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Abstract. A new sulfate aerosol hygroscopicity parameter (𝜅"#$) parameterization is suggested that is capable of considering 

the two major sulfate aerosols, H2SO4 and (NH4)2SO4, using the molar ratio of ammonium to sulfate (R). An alternative 𝜅"#$ 

parameterization method is also suggested that utilizes typical geographical distribution patterns of sulfate and ammonium, 

which can be used when ammonium data is not available for model calculation. Using the Weather Research and Forecasting 

coupled with Chemistry model (WRF-Chem), impacts of different 𝜅"#$ parameterizations on cloud microphysical properties 10 

and cloud radiative effects in East Asia are examined. Comparisons with the observational data obtained from an aircraft field 

campaign suggest that the new 𝜅"#$ parameterizations simulate more reliable aerosol and CCN concentrations, especially over 

the sea in East Asia than the original 𝜅"#$ parameterization in WRF-Chem that assumes sulfate aerosols as (NH4)2SO4 only. 

With the new 𝜅"#$ parameterizations, the simulated cloud microphysical properties and precipitation became significantly 

different, resulting in greater cloud albedo effect of about -1.5 W m-2 in East Asia than that with the original 𝜅"#$ 15 

parameterization. The new 𝜅"#$	parameterizations are simple and readily applicable to numerical studies of investigating the 

impact of sulfate aerosols in aerosol-cloud interactions without additional computational expenses. 

1 Introduction 

Aerosols impact global climate by directly scattering and absorbing radiation. Aerosols also play an important role 

as potential cloud condensation nuclei (CCN). Increases in CCN number concentration could increase cloud optical depth, 20 

suppress local precipitation, and prolong cloud lifetime (Twomey, 1974; Albrecht, 1989). Therefore, the aerosol induced 

changes of cloud microphysical property can alter the Earth’s radiation budget and hydrological cycle. Such aerosol-cloud 

interactions possibly cause the greatest uncertainty in the estimation of climate forcing due to their complexity (Myhre et al., 

2013). Understanding the role of aerosols as CCN (CCN activation) is therefore important for predicting future climate. CCN 

activation depends on the chemical and physical properties of aerosols (Köhler 1963; Abdul-Razzak et al., 1998; Dusek et al., 25 

2006; Fountoukis and Nenes, 2005; Khvorostyanov and Curry, 2009; Ghan et al., 2011). Soluble aerosol species have high 

potential to become CCN and differences in aerosol solubility could exert a considerable impact on CCN activation (Nenes et 

al., 2002; Kristjánsson 2002). 

Sulfate aerosols are one of the major components of natural and anthropogenic aerosols, contributing to a large 

portion of the net radiative forcing due to aerosol-cloud interactions (Boucher et al, 2013). They are highly soluble and thereby 30 
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easily activated to become cloud droplets. Recently, Zelinka et al. (2014) estimated that the contribution of sulfate aerosols to 

the net effective radiative forcing from aerosol-cloud interaction (ERFaci) is about 64%. Sulfate aerosols are mainly present 

as sulfuric acid (H2SO4) and ammonium sulfate ((NH4)2SO4) in the atmosphere (Charlson and Wigley, 1994), but have very 

different hygroscopicity parameter (κ) that represents the water affinity of aerosols and determines the efficiency of CCN 

activation (Petters and Kreidenweis, 2007). Despite the importance of sulfate aerosols in the estimation of ERFaci, many 35 

atmospheric models treat sulfate aerosols simply assuming that they have a single 𝜅"#$ value (Ackermann et al., 1998; Stier et 

al. 2006; Pringle et al., 2010; Mann et al., 2011; Chang et al., 2017; Tegen et al., 2019).  

Especially in East Asia, distribution of 𝜅"#$ value could vary significantly because the sulfur dioxide and ammonia 

are emitted from inland China on a massive scale (Kurokawa et al., 2013; Qu et al., 2016; Kang et al., 2016; Liu et al., 2017) 

and the distribution of H2SO4 and (NH4)2SO4 are closely related to the emissions and chemical reactions of sulfur dioxide and 40 

ammonia. Sulfur dioxide is oxidized to H2SO4 and then neutralized to form (NH4)2SO4 by ammonia. Generally, sulfur dioxide 

is released from industries and from the sea surface, and ammonia is discharged from livestock and farmland. For this reason, 

the ratio of ammonium to sulfate is observed to decrease as the distance from the land increases (Fujita et al., 2000; Paulot et 

al., 2015; Kang et al., 2016; Liu et al., 2017). Thus, applying a single hygroscopicity parameter for all sulfate aerosols in 

atmospheric models can lead to uncertainty in quantifying CCN activation, particularly in East Asia. 45 

This study proposes a new 𝜅"#$  parameterization that aims at simultaneously considering the two major sulfate 

aerosols, i.e., (NH4)2SO4 and H2SO4 in WRF-Chem (the Weather Research and Forecasting model coupled with chemistry 

model). First, we describe the calculation of 𝜅 for different size modes of aerosols and suggest a new parameterization of 𝜅"#$. 

The performance of the new 𝜅"#$ parameterization in estimating the effects of aerosol-cloud interactions is examined for the 

domain of East Asia. The model results are compared with the aircraft measurement data obtained during the Korea–US Air 50 

Quality campaign (KORUS-AQ, Al-Saadi et al., 2016). Finally, we address the effects of the new 𝜅"#$ parameterizations in 

simulating (or calculating) cloud microphysical properties and cloud radiative effects in East Asia. 

2 Model description 

2.1 The WRF-Chem model 

The WRF-Chem version 3.8.1 is designed to predict mesoscale weather and atmospheric chemistry (Grell et al., 2005; 55 

Fast et al., 2006; Skamarock et al., 2008; Peckham et al., 2011). The aerosol size and mass distributions are calculated with 

the Modal Aerosol Dynamics Model for Europe (MADE; Ackermann et al., 1998) that includes three log-normal distributions 

for Aitken, accumulation, and coarse mode particles. MADE considers the new particle formation process of homogeneous 

nucleation in H2SO4 and H2O system (Wexler et al., 1994; Kulmala et al., 1998). MADE treats inorganic chemistry systems 

as the default option and organic chemistry systems as coupling options. Inorganic chemistry systems include the chemical 60 

reactions of three inorganic ionic species, i.e. SO()*, NO,) and NH,. (Ackermann et al., 1998). The secondary organic aerosol 
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model (SORGAM), an optional model to calculate secondary organic aerosol (SOA) chemistry processes (Schell et al., 2001), 

is coupled to MADE (MADE/SORGAM). MADE/SORGAM treats atmospheric aerosols as an internal mixture of sulfate, 

nitrate, ammonium, organic carbon (OC), elemental carbon (EC), sea salt, and dust aerosols. Additionally, gas phase chemical 

processes are calculated in Regional Acid Deposition Mechanism version 2 (RADM2, Chang et al., 1989). RADM2 simulates 65 

the concentrations of air pollutants, including inorganic (14 stable, 4 reactive and 3 abundant stable) and organic (26 stable 

and 16 peroxy radicals) chemical species. 

For the microphysics calculation, we use the CCN activation parameterizations (Abdul-Razzak and Ghan, 2000, 

hereafter ARG) and Morrison double-moment microphysics scheme (Morrison et al., 2009). The CCN activation is determined 

by meteorological factors (e.g., updraft) and physicochemical properties of aerosols based on the assumption of internally 70 

well-mixed aerosols. A detailed model designs for the modelling studies of aerosol–cloud interactions in WRF-Chem can be 

found in Gustafson et al. (2007), Chapman et al. (2009), Grell et al. (2011), and Barό et al. (2015). 

For the physics parameterization, we use the following configurations: Rapid and accurate Radiative Transfer Model 

for GCMs (RRTMG) for the shortwave and longwave radiative transport processes (Iacono et al., 2008); Yonsei University 

scheme (YSU scheme) for the atmospheric boundary layer processes (Hong et al., 2006) ; the Unified NOAH (NCEP Oregon 75 

State University, Air Force, and Hydrologic Research Lab’s) Land Surface Model for land surface processes (Tewari et al., 

2004). 

2.2 Calculation of the hygroscopicity parameter 

The CCN activation parameterization is based on the Köhler theory that is described with the water activity and the 

surface tension of the solution droplets. The water activity is estimated from detailed information of aerosols such as Van’t 80 

Hoff factor, osmotic coefficient, molecular weight, mass, and density of aerosols. If aerosol chemical information is fully 

provided, CCN activation could be almost accurately calculated using the Köhler theory (Raymond and Pandis, 2003). 

However, it requires high computational expenses (Lewis, 2008). Petters and Kreidenweis (2007) proposed a single 

quantitative measure of aerosol hygroscopicity, known as hygroscopicity parameter (κ). This method does not require detailed 

information of aerosol chemistry and thereby reduces computational cost when calculating the water activity. For this reason, 85 

κ values are applied in many observational, experimental, and numerical studies (Zhao et al., 2015; Shiraiwa et al., 2017; 

Chang et al., 2017; Gasteiger et al., 2018). κ can be determined separately for the three log-normal modes (Aitken, 

accumulation, and coarse modes). That is, κi is the volume-weighted average of κj for mode i: 

𝜅/ ≡ ∑ 𝜀/3𝜅3
4
356 , (1) 

where 𝜀/3 is the volume ratio of chemical j in mode i (=Vij/Vtot,i, 𝑉898,/ = ∑ 𝑉/3
4
356 , and Vij is the volume of chemical j in mode 

i) and 𝜅3 is the individual hygroscopicity parameter for chemical j. Eq. (1) is calculated with the assumption of the temperature, 90 

298.15 K. The upper end of the κ value for hygroscopic species of atmospheric relevance is around 1.40 (Petter and 

Kreidenweis, 2007). 
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2.3 Limitation of previous 𝜿𝑺𝑶𝟒 parameterizations 

CCN activation is affected by κ values (e.g., Nenes et al., 2002; Kristjánsson 2002). H2SO4 has more than two times 95 

higher κ value than (NH4)2SO4, i.e., 1.19 for 𝜅@A"#$ and 0.53 for 𝜅(C@$)A"#$ (Clegg and Wexler, 1998; Petters and Kredenweis 

2007; Good et al., 2010). Such large disparities of 𝜅"#$ between different sulfate species could cause a large variability in the 

estimation of ERFaci. However, many aerosol modules simplify the physical and chemical characteristics of aerosols, and 

often neglect some chemical species (Kukkonen et al., 2012; Im et al., 2015; Bessagnet et al., 2016). Sulfate aerosols are 

usually prescribed as a single species of either H2SO4 or (NH4)2SO4. Some models consider H2SO4 as the representative sulfate 100 

aerosol when the neutralization reaction between H2SO4 and ammonia is not considered or when only the binary sulfuric acid–

water nucleation is considered (e.g., Mann et al., 2011; Kulmala et al., 1998; Korhonen et al., 2008; Stier et al., 2006; Wexler 

et al., 1994; Kazil and Lovejoy 2007). Some other models consider (NH4)2SO4 as the representative sulfate aerosol when 

studying aerosol-CCN closure (e.g., VanReken et al., 2003) or when including the ternary sulfuric acid–ammonia–water 

nucleation process or the neutralization reaction between sulfate and ammonia (Kulmala et al., 2002; Napari et al., 2002; 105 

Elleman and Covert, 2009; Watanabe et al., 2010; Grell et al., 2005). To reduce the uncertainty of ERFaci, more speciated 

𝜅"#$ parameters need to be utilized in the calculation of cloud droplet activation process, at least, for the two main sulfate 

aerosols i.e., H2SO4 and (NH4)2SO4. Here, we suggest a new method of representing 𝜅"#$  that considers both H2SO4 and 

(NH4)2SO4 using the molar ratio of NH(. to SO(*). We also suggest an alternative method that utilizes the spatial distribution 

of 𝜅"#$, based on the distinct distribution patterns of NH(. and SO(*)over land and sea. 110 

2.4 New parameterization of 𝛋𝐒𝐎𝟒 

H2SO4 is completely neutralized as (NH4)2SO4 when ammonia is abundant (Seinfeld and Pandis, 2006). During the 

neutralization process of H2SO4, one mole of SO(*) takes up two moles of NH(. and forms one mole of (NH4)2SO4. Here, the 

assumption is that ammonia neutralizes SO(*) ions prior to nitrate ions (Seinfeld and Pandis, 2006) and sulfate aerosols appear 

only in the form of H2SO4 and (NH4)2SO4. In the calculation of 𝜅"#$,	the proportion of H2SO4 and (NH4)2SO4 is determined 115 

using the ammonium to sulfate molar ratio R (=𝑛C@$I/𝑛"#$AK, 𝑛C@$I is the molar concentration of NH(. ions and nMN$AK is the 

molar concentration of SO(*) ions). Generally, sulfate aerosols are completely neutralized as (NH4)2SO4 at high R conditions 

(R>2), and partially neutralized at low R conditions (R<2) (Waggoner et al., 1983; Fisher et al., 2011). Using R and the 

Zdanovskii–Stokes–Robinson relationship (i.e., 𝑉O = 𝑉P + 𝑉898, 𝑉898 = ∑ 𝑉3
4
356 , where Vd is the droplet volume, Vw is the 

volume of water, and Vj is the volume of the chemical j), a representative 𝜅"#$ is defined as:  120 

𝜅"#$ = 𝜀@A"#$𝜅@A"#$ + 𝜀(C@$)A"#$𝜅(C@$)A"#$, (2) 
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where 𝜀@A"#$	is the volume fraction of H2SO4 in the total volume of sulfate aerosols (=𝑉@A"#$ /𝑉"#$; 𝑉@A"#$  is the volume 

concentration of H2SO4, 𝑉"#$ is the total volume concentration of sulfate aerosols), and 𝜀(C@$)A"#$	is calculated likewise for 

(NH4)2SO4 [=𝑉(C@$)A"#$/	𝑉"#$; 𝑉(C@$)A"#$ is the volume concentration of (NH4)2SO4]. In this study, we use 1.19 and 0.53 to 

represent 𝜅@A"#$ and 𝜅(C@$)A"#$, respectively (Clegg and Wexler, 1998; Petters and Kredenweis 2007; Good et al., 2010). The 

volume fractions of H2SO4 and (NH4)2SO4 are calculated as: 125 

i) if R =0, then, 𝜀@A"#$ = 1 and 𝜀(C@$)A"#$ = 0, 

(3) 
ii) if 0 < R < 2, then,  

𝜀@A"#$ =
TU6)	VAW×YZ[$AK

\×
]^AZ[$
_^AZ[$

`Z[$
 and 𝜀(C@$)A"#$ =

aVA×YZ[$AK
b×

](c^$)AZ[$
_(c^$)AZ[$

`Z[$
, 

iii) if R >2, then, 𝜀@A"#$ = 0 and 𝜀(C@$)A"#$ = 1, 

where m and ρ indicate the molar mass and density of the specific chemical species, respectively. To be more realistic, 

ammonium bisulfate may also need to be considered: when the number of SO(*) is smaller than NH(., the sulfates appear as a 

mixture of ammonium bisulfates and sulfuric acids, and when the number of SO(*) is greater than NH(. but not twice as large 

as NH(., the sulfates appear as a mixture of ammonium bisulfates and ammonium sulfates (Nenes et al., 1998; Moore et al., 

2011, 2012). For simplicity, however, such partitioning is not considered in this study. As a result, sulfate aerosols are treated 130 

as (NH4)2SO4 when R is greater than two (R>2) and as H2SO4 when R is zero (R=0). This method is applicable to the models 

that considers both NH(. and SO(*) ions. If NH(. data is not available in a model, we suggest an alternative method to represent 

𝜅"#$,	based on the typical geographical distribution pattern of sulfate aerosols available from observations as discussed below.  

Observational studies show the distinctly different distribution patterns of the two dominant sulfate aerosol species, 

i.e., (NH4)2SO4 over land and H2SO4 over sea (Fujita et al., 2000; Paulot et al., 2015; Kang et al., 2016; Liu et al., 2017). Such 135 

distribution pattern is related to the sources of sulfate and ammonium. In general, sulfate aerosols are emitted from land and 

sea, while ammonium is mostly produced from lands. Sulfur dioxide is produced from fossil fuel combustions, volcanic 

eruptions and dimethyl-sulfide (DMS) via air-sea exchanges, and then forms sulfate aerosols (Aneja 1990; Jardin et al., 2015). 

Wind transportations of pollutants could also cause high concentration of sulfate aerosols over the sea (Liu et al., 2008). On 

the other hand, ammonium is emitted from livestock, fertilizer, and vehicles (Sutton et al., 2013; Paulot et al., 2014; Bishop et 140 

al., 2015; Liu et al., 2015; Stritzke et al., 2015), and therefore is concentrated mostly on lands. Ammonium is usually not 

abundant enough to fully neutralize H2SO4 in the marine boundary layer (Paulot et al., 2015; Ceburnis et al., 2016). Therefore, 

when the ammonium information is not available, the 𝜅"#$ can be alternatively estimated with the consideration of the land 

and sea fractions as:  

𝜅"#$ = 𝑓 × 𝜅"#$,efYO + (1 − 𝑓) × 𝜅"#$,hif, (4) 

where f represents the fraction of land at each grid point; unity means entire land, and zero means entire sea, and the value in-145 

between represents the fraction of land at the grid points in the coastal areas. 𝜅"#$,efYO and 𝜅"#$,hif represent 𝜅"#$ over land 

and sea, respectively (i.e., 𝜅"#$,efYO=𝜅(C@$)A"#$ =0.53 and 𝜅"#$,hif = 𝜅@A"#$ =1.19).  
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3 Experimental setup 

Model simulations are carried out for thirty-six days from 0000 UTC 10 May to 0000 UTC 15 June 2016 and the first 150 

five days are used as a spin-up time. Observational data for sulfate aerosols and CCN during this period were obtained from 

the KORUS-AQ campaign and they indicated that sulfate aerosols were widely distributed throughout East Asia due to the 

stagnation of high-pressure systems and the transportation of pollutants from China. The domain covers East Asia (i.e., 2,700 

km × 2,700 km; 20°N–50°N, 105°E–135°E) with 18 km grid spacing and 50 vertical levels from the sea level pressure to 100 

hPa. The initial and boundary conditions are provided by the National Center for Environment Prediction–Climate Forecast 155 

System Reanalysis (NCEP–CFSR) (Saha et al., 2014). The 4DDA (4 Dimensional Data Assimilation) analysis nudging is used. 

Anthropogenic emission inventories are obtained from Emissions Database for Global Atmospheric Research–Hemispheric 

Transport of Air Pollution (EDGAR–HTAP; Janssens-Maenhout et al., 2015). Natural source emission inventories adopt the 

Model of Emissions of Gases and Aerosols from Nature (MEGAN; Guenther et al., 2006). 

We conduct four simulations with different 𝜅"#$ parameterizations: 1) AS uses a single 𝜅"#$	of 0.53 (i.e., 𝜅(C@$)A"#$), 160 

assuming that all sulfate aerosols are completely neutralized by ammonium, which is a default setting in WRF-Chem; 2) SA 

uses a single 𝜅"#$	 of 1.19 (i.e., 	𝜅@A"#$ ) assuming that all sulfate aerosols are H2SO4; 3) RA applies the new 

𝜅"#$	parameterization that calculates the volume weighted mean 𝜅"#$	by using the molar ratio of ammonium to sulfate (R) (i.e., 

eq. 2); and 4) LO adopts different 𝜅"#$ for land and sea, assuming that sulfate aerosols are completely neutralized as (NH4)2SO4 

over land and are  H2SO4 only over sea (i.e., eq. 4).  165 

4 Results and discussions 

4.1 Distribution of sulfate and ammonium  

The simulated sulfate and ammonium distributions are compared with the observational data measured onboard the NASA 

DC-8 aircraft during the KORUS–AQ campaign (https://www-air.larc.nasa.gov/missions/korus-aq/), in and around the Korean 

Peninsula in May and June of 2016. The measurements are taken within the boundary layer. The mass concentration of sulfate 170 

and ammonium were obtained by the method described in Dibb et al. (2003).  

In Fig. 1, the mass concentration of sulfate and ammonium simulated by AS are compared with the KORUS-AQ 

aircraft observations (OBS) following the flight track. The simulated sulfate shows a positive bias but has a high temporal 

correlation with OBS (r=0.78). The simulated ammonium is less biased than sulfate but indicates a moderate temporal 

correlation with OBS (r=0.58). Overall, it seems reasonable to state that the WRF-Chem model can calculate the distribution 175 

of sulfate aerosols well enough. 
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Fig. 2 shows 30 days averaged mass concentration of sulfate and ammonium and the molar ratio (R) of ammonium 

to sulfate over the model domain. During the KORUS-AQ campaign period, high-pressure systems often covered East China 

and the Yellow Sea and that led to stagnating sulfate and ammonium concentrations. However, sulfate and ammonium are 

distributed differently due to different sources. Pollutants emitted from the Asian continent are often transported by westerly 180 

and southerly winds. Sulfate is highly concentrated in China and the northern part of the Yellow Sea, and DMS emission from 

the sea also contributes to the formation of sulfate aerosols over the sea. Ammonium is widely distributed throughout China 

due to the use of fertilizers over farmlands (Van Damme et al., 2014; Paulot et al., 2014; Warner et al., 2017). The concentration 

of ammonium is generally low over the sea, but over the northern part of the Yellow Sea it is high due to wind transport.  

The distribution of R is associated with the distribution of sulfate and ammonium (Fig. 2). In general, R is high (R>2) 185 

over the land on account of the high anthropogenic emissions of continental ammonium, and R is low (R<2) over the remote 

seas because the ammonium concentration is small. However, high R is also shown over the Yellow Sea in Fig. 2. This is 

because the ammonium concentration increases when the westerlies carry continental pollutants over the Yellow Sea during 

the simulation period. Based on the distribution of R, sulfate aerosols are expected to be almost completely neutralized over 

land [e.g., (NH4)2SO4] and partially neutralized over sea [(NH4)2SO4+H2SO4]. 190 

4.2 Distribution of κ  

Fig. 3 shows the average κ of the accumulation mode aerosols in AS and the difference between RA and AS, and LO 

and AS. The accumulation mode is selected because sulfate aerosols are dominant in this mode. AS simulates κ values that are 

roughly consistent with the observed mean κ values in the literature (i.e. κ over land is about 0.3 and κ over sea is about 0.7; 

Andreas and Rosenfeld, 2008), but it varies significantly between land and sea. The κ over land is expected to be lower than 195 

the κ over sea because continental aerosols usually include more hydrophobic aerosol species such as black carbon and organic 

carbon from industries, while maritime aerosols consist mainly of hygroscopic substances, i.e. sea salt and non-sea salt sulfates 

originated from DMS. The variation of κ is also influenced by chemical reactions and meteorological factors, i.e. wind 

transportations of aerosols and scavenging of aerosols due to precipitations, as well as gravitational settling. 

Compared to AS, RA and LO show pronounced difference of κ over sea (Figs. 3b and 3c). That is, RA and LO 200 

produce significantly higher κ over the sea than AS does because ammonium concentration is not sufficient enough to 

neutralize sulfate completely over the sea (i.e. R<2). RA predicts slightly higher continental κ following the coastal regions 

than AS because R becomes occasionally low due to the intrusion of maritime air mass that has very low concentration of 

ammonium. Maritime κ of RA is lower than that of LO because the transportation of continental pollutants increases the portion 

of ammonium over the Yellow sea.  205 

4.3 CCN activation  

According to the Köhler theory, changes in κ directly influence CCN activation. In this study, the CCN activation 

rate (fCCN) is defined as the ratio of the CCN number concentration at 0.6% supersaturation to the total aerosol number 
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concentration. Simulated fCCN is compared with the aircraft measurements during the KORUS-AQ campaign (OBS). During 

this campaign, aerosol and CCN number concentrations were measured by a condensation particle counter (CPC; TSI 3010) 210 

and a CCN counter (CCNC; DMT CCN-100), respectively (Park et al., 2020). The CPC measures the number concentration 

of aerosols larger than 10 nm in diameter, and the CCNC measures the CCN number concentration at 0.6% supersaturation. 

The model simulations well capture the temporal variation of fCCN (r~0.7 for the linear correlation with OBS; Fig. 4). 

However, fCCN are underestimated mainly due to the underestimation of CCN concentrations. The average aerosol (CN) number 

concentrations for the flight track in all simulations (AS, SA, RA, and LO) and the actual observed values during the flight are 215 

5934 cm-3 and 5794 cm-3, respectively. So unlike Georgiou et al. (2018) that showed that the WRF-Chem coupled with 

MADE/SORGAM tended to overestimate aerosol number concentrations, our simulations only slightly overestimated aerosol 

number concentrations. The average CCN number concentration at 0.6% supersaturation for AS, RA and LO simulations are 

982 cm-3, 1027 cm-3, 1057 cm-3, respectively, but the observation was 2154 cm-3. Such underestimated CCN concentrations 

seem to be due to the systematic error in WRF-Chem. As discussed in Tuccella et al. (2015), the uncertainty of updraft velocity 220 

parameterization and bulk hygroscopicity of aerosols lead to underestimation of CCN concentration and CCN efficiency 

(CCN/CN) by a factor of 1.5 and 3.8, respectively. Nevertheless, over land, AS, RA and LO simulate similar values of fCCN 

because continental sulfate aerosols are generally expected to be fully neutralized form of sulfate [i.e. (NH4)2SO4]. This was 

not the case over sea. During KORUS-AQ, the aircraft passed over the Yellow Sea on 22 and 25 May 2016 (blue shades in 

Fig. 4). For this occasion, LO simulates the highest fCCN over the sea among all simulations because LO uses the prescribed 225 

𝜅"#$ value of 𝜅@A"#$  over sea. RA simulates slightly lower fCCN over the sea because transportation of continental pollutants 

over the sea can be taken into account, as observed during the KORUS-AQ campaign. The transported air pollutants increase 

the ammonium concentration over the sea, neutralize H2SO4, reduce the hygroscopicity of sulfate aerosols, and consequently 

decrease fCCN. Simulated fCCN in RA has a high spatiotemporal correlation with the observation over the Yellow Sea (i.e., 0.83), 

while AS shows a rather lower correlation (i.e., 0.65). Such difference stems from the fact that R value vary significantly over 230 

the Yellow sea due to the transportation of anthropogenic chemicals by westerlies and such variability is taken into account in 

RA. This improvement highlights the importance of appropriate chemical representation in atmospheric models. Compared to 

the RA and LO simulations, AS predicts the lowest fCCN because the lowest 𝜅"#$ (=𝜅(C@$)A"#$) is prescribed over sea as well 

as over land.  

We conducted a reliability test that has been often used to evaluate the performance of air quality models. Kumar et 235 

al. (1993) proposed the following three criteria for judging model reliability: 1) the normalized mean squared error (NMSE) 

below 0.5; 2) the fractional bias (= 2 × 9kh)h/l
9kh.h/l

, obs indicates the observed values, sim indicates the simulated values, and the 

bar above the symbols indicate the average) between -0.5 and 0.5; and 3) the ratio of the model values to the observed values 

(= 𝑠𝑖𝑚/𝑜𝑏𝑠) between 0.5 and 2.0. These values for AS, RA and LO are compared in Table 3. It indicates that RA and LO 

satisfy all three criteria but AS does not satisfy two of the three criteria as it predicts a rather high normalized NMSE and 240 
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fractional bias. Between RA and LO, LO seems somewhat closer to observation than RA but the difference is small for these 

calculations.  

The variation of 𝜅"#$ almost directly influences the change in column-integrated fCCN (Fig. 5). RA predicts higher 

fCCN than AS over the coastal land regions because the occasionally very low ammonium concentration lowers R and affects 

the CCN activation. Meanwhile, SA prescribes 𝜅"#$ value two times as high as AS does and produces about 20% higher fCCN.  245 

4.4 Cloud microphysical properties 

Different 𝜅"#$  parameterizations affect simulated cloud microphysical properties. Figure 6 shows the relative 

differences of the simulated column-integrated cloud droplet number concentration (CDNC) in RA, LO, and SA from AS. All 

three produce higher 𝜅"#$ values than AS, and therefore simulate higher CDNCs. However, the differences in CDNC does not 

exactly correspond to the differences in fCCN (Fig. 5) because cloud droplet activation is also affected by in-cloud 250 

supersaturation and other meteorological factors. SA simulates higher CDNC than AS over both land and sea, but RA and LO 

simulate higher CDNC mostly only over sea. RA and LO produce similar CDNC distributions over the Yellow Sea (compare 

Fig. 6a and Fig. 6b) although RA produces smaller fCCN than LO (compare Fig. 5a and Fig. 5b). As in Moore et al. (2011), the 

reason for that may be because the sensitivity on fCCN reduces so much because supersaturation is so high that most aerosols 

can act as CCN regardless of their critical supersaturation. That is, the supersaturation over the Yellow Sea is high enough to 255 

activate most aerosols to cloud droplets. Over land, RA simulates higher CDNC (up to 12%) than AS in southeast China and 

the Korean Peninsula, but LO simulates CDNC similar to AS. The results of RA seem to be related to the dilution of ammonium 

concentrations along the coastal land regions due to the intrusion of maritime air. However, such variation of ammonium 

cannot be taken into account in LO.  

Overall, high CDNCs in RA, LO, and SA (Table 1) result in less precipitation but larger LWP, compared to AS 260 

(Table 2). Precipitation reduction is more pronounced over sea because of larger relative differences in CDNC. These results 

agree well with some previous studies; i.e., high CDNCs suppress local precipitations, prolong cloud lifetime, and 

consequently increase net LWP, which is known as cloud lifetime effect (Albrecht, 1989). Obviously, SA that assumes sulfate 

aerosols are all H2SO4 particles produces the highest CDNC and also the largest differences in all other properties in Table 2. 

Less rainwater in SA than in any other simulations may also imply that precipitation scavenging of aerosols was less efficient 265 

and therefore retaining more aerosols (CCN) to produce more cloud drops and longer cloud lifetime. On average, SA has 103 

cm-3 more aerosols over sea and 116 cm-3 more aerosols over land than LO. These surplus aerosols certainly have potential to 

simulate higher number of CCN in SA than LO. 

For the same LWP condition, high CDNC induces small effective radii (re). RA, LO, and SA simulate smaller re than 

AS and the maximum difference of re amounts to be 1.46 μm, 1.38 μm, and 1.48 μm, respectively. However, the domain 270 

averaged differences of re are not as substantial as the differences of other cloud microphysical properties (Table 2). This may 

be related to somewhat larger LWPs in RA, LO and SA than AS and the sufficient water supply during droplet growth. All 
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simulations in this study have high water vapor path (WVP) conditions (WVP> 30 kg m-2) throughout the whole domain. 

According to Qiu et al. (2017), cloud droplets have small competition for water vapor and high chance of collision-coalescence 

under high WVP conditions (i.e., WVP>1.5 cm or 15 kg m-2). If LWP is similar, re difference could be larger among the 275 

simulations than that are shown herein. 

4.5 Cloud radiative effects 

Cloud microphysical properties determine cloud optical properties and therefore control the cloud radiative effects. 

For a fixed LWP, high CDNC is usually associated with small re but large cloud optical thickness. Then optically thick clouds 

reflect more sunlight and strengthen cloud radiative cooling effect at the top of the atmosphere (TOA), which is known as 280 

cloud albedo effect (Twomey, 1974). We calculate the cloud radiative effect at the TOA (CRE) by subtracting the clear sky 

downward radiation from the net all-sky downward radiation (including clouds) (Hartmann, 2015).  

RA, LO, and SA simulate optically thicker clouds that reflect more sunlight and exert stronger cooling effects at the 

TOA than AS (Fig. 7). For the domain average, the differences of CRE for RA, LO, and SA from AS amount to be about -1.7, 

-1.5, and -2.1 W m-2, respectively. These differences are most pronounced over sea (Figs. 7b, 7c and 7d). Such pronounced 285 

difference over sea may be affected by large cloud fraction around the East China Sea due to the East Asian Summer Monsoon 

(Pan et al., 2015). That is, large cloud fraction exerts large CRE cooling, so the impact of the new parameterization of 𝜅"#$ on 

CRE could be substantial under large cloud fraction condition. Note that in the latitude band of 25-28 °N, CRE is similar over 

the land and over the sea in AS (Fig. 7a) but the CRE differences between RA, LO and SA, and AS are much higher over the 

sea than over the land (Fig. 7b, 7c and 7d). Such enhanced cooling effect over sea can be explained by increases in CDNC 290 

(Fig. 6) and somewhat by increases in LWP (Table 2). According to some previous studies, the contribution of CDNC and 

LWP to CRE could be larger than 56% (Sengupta et al., 2003; Goren and Rosenfeld, 2014).  

 

5 Summary and conclusions 

This study introduced a new hygroscopicity parameterization method of sulfate aerosols in the WRF-Chem model 295 

and demonstrates the impacts of different 𝜅"#$ parameterization on simulating cloud microphysical properties in East Asia. 

The new 𝜅"#$  parameterization considered the composition effect of H2SO4 and (NH4)2SO4, using the molar ratio of 

ammonium to sulfate, R. We also suggest an alternative 𝜅"#$ parameterization: 𝜅(C@$)A"#$ for land and 𝜅@A"#$ for sea, which 

utilizes the information of the typical observed geographical distribution of sulfate aerosols, in case when ammonium data are 

not available. The performance of the new 𝜅"#$  parameterizations was evaluated by comparing with observational data 300 

obtained from a field campaign in East Asia and it was demonstrated that the new 𝜅"#$ parameterizations could produce more 

reliable aerosol and CCN concentrations than the previous method that uses a single 𝜅"#$ (i.e.,	𝜅(C@$)A"#$). To note is that the 
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k values of 0.53 and 1.19 for (NH4)2SO4 and H2SO4 that we used in this study were HTDMA-derived, instead of CCN-derived, 

which were 0.61 and 0.90, respectively (Petters and Kreidenweis, 2007). If CCN-derived k values were used, CDNC would 

generally have decreased because k became lower and the contrast between (NH4)2SO4 and H2SO4 would have been decreased 305 

to a certain degree. In the context of cloud droplet activation, CCN-derived k values might be more appropriate to use because 

they would be measured under cloudy (i.e., supersaturated) condition. However, in this study, we try to manifest the effect of 

different k values of the two major sulfate species and that is the main reason for choosing HTDMA-derived k values that 

show greater difference between (NH4)2SO4 and H2SO4, instead of CCN-derived ones that show smaller difference. 

The effect of the new 𝜅"#$ parameterizations is indicated as substantially different cloud microphysical properties 310 

especially over the sea (about 20% increases in CDNC). The increases of CDNC suppress local precipitation, prolong cloud 

lifetime, and consequently reflect more sunlight, i.e., more cooling effect (about 1.5 W m-2) than the simulation with the 

original 𝜅"#$ parameterization in WRF-Chem that assumes 𝜅"#$ =	𝜅(C@$)A"#$ for all sulfate aerosols. These results indicate 

that the estimated cloud radiative forcing due to aerosol–cloud interactions can vary significantly with different 𝜅"#$ 

parameterizations.  315 

The importance of oceanic sulfate aerosols on radiative forcing is highlighted in recent studies which suggested that 

DMS (precursor of oceanic sulfate aerosols) emissions significantly contribute to the total radiative forcing due to aerosol–

cloud interactions (Carslaw et al., 2013; Yang et al., 2017). The new 𝜅"#$ parameterizations could be more appropriate for 

studying the effects of oceanic sulfate aerosols on climate, compared to other approaches that use a single 𝜅"#$ (i.e.,	𝜅(C@$)A"#$) 

or use an empirical relationship between (NH4)2SO4 and CCN to calculate CCN activation (Boucher and Anderson, 1995; 320 

Kiehl et al., 2000).  All in all, the new 𝜅"#$ parameterization is capable of considering the variation of 𝜅"#$ and simulates more 

reliable results, compared to the previous method using a single 𝜅"#$ value in the calculation of cloud microphysical properties. 

Many atmospheric models neglect the differences of hygroscopicity between H2SO4 and (NH4)2SO4 for simplicity. However, 

this could result in large uncertainties in estimating CRE, especially in East Asia, as demonstrated in our results.  

Therefore, we propose this new parameterization of 𝜅"#$ that considers both of the two dominant sulfate aerosols, 325 

H2SO4 and (NH4)2SO4, for investigating the effects of sulfate aerosols on climate, especially for East Asia, which shows 

distinctly different emission patterns over land and sea. The new parameterizations are applicable to calculate CCN activation 

without additional treatments of the chemical reactions and computational expenses. The new parameterization introduced in 

this study is expected to work effectively in the domain where land and sea are almost evenly distributed, or in the regions 

with varying distribution of ammonium to sulfate molar ratio. However, we tested the performance of the new 𝜅"#$ 330 

parameterization only in East Asia due to the limited amount of observation data available to validate the performance of CCN 

activation. Therefore, further studies are needed for different regions where observation data are available to confirm the 

reliability of our new parameterization. 

 In this study we did not discuss other important aerosol species. For instance, the proportion of mass concentrations 

of nitrate ions are almost as large as sulfate ions (Zhang et al., 2007; Moore et al., 2012), and nitrate also have spatio-temporally 335 
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varying hygroscopicity due to the complex chemical reactions with other chemicals, i.e., ammonium, sodium, and calcium. In 

this study, we only made changes in the representation of sulfate aerosol species and did not alter any other chemical processes, 

and we find that the amount of nitrate and sea salt aerosols in AS, RA, and LO simulations were similar. Perhaps this implies 

that different treatment of sulfate aerosols did not significantly affect nitrate and sea salt aerosols. However, it is difficult to 

estimate how the presence of nitrate and sea salt aerosols impacted the results in our simulations. Future study may need to 340 

address such important issue in more detail. 
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Tables 630 

Table 1. Domain averaged differences (= hiYh/8/r/8s	h/ltef8/9Y	)u"
u"

× 100% ) of the CCN activation fraction at 0.6% 

supersaturation (fCCN) and cloud droplet number concentration (CDNC) in percent. The data are averaged from 0000 UTC 15 

May to 0000 UTC 15 June. 

 RA–AS LO–AS SA–AS 

 Land Ocean Land Ocean Land Ocean 

fCCN (%) 6 13 1 19 18 22 

CDNC (%) 7 20 1 21 14 24 

 

 635 

Table 2. Domain averaged water budgets of AS and their differences from other simulations. The data are averaged from 0000 

UTC 15 May to 0000 UTC 15 June. Rainwater in this study refers to the liquid phase of water that has a potential of becoming 

rainfall in the model.   

 AS RA–AS LO–AS SA–AS 

 Land Ocean Land Ocean Land Ocean Land Ocean 

Rainwater 
(g m-2) 

21.6 39.4 -0.32 -0.60 -0.02 -0.64 -0.52 -0.73 

LWP 
(g m-2) 

45.7 78.4 0.40 1.41 0.08 1.45 0.73 1.69 

IWP 
(g m-2) 

9.34 11.2 0.05 0.08 0.02 0.07 0.08 0.09 

re 
(μm) 

6.13 10.3 -0.02 -0.11 0.00 -0.11 -0.04 -0.12 

 

Table 3. Values of the three criteria suggested in Kumar et al. (1993). 640 
 

AS RA LO 

NMSE < 0.5 0.53 0.48 0.43 

-0.5 < Fractional Bias (= 2 × 9kh)h/l
9kh.h/l

) <0.5 0.54 0.50 0.46 

0.5 < Ratio (= 𝑠𝑖𝑚/𝑜𝑏𝑠) < 2 0.59 0.65 0.65 
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Figures 

Figure 1. Time variation of the mass concentrations of (a) sulfate and (b) ammonium measured by the NASA DC-8 aircraft 

(OBS, black line) and simulated by AS (colored line). Blue shaded regions denote the time over the sea. 645 
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Figure 2. 30 days averaged (0000 UTC 16 May to 0000 UTC 15 June, 2016) spatial distribution of the mass concentrations 

of (a) sulfate and (b) ammonium, and (c) the molar ratio of ammonium to sulfate (R) at the surface, from AS.  
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Figure 3. (a) Spatial distribution of the hygroscopicity parameter (κ) at the accumulation mode simulated by AS, the difference 650 

of κ (b) between RA and AS, and (c) between LO and AS, at the surface. 

  

(a) AS (b) RA – AS (c) LO – AS 

Δκ  κ  Δκ  



26 
 

Figure 4. Time variation of the CCN activation fractions at 0.6% supersaturation (fCCN) measured by the NASA DC-8 aircraft 

(OBS) and simulated by AS, RA, and LO. Blue shaded regions denote the time over the sea. 
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Figure 5. Percentage difference of column-integrated CCN activation fraction at 0.6% supersaturation (fCCN) in AS and 

sensitivity simulations, (a) RA – AS, (b) LO – AS, and (c) SA – AS. 
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Figure 6. Same as Fig. 5 except for cloud droplet number concentration (CDNC). 
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Figure 7. Simulated 30 days averaged (0000 UTC 16 May to 0000 UTC 15 June, 2016) cloud radiative effect (CRE) for (a) 

AS and the differences (DCRE) between (b) RA and AS, (c) LO and AS, and (d) SA and AS. 
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