamics in ecosystem models (Poulin and Franks, 2010). While linear15

mortality terms are generally used for phytoplankton, zooplankton mortality is often modeled via a quadratic term to avoid

unrealistic oscillations and stabilize the solution (Poulin and Franks, 2010). The quadratic mortality term may be rationalized

as a representation of mixotrophic grazing, zooplankton self-grazing and higher order grazing in NPZD models (Raick et al.,

2006). Therefore, we model phytoplankton mortality as,

M(P ) = µpU
maxP, (56)20

and zooplankton mortality as,

M(Z) = µzZ
2. (57)

2.4.4 Remineralization and Particle Sinking

Sinking particles are an essential component of the vertical transport of nutrients from the surface to the deep ocean (Sarmiento

and Gruber, 2006). Once particles sink past the euphotic zone, they are remineralized and returned to the subsurface nutrient25

pool. In this model, we represent remineralization processes via a linear rate, i.e.:

R(D) = rreminD. (58)
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where rremin is the specific remineralization rate.

Particles sink at a constant average speed in the water column, following Equation (46d). At the bottom boundary we impose

zero sinking flux, i.e. wsink = 0 at z = ηb(x). Thus any nutrients that sink to the sea floor as detritus must remineralize there.

This allows for redistribution of nutrients by mixing within the bottom boundary layer, diffusion into the interior, and transport

via upwelling onto the shelf.5

2.5 Non-conservative Terms

In this section we describe the treatment of all non-conservative terms in the tracer evolution equation. MAMEBUS allows

arbitrary restoring of all tracers, which may be used, for example, to impose offshore boundary conditions or to impose restoring

at the sea surface. Fixed fluxes of all tracers may also be imposed through the surface. More precisely, we formulate the non-

conservative tracer tendency as10

∂c

∂t

∣∣∣∣
nct

=
∂c

∂t

∣∣∣∣
restore

+
∂c

∂t

∣∣∣∣
flux
. (59)

The restoring and surface flux components of this tendency are discussed separately below.

2.5.1 Restoring

The restoring of a tracer is represented as an exponential decay to a prescribed, spatially-varying tracer field, cr(x,z), with

time scale tr(x,z). The tracer restoring is then formulated as15

∂c

∂t

∣∣∣∣
restore

=−c− cr
tr

. (60)

2.5.2 Tracer fluxes

Surface fluxes are represented as a tendency in the tracer concentration in the surface gridboxes. For an arbitrary tracer c, we

formulate the surface flux term as follows:

∂c

∂t

∣∣∣∣
flux

=
∂F cflux

∂z
, Fflux =


F cflux,0, z = 0,

0, z < 0.

(61)20

Here F cflux,0 is the downward flux of c (units of [c]m/s) at the surface. For the case of buoyancy, the surface flux is imposed as

a surface energy flux, Qs (W/m2), with

F bflux,0 =
gαQs
ρ0Cp

, (62)

where Cp = 4000J/◦C kg is the specific heat capacity.
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3 MAMEBUSv1.0 Algorithm

In this section we discuss the numerical solution of the model equations presented in Section 2. This entails a recasting of the

equations in terrain-following, or “sigma” coordinates (e.g. Song and Haidvogel, 1994; Shchepetkin and McWilliams, 2003),

followed by the spatial discretization of the equations and algorithms for numerical time stepping.

3.1 Formulation in terrain-following coordinates5

We solve the model equations presented in Section 2 in a coordinate system that “stretches” in the vertical to follow the shape of

the sea floor. Such a coordinate system avoids “steps” in the sea floor that arise, for example, when using geopotential vertical

coordinates, and allows fine vertical resolution of the bottom boundary layer (e.g. Song and Haidvogel, 1994; Shchepetkin

and McWilliams, 2003). Formally, we make a coordinate transformation (x,z)→ (x,σ), where σ is a dimensionless vertical

coordinate and is defined such that σ = 0 at z = 0 and σ =−1 at z = ηb(x). This transformation requires a relationship between10

z and σ via a transformation function

z = ζ(x,σ). (63)

For example, a “pure” sigma coordinate corresponds to the choice

ζ(x,σ) =−σhb(x), (64)

where hb(x) =−ηb(x) is the merionally-averaged water column thickness. However, this is not necessarily the most practical15

choice for numerical applications, in which it is useful to focus the vertical resolution over certain depth ranges (especially

those close to the top and bottom boundaries of the ocean). MAMEBUS currently implements the UCLA-ROMS (Shchepetkin

and McWilliams, 2005) transformation function,

ζ(x,σ) = hb(x)

[
hcσ+hb(x)C(σ)

hc +hb(x)

]
. (65)

Here C(σ) is the stretching function, defined as20

C(σ) =


exp

(
θbC̃(σ)

)
− 1

1− exp(−θb)
, θb > 0,

C̃(σ), θb ≤ 0,

(66)

where

C̃(σ) =


1− cosh(θsσ)

cosh(θs)− 1
, θs > 0,

−σ2, θs ≤ 0.

(67)

Here C and C̃ are the bottom and surface components of the stretching function, respectively. The parameters θs ∈ [0,10]

and θb ∈ [0,4] are surface and bottom stretching parameters; larger values cause the near-surface and near-bottom portions of25
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the domain to occupy larger fraction of σ-space. The parameter hc defines a surface layer thickness, in which the coordinate

system is approximately aligned with geopotentials, provided that hb� hc.

We now write the physical tracer evolution Equation (9) in σ-coordinates. For a given function f = f(x,z(x,σ)), we can

write derivatives with respect to x and σ as

∂f

∂x

∣∣∣∣
σ

=
∂f

∂x

∣∣∣∣
z

+
∂ζ

∂x

∂f

∂z

∣∣∣∣
x

, (68a)5

∂f

∂σ

∣∣∣∣
x

=
∂ζ

∂σ

∂f

∂z

∣∣∣∣
x

. (68b)

Using these identities, we may write the divergence of an arbitrary vector F, with components F (x) and F (z) in the x̂ and ẑ

directions, respectively, as

∇ ·F =
∂

∂x

∣∣∣∣
z

F (x) +
∂

∂z

∣∣∣∣
x

F (z) = ζ−1σ
∂

∂x

∣∣∣∣
σ

(
ζσF

(x)
)

+ ζ−1σ
∂

∂σ

∣∣∣∣
x

(
F (z)− ζxF (x)

)
. (69)

Equation (69), combined with the definition of the mean streamfunction (12), allows us to write the mean advection term in (9)10

as

∇ · (uc) =∇ ·
(
−c ∂ψ

∂z

∣∣∣∣
x

, c
∂ψ

∂x

∣∣∣∣
z

)
= ζ−1σ

∂

∂x

∣∣∣∣
σ

(
−c ∂ψ

∂σ

∣∣∣∣
x

)
+ ζ−1σ

∂

∂σ

∣∣∣∣
x

(
c
∂ψ

∂x

∣∣∣∣
σ

)
. (70)

An analogous expression may be obtained for the eddy advection term, ∇ · (u?c), in (9), using the definition (21) of the eddy

streamfunction. Next, we apply (69) to the isopycnal mixing operator, defined by (25), in Equation (9) to obtain

∇ ·
(
κiso∇‖c

)
= ζ−1σ

∂

∂x

∣∣∣∣
σ

[
ζσκiso

(
∂c

∂x

∣∣∣∣
σ

+ (Siso−Sσ)ζ−1σ
∂c

∂σ

∣∣∣∣
x

)]
15

+ ζ−1σ
∂

∂σ

∣∣∣∣
x

[
κiso(Siso−Sσ)

(
∂c

∂x

∣∣∣∣
σ

+ (Siso−Sσ)ζ−1σ
∂c

∂σ

∣∣∣∣
x

)]
, (71)

where Sσ = ζx is the slope of surfaces of constant σ in x/z space, i.e. the slope of the σ-coordinate grid lines. Thus the isopycnal

mixing operator is essentially just modified by subtracting Sσ from Siso to obtain the mixing slope relative to the slope of the

σ-coordinate grid. Over most of the water column Siso is equal to the isopycnal slope Sint, given by

Sint =−

∂b

∂x

∣∣∣∣
z

∂b

∂z

∣∣∣∣
x

=−

∂b

∂x

∣∣∣∣
σ

−Sσ
∂b

∂z

∣∣∣∣
x

∂b

∂z

∣∣∣∣
x

=−

∂b

∂x

∣∣∣∣
σ

ζ−1σ
∂b

∂σ

∣∣∣∣
x

+Sσ. (72)20

Thus, the quantity Sint−Sσ can actually be computed more directly than the true isopycnal slope, as

Sint−Sσ =−

∂b

∂x

∣∣∣∣
σ

ζ−1σ
∂b

∂σ

∣∣∣∣
x

. (73)

Finally, the σ-coordinate transformation of the vertical (quasi-diapycnal) mixing operator is

∂

∂z

∣∣∣∣
x

(
κdia

∂c

∂z

∣∣∣∣
x

)
= ζ−1σ

∂

∂σ

∣∣∣∣
x

(
κdiaζ

−1
σ

∂c

∂σ

∣∣∣∣
x

)
. (74)
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To summarize, we write (9) in σ coordinates as

∂c

∂t

∣∣∣∣
phys

=Gadv +Giso +Gdia +Glat, (75)

where the tendency terms are

Gadv =−ζ−1σ
∂

∂x

∣∣∣∣
σ

[
ζσ

(
−cζ−1σ

∂ψ†

∂σ

∣∣∣∣
x

)]
− ζ−1σ

∂

∂σ

∣∣∣∣
x

(
c
∂ψ†

∂x

∣∣∣∣
σ

)
, (76a)

Giso = ζ−1σ
∂

∂x

∣∣∣∣
σ

[
ζσκiso

(
∂c

∂x

∣∣∣∣
σ

+ (Siso−Sσ)ζ−1σ
∂c

∂σ

∣∣∣∣
x

)]
,5

+ ζ−1σ
∂

∂σ

∣∣∣∣
x

[
κiso(Siso−Sσ)

(
∂c

∂x

∣∣∣∣
σ

+ (Siso−Sσ)ζ−1σ
∂c

∂σ

∣∣∣∣
x

)]
, (76b)

Gdia = ζ−1σ
∂

∂σ

∣∣∣∣
x

(
κdiaζ

−1
σ

∂c

∂σ

∣∣∣∣
x

)
(76c)

Glat =− v

Ly

[
c
]Ly

0
. (76d)

Here we define

ψ† = ψ+ψ? (77)10

as the total advective or “residual” streamfunction (Plumb and Ferrari, 2005b), and we have added factors of ζσ in (76a) so that

the fluxes can be directly identified with the zonal velocity, u† =−ζ−1σ ∂ψ†/∂σ|x, and the dia-σ velocity, $† = ∂ψ†/∂x|σ .

Note also that every derivative with respect to σ is multiplied by ζ−1σ , and that their product ζ−1σ ∂σ is equivalent to a derivative

with respect to z. This allows us to simplify the numerical discretization by avoiding explicit references to σ coordinates, and

computing these derivatives via finite differencing in z coordinates.15

3.2 Spatial discretization of the tracer evolution equation

We solve (9) using the slope-limited finite-volume scheme of Kurganov and Tadmor (2000) for systems of conservation laws.

We divide the domain into a grid of Nx by Nζ cells, with uniform side lengths ∆x and ∆ζ in x/ζ space, as shown in Fig. 2.

We store the cell-averaged value of c at the center of the (j,k)th grid cell, which we denote as cj,k(t). The mean, eddy

and residual streamfunctions are most naturally defined at the cell corners, as this allows a straightforward calculation of the20

residual velocities at the cell edges,

u†j+1/2,k =−
ψ†j+1/2,k+1/2−ψ

†
j+1/2,k−1/2

(∆z)j+1/2,k
, (78a)

$†j,k+1/2 =
ψ†j+1/2,k+1/2−ψ

†
j−1/2,k+1/2

∆x
. (78b)
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Figure 2. Illustration of the numerical grid used to compute solutions to the model equations.

Here we use ∆z as a shorthand for the spatially-varying vertical grid spacing, defined as a centered difference between adjacent

grid points. The vertical grid spacing is defined for all cell centers, corners and faces,

(∆z)j,k = zj,k+1/2− zj,k−1/2, (78c)

(∆z)j+1/2,k = zj+1/2,k+1/2− zj+1/2,k−1/2, (78d)

(∆z)j,k+1/2 = zj,k+1− zj,k, (78e)5

(∆z)j+1/2,k+1/2 = zj+1/2,k+1− zj+1/2,k, (78f)

where zj+1/2,k+1/2 denotes the physical elevation of each gridpoint. Note again that $ is the velocity normal to the upper and

lower faces of the grid cell, and so differs slightly from the true vertical velocity w.

To compute the advective tendency, Gadv, the Kurganov and Tadmor (2000) scheme requires a linear interpolation of c over

each grid cell. The linear slopes in the x and ζ directions around cj,k(t) are calculated via slope-limited finite differences10

between cj,k(t) and its adjacent gridpoints,

(∂xc)j,k = minmod

(
θ
cj+1,k − cj,k

∆x
,
cj+1,k − cj−1,k

2∆x
,θ
cj,k − cj−1,k

∆x

)
, (79)

(∂zc)j,k = minmod

(
θ
cj,k+1− cj,k
(∆z)j,k+1/2

,
cj,k+1− cj,k−1
zj,k+1− zj,k−1

,θ
cj,k − cj,k−1
(∆z)j,k−1/2

)
, (80)

with parameter 1< σ < 2. The minmod function evaluates to zero if its arguments have differing signs, and otherwise evaluates

to its argument with smallest modulus. The cell center estimates of the derivatives are then used to construct two different15
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estimates of c at each cell faces via

c
(−)
j+1/2,k = cj,k + 1

2∆x(∂xc)j,k, (81a)

c
(+)
j+1/2,k = cj+1,k − 1

2∆x(∂xc)j+1,k, (81b)

c
(−)
j,k+1/2 = cj,k + (zj,k+1/2− zj,k)(∂zc)j,k, (81c)

c
(+)
j,k+1/2 = cj,k − (zj,k+1− zj,k+1/2)(∂zc)j,k+1/2. (81d)5

Finally, advective fluxes are determined at the cell faces using an estimate of the maximum propagation speed in the system,

which in our case is simply the residual velocity, and thus the fluxes reduce to an upwind approximation

F
(u)
j+1/2,k =

1

2
(∆z)j+1/2,k

[
u†j+1/2,k

(
c
(+)
j+1/2,k + c

(−)
j+1/2,k

)
− |u†j+1/2,k|

(
c
(+)
j+1/2,k − c

(−)
j+1/2,k

)]
, (82a)

F
($)
j,k+1/2 =

1

2

[
$†j,k+1/2

(
c
(+)
j,k+1/2 + c

(−)
j,k+1/2

)
− |$†j,k+1/2|

(
c
(+)
j,k+1/2− c

(−)
j,k+1/2

)]
. (82b)

For this version of the model, the formulation of the Kurganov and Tadmor (2000) scheme considers only the maximum10

propagation speed of the momentum, u, and excludes the internal gravity wave speed which is supported with the momentum

calculation in Section 2.2. As a result, this would alter the overall advective fluxes, however, we omit this in the current version

of the model and note that the full formulation can be implemented here, but we choose to leave this calculation to be updated

in a future version of the model. The advective tendency in (x,z) space is then computed via straightforward finite-differencing

of these fluxes,15

(Gadv)j,k =−
F

(u)
j+1/2,k −F

(u)
j−1/2,k

∆x(∆z)j,k
−
F

($)
j,k+1/2−F

($)
j,k−1/2

(∆z)j,k
−
F vj,k
Ly

. (83)

The advective discretization (83) requires the residual streamfunction to be known on all grid cell corners, which allows the

numerical fluxes to be computed at the cell edges. The mean streamfunction ψ is computed from the mean velocity field via

(12),

ψj+1/2,k+1/2 =−
k∑

m=0

uj+1/2,k(∆z)j+1/2,k. (84)20

The eddy streamfunction (21) depends on the “true” slope (72) of the local b contours, which we discretize as

(Sint)j+1/2,k+1/2 =−
(∂xb|z)j+1/2,k+1/2

(∂zb|x)j+1/2,k+1/2

. (85)

The calculation of the derivatives with respect to x and z is described in Section 3.5. We then construct ψ? on cell corners as

ψ?j+1/2,k+1/2 = (κgm)j+1/2,k+1/2(Sint)j+1/2,k+1/2. (86)25
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The tracer tendency due to isopycnal diffusion, Giso, is discretized following the formulation of Kurganov and Tadmor

(2000) for parabolic operators.

H
(x)
j+1/2,k = (∆z)j+1/2,k(κiso)j+1/2,k

[
cj+1,k − cj,k

∆x
+ (Siso−Sσ)j+1/2,k

(∂zc)j,k + (∂zc)j+1,k

2

]
, (87a)

H
(σ)
j,k+1/2 = (κiso)j,k+1/2(Siso−Sσ)j,k+1/2

[
(∂xc)j,k + (∂xc)j,k+1

2
+ (Siso−Sσ)j,k+1/2

cj,k+1− cj,k
(∆z)j,k+1/2

]
, (87b)

where (∂zc)j,k, (∂zc)j+1,k, (∂xc)j,k, and (∂xc)j,k+1 are computed via (81a)–(81d). In the interior, the isopycnal diffusion5

slope Siso = Sint and is calculated on cell corners via (85) and interpolated to cell faces via

(Siso)j+1/2,k =
1

2

(
(Siso)j+1/2,k+1/2 + (Siso)j+1/2,k−1/2

)
, (88a)

(Siso)j,k+1/2 =
1

2

(
(Siso)j+1/2,k+1/2 + (Siso)j−1/2,k+1/2

)
. (88b)

The diffusive tendency is then computed via straightforward finite-differencing of the H fluxes,

(Giso)j,k =−
H

(x)
j+1/2,k −H

(x)
j−1/2,k

∆x(∆z)j,k
−
H

(σ)
j,k+1/2−H

(σ)
j,k−1/2

(∆z)j,k
(89)10

The tracer tendency due to diapycnal mixing, Gdia, is computed implicitly. During each time step, all other physical and

biogeochemical tendencies are computed and used to advance cj,k forward one time step ∆t, i.e.

c?j,k = cnj,k +F [cn]. (90)

Here n denotes the time step number, and c? denotes an estimate of c at t+ ∆t (see Section 3.3 for details of the time

stepping schemes). The updated tracer concentration is then further modified via the addition of a “correction” due to diapycnal15

diffusion. At each longitude, or for each j, we solve

cn+1
j,k − c

?
j,k

∆t
=

1

zj,k+1/2− zj,k−1/2

[
(κdia)j,k+1/2

cn+1
j,k+1− c

n+1
j,k

zj,k+1− zj,k
− (κdia)j,k−1/2

cn+1
j,k − c

n+1
j,k−1

zj,k − zj,k−1

]
. (91)

Equation (91) defines a tridiagonal matrix system of algebraic equations for the unknowns {cn+1
j,k |k = 1 . . .Nz}, which is

inverted using the Thomas algorithm.

Finally, the meridional advection is discretized via a straightforward upwind advection scheme,20

(Glat)j,k =
v
(c)
j,k

Ly

(
cj,k − cuj,k

)
, v

(c)
j,k =

1

2

(
v†j+1/2,k + v†j−1/2,k

)
(92)

where v(c) denotes the meridional velocity on tracer points and cu denotes the upstream tracer concentration, defined as

cuj.k =


cNj,k, v < 0,

cSj,k, v > 0.

(93)

Here cN and cS are the tracer concentrations at the northern and southern ends of the domain, respectively. In all of the steps

listed above, conditions of zero residual streamfunction and zero normal tracer flux are applied at the domain boundaries. These25

conditions are imposed by simply setting ψ† to zero on all boundary points, and by setting the numerical fluxes (F , H , etc.) to

zero on the boundary cell faces.
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3.3 Temporal Discretization

MAMEBUS evolves the model equations forward in time using Adams-Bashforth methods (e.g. Durran, 1991) modified to

allow for adaptive time step sizes. In this section, we outline the derivation of these methods, and formally show the derivation

in Appendix B. We implement the adaptive time-step AB-methods because this family of methods are numerically stable with

our scheme for the momentum equations (see Section 2.2). We then describe the constraints on the time-step imposed by the5

Courant–Fredrichs–Lewy (CFL) condition.

3.3.1 Adaptive-Time Step Adams-Bashforth Methods

Our time integration scheme uses a family of time-step variable Adams-Bashforth integrative methods. This specific formula-

tion of the AB methods allows for the model time step to be adjusted dynamically following the CFL conditions described in

Section 3.3.2. Consider a tracer quantity c that evolves according to10

∂c

∂t
= f(t,c(t)). (94)

Here the function f conceptually represents the entire model state, including the physical, biogeochemical, and non-conservative

tendencies. We make a note here that the diffusive component of the time-integration step is calculated implicitly and not in-

cluded in the ABIII integration step (see Equation (91)). We implement the third order Adams-Bashforth or ABIII method in

this version of the model as the default option for time integration.15

ABIII: c(tn+1) = c(tn) +
1

6

(
fn−2

∆t2n+1(2∆tn+1 + 3∆tn)

∆tn−1(∆tn + ∆tn−1)
− fn−1

∆t2n+1(2∆tn+1 + 3∆tn + 3∆tn−1)

∆tn−1∆tn

+ fn
∆tn+1(2∆t2n+1 + 6∆tn+1∆tn + 3∆tn+1∆tn−1 + 6∆t2n + 6∆tn∆tn−1)

(∆tn + ∆tn−1)∆tn

)
. (95)

The first two time-steps require the lower order methods. We implement a forward Euler for the first time step and a second-

order AB scheme (defined below) for the second time step,

ABII: c(tn+1) = c(tn) +
∆tn+1

2∆tn
(2f(tn, c(tn))∆tn + f(tn, c(tn))∆tn+1− f(tn−1, c(tn−1))∆tn+1) . (96)20

Here the notation ∆tn indicates the nth time step. Derivations for the adaptive time-stepping ABII and ABIII methods are given

in Appendix B.

3.3.2 CFL Conditions

MAMEBUS selects each model time step adaptively to ensure that time stepping is numerically stable. The time step is chosen

to ensure that the CFL conditions for each of MAMEBUS’s various advective and diffusive operators, described in preceding25

subsections, are satisfied.

23



The time step for advection of tracers is limited by the time scale associated with advective propagation across the width of

a grid box (∆x or ∆z). These constraints can approximately be expressed as

∆t <
∆x

|u|+uigw
, (97a)

∆t <
∆z

|w|
, (97b)

(Durran, 2010). Here uigw is the maximum horizontal propagation speed of internal gravity waves (Chelton et al., 1998),5

cigw =
1

π

∫
N dz. (98)

Particulate sinking in the NPZD model is also calculated explicitly and constrains the time step via a similar CFL criterion

∆t <
(∆z)

|wsink|
(99)

where wsink is the sinking speed of the particles.

We apply additional constraints on the time step to ensure that diffusive operators are stable. The standard numerical stability10

criterion for a Laplacian diffusion operator is (Griffies, 2018)

∆t <
1

2

∆2
s

κ
, (100)

where κ is a diffusion coefficient and ∆s is the spatial grid spacing. In the horizontal (∆s = ∆x, the diffusion coefficients

that determine the diffusive timestep are the eddy diffusion and isopycnal diffusion coefficients, when κ= κgm and κ= κiso

respectively. 1 In the vertical (∆s = ∆z), the diffusive time step is determined by the diapycnal diffusivity, κ= κdia, and by the15

vertical component of the eddy and isopycnal diffusion operators, κ= κgmS
2
int and κ= κisoS

2
int respectively (see e.g. Ferrari

et al., 2008).

3.4 Discrete Momentum Equations and Barotropic Pressure Correction

In this section, we describe the discretization of the momentum equations presented in Section 2.2, specifically in Equations

(11a), (11b), and (11c). To facilitate our discretization, we split the pressure φ, into barotropic and baroclinic components,20

φ= Π︸︷︷︸
barotropic

+
g

ρ0

0∫
z

ρdz

︸ ︷︷ ︸
baroclinic

. (101)

The barotropic and baroclinic components correspond to the pressure at the surface and the hydrostatic pressure variation with

depth, respectively.

The numerical time-integration is calculated in a series of steps which include an explicit calculation of the non-diffusive

time-step, an implicit calculation of the vertical diffusion, and a barotropic corrector step in order to ensure that the flow is25

1Note that although κiso appears only in an advective operator in (83), this operator can be written as the divergence of a diffusion tensor (Griffies, 2018),

and experience with MAMEBUS suggests that the more restrictive, diffusive formulation more accurately constrains the model time step.

24



non-divergent. The calculation of the explicit time-step is outlined in Section 3.3 and Appendix B. In order to be numerically

consistent with the calculation of the streamfunction, the mean horizontal velocities u and v are stored on the western face

of each grid cell. In Figure 2, these are labeled as the u points. The time-step calculation is shown below, noting that the

explicit components of the time-step, E{·} are calculated following the ABIII methods outlined in Section 3.3, and the implicit

diffusion I{·} is calculated following Equation (91).5

Given the mean momentum at time step n, un, we first perform the explicit component of the time-step to construct an

estimate of un+1, denoted as u∗,

u∗ = un + E

−fẑ×un− ∂Π

∂y
ŷ− g

ρ0
∇
∫
z

ρn dz

 . (102)

Note that the zonal barotropic pressure gradient, ∂xΠŷ, is excluded from this equation; this will be revisited in the final

component of the time-step. The discretization of the horizontal pressure gradient terms in (102) described in Section 3.5.10

We next compute the tendency due to vertical viscosity following equation (91), which we denote via the operator I. We

thereby construct a second estimate of the velocity at time step n+ 1, denoted as u∗∗,

u∗∗ = I{u∗}. (103)

Finally, we apply a tendency due to the zonal barotropic pressure gradient, ensuring that mass is conserved in each vertical

fluid column (Dauhajre and McWilliams, 2018),15 ∫
z

un+1 dz =

∫
z

un dz = 0, (104)

as required by (11c). We formulate the barotropic pressure correction as

un+1 = u∗∗−∆t
∂Π

∂x
(105)

Substituting Equation (105) into (104), we obtain

∆t
∂Π

∂x
x̂ =

1

|ηb(x)|

∫
z

u∗∗ dz. (106)20

This implies that the tendency in the mean zonal velocity due to the barotropic zonal pressure gradient must serve to bring the

depth-integrated zonal velocity to zero, i.e.

un+1 = u∗∗− 1

|ηb(x)|

∫
z

u∗∗ dz. (107)

The calculation of the vertical integral of u∗∗ is computed in the model using a Kahan sum (Kahan, 1965).

3.5 Horizontal Pressure- and Buoyancy-Gradient Calculations25

Pressure gradient calculations in sigma coordinates have been long known to produce discretization errors from the misalign-

ment of geopotential and sigma coordinate surfaces and rely on large cancellations in the vertical gradient near steep slopes
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(Arakawa and Suarez, 1983; Haney, 1991; Mellor et al., 1994, 1998). We follow Shchepetkin and McWilliams (2003) to cal-

culate the horizontal pressure gradient force and reduce the errors in horizontal gradient calculations, which otherwise produce

large spurious along-slope currents in MAMEBUS (not shown). This algorithm has been extensively tested via its implemen-

tation in ROMS (Shchepetkin and McWilliams, 2003, 2005), so we omit our own tests of the pressure gradient calculation

scheme in this study. For numerical consistency, we also calculate horizontal buoyancy gradients, required to evaluate the5

isopycnal slope (see §3.2), using the same algorithm.
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Figure 3. Stencil for the isopycnal slope and pressure gradient scheme given by Shchepetkin and McWilliams (2003). The points indicate

the buoyancy (density) points. The solid lines are the reconstructed coordinate lines used in the horizontal calculation, and the shaded area

shows the area integral of the horizontal buoyancy gradient.

3.5.1 Zonal Pressure Gradients

In this section, we outline the implementation of the baroclinic zonal pressure gradient calculation used in MAMEBUS follow-

ing Shchepetkin and McWilliams (2003). The ultimate goal of the algorithm is to calculate the following baroclinic pressure

gradient at a cell center (c.f. (102)),10

−∂φ
∂x

∣∣∣∣baroclinic

z

=− 1

A

g

ρ0

∫∫
A

∂ρ

∂x

∣∣∣∣
z

dxdz

 , (108)

where ρ, like the linear case, is the density anomaly, ρ0 is a reference density, and A is the area between four adjacent buoy-

ancy grid points (shaded area in Figure 3. Shchepetkin and McWilliams (2003) calculate the second term by implementing

a Lagrange polynomial reconstruction of the z and ρ fields. By Green’s theorem, we write the integrated horizontal density

gradient as15 ∫∫
A

∂ρ

∂x

∣∣∣∣
z

dxdz =

∮
ρdz. (109)

The two algorithms differ on the treatment of the vertical integration of pressure. The Density Jacobian Algorithm first

interpolates the density field onto the sigma grid and calculates the values of ρ and z along the solid lines in Figure 3, then
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integrates to obtain the pressure. The Sigma Coordinate Primitive Form Algorithm first integrates the pressure and calculates

the gradients using a vertical correction term. We opt for the second algorithm which results in an equation for the horizontal

gradient which closely resembles a Equation (68a). Furthermore, this algorithm tends to be more stable in our model. The

algorithm is calculated as follows:

First, we calculate all elementary differences in ρ and z5

(∆x)ρj+1/2,k = ρj+1,k − ρj,k, (110a)

(∆z)ρj,k+1/2 = ρj,k+1− ρj,k, (110b)

(∆x)zj+1/2,k = zj+1,k − zj,k, (110c)

(∆z)zj,k+1/2 = zj,k+1− zj,k, (110d)

where zj,k is the depth value at the cell centers, where the density tracer is located. Note that the edges of Figure 3 correspond10

to the cell centers in MAMEBUS, this requires some extrapolation at the boundaries so that the elementary differences are

fully calculated throughout the domain. For all variables, we assume that the elementary differences at the boundary are zero.

We then calculate the hyperbolic differences of all variables. This step calculates an estimate of the derivatives following a

cubic spline formalism outlined in more detail in Shchepetkin and McWilliams (2003). The derivatives are then given by,

hxρj,k =
2(∆x)ρj+1/2,k(∆x)ρj−1/2,k

(∆x)ρj+1/2,k + (∆x)ρj−1/2,k
, (111a)15

hxzj,k =
2(∆x)zj+1/2,k(∆x)zj−1/2,k

(∆x)zj+1/2,k + (∆x)zj−1/2,k
. (111b)

The vertical hyperbolic differences for ρ and z are calculated similarly using Equations (110b) and (110d). Again, the hy-

perbolic differences on the boundaries are not defined using Equations (111a) and (111b), so we extrapolate the hyperbolic

averages of density. For example, at the western edge of the domain we define

hxρN,k =
3

2

(
(∆x)ρN−1/2,k − (∆x)ρN−3/2,k

)
− 1

2
(hxρN−1,k) (112)20

Analogous extrapolation schemes are applied at all domain boundaries.

We the calculate the pressure field using the hydrostatic relationship. This is done via a vertical integration of the density

reconstructed along the vertical lines in Figure 3. The pressure field is calculated from the surface down. The pressure is

calculated in the surface grid cells as

φj,N =
g

ρ0

(
ρj,N +

1

2
(ζj − zj,N )

ρj,N − ρj,N−1
zj,N − zj,N−1

)
(ζj − zj,N ) , (113)25

where ζj = 0 from the rigid lid assumption in MAMEBUS. Then the pressure is calculated at successively deeper grid levels

as,

φj,k = φj,k+1 +
g

ρ0

(
ρj,k+1 + ρj,k

2
(zj,k+1− zj,k)− 1

10

{
(hzρj,k+1−hzρj,k)

[
zj,k+1− zj,k −

hzzj,k+1 +hzzj,k
12

]
−(hzzj,k+1−hzzj,k)

[
ρj,k+1− ρj,k −

hzρj,k+1 +hzρj,k
12

]})
. (114)
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We then correct for the iso-σ pressure gradient introduced by the slope of the sigma coordinate grid, analogous to the con-

tinuous expression in Equation (68a). This step calculates the product of ρ and the local slope of the σ-coordinate, and corrects

for the interpolation errors from the coordinate transformation. Following the notation used in Shchepetkin and McWilliams

(2003),

FCj+1/2,k =
ρj+1,k + ρj,k

2
(zj+1,k − zj,k)− 1

10

{
(hxρj+1,k −hxρj,k)

[
zj+1,k − zj,k −

hxzj+1, +hxzj,k
12

]
5

−(hxzj+1,k −hxzj,k)

[
ρj+1,k − ρj,k −

hxρj+1,k +hxρj,k
12

]}
. (115)

Finally, we use Equations (114) and (115) to calculate the pressure gradients.(
∂φ

∂x

∣∣∣∣
z

)
j+1/2,k

=
1

∆x

(
φj+1,k −φj,k +

g

ρ0
·FCj+1/2,k

)
. (116)

Buoyancy Gradients

The buoyancy gradient is calculated similarly to the pressure gradient. However, because we do not vertically integrate the10

buoyancy term, we opt to use the Density Jacobian Algorithm described in Shchepetkin and McWilliams (2003). The pressure

gradient algorithm described above integrates the pressure and then corrects for the pressure gradient in sigma coordinates.

The density gradient algorithm described below calculates the line integral about the area enclosed by the φ-points where the

buoyancy gradient is located (see Figure 3). Therefore, we use the following form to calculate the buoyancy gradient,∫∫
A

∂b

∂x
dxdz =

∮
bdz = FXj+1,k+1/2 +FCj+1/2,k −FXj,k+1/2−FCj+1/2,k+1, (117)15

where FXj,k+1/2 are the value of the integral (Equation (117)) along the vertical sides, and FCj+1/2,k is the value of the

integral along the horizontal sides. This calculation follows a similar procedure as the pressure gradient.

First, we calculate the elementary differences, and the hyperbolic averages in b and z, given by Equations (110a) through

(111b). Then calculate the value of the integral along the upper and lower sides of the domain following,

FCj+1/2,k =
bj+1,k + bj,k

2
(zj+1,k − zj,k)− 1

10

{
(hxbj+1,k −hxbj,k)

[
zj+1,k − zj,k −

hxzj+1, +hxzj,k
12

]
20

−(hxzj+1,k −hxzj,k)

[
bj+1,k − bj,k −

hxbj+1,k +hxbj,k
12

]}
. (118)

Note that this formulation is the same as Equation (115), but with buoyancy instead of pressure. Then we calculate the value

of the line integral along the vertical components of the cell,

FXj,k+1/2 =
bj,k+1 + bj,k

2
(zj,k+1− zj,k)− 1

10

{
(hzbj,k+1−hzbj,k)

[
zj,k+1− zj,k −

hzzj,k+1 +hzzj,k
12

]
−(hzzj,k+1−hzzj,k)

[
bj,k+1− bj,k −

hzbj,k+1 +hzbj,k
12

]}
. (119)25

Shchepetkin and McWilliams (2003) write Equation 68a as,

∂b

∂x

∣∣∣∣
z

= J (b,z) =
∂b

∂x

∣∣∣∣
σ

∂z

∂σ
− ∂b

∂σ

∂z

∂x

∣∣∣∣
σ

, (120)
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This allows us to numerically integrate the buoyancy gradient in the cell as,∮
bdz =

(
A
∂b

∂x

)
j+1/2,k+1/2

= FXj+1,k+1/2 +FCj+1/2,k −FXj,k+1/2−FCj+1/2,k+1 (121)

where, A, again is the area of the cell. At the surface, the boundary condition is given that FCj+1/2,N+1 ≡ 0.

Finally, in order to calculate the horizontal buoyancy gradient, we divide by the area. Since, the area of each cell is defined

by the cell-centered, φ-points, we implement Gauss’ Area Formula,5

Aj+1/2,k+1/2 =
1

2
|xj,k+1zj,k +xj,kzj+1,k +xj+1,kzj+1,k+1 +xj+1,k+1zj,k+1

−xj,kzj,k+1−xj+1,kzj,k −xj+1,k+1zj+1,k −xj,k+1zj+1,k+1| (122)

3.5.2 Meridional Pressure Gradients

The alongshore pressure gradient in Equation (11b), denoted by
[
φ
]Ly

0
/Ly , and is determined by along-shore gradients in

the surface pressure and buoyancy/density that are imposed as model input parameters. We integrate the profiles of pressure10

following the hydrostatic relationship. We define ρN and ρS as the densities at the northern and southern ends of the domain,

and Πy = ΠN,S as the surface pressures at northern and southern ends of the domain. Then the pressure is given by,

1

Ly

[
φ
]Ly

0
=
∂Π

∂y
− g

ρ0

0∫
z

∂ρ

∂y
dz,

=
ΠN −ΠS

ρ0Ly
+
g

ρ0

0∫
z

ρN − ρS

Ly
dz. (123)

Here the along shore variations in sea surface pressure and density are both model inputs. We discretize the meridional pressure15

gradient as,

1

Ly

[
φ
]Ly

0

∣∣∣∣
j,k

=
1

Ly

[(
ΠN
j,N −ΠS

j,N

)
+
g

ρ0

N−1∑
k=k′

(
ρNj,k′+1 + ρNj,k′

2
−
ρSj,k′+1 + ρSj,k′

2

)
(zj,k′+1− zj,k′)

]
. (124)

Though MAMEBUS allows meridional pressure gradients to be imposed, we have excluded them from our reference solu-

tions in the interest of simplicity. However, previous studies have highlighted the importance of meridional pressure gradients

in supporting interior cross-slope transport, and in driving poleward undercurrents Connolly et al. (2014). We plan to address20

the effects of meridional pressure gradients on EBUS ecosystem dynamics in future scientific studies using MAMEBUS.
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4 Implementation Details

In this section, we outline the details for implementation in MAMEBUS. The model code is written in the C programming

language. The model expects various user inputs that include initial conditions, along with user-defined model calculation

details in Table 4 that include, but are not limited to, the momentum calculation scheme and the time-stepping scheme. The

MAMEBUS distribution includes sample Matlab codes that package these user inputs.5

The software needed to run this model include:

1. MATLAB (2016) or later

2. A C compiler (eg. GCC)

Our provided setup also includes example scripts for running the model on a cluster, however, this model can be easily run

locally on a laptop or desktop on any operating system so long as the necessary software is installed. Table 6 shows run times10

for the model on both the cluster and a 2015 Macintosh Laptop.

MAMEBUS has three active physical variables: the zonal and meridional momenta, and the temperature (buoyancy). The

current implementation of the biogeochemical model has four active variables: nitrate (N), phytoplankton (P), zooplankton (Z),

and detritus (D). A variable number of additional passive tracers may also be included.

4.1 Expected User-inputs, and Options Available15

MAMEBUS expects a list of parameters given in Table 3, that control the physical components of the model, the model run

details, and the grid setup. Other identifiers included in this model are given in Table 4 which determine which internal schemes

the model uses for each specific run. Furthermore, MAMEBUS expects a set of input parameters from physical tracers, forcing,

diffusivity, and restoring, along with initial profiles of biogeochemical tracers that are listed in Table 5.

For the solutions shown in Section 5, the following intial conditions are detailed in Section 5.1.20

4.2 Model Run Details

The main function of the mamebus.c file has five major components and steps:

1. Calculate the time tendency of each tracer. The time step is calculated using the tderiv function detailed in Figure 4. The

explicit tendencies are calculated following Section 2.

2. Add implicit vertical diffusion and remineralization, Equation (91).25

3. Apply zonal barotropic pressure gradient correction if the momentumScheme is MOMENTUM_TTW (Section 3.4 )

4. Enforce zero tendency where relaxation time is zero (Section 2.5.1).

5. Write model state (Section 4.3).
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Figure 4. The call tree from the main function of mamebus.c
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Table 3. Input parameters expected by the MAMEBUS model code. All parameters listed in this table are chosen by the user. The sample

values listed in this table are those used in the reference experiments described in Section 5.

Description Value Units

Number of horizontal grid points 64

Number of vertical grid points 64

Computational domain width 400 km

Computational domain height 3000 m

Depth of the shelf 50 m

Location of the continental slope in the domain from the eastern boundary 50 km

Topographic slope 9.8e-3

Depth of surface mixed layer 40 m

Depth of bottom boundary layer 40 m

Drag coefficient in the bottom boundary layer 1e−3 m/s

Reference density 1000 kg/m3

Coriolis parameter 1e−4 1/s

Surface grid stretching parameter 9

Bottom grid stretching parameter 4

Depth below the surface over over which the vertical coordinate the coordinate

is approximately aligned with geopotentials

300 m

The fraction of the maximum time-step taken for each ∆t to ensure the CFL

condition is met

0.75

The end time for integration 30 years

Output frequency of model data 1 day

Table 4. MAMEBUS numerical scheme options and descriptors.

Parameter Identifier Value Scheme description

modelType BGC_NONE 0 Physics only, no biogeochemistry

BGC_NPZD 1 Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) Model,

described in Section 2.4

timeSteppingScheme TIMESTEPPING_AB1 0 First-order Adams Bashforth variable timestepping

TIMESTEPPING_AB2 1 Second-order Adams Bashforth variable timestepping

TIMESTEPPING_AB3 2 Third-order Adams Bashforth variable timestepping

4.3 Model Data

All of the model input and output are saved in binary files. Depending on the “monitorFreq" or the frequency of output, the

model will interpolate the between timesteps, if necessary, calculate the correct model state, and write the data to file. The
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Table 5. A table outlining the initial profiles that MAMEBUS expects during initializaiton. To visualize the grid locations, see Figure 2. Each

initial profile is included in all modelTypes unless otherwise stated. Note that Nx is the number of zonal domain points and Nz is the number

of vertical domain points given in Table 3.

Initial Profile Parameter Grid Location Size Descriptions

Zonal Momentum u(x,z) u-points Nx+1 × Nz All modelTypes

Meridional Momentum v(x,z) v-points Nx+1 × Nz All modelTypes

Temperature T φ-points Nx × Nz All modelTypes

Nitrate N φ-points Nx × Nz NPZD Model

Phytoplankton P φ-points Nx × Nz NPZD model

Zooplankton Z φ-points Nx × Nz NPZD model

Detritus D φ-points Nx × Nz NPZD model

Buoyancy Diffusivity κgm ψ-points Nx+1 × Nz+1 See Equation (131)

Isopycnal Diffusivity κiso ψ-points Nx+1 × Nz+1 See Section 5.2

Topography hb(x) w,ψ-points Nx+1 × 1 See Equation (126)

Wind Stress τ(x,t) ψ-points Nx+1 × 1 See Equation (125)

following list contains all files that are written to file during the time integration step. For each model, there is an option to

include an arbitrary number of passive tracers, however these are the standard list of tracers that are included in the indicated

modelTypes.

• Residual Streamfunction, ψ†, (all modelTypes)

• Mean Streamfunction, ψ, (all modelTypes)5

• Eddy Streamfunciton, ψ?, (all modelTypes)

• Temperature field, (all modelTypes)

• Nitrate, (NPZD model)

• Phytoplankton (NPZD model)

• Zooplankton (NPZD model)10

• Detritus (NPZD model)
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5 Reference Solution and Model Validation

In this section we present reference solutions for MAMEBUS. Below we discuss the choice of parameters, the non-conservative

forcing, and profiles of restoring. We focus predominantly on the output of a single run, and plan in the future to run parameter

sweeps to better understand the response of the ecosystem dynamics to the physical forcing.

5.1 Model Geometry, Initial Conditions and Forcing5

The model is configured to represent an idealized California Current System (CCS). While the model can be formulated to

represent a general EBUS, we use the California Current System as a test case because this allows comparison of our results

with measurements from California Cooperative Oceanic Fisheries Investigations (McClatchie, 2016). Note that we exclude

salinity as a physical tracer; while it may be important in determining the structure of the California undercurrent (Connolly

et al., 2014), we find that the main features of stratification can be well described by temperature.10
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Figure 5. Initial temperature profile with a profile of offshore restoring which is modeled as a sponge layer on the western side of the

boundary, and at the surface, there is a surface restoring to an atmospheric profile, idealized to a profile of temperature from the California

Cooperative Oceanic Fisheries Investigations (CalCOFI). The northward wind stress is shown at the top of the figure. The white lines in the

temperature field are a few lines of constant initial temperature.

A list of input fields that MAMEBUS expects is given in Table 5, with a subset illustrated in Figure 5. The solutions shown

in Section 5 use the following choices for these input fields. The wind stress profile is given by

τ(x) = τ0 tanh

(
λτ
Lx−x
Lx

)
, (125)

whereLx is the width of the computational profile given in Table 3, and λτ = 4 is a tuning parameter that controls the horizontal

width of the wind stress drop off, or wind stress curl. We tune the offshore maximum to approximate values reported by5

Castelao and Luo (2018). While this is the example of wind-stress forcing we choose to use to validate our model, any form of

wind-stress forcing can be defined by the user.

The topography for the reference solutions is ,

ηb(x) =H − 1

2
(H −Hs)tanh

(
x−xt
Lt

)
, (126)
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where H is depth of the computational domain, Hs is the slope depth, xt is the location of the continential slope in the

computational domain, and Lt is the width of the continental slope given from the topographic slope parameter. All parameters

are given in Table 3. The topography is tuned to represent an idealized profile of bathymetry ETOPO5 (Eto, 1988) taken from

the geographic coordinates given from Line 80 in the CalCOFI data (McClatchie, 2016).

The initial conditions for the tracers in the model are the intial temperature profile, including timescales and inputs for5

restoring, and initial conditions for the NPZD model, which are tuned to give an approximate concentration of 30 mmol/m3 in

the deep ocean. The biogeochemical tracers are not restored in this set of reference solutions. The initial profile of temperature

is shown in Figure 5 and given by,

Tinit(x,z) = Tmin + (Tmax−Tmin)
exp

(
z
H∗ + 1

)
− exp

(
− H
H∗ + 1

)
exp(1)− exp

(
− H
H∗ + 1

) , (127)

where the minimum and maximum temperatures in the domain are Tmin = 4◦C, Tmax = T smax− (T smax−T smin)x/Lx. The maxi-10

mum and minimum surface temperatures are T smax = 22◦C and T smin = 18◦C, respectively. H∗ is a decay scale for the temper-

ature from the surface. This profile is tuned so that the temperature profile on the western side of the domain approximately

matches the profile of temperature from CalCOFI (McClatchie, 2016) in Figure 7. We initialize the temperature field with a

small tilt in the iso-surfaces to speed up the spin-up process. This same initial condition is used as the reference for temperature

restoring. The timescale for restoring is given by15

Rwest
T (x,z) =

(
1

Rmax
T

Lr −x
Lr

)−1
, x < Lr (128)

where Lr = 50km is the width of the sponge layer on the western side of the domain, and Rmax
T = 30 days is the fastest

relaxation timescale for temperature. In the surface grid boxes, the restoring timescale is given by,

Rsurf
T (x) = 1 day , (129)

which is consistent with the formulation of Haney (1971) for surface grid box thicknesses of approximately 1m. The restoring20

at the surface grid box is set to the initial profile of temperature given in Equation 127.

The initial conditions for NPZD tracers a a constant concentration of nitrate, Nmax = 30 mmol/m3, phytoplankton Pmax =

0.02 mmol/m3, zooplankton, Zmax = 0.01 mmol/m3, and an initial profile of detritus of zero. This choice allows for the internal

ecosystem dynamics to control the biogeochemical solutions. Finally, the cell sizes we choose for the phytoplankton cell is,

`p = 1µm. The zooplankton cell is optimized to give the optimal predator-prey length scale between the phytoplankton and25

zooplankton interactions, ie,

`z = exp

(
1

0.56
log

(
`p

0.65

))
. (130)
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5.2 Isopycnal, buoyancy, and diapycnal mixing

Figure 6. Inputs of buoyancy diffusivity (left), isopycnal diffusivity (center), and diapycnal diffusivity (right) used in the reference solution

to MAMEBUS shown in Section 5. Note that the isopyncal and diapycnal diffusivities are shown over the entire domain, and the diapycnal

diffusivities are shown over the upper 75m of the domain to highlight the boundary layer mixing and the mixing in the eastern side of the

domain on the shelf where the boundary layers merge.

The unresolved mesoscale and microscale mixing in the tracer evolution Equation (9) are detailed in Sections 2.3.1 and 2.3.2,

respectively. The diapycnal diffusivities are independent of wind-stress, and are determined by user-input mixed layer depth and

maximum magnitudes. The isopycnal and buoyancy diffusivities are time-invariant fields whose spatial structure is prescribed

by the user.5

In our model reference configuration, the eddy and buoyancy diffusivities are functions of the baroclinic radius of deforma-

tion – the preferential length scale at which baroclinic instability occurs, and closest to the fastest growing mode in the Eady

model (Eady, 1949). In MAMEBUS, these diffusivities also exponentially decreases with depth. There are choices for more

sophisticated parameterzations of eddy transfer acros continential slopes (Wang and Stewart, 2018, 2020), but in this current

version of the model, we opt for a simpler description. For example, the buoyancy diffusivity coefficient is defined as:10

κgm =
κ0gmRd

Hmax
exp

(
λ
z

ηb

)
, (131)

where λ < 1 is a tuning coefficient that allows for adjustment of the depth of the exponential profile of diffusivity, Hmax

is the maximum depth of the topography offshore, and ηb is the depth of the topography. For all solutions shown in this

section λ= 0.25 Note that for this formulation, we assume that z < 0. The maximum buoyancy diffusivity is κ0gm = 1200

m2/s. Furthermore, κiso = 2κgm, following Smith and Marshall (2009) and Abernathey and Marshall (2013). The isopycnal15

and buoyancy diffusivity profiles are shown in the left and center panels of Figure 6, respectively.

The diapycnal diffusivities shown in the right panel of Figure 6, with structure function described in Equation (17), are set

so that the maximum diffusivity in the mixed layers are given by, κ0sml = κ0bbl = 0.1 m2/s, otherwise the ambient diffusivity in
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the interior is given by, κbg = 1e-5 m2/s. In the case where the mixed layers join at the eastern edge of the domain, the profiles

of diffusivity are simply added.

5.3 Model Validation

We run the reference solutions of MAMEBUS for 25 model years, with initial conditions and physical forcing described

in Section 5.1. We validate the model against observations of temperature, nitrate, and chlorophyll-a concentration in the5

euphotic zone, based on observations from the CalCOFI program (McClatchie, 2016). For this comparison, we interpolate a

typical CalCOFI section (Line 80) to a sigma coordinate grid with realistic topography from the ETOPO database (Eto, 1988).

We chose to validate our model with a single transect of from CalCOFI instead of several transects along the same line because

averaging over time smooths over the deep chlorophyll maximum.

Furthermore, we prescribed a continental shelf that is deeper than in nature in order to reduce the model’s computation time.10

Further shallowing the continental shelf is possible, but the CFL constraint imposed by the finer vertical resolution on the shelf

extends the computation time.

While the continental slope is tuned to have a similar slope as observations in Central California near the shelf break,

the mixed layers in this model run are set to a constant depth zonally and overlap on the shelf. This choice has been made

for simplicity, and could be refined via zonally-varying mixed layer depths to improve agreement with specific EBUSs. The15

well mixed area on the shelf is an analogue to the inner shelf, albeit somewhat deeper than those found in nature (Lentz and

Fewings, 2012). In our model comparison, we neglect the inner shelf region in the model and compare the solutions and starting

approximately 50km from the coast.

The model temperature is generally in good agreement with observations for the upper ocean, reproducing sloping isotherms

towards the coast, and realistic surface values. We observe a cold bias near the coast, which could be a result of the constant20

wind-stress curl forcing over the domain, inducing upwelling that is too strong in the model. A cold bias observed in the surface

just outside the shelf, and a warm bias offshore, are likely caused by the prescription of a constant mixed layer depth, which

may be too deep in the model for this particular section and time of the year.

As shown by the middle row of Figure 7 model nitrate agrees reasonably well with observations in the upper layers, although

biases remain, in particular in deeper layers. This may be caused by several factors, including biases in the cross-shore and25

vertical circulation, and in the cycling of inorganic nutrients and organic matter. For example, remineralization processes are

simplified in the model, which does not include dissolved organic matter, and represents export by a single particle size class

with a constant sinking speed that was not explicitly tuned to match nutrients.

The bottom row of Figure 7 shows that the model captures the main features of the observed chlorophyll distribution

(here calculated based on a fixed chlorophyll to phytoplankton nitrogen ratio of 4:5 mg, chl/m3:mmol N/m3 following Furuya30

(1990)). High surface concentrations are reproduced near the shelf, with values decreasing further offshore. A deep chlorophyll

maximum develops in the lower euphotic zone, at depths between 40 and 80 m, progressively deepening from the coastal to

the oligotrophic region offshore. while these patterns are fairly realistic, we note that the very high chlorophyll concentrations

observed near the shelf are missing from the model. This underestimate may be caused by the over-simplification of the ecosys-
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Figure 7. Model validation against in situ California Cooperative Oceanic Fisheries Investigations (CalCOFI) data taken along Line 80 (Point

Conception) during July of 2015. The column on the left shows output from the model under constant wind forcing and is averaged over

the last five model years. The column on the right are values taken from CalCOFI and interpolated onto a sigma coordinate grid to allow

for direct comparison. The dots on the figures are locations where the data is sampled. This figure shows the comparison between potential

temperature, θ (top), nitrate (middle), and chlorophyll concentration (bottom).

tem structure in the NPZD model, which only includes a single phytoplankton group, while multiple groups are likely required

for a more correct representation of enhanced coastal phytoplankton biomass (Van Oostende et al., 2018). Furthermore, aspects

of these differences could be caused by the idealized nature of the 2-D circulation simulated by the physical model.

In order to compare physical solutions, we also include solutions which show the residual streamfunction, including the

mean and eddy components in Figure 8. The mean streamfunction is calculated via the momentum equations given in Section5

2.2, whereas the eddy streamfunction is described in Section 2.3. The positive values indicate clockwise circulation, which, in

this case, is indicative of eddy restratification opposing the mean upwelling branch (Colas et al., 2013). The negative values

indicate counterclockwise circulation. Figure 8 shows that residual upwelling of waters onto the continental shelf via the

bottom boundary layer, as interior transport onto the shelf is compensated by eddies. In the deep ocean (> 500m there is a

relatively strong residual overturning circulation that is likely associated with bottom intensification of the diapycnal mixing10

coefficient (McDougall and Ferrari, 2017, e.g.).
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Figure 8. Streamfunctions calculated by MAMEBUS. This figure shows the residual streamfunction (left), ψ† = ψ+ψ?, the mean stream-

function (center) as calculated in Section 2.2, and the eddy streamfunction (right) as described in Section 2.3. Note that positive values

indicate clockwise circulation, whereas negative values indicate counter-clockwise circulation.

5.4 Resolution Parameter Sweep

In this section, we describe the changes in solutions due to model resolution. We chose four different resolutions, and explored

the results. Figure 9 shows the solutions of MAMEBUS after 30 model years. Each panel in Figure 9 shows the model state in

the euphotic zone, averaged over the final 10 years of integration . All resolutions have the same setup and forcing as described

in Sections 4 and 5. The top row shows the potential temperature (θ), the middle row shows the nitrate concentration, and the5

bottom row shows the phytoplankton concentration. The model grid resolution increases from left to right, with the coarsest

simulation run on a grid of 32 points horizontally and vertically, and the highest-resolution simulation run on a grid of 128

points horizontally and vertically.

Increasing the resolution leads to an overall shoaling of nutrients toward the surface. The largest overall change in near-slope

nutrient concentration occurs when the resolution doubles from 32 to 64 horizontal points and vertical levels. Increasing the10

resolution beyond a 64x64 grid does not substantially change the horizontal distribution of phytoplankton . As referenced in

Table 6, doubling the resolution increases the model run time by a multiple of approximately 20. Thus while the model can

practically be run at higher resolution, our tests show that intermediate resolution (64 horizontal and vertical levels) is sufficient

to produce a favorable comparison with in situ data, without substantially increasing the computation time.
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Resolution (Horizontal and Vertical Levels) Cluster (Single Core) Laptop

32x32 32 min 22 min

64x64 499 min 401 min

96x96 3295 min (55 hours) –

128x128 13000 min (9 days) –
Table 6. A table outlining model run times of varying resolution between a computational cluster comprised of Intel Xeon E5-2650 v3

CPUs, and a 2015 Mac Laptop running macOS Catalina (version 10.15.7) for 20 model years, for both computing systems, the model is

run on a single core. The highest resolution simulation (128x128 horizontal and vertical levels) was conducted on the cluster only due to

computational constraints on a laptop.

Figure 9. This figure shows the model output of temperature, nitrate, and chl with varying resolution. The model was run for 30 years, and

solutions shown are averaged over the final 30 years of the model run.

6 Discussion and Future Work

In this paper, we described the formulation, implementation, and main features of MAMEBUS, an idealized, meridionally-

averaged model of eastern boundary upwelling systems. The solutions are determined by a general evolution equations for

materially conserved tracers (Section 2) and the fluid momentum equations under the time-dependent turbulent thermal wind
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(T3W) approximation (Dauhajre and McWilliams, 2018). It includes parameterizations of mesoscale eddy transfer and surface

and bottom boundary layer mixing (Section 2.3), and a simple ecosystem formulation (Section 2.4). We further detailed the

algorithms and discretizations implemented in the model (Section 3), and discussed reference model inputs and solutions

(Section 4). Finally we performed a preliminary validation based on observations from the California Current system, and we

discussed the sensitivity of the model to horizontal and vertical resolution (Section 5).5

MAMEBUS represents a simple, physically-consistent tool in which to test and tune a variety of physical parameterizations

and ecosystem model formulations. The ultimate goals of this research include exploration of physical-biogeochemical inter-

actions in EBUS, mechanistic understanding of the factors that control cross-shore gradients in biogeochemical and ecological

properties, and investigation of the processes that drive differences between distinct EBUS.

Because of the 2D framework, we acknowledge shortcomings to the model formulation, including physical aspects like10

intensification of upwelling around topographic features, for example resulting from variations in the wind-stress curl (Castelao

and Luo, 2018) or fine-scale ocean dynamics. Furthermore, while we parameterize the effect of mesoscale eddies on circulation,

we do not account for submesoscale eddies on the shelf, which could play an important role in tracer transport (Dauhajre and

McWilliams, 2018). We also do not explicitly represent breaking internal waves and tides on the shelf, which may play an

important role in dissipating energy and mixing tracers when the water column is shallow (Lamb, 2014).15

In future studies, we plan to use MAMEBUS to explore the effect of physical drivers such as wind stress, bathymetry,

stratification, and eddies, in controlling the zonal distribution of phytoplankton and food web processes, as informed by a size-

structured ecosystem model. Furthermore, we plan to expand upon the physical framework in this paper by expanding eddy

parameterizations to include the effect of submesoscale eddies on the shelf, where the mesoscale eddy activity is inhibited. An

aspect of MAMEBUS that requires further investigation is the effect of meridional pressure gradients, which we neglected in20

our reference solutions in Section 5. In reality, the presence of along-shore pressure gradients may support interior across-shore

transport away from the surface and bottom boundary layers, with the potential to reshape the coastal ecosystem.

With its limited computational cost, MAMEBUS can be used to investigate a wide parameter space in EBUSs, and determine

their sensitivity to a range of perturbations in major physical forcings, from changes in wind-stress to increasing buoyancy

forcing associated with climate change (Rykaczewski and Dunne, 2010; Sarmiento et al., 1998). Furthermore, by allowing25

coupling to a variety of biogeochemical and ecosystem models, MAMEBUS can be used to inform comprehensive regional

models (Shchepetkin and McWilliams, 2005), for which computational costs preclude exhaustive sensitivity studies.

Code availability. The DOI for the mamebus code is: 10.5281/zenodo.3866652

This package includes the mamebus.c code along with example setup and processing functions that are used in Matlab.
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A Decomposing Mesoscale Eddy Advective/Diffusive Fluxes

In this Appendix we discuss the partitioning of the mesoscale eddy tracer flux into components due to advection and isopycnal

diffusion, used in Section 2.1 to derive MAMEBUS’s central tracer evolution equation, (9). We show that the eddy tracer flux,

u′c′, can be arbitrarily decomposed into components directed along mean buoyancy surfaces and along mean tracer surfaces.

These components will later be associated with eddy advection and isopycnal stirring, respectively.5

The effect of mesoscale eddies on the averaged tracer concentrations is given by the convergence of the eddy tracer flux (8),

∂c

∂t

∣∣∣∣
eddies

=−∇ ·
(
u′c′
)
, (A1)

and appears on the right-hand side of (6). Being quasi-adiabatic flows, mesoscale eddies serve to stir material tracers along

isopycnal surfaces; this corresponds to an eddy tracer flux directed along buoyancy surfaces (Redi, 1982). Eddies also induce

a “bolus” advective transfer of tracers, a generalized “Stokes drift” that corresponds to an eddy tracer flux directed along10

mean tracer iso-surfaces (Gent and McWilliams, 1990). Both of these effects are routinely parameterized in general circulation

models (Griffies, 1998, 2018). To partition the eddy tracer flux between isopycnal stirring and bolus advection, we therefore

pose a decomposition of u′c′ into components directed along mean isopycnals and along mean tracer surfaces, respectively,

u′c′ = αcτ̂ c +αbτ̂ b. (A2)

Here τ̂ c and τ̂ b are unit vectors that point along mean c surfaces and along mean b surfaces, respectively:15

τ̂ c = ŷ× ∇c
‖∇c‖

, τ̂ b = ŷ× ∇b∥∥∇b∥∥ . (A3)

Note that the x-components of τ̂ b and τ̂ c are positive provided that b and c increase monotonically upward. By taking the

vector cross products τ̂ c× (A2) and τ̂ b× (A2), we can solve for the vector lengths αc and αb,

αc =
u′c′× τ̂ b
τ̂ c× τ̂ b

, αb =
u′c′× τ̂ c
τ̂ b× τ̂ c

. (A4)

Then, using Equations (A2)–(A4), we write Equation (A1) as20

∂c

∂t

∣∣∣∣
eddies

=−
(
∇× αc

‖∇c‖
ŷ

)
· ∇c−∇ ·

(
αb

(∇c · τ̂ b)
(∇c · τ̂ b)τ̂ b

)
. (A5)

The first term on the right-hand side of (A5) takes the form of an advection operator, in which we can identify the eddy

streamfunction

ψ∗ =
αc
‖∇c‖

=
u′c′ · ∇b
∇c×∇b

. (A6)

Note that this definition is ill-defined in the limit ∇c×∇b→ 0; in this limit τ̂ b and τ̂ c are parallel, the eddy tracer flux is25

purely advective, and the streamfunction becomes

ψ? =
u′c′×∇c
‖∇c‖2

. (A7)
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The second term on the right-hand side of (A5) has been written in the form of the divergence of a flux along mean buoyancy

surfaces, with the isopycnal gradient operator (see Section 2.1) appearing explicitly as

∇‖ ≡ (∇c · τ̂ b)τ̂ b. (A8)

We can then identify the isopycnal diffusivity κiso as

κiso =− αb
(∇c · τ̂ b)

=−(u′c′ · ∇c)
∥∥∇b∥∥2∥∥∇b×∇c∥∥2 =− u′c′ · ∇c

‖∇c‖2 cos2 θ
, (A9)5

where θ is the angle between the vectors∇b and∇c.
While the above derivation is general, for application in MAMEBUS we must make assumptions about the eddy tracer

fluxes. Specifically, we assume: (i) that approximately identical eddy streamfunctions ψ? advect each different model tracer,

and (ii) that the isopycnal diffusivity is positive (i.e. that eddy tracer fluxes are always directed down the mean tracer gradients),

and (iii) that the isopycnal diffusivity is approximately equal for different model tracers. These assumptions are satisfied in the10

limit of small-amplitude fluctuations u′ and c′ (Plumb, 1979; Plumb and Ferrari, 2005b).

B Derivation of Time Variable Adams Bashforth Methods

For a given tracer defined with an associated time tendency equation of the form,

∂c

∂t
= f(t,c(t)). (B1)

We integrate Equation (B1) in time from [tn+2, tn+1],15

tn+2∫
tn+1

∂c

∂t
dτ =

tn+2∫
tn+1

f(τ,c(τ))dτ. (B2)

By the fundamental theorem of calculus,

c(tn+2)− c(tn+1) =

tn+2∫
tn+1

f(τ,c(τ))dτ. (B3)

We interpolate the right hand side using a Lagrange polynomial of the form:

p(τ) =
τ − tn+1

tn− tn+1
f(tn, c(tn)) +

τ − tn
tn+1− tn

f(tn+1, c(tn+1)). (B4)20
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Then using B4 and substituting it into B3, we have,

tn+2∫
tn+1

f(τ,c(τ))dτ =

tn+2∫
tn+1

p(τ)dτ

=

tn+2∫
tn+1

(
τ − tn+1

tn− tn+1
f(tn, c(tn)) +

τ − tn
tn+1− tn

f(tn+1, c(tn+1))

)
dτ

=
1

2

[
(τ − tn+1)2

tn− tn+1
f(tn, c(tn)) +

(τ − tn)2

tn+1− tn
f(tn+1, c(tn+1))

]tn+2

tn+1

.

Defining ∆tn+1 = tn+1− tn, we obtain5

tn+2∫
tn+1

f(τ,c(τ))dτ =
∆tn+2

2∆tn+1
(2f(tn+1, c(tn+1))∆tn+1 + f(tn+1, c(tn+1))∆tn+2− f(tn, c(tn))∆tn+2) . (B5)

Substituting Equation (B3) into Equation (B5) yields the full ABII time stepping scheme, given by Equation (96).

For higher order AB methods, we consider a s-th order Lagrange polynomial of the form,

p(τ) =

s−1∑
m=0

pm(τ)f(tn+m, c(tn+m)) (B6)

pm(τ) =

s−1∏
l=0
l 6=m

τ − tn+l
tn+m− tn+l

(B7)10

where setting s= 3 as the number of known points in the interpolating polynomial results in the ABIII method. Then, s− 1 is

the degree of the polynomial. The general form of higher order AB methods is,

c(tn+s)− c(tn+s−1) =

t+s∫
t+s−1

s−1∑
m=0

pm(τ)f(tn+m, c(tn+m))dτ. (B8)

The algebra to solve for the full discrete form of the ABIII method follows the derivation of the ABII method above. The

solution to the integration in Equation (B8) is given by Equation (95).15

C Comparison of Boundary Layer Parameterizations with Ferrari et al. (2008)

Our representation of eddy advection and isopycnal stirring in the surface mixed layer (SML) and bottom boundary layer

(BBL) is adapted from Ferrari et al. (2008), and is described in Section 2.3.2. We now directly compare our SML/BBL scheme

against that of Ferrari et al. (2008) to highlight the key differences.
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As discussed in Section 2.3.2.1 our SML scheme leads to the same eddy streamfunction as that of Ferrari et al. (2008), given

by (29). In contrast, the residual eddy tracer flux in the SML differs as follows

(κiso∇‖c)FMCD = κiso (cx +Ssmlcz) x̂ +κiso (Ssmlcx +SsmlSintcz) ẑ, (C1a)

κiso∇‖c= κiso (cx +Ssmlcz) x̂ +κiso
(
Ssmlcx +S2

smlcz
)
ẑ, (C1b)

where “FMCD” denotes the formulation of Ferrari et al. (2008). Thus our Equation (C3b) differs from Equation (C3a) only5

by the replacement Sint by Ssml in the vertical eddy residual tracer flux. A drawback of using Sint is that typically the vertical

buoyancy gradient is very small in the SML, so the form (C3a) may not be numerically stable. Ferrari et al. (2008) propose a

modification of the vertical component of the tracer residual eddy flux to avoid dividing by small vertical buoyancy gradients

in the mixed layer,

(κiso∇‖c)FMCD · ẑ =−κisoĜ(z)

(
− bxbz

bz|2z=−Hsml

cx +
b
2

x

bz|2z=−Hsml

cz

)
ẑ, (C2)10

However, this alternative breaks the symmetry of the diffusion tensor, and requires the introduction of an additional vertical

structure function, Ĝ(z). Our formulation, Equation (C3b)m retains the symmetry of the stress tensor and preserves continuity

of the vertical flux and its derivative at z =−Hsml with the same structure function Gsml(z) (see Section 2.3.2). It is also

simpler to implement, as both the streamfunction (29) and the residual eddy flux (C3b) can be written succinctly in terms of

the effective slope (28).15

Another difference between our formulation and that of Ferrari et al. (2008) arises in the eddy stirring of buoyancy in the

SML,

(κiso∇‖b)FMCD = κiso
(
bx +Ssmlbz

)
x̂, (C3a)

κiso∇‖b= κiso
(
bx +Ssmlbz

)
x̂ +κiso

(
Ssmlbx +S2

smlbz
)
ẑ. (C3b)

The Ferrari et al. (2008) residual eddy buoyancy flux has no vertical component, whereas ours does. This impacts the rate of20

available potential energy release in the SML by modifying the total vertical eddy buoyancy flux,

w′b′FMCD = κgmGsml(z)
b
2

x

bz|z=−Hsml

, (C4a)

w′b′ = κgmGsml(z)
b
2

x

bz|z=−Hsml

+κisoGsml(z)
b
2

x

bz|z=−Hsml

(
1−Gsml(z)

bz

bz|z=−Hsml

)
, (C4b)

The key difference here is that our version (C5b) typically releases more potential energy, and is not strictly positive definite;

if bz � bz|z=−Hsml then in principle w′b′ may be negative. This corresponds to creation of potential energy, whereas previous25

studies suggest that potential energy should be consistently released in the SML (Colas et al., 2013). However, by construction,

the vertical derivative of this term is zero at Z =−Hsml, and in any practical case bz will be smaller than bz|z=−Hsml throughout

the boundary layer. This suggests that if the vertical eddy lengthscale λ is positive bzz < 0 then our scheme releases potential

energy everywhere. Note also that the GM component of the vertical eddy buoyancy flux always releases potential energy.
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Finally, we compare the horizontal component of the eddy buoyancy flux in the SML,

u′b′FMCD =−κgmbx, (C5a)

u′b′ =−κisobx + (κgm−κiso)Ssmlbz. (C5b)

Whereas the Ferrari et al. (2008) scheme preserves strict lateral downgradient diffusion, this is only true in our scheme if

κgm = κiso.5

Further to this comparison with the formulation of Ferrari et al. (2008), we note that the fluxes discussed above differ

substantially in the BBL over sloping topography. For example, the vertical buoyancy flux becomes

w′b′ = κgmGbbl(z)
b
2

x

bz|z=ηb+Hbbl

−κisoS̃ebz(S̃e−Sint) (C6)

Thus in general the eddy buoyancy flux will act to create potential energy (w′b′ < 0) unless the isopycnal slope Sint is of the

same sign as the bottom slope and larger in magnitude. In order to avoid this, it would be necessary to set κiso = 0 throughout10

the BBL. This is a separate consideration from the orientation of the residual flux vector, which must certainly lie parallel to

the topography if the diffusivity is nonzero.
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