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1 General statement

We are grateful to the anonymous reviewers for the constructive review and encouraging comments. In the following we

are going to address all comments point by point, while using blue for comments of Reviewer #1 and red for Reviewer #2.

Additional changes not explicitly stated by the reviewers, are highlighted in magenta. We used the same colours for changes in

the manuscript.5

2 Answer to Anonymous Referee #1

"Kleinert et al. present a machine learning (ML) method to predict surface ozone concentrations up to four days in advance.

The method uses convolutional neural networks(CNN) trained on an extensive set of historical data (10 years) to forecast the

daily maximum 8-hour average ozone concentration at more than 300 background measurement sites across Germany. Based

on only a few input variables (concentrations of ozone and nitrogen oxides (NOx) and six meteorological variables), the ML10

ozone forecasts show good skills for the first two days but don’t perform better than reference forecasts over longer time

windows. This is a very nice paper that is well written and easy to follow. Minor comments are given below."

– "My only major comment is the issue with trends in the input data. Presumably, the 10-year training data of ozone and

NOx – and possibly temperature – show a long-term trend? I would expect this to create issues for the CNN since this

trend is imprinted in the training data (even after normalizing around the interannual mean and standard deviation).15

Further, given the long-term trends in both ozone and NOx, the test samples (2010-2015) might represent a different

‘environmental regime’ that the CNN was not trained on. The authors should discuss this in the revised version of the

manuscript."

Reviewer #1 points to a very crucial point here. Schultz et al. (2020, accepted) suggest multiple different techniques to

generate the training, validation and test sets, respectively, which might be subject of a separate study or even better of20

a model intercomparison study. We added the following paragraph (focusing on the applied data split) as a new section
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Limitations and additional remarks.

By splitting the data into three consecutive, non-overlapping sets, we ensure that the data sets are as independent as

possible. On the other hand, this independence comes at the cost, that changes of trends in the input variables may not

be captured, especially as our input data are not de-trended. Indeed, at European non-urban measurement sites, several25

ozone metrics related to high concentrations (e.g. 4th highest daily maximum 8-hour (4MDA8) or the 95%-percentile

of hourly concentrations) show a significant decrease during our study period (1997 to 2015) (Fleming et al., 2018;

Yan et al., 2018). Our data splitting method for evaluating the generalisation capability is conservative in the sense that

we evaluate the model on the test set, which has the largest possible distance to the training set. If our research model

shall be transformed into an operational system we suggest to apply online learning and use the latest available data for30

subsequent training cycles (see for example Sayeed et al. (2020)).

(Same answer to rev #2)

– "Minor comments":

– "Table 1: I suggest you include the study by Seltzer et al. (2020)"

We added Seltzer et al. (2020) and the following sentences on page 3 line 52: "Seltzer et al. (2020) used 355735

measurement sites across six measurement networks to analyse long term ozone exposure trends in North America

by applying a fully connected neural network. They mainly focused on metrics related to human health and crop

loss."

– "Section 2.1.: (Variable selection): using the daily maximum 8-hour average for NO and NO2 seems like an odd

choice to me. From a chemical perspective, one would rather want to use the 24-hour average or maximum one-40

hour concentration?"

While we agree with the reviewer that the choice of metrics for NO and NO2 may seem strange, this was indeed

done on purpose. We now added the following text to explain our rationale for this decision:

"The choice of using the dma8eu metrics for NO and NO2 was motivated by the idea to sample all chemical

quantities during the same time periods and with similar averaging times. While the dma8eu metrics is calculated45

based on data starting at 5pm on the previous day, the daily mean/max values for example would be calculated

based on data starting from the current day. To test the impact of using different metrics for ozone precursors we

also trained the model from scratch with either mean or maximum concentrations of NO and NO2 as inputs. The

results of these runs were hardly distinguishable from the results presented below."

(Same answer to rev #2)50

– "Section 4.1 (Joint Distributions): While interesting it’s not clear why this section is in the manuscript. It doesn’t

seem to have much relevance for understanding the paper?"

We agree, that this section is not mandatory to understand the figures of joint distributions. We therefore moved this

subsection to the appendix as we also explicitly refer to the calibration refinement factorisation in other sections.
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– "Section 5.2. (Comparison with competitive models): please add reference to Figure 6."55

We added the reference to Fig. 6

"References: Seltzer, K. M., Shindell, D. T., Kasibhatla, P., and Malley, C. S.: Magnitude, trends, and impacts of ambient long-

term ozone exposure in the United States from 2000 to 2015, Atmos. Chem. Phys., 20, 1757–1775, https://doi.org/10.5194/acp-

20-1757-2020, 2020."

3 Answer to Anonymous Referee #260

"The authors present a data-driven forecast model for maximum daily 8-hour ozone (mda8O3) concentrations based on multiple

convolutional neural layers and apply it to the network of rural ozone monitoring sites in Germany. The manuscript is well

written, and the model presented and its application make a valuable contribution to the field. I ask the authors for a few

clarifications and specifications detailed in my specific comments below."

"Specific comments:"65

1. "The authors include several meteorological variables as input but not radiation. This is a little odd given the importance

of radiation for photochemistry and thus ozone formation. Cloud-cover is used by the authors together with temperature

as a proxy,however I am not surprised that this surrogate variable shows limited influence on mda8O3. It seems also that

direct and diffuse irradiance are available at varioustime steps (https://reanalysis.meteo.uni-bonn.de/?Download_Data_

__COSMO-REA6) although otherwise stated on page p4, L93."70

The COSMO-REA6 indeed contains radiative variables, however those variables are unfortunately not available through

the JOIN-REST-API on https://join.fz-juelich.de which we used to access the TOAR-database for this study. Re-processing

of the additional variables would have been a major effort, which could not be done during the time this study was con-

ducted. We therefore used the mentioned variables as proxy.

75

2. "Related to my previous comment I am a bit puzzled that all meteorological covariates show such limited added skill.

Have the authors assessed simple brute-force correlations between meteorological covariates and mda8O3, are they as

low as the skill score would suggest? Also I wonder if the limited influence stems from the joint consideration of all

seasons and if a cleaner picture would emerge on seasonal or monthly basis."80

We did not calculate correlations between meteorological covariates and ozone concentrations, but also Otero et al.

(2016) report, that the ozone concentration itself, followed by temperature are the main drivers in their correlation

analysis. In general, instead of using the bootstrapped variables as inputs for the trained model, it would also be possible

to use those bootstrapped inputs to train the model for each redrawn variable from scratch, resulting in nine different

models (one per variable). In this case, the network would be forced to extract more information from variables which85

are not redrawn. This method, however, would deliver information on the influence of variables during different training

3

https://reanalysis.meteo.uni-bonn.de/?Download_Data___COSMO-REA6
https://reanalysis.meteo.uni-bonn.de/?Download_Data___COSMO-REA6
https://reanalysis.meteo.uni-bonn.de/?Download_Data___COSMO-REA6
https://join.fz-juelich.de


cycles and not the influence of variables on the originally trained model. Our method, however, underestimates the

influence of specific input variables in case of strongly correlated input variables as the majority of information is

extracted by the most dominant feature (here ozone). As ozone dominates Manuscript-Figure 8, we split the variables

into two groups and show their skill scores on different scales.90

To make this point even more explicit, we added the following half-sentence to page 12, line 330: ", because in such

cases the network will focus on the dominant feature (here: ozone)."

3. "Along these lines, I am wondering if pooling of observations in the samples might cause some spurious effects. Given

the relatively low VOC abundances during fall-early spring pooling might explain to some degree the relative low skill

obtained for NO and NO2."95

We use all seasons to train one specific model which should be applicable to any (German) collection of time-series

containing the required nine input variables. This generalisation comes with the cost that the network has to learn the

seasonality first, before focusing on variational patterns.

4. "On p.5., L103 the authors state that they include stations if they have at least one year of valid data in one of the sets.

I wonder if an unequal inclusion of observations from different time periods affects the robustness of the training and100

tuning. How much would the sample reduce if a more stringent criterion would be applied say e.g., more than 80% or

50% coverage over the considered time period, or a high fraction of available data per month, season and year?"

We only include a station into a corresponding data set, if at least one year of valid data is available in the set’s time

period. We expanded Manuscript-Figure 2 and show the total amount of samples available for each day. As additional

information to the reviewer, we here also provide Fig. 1 (here) showing the number of stations (y-axis) as a function of105

valid data points (x-axis).

0 500 1000 1500 2000 2500 3000
Number of samples

0

100

200

300

Nu
m

be
r o

f s
ta

tio
ns

train test val

Figure 1. Number of stations having at least a given number of samples.

Furthermore, we extended Manuscript-Table 4, which now also reports the mean and standard deviation as well as

selected percentiles. On average each station in the validation set contains ∼ 690 samples (std. ∼ 60 samples), while

each station in the testing set contains on average ∼ 1040 samples (std. ∼ 90 samples). Thus, a more stringent criterion

would not lead to a significant reduction of stations in the validation and testing sets. Within the training data set roughly110
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two thirds (∼ 200) of all stations contain at least 1500 samples and approximately 120 stations have more than 2500

samples.

5. "Also O3 and NO and NO2 show substantial changes and trends in Europe over the time period considered. The authors

do not address this in their manuscript, thus I assume the data has not been detrended before use in model training and

validation? What magnitude of effect would we expect by considering non-stationary time series training of a CNN115

model?"

Indeed, we did not detrend any time-series. We added the following paragraph as a separate section:

By splitting the data into three consecutive, non-overlapping sets, we ensure that the data sets are as independent as

possible. On the other hand, this independence comes at the cost, that changes of trends in the input variables may not

be captured, especially as our input data are not de-trended. Indeed, at European non-urban measurement sites, several120

ozone metrics related to high concentrations (e.g. 4th highest daily maximum 8-hour (4MDA8) or the 95%-percentile

of hourly concentrations) show a significant decrease during our study period (1997 to 2015) (Fleming et al., 2018;

Yan et al., 2018). Our data splitting method for evaluating the generalisation capability is conservative in the sense that

we evaluate the model on the test set, which has the largest possible distance to the training set. If our research model

shall be transformed into an operational system we suggest to apply online learning and use the latest available data for125

subsequent training cycles (see for example Sayeed et al. (2020)).

(Same answer to rev #1)

We expect that the change of trend is more important than the trend itself as the change of trend might not be cap-

tured in the different sets. As the ozone metrics related to high concentrations are decreasing, the network does not need130

to predict values outside the learned/trained concentration range in our specific application.

6. "The authors use dma8 for NO and NO2. What is the motivation to use here dma8 instead of the daily mean or maximum

value, which would be the more common quantities?"

While we agree with the reviewer that the choice of metrics for NO and NO2 may seem strange, this was indeed done

on purpose. We now added the following text to explain our rationale for this decision:135

"The choice of using the dma8eu metrics for NO and NO2 was motivated by the idea to sample all chemical quantities

during the same time periods and with similar averaging times. While the dma8eu metrics is calculated based on data

starting at 5pm on the previous day, the daily mean/max values for example would be calculated based on data starting

from the current day. To test the impact of using different metrics for ozone precursors we also trained the model from

scratch with either mean or maximum concentrations of NO and NO2 as inputs. The results of these runs were hardly140

distinguishable from the results presented below."

(Same answer to rev #1)

7. P6, L135, a batch size of 512 samples is used, how do the authors derive this number?

We tested various batch sizes and found no significant differences in the results. We now added the following explanation
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in the text on page 6, line 134: "[We selected a batch size of 512 samples (Algorithm 1, line 10)], because this size is a145

good compromise between minimising the loss-function and optimising computing time per trained epoch. Experiments

with larger and smaller batch sizes did not yield significantly different results."

"Minor comments:"

1. "I suggest to use ‘training set’ instead of ‘train set’ throughout the manuscript."

Thank you for the suggestion, we changed all ’train set’ to ’training set’150

2. "I suggest grouping several figures to multi-panel figures to increase accessibility (7a-d, A3a-d, A4a-d,A5a-d, A6a-d)."

Done.

3. "Figure A2 is incredibly hard to read even when zooming in to 400%"

We replaced this figure (now A2 and A3) and used a different tool for visualisation of the neural network architecture.

We removed manuscript Fig. 3, as the new representation of Figure A2 transports the same content. We adjusted the155

references on page 6 line 144.

4. "Axis labels of Figure A2 are hard to read."

We assume you mean Figure A1; we increased the font size.

5. "P7, L174 a reference for the Adam optimizer is missing"

Reference is Kingma and Ba (2014)160

6. "I was wondering if the section on joint distributions and skill scores could not be moved to the Appendix"

We moved the section on joint distributios to the appendix. We would like to keep the section on skill scores in the main

text as two figures show that skill score on the y-axis (Manuscript Fig. 5, Fig 6).

"Spelling and typos":

– "P6, L118: hyperparameters"165

We replaced ’hyperparameetrs’ with ’hyperparameters’

– "P9L226: replace ‘model with ‘models’"

We replaced ’model’ with ’models’

– "P10, L235: replace ‘observation’ with ‘observations’"

We replaced ‘observation’ with ‘observations’170

– "P10, L237: replace ‘multi-valued’ with ‘multi-value’ and check throughout the text"

We replaced ‘multi-valued’ with ‘multi-value’ throughout the manuscript

– "P11, L295: therefore more credible"

We added ’more’
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– "P11, 297: replace ‘the network under-forecasts’ with ‘the forecast is underestimating’"175

We replaced ‘the network under-forecasts’ with ‘the forecast is underestimating’

4 Additional Changes

1. We added the unit to Manuscript-Figure 4

2. We added the following sentence on page 3 line 57: "We evaluate the performance on 204 stations, which have data

during the 2010 to 2015 period by looking at skill scores, the joint distribution of forecasts and observations, as well as180

the influence of input variables."

3. The correct number of stations used in the training set is 312, we corrected this in the manuscript.

4. We updated the Acknowledgements

5. We updated the code and data availability section

6. We added the ’last access’ dates for all urls in the manuscript185
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Abstract.

The prediction of near-surface ozone concentrations is important to support regulatory procedures for the protection of

humans from high exposure to air pollution. In this study, we introduce a data-driven forecasting model named ‘IntelliO3-ts‘,

which consists of multiple convolutional neural layers (CNN), grouped together as inception blocks. The model is trained

with measured multi-year ozone and nitrogen oxides concentrations of more than 300 German measurement stations in rural5

environments, and six meteorological variables from the meteorological COSMO reanalysis. This is by far the most extensive

dataset used for time series predictions based on neural networks so far. IntelliO3-ts allows predicting daily maximum 8-hour

average (dma8eu) ozone concentrations for a lead time of up to four days, and we show that the model outperforms standard

reference models like persistence. Moreover, we demonstrate that IntelliO3-ts outperforms climatological reference models for

the first two days, while it does not add any genuine value for longer lead times. We attribute this to the limited deterministic10

information that is contained in the single station time series training data. We applied a bootstrapping technique to analyse the

influence of different input variables and found, that the previous day ozone concentrations are of major importance, followed

by 2m temperature. As we did not use any geographic information to train IntelliO3-ts in its current version and included no

relation between stations, the influence of the horizontal wind components on the model performance is minimal. We expect

that the inclusion of advection-diffusion terms in the model could improve results in future versions of our model.15
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1 Introduction

Exposure to ambient air pollutants such as ozone (O3) is harmful for living beings (WHO, 2013; Bell et al., 2014; Lefohn

et al., 2017; Fleming et al., 2018) and certain crops (Avnery et al., 2011; Mills et al., 2018). Therefore, the prediction of ozone

concentrations is of major importance to issue warnings for the public if high ozone concentrations are foreseeable. As tropo-

spheric ozone is a secondary air pollutant, there is nearly no source of directly emitted ozone. Instead, it is formed in chemical20

reactions of several precursors like nitrogen oxides (NOx) or volatile organic compounds (VOCs). Weather conditions (tem-

perature, irradiation, humidity, and winds) have a major influence on the rates of ozone formation and destruction. Ozone has a

"chemical lifetime" in the lower atmosphere of several days and can, therefore, be transported over distances of several hundred

kilometres.

Ozone concentrations can be forecasted by various numerical methods. Chemical transport models (CTMs) solve chemical25

and physical equations explicitly (for example Collins et al., 1997; Wang et al., 1998a,b; Horowitz et al., 2003; von Kuhlmann

et al., 2003; Grell et al., 2005; Donner et al., 2011). These numerical models predict concentrations for grid cells, which

are assumed to be representative for a given area. Therefore, local fluctuations which are below model resolution cannot be

simulated. Moreover, CTMs often have a bias in concentrations, turnover rates or meteorological properties which have a direct

influence on chemical processes (Vautard, 2012; Brunner et al., 2015).30

This makes CTMs unsuited for regulatory purposes, which by law are bound to station measurements, except if so-called

model output statistics are applied to the numerical modelling results (Fuentes and Raftery, 2005). As an alternative to CTMs,

regression models are often used to generate point forecasts (c.f. Olszyna et al., 1997; Thompson et al., 2001; Abdul-Wahab

et al., 2005). Regression models are pure statistical models, which are based on empirical relations among different variables.

They usually describe a linear functional relationship between various factors (precursor concentrations, meteorological, and35

site information) and the air pollutant in question.

Since the late nineties machine learning techniques in the form of neural networks have also been applied as a regression

technique to forecast ozone concentrations or threshold value exceedances (see Table 1). As the computational power was

limited in the early days of those approaches, many of these early studies focused on a small number of measurement stations

and used a fully connected (FC) network architecture. More recent studies explored the use of more advanced network archi-40

tectures like convolutional neural networks (CNN) or Long-Short-Term Memory networks (LSTM). These networks were also

applied to a larger number of stations compared to the earlier studies and some studies have tried to generalise, i.e. to train

one neural network for all stations instead of training individual networks for individual stations (Table 1). Although the total

amount of studies focusing on air quality or explicit near-surface ozone is already quite substantial, there are only few studies

which applied advanced deep learning approaches on a larger number of stations or on longer time series. Eslami et al. (2019)45

applied a CNN on time series of 25 measurement stations in Seoul, South Korea to predict hourly ozone concentrations for the

next 24 hours. Ma et al. (2020) trained a bidirectional LSTM on 19 measurement sites over a period of roughly 9 months, and

afterwards used that model to retrain individually for 48 previously not used measurement stations (transfer learning).
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Sayeed et al. (2020) applied a deep CNN on data from 21 different measurement stations over a period of four years. They

used three years (2014 to 2016) to train their model and evaluated the generalisation capability on the fourth year (2017).50

Zhang et al. (2020) developed a hybrid CNN-LSTM model to predict gridded air quality concentrations (O3, NO2, CO,

PM2.5, PM10). Seltzer et al. (2020) used 3557 measurement sites across six measurement networks to analyse long term ozone

exposure trends in North America by applying a fully connected neural network. They mainly focused on metrics related to

human health and crop loss.

The current study extends these previous works and introduces a new deep learning model for the prediction of daily max-55

imum 8-hour average O3 concentrations (dma8eu, see Sect. 2.1) for a lead time of up to four days. The network architecture

is based on several stacks of convolutional neural networks. We trained our network with data from 312 313 background mea-

surement stations in Germany (date range from 1997 to 2007), tuned hyperparameters on data from 212 stations (data rage

from 2008 to 2009). We evaluate the performance on 204 stations, which have data during the 2010 to 2015 period looking at

skill scores, the joint distribution of forecasts and observations, as well as the influence of input variables.60

This article is structured as follows: In Sect. 2 we explain our variable selection and present our prepossessing steps. In Sect.

3, we introduce our forecasting model IntelliO3-ts, version 1.0. Sect. 4 introduces the statistical tools and reference models,

which were used for verification. In Sect. 5 we present and discuss the results and analyse the influence of different input

variables ob the model performance. Finally, Sect. 7 provides conclusions.

2 Variable selection and data processing65

2.1 Variable selection

Tropospheric ozone (O3) is a greenhouse gas formed in the atmosphere by chemical reactions of other directly emitted pollu-

tants (ozone precursors) and therefore referred to as a secondary air pollutant.

The continuity equation of near surface ozone in a specific volume of air can be written as (Jacobson, 2005, p.74f):

∂Nq
∂t

+∇ · (vNq) = (∇ ·Kh∇)Nq +Rdepg +Rchemg, (1)70

where ∂Nq
∂t is the partial derivative of the ozone number concentration with respect to time, v is the vector wind velocity, Kh is

the eddy diffusion tensor for energy, while Rdepg and Rchemg are the rates of dry deposition to the ground, and photo-chemical

production or loss, respectively.

Tropospheric ozone is formed under sunlit conditions in gas-phase chemical reactions of peroxy radicals and nitrogen ox-

ides (Seinfeld and Pandis, 2016). The peroxy radicals are themselves oxidation products of volatile organic compounds. The75

nitrogen oxides undergo a rapid catalytic cycle:

NO2 +hν+O2 +M →NO+O3 +M∗ (R1)
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NO+O3→NO2 +O2, (R2)

where NO and O3 are converted to NO2 and back within minutes (M is an arbitrary molecule which is needed to take up

excess energy, denoted by the asterisk). As a consequence, ozone concentrations in urban areas with high levels of NOx from80

combustive emissions are extremely variable. In this study, we therefore focus on background stations, which are less affected

by the rapid chemical inter-conversion.

From a chemical perspective, the prediction of ozone concentrations would require concentration data of NO, NO2, speciated

VOC, and O3 itself. However, since speciated VOC measurements are only available from very few measurement sites, the

chemical input variables of our model are limited to NO, NO2, and O3.85

Besides the trace gas concentrations, ozone levels also depend on meteorological variables. Due to the scarcity of reported

meteorological measurements at the air quality monitoring sites, we extracted time series of meteorological variables from the

6 km resolution COSMO-Reanalysis (Bollmeyer et al., 2015, COSMO-REA6) and treat those as observations.

All data used in this study were retrieved from the Tropospheric Ozone Assessment Report (TOAR) database (Schultz

et al., 2017) via the Representational State Transfer (REST) Application Programming Interface (API) at https://join.fz-juelich.90

de (last access: 12. Nov. 2020). The air quality measurements were provided by the German Umweltbundesamt, while the

meteorological data were extracted from the COSMO-REA6 reanalysis as described above. These reanalysis data cover the

period from 1995 to 2015 with some gaps due to incompleteness in the TOAR database. As discussed in the US EPA guidelines

on air quality forecasting (Dye, 2003), ozone concentrations typically depend on temperature, irradiation, humidity, wind speed

and wind direction. The vertical structure of the lowest portion of the atmosphere (i.e. the planetary boundary layer) also plays95

an important role, because it determines the rate of mixing between fresh pollution and background air. Since irradiation data

were not available from the REST interface, we used cloud-cover together with temperature as proxy variables.

Table 2 shows the list of input variables used in this study, and Table 3 describes the daily statistics that were applied to the

hourly data of each variable. The choice of using the dma8eu metrics for NO and NO2 was motivated by the idea to sample

all chemical quantities during the same time periods and with similar averaging times. While the dma8eu metrics is calculated100

based on data starting at 5pm on the previous day, the daily mean/max values for example would be calculated based on data

starting from the current day. To test the impact of using different metrics for ozone precursors we also trained the model

from scratch with either mean or maximum concentrations of NO and NO2 as inputs. The results of these runs were hardly

distinguishable from the results presented below.

As described above, ozone concentrations are less variable at stations, which are further away from primary pollutant emis-105

sion sources. We therefore selected those stations from the German air quality monitoring network, which are labelled as

"background" stations according to the European Environmental Agency (EEA), Airbase classification.
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2.2 Data processing

We split the individual station time series into three non-overlapping time periods for training, validation and testing which we

will refer by set from now on (see Fig. 2). We only used stations which at least have one year of valid data in one set. Firstly,110

the time span of the training data set is ranging from Jan 1st, 1997 to Dec 31st, 2007. Secondly, the validation set is ranging

from Jan 1st, 2008 to Dec 31st, 2009. Thirdly, the test set ranges from Jan 1st, 2010 to Dec 31st, 2015.

Due to changes in the measurement network over time, the number of stations in the three datasets differ: training data

comprises 312313 stations, validation data 212 stations, and testing 204 stations. This is by far the largest air quality time

series dataset that has been used in a machine learning study so far (see Table 1).115

Supervised learning techniques require input data (X) and a corresponding label (y) which we create for each station of the

three sets as depicted in Algorithm 1.

Algorithm 1 Data preprocessing

1: Standardise time series to approximately mean zero and unit variance (approximation for z-transformation)

2: Linearly interpolate missing data (maximally one missing data point between valid samples)

3: for all Stations: Create samples (from standardised time series) do

4: Create inputs X with variables of seven days (−6d) to (0d)).

Shape of X: 7 by 1 by 9 (number of days, 1, number of variables)

5: Create labels y with ozone (dma8eu) concentrations for the next four days (1d to 4d).

Shape of y: 1 by 4 (1, lead time)

6: end for

7: Remove all X,y pairs which include any missing value

8: In the training set duplicate extremes (samples, where yi <−3 or yi > 3)

9: Permute samples in the training set (and only in the training set)

10: Create batches (collection of samples) of size 512

Samples within the same data set (train, validation, test) can overlap which means that one missing data point would appear

up to seven times in the inputs X and up to four times in the labels y. Consequently, one missing value will cause the removal

of eleven samples (Algorithm 1, line 7). As we want to keep the number of samples as high as possible, we decided to linearly120

interpolate (Algorithm 1, line 2) the time series if only one consecutive value is missing. Table 4 shows the number of stations

per data set (train, val, test) and the corresponding amount of samples (pairs of inputs X and labels y) per data set. Moreover,

Table A1 summarises all samples per station individually. Figure 1 shows a map of all station locations.

We trained the neural network (details on the network architecture are given in Sect. 3) with data of the training set and tuned

hyperparameters exclusively on the validation data set. For the final analysis and model evaluation, we use the independent test125

data set, which was neither used for training the models parameters, nor for tuning the hyperparameters. Random sampling, as is

often done in other machine learning applications, and occasionally even in other air quality or weather applications of machine

learning, would lead to overly optimistic results due to the multi-day auto-correlation of air quality and meteorological time
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series. Horowitz and Barakat (1979) already pointed to this issue when dealing with statistical tests. Likewise, the alternative

split of the dataset into spatially segregated data could lead to the undesired effect that two or more neighbouring stations130

with high correlation between several paired variables fall into different data sets. Again, this would result in overly optimistic

model results.

By applying a temporal split, we ensure that the training data do not directly influence the validation and test data sets.

Therefore, the final results reflect the true generalisation capability of our forecasting model.

In accordance with other studies, our initial deep learning experiments with a subset of this data have shown that neural135

networks, just as other classical regression techniques, have a tendency to focus on the mean of the distribution and perform

poorly on the extremes. However, especially the high concentration events are crucial in the air quality context due to their

strong impact on human health and the adverse crop effects. Extreme values occur relatively seldomly in the dataset, and it is

therefore difficult for the model to learn their associated patterns correctly. To increase the total number of values on the tails of

the distribution during training, we append all samples where the standardised label (i.e. the normalised ozone concentration)140

is <−3 or > 3 for a second time on the training data set (Algorithm 1, line 8).

We selected a batch size of 512 samples (Algorithm 1, line 10), because this size is a good compromise between minimising

the loss-function and optimising computing time per trained epoch. Experiments with larger and smaller batch sizes did not

yield significantly different results. Before creating the different training batches, we permute the ordering of samples per

station in the training set, to ensure that the distribution of each batch is similar to those of the full training data set (Algorithm145

1, line 9). Otherwise, each batch would have an underrepresented season and consequently would lead to undesired looping

during training (e.g. no winter values in the first batch, no autumn values in the second batch, etc.).

3 Model setup

Our machine learning model is based on a convolutional layer neural network (LeCun et al., 1998), which was initially designed

for pattern recognition in computer vision applications. It has been shown that such model architectures work equally well on150

time series data as other neural network architectures, which have been especially designed for this purpose, such as recurrent

neural networks or LSTMs (Dauphin et al., 2017; Bai et al., 2018). Schmidhuber (2015) provides a historical review on different

deep learning methods, while Ismail Fawaz et al. (2019) focus especially on deep neural networks for time series.

Our neural network named IntelliO3-ts, version 1.0, primarily consists of two inception blocks (Szegedy et al., 2015), which

combine multiple convolutions, execute them in parallel, and concatenate all outputs in the last layer of each block. Figure155

A2 Figure 3 depicts one inception block including the first input layer, while Figures A2 and Figure A3 together shows the

entire model architecture including the first input layers and final flat and output layers. We treat each input variable (see Table

2) as an individual channel (like R, G, B in images) and use time as the first dimension (this would correspond to the width

axis of an image). Inputs (X) consist of the variable values from 7 days (-6d to 0d). Outputs are ozone concentration forecasts

(dma8eu) for lead times up to 4 days (1d to 4d). Therefore, we change the kernel sizes in the inception blocks from 1× 1,160

3× 3, and 5× 5, as originally proposed by Szegedy et al. (2015), to 1× 1, 3× 1, and 5× 1). This allows the network to focus
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on different temporal relations. The 1× 1 convolutions are also used for information compression (reduction of the number

of filters), before larger convolutional kernels are applied (see Szegedy et al. (2015)). This decreases the computational costs

for training and evaluating the network. In order to conserve the initial input shape of the first dimension (time), we apply

symmetric padding to minimise the introduction of artefacts related to the borders.165

While the original proposed concept of inception blocks has one max-pooling tower alongside the different convolution

stacks, we added a second pooling tower, which calculates the average on a kernel size of 3× 1. Thus, one inception block

consists of three convolutional towers and two pooling (mean, and max) towers. A tower is defined as a collection or stack

of successive layers. The outputs of these towers are concatenated in the last layer of an inception block (see Fig. A2 3).

Between individual inception blocks, we added dropout layers (Srivastava et al., 2014) with a dropout rate of 0.35 to improve170

the network’s generalisation capability and prevent overfitting.

Moreover, we use batch normalisation layers (Ioffe and Szegedy, 2015) between each main convolution and activation layer

to accelerate the training process (Fig. A2 3). Those normalisations ensure that for each batch the mean activation is zero

with standard deviation of one. As proposed in Szegedy et al. (2015), the network has an additional minor tail which helps to

eliminate the vanishing gradient problem. Additionally, the minor tail helps to spread the internal representation of data as it175

strongly penalises large errors.

The loss function for the main tail is the mean squared error:

Lmain =
1

n

∑
i

(yi,true− yi,pred)
2
, (2)

while the loss function of the minor tail is:

Lminor =
1

n

∑
i

(|yi,true− yi,pred|)4 . (3)180

All activation functions are exponential linear units (ELU) (Clevert et al., 2016), only the final output activations are linear

(minor and main tail).

The network is built with Keras 2.2.4 (Chollet, 2015) and uses TensorFlow 1.13.1 (Martín Abadi et al., 2015) as backend.

We use Adam (Kingma and Ba, 2014) as optimiser and apply an initial learning rate of 10−4 (see also Sect. A5).

We train the model for 300 epochs on the HPC system ’Jülich Wizard for European Leadership Science’ (JUWELS, Jülich185

Supercomputing Centre (2019)) which is operated by the Jülich Supercomputing Centre (see also A4 for further details regard-

ing the software and hardware configurations).

4 Evaluation metrics and reference models

In general, one can interpret a supervised machine learning approach as an attempt to find an unknown function ϕ which

maps an input pattern (X) to the corresponding labels or the ground truth (y). The machine learning model is consequently190

an estimator (ϕ̂) which maps X to an estimate ŷ of the ground truth. The goodness of the estimate is quantified by an error
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function, which the network tries to minimise during training. As the network is only an estimator of the true function, the

mapping generally differs:

ϕ(X) = y 6= ŷ = ϕ̂(X) . (4)

To evaluate the genuine added value of any meteorological or air quality forecasting model, it is essential to apply proper195

statistical metrics. The following section describes the verification tools, which are used in this study. We provide additional

information on joint distributions as introduced by Murphy and Winkler (1987) in Section A2.

4.1 Joint Distributions

Forecasts and observations are treated as random variables. Let p(m,o) represent the joint distribution of a model’s forecast

m and an observation o, which contains information on the forecast, the observation and the relationship between both of them200

(Murphy and Winkler, 1987). To access specific pieces of information, we factorise the joint distribution into a conditional and

a marginal distribution in two ways. The first factorisation is called calibration-refinement and reads

p(m,o) = p(o|m)p(m),

where p(o|m) is the conditional distribution of observing o given the forecast m and p(m) is the marginal distribution which

indicates how often different forecast values are used (Murphy and Winkler, 1987; Murphy and Winkler, 2006). A continuous205

forecast is perfectly calibrated if

E (o|m) =m

holds, whereE (o|m) is the expected value of o given the forecastm. The marginal distribution p(m) is a measure of how often

different forecasts are made and is therefore also called refinement or sharpness. Both distributions are important to evaluate

a model’s performance. Murphy and Winkler (1987) pointed out that a perfectly calibrated forecast is worth nothing if it lacks210

refinement. The second factorisation is called likelihood-base rate and consequently is given by

p(m,o) = p(m|o)p(o),

where p(m|o) is the conditional distribution of forecast m given that o was observed. p(o) is the marginal distribution

which only contains information about the underlying rate of occurrence of observed values and is therefore also called

sample climatological distribution (Wilks, 2006).215

4.1 Scores and Skill Scores

To quantify a model’s informational content, scores like the mean squared error (Eq. (5)) are defined to provide an absolute

performance measure, while skill scores provide a relative performance measure related to a reference forecast (Eq. (6)).

MSE (m,o) =
1

N

N∑
i=1

(mi− oi)2 ≥ 0, (5)
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Here, N is the number of forecast-observation pairs,m is a vector containing all model forecasts, and o is a vector containing220

the observations (Murphy, 1988).

A skill score S may be interpreted as the percentage of improvement of A over the reference Aref. Its general form is

S =
A−Aref

Aperf−Aref
. (6)

Here, A represents a general score, Aref is the reference score, and Aperf the perfect score.

For A=Aref S becomes zero, indicating that the forecast of interest has no improvements over the reference forecast. A225

value of S > 0 indicates an improvement over the reference, while S < 0 indicates a deterioration. The informative value of a

skill score strongly depends on the selected reference forecast. In case of the mean squared error (Eq. (5)) the perfect score is

equal to zero and Eq. (6) reduces to

S (m,r,o) = 1−MSE (m,o)

MSE (r,o)
, (7)

where r is a vector containing the reference forecast.230

4.2 Reference models

We used three different reference models: persistence, climatology, and an ordinary least square model (linear regression). For

the climatological reference we create four sub-reference models (see Sect. 4.2.2). In the following we introduce our basic

reference models.

4.2.1 Persistence Model235

One of the most straightforward models to build, which in general has good forecast skills on short lead times, is a persistence

model. Today’s observation of ozone dma8eu concentration is also the prediction for the next four days. Obviously, the skill

of persistence decreases with increasing lead time. The good performance on short lead times is mainly due to the facts that

weather conditions influencing ozone concentrations generally do not change rapidly, and that the chemical lifetime of ozone

is long enough.240

4.2.2 Climatological reference models

We create four different climatological reference models (CASE I to CASE IV), which are based on the climatology of ob-

servations by following Murphy (1988) (also with respect to their terminology, which means that the reference score Aref is

calculated by using the reference forecast r).

The first reference forecast (Aref : r = o, CASE I) is the internal single value climatology which is the mean of all obser-245

vations during the test period. This unique value is then applied as reference for all forecasts. As this forecast has only one

constant value which is the expectation value, this reference model is well calibrated but not refined at all.

The second reference (Aref : r = o
∗, CASE II) is an internal multi-valued climatology. Here, we calculate twelve arithmetic

means, where each of the means is the monthly mean over all years in the test set (e.g. one mean for all Januaries from 2012 to
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2015, one for all Februaries, etc.). The corresponding monthly mean is applied as reference. Therefore, CASE II allows testing250

if the model has skill in reproducing the seasonal cycle of the observations.

The third reference (Aref : r = µ, CASE III) is an external single value climatology which is the mean of all available

observations during the training and validation periods. This reference does not include any direct information on the test set.

Therefore, one can access the information if the forecast of interest captures features which are not directly present in the

training and validation set.255

Finally, the fourth reference (Aref : r = µ
∗, CASE IV) is an external multi-valued climatology. A tabular summary explaining

the individual formulae and terms following Murphy (1988) is given in Appendix A3. The last two references are calculated

on a much longer time series than the first ones.

4.2.3 OLS reference model

The third reference model is an ordinary least square model. We train the OLS model by using the statsmodels package v0.10260

(Seabold and Perktold, 2010). The OLS model is trained on the same data as the neural network (training set) and serves as a

linear competitor.

5 Results

As described in Sect. 3 we split our data into three subsets (training, validation, and test set). We only used the independent test

data set to evaluate the forecasting capabilities of the IntelliO3-ts network. During training and hyperparameter optimisation,265

only the training and validation sets were used, respectively. Therefore, the following results reflect the true generalisation

capability of IntelliO3-ts. Before discussing the results in detail below, we would like to point out again, that this is the first

time that one neural network has been trained to forecast data from an entire national air quality monitoring station network.

Also, the network has been trained exclusively with time series data from air pollutant measurements and a meteorological

reanalysis. No additional information, such as geographic coordinates, or other hints that could be used by the network to270

perform a station classification task, have been used. The impact of such extra information will be the subject of another study.

5.1 Forecasting results

Figure 3 shows the observed monthly O3-dma8eu distribution (green) and the corresponding network predictions for a lead

time of up to four days (dark to light blue) summarised for all 204 stations in the test set. The network clearly captures the

seasonal cycle. Nonetheless, the arithmetic mean (black triangles) and the median tend to shift towards their respective annual275

mean with increasing lead time (see also Fig. 6a to 6d). In spring and autumn, the observed and forecasted distributions match

well, while in summer and wintertime the network underestimates the interquartile range (IQR) and does not reproduce the

extremes values (for example, the maxima in July/August or the minima in December/January/February).
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5.2 Comparison with competitive models

The skill scores based on the mean squared error (MSE) evaluated over all stations in the test set are summarised in Fig. 4. In280

the left and center groups of boxes and whiskers, the IntelliO3-ts model (labelled "CNN") and the OLS model are compared

against persistence as reference. The right group of boxes and whiskers shows the comparison between IntelliO3-ts and OLS.

The mean skill score for IntelliO3-ts against persistence is positive and increases with time. The OLS forecast shows similar

behaviour in terms of its temporal evolution, but exhibits a slightly lower skill score throughout the 4-day forecasting period.

The increases in skill score in both cases is mainly due to the decreased score of the persistence model (see also Sect. 4.2.1).285

Consequently, IntelliO3-ts shows a positive skill score when the OLS model is used as a reference, indicating a small genuine

added value over the OLS model.

In comparison with climatological reference forecasts as introduced in Sect. 4.1 and summarised in TableA2, the skill scores

are high for the first lead time (1d) and decrease with increasing lead time (Fig. 5). Both cases with a single value as reference

(internal CASE I, external CASE III) maintain a skill score above 0.4 over the four days. These high skill scores are a direct290

result of the fact that IntelliO3-ts captures the seasonal cycle as shown in Fig. 3, while the reference forecasts only report the

overall mean as a single value prediction.

If the reference includes the seasonal variation (CASE II and CASE IV), the IntelliO3-ts skill score is still better than 0.4

for the first day (1d), but then it decreases rapidly and even becomes negative on day 4 for CASE II. The skill scores for CASE

II are lower than for CASE IV as the reference climatology (i.e. the monthly mean values) is calculated on the test set itself.295

These results show that, for the vast majority of stations, our model performs much better than a seasonal climatology for a

one-day forecast, and it is still substantially better than the climatology after two days. However, there are some stations, which

yield a negative skill score even on day 2 in the CASE II comparison. Longer-term forecasts with this model set-up do not add

value compared to the computationally much cheaper monthly mean climatological forecast.

5.3 Analysis of joint distributions300

The full joint distribution in terms of calibration refinement factorisation (Sect. A2) is shown in Fig. 6a (first lead time; 1d) to

Fig. 6d (last lead time; 4d). The marginal distribution (refinement) is shown as histogram (light grey; sample size), while the

conditional distribution (calibration) is presented by specific percentiles in different line styles. If the median (.5th quantile,

solid line) is below the reference, the network exhibits a high-bias with respect to the observations and vice versa. Obviously,

quantiles in value regions with many data samples are more robust and therefore more credible than quantiles in data-sparse305

concentration regimes (Murphy et al., 1989). On the first lead time (d1, Fig. 6), the IntelliO3-ts network has a tendency to

slightly over-predict concentrations / 30ppb. On the other hand, the the forecast is underestimating concentrations above

' 70ppb.

Both, very high, and very low forecasts are rare (note the logarithmic axis for the sample size). Therefore, the results in these

regimes have to be treated with caution. Further detail is provided in Fig. A1, where the conditional biases are shown (terms310

BI, BII, BIV in Sect. A3). and decrease the maximal climatological potential skill score (term AI, see also TableA2).
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With increasing lead time the model looses its capability to predict concentrations close to zero and high concentrations

above 80ppb. The marginal distribution develops a pronounced bimodal shape which is directly linked to the conditional

biases. The number of high (extreme) ozone concentrations is relatively low, resulting in few training examples. The network

tries to optimise the loss function with respect to the most common values. As a result, predictions of concentrations near315

the mean value of the distribution are generally more correct than predictions of values from the fringes of the distribution.

Moreover, this also explains, why the model does not perform substantially better than the monthly mean climatology forecasts

(CASE II, CASE IV). This problem also becomes apparent in other studies. For example, Sayeed et al. (2020) focus their

categorical analysis on a threshold value of 55ppbv (maximum 8h-average) which corresponds to the air quality index value

’moderate’ (AQI 51 to 100), instead of the legal threshold value of 70ppbv (U.S. Environmental Protection Agency, 2016,320

Table 5, therein), as the model shows better skills in this regime.

To shed more light on the factors influencing the forecast quality, we analyse the network performance individually for

each season (DJF, MAM, JJA, and SON). Conditional quantile plots for individual seasons can be found in the supplementary

material (A6). As mentioned above, the bimodal shape of the marginal distribution is mainly caused by the network’s weakness

to predict very high and low ozone concentrations. Moreover, the seasonal decomposition shows that the left mode is caused by325

the fall (SON) and winter (DJF) seasons (Fig. A7a to A7d and A4a to A4d). In both seasons, the most common values fall into

the same concentration range, while the right tail of SON is much more pronounced than for DJF with higher values occurring

primarily in September. In the summer season (JJA, Fig. A6a to A6d) the most frequently predicted values correspond to the

location of the right mode of Fig. 6a to 6d. During DJF, MAM, and JJA the model has a stronger tendency of under-forecasting

with increasing lead time (median line moves above the reference line).330

5.4 Relevance of input variables

To analyse the impact of individual input variables on the forecast results, we apply a bootstrapping technique as follows: we

take the original input of one station, keep eight of the nine variables unaltered, and randomly draw (with replacement) the

missing variable (20 times per variable per station). This destroys the temporal structure of this specific variable so that the

network will no longer be able to use this information for forecasting. Compared to alternative approaches, such as re-training335

the model with fewer input variables, setting all variable values to zero, etc., this method has two main advantages: (i) the

model does not need to be re-trained and thus the evaluation occurs with the exact same weights that were learned from the full

dataset, and (ii) the distribution of the input variable remains unchanged so that adverse effects, for example due to correlated

input variables, are excluded. However, we note, that this method may underestimate the impact of a specific variable in case

of correlated input data, because in such cases the network will focus on the dominant feature (here: ozone). Also, this analyses340

only evaluates the behaviour of the deep learning model and does not evaluate the impact of these variables on actual ozone

formation in the atmosphere.

After the randomisation of one variable, we apply the trained model on this modified input data and compare the new

prediction with the original one. For comparison, we apply the skill score (Eq. (6)) based on the MSE where we use the

original forecast as reference. Consequently, the skill score will be negative if the bootstrapped variable has a significant345
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impact on model performance. Figure 7 shows the skill scores for all variables (x-axis) and lead times (dark (1d) to light blue

(4d) boxplots). Ozone is the most crucial input variable, as it has by far the lowest skill score for all lead times. With increasing

lead time, the skill score increases but stays lower than for any other variable. In contrast, the model does not derive much skill

from the variables nitrogen oxide, nitrogen dioxide, and the planetary boundary layer height. In other words, the network does

not perform worse, when randomly drawn values replace one of those original time series. Relative humidity, temperature and350

the wind’s u-component have an impact on the model performance. With increasing lead time, these influences decrease.

6 Limitations and additional remarks

Even though IntelliO3-ts v1.0 generalises well on an unseen testing set (see Sect. 5), it still has some limitations related to the

apllied data split.

By splitting the data into three consecutive, non-overlapping sets, we ensure that the data sets are as independent as possible. On355

the other hand, this independence comes at the cost, that changes of trends in the input variables may not be captured, especially

as our input data are not de-trended. Indeed, at European non-urban measurement sites, several ozone metrics related to high

concentrations (e.g. 4th highest daily maximum 8-hour (4MDA8) or the 95%-percentile of hourly concentrations) show a

significant decrease during our study period (1997 to 2015) (Fleming et al., 2018; Yan et al., 2018). Our data splitting method

for evaluating the generalisation capability is conservative in the sense that we evaluate the model on the test set, which has the360

largest possible distance to the training set. If our research model shall be transformed into an operational system we suggest

to apply online learning and use the latest available data for subsequent training cycles (see for example Sayeed et al. (2020)).

7 Conclusions

In this study, we developed and evaluated IntelliO3-ts, a deep learning forecasting model for daily near-surface ozone con-

centrations (dma8eu) at arbitrary air quality monitoring stations in Germany. The model uses chemical (O3, NO, NO2) and365

meteorological time-series of the previous six days to create forecasts for up to four days into the future. IntelliO3-ts is based

on convolutional inception blocks, which allow to calculate concurrent convolutions with different kernel sizes. The model has

been trained on 10 years of data from 312313 background stations in Germany. Hyperparameter tuning and model evaluation

were done with independent data sets of 2 and 6 years length, respectively.

The model generalises well and generates good quality forecasts for lead times up to two days. These forecasts are superior370

compared to the reference models persistence, ordinary least squares, annual and seasonal climatology. After 2 days, the

forecast quality degrades, and the forecast adds no value compared to a monthly mean climatology of dma8eu ozone levels.

We could primarily attribute this to the network’s tendency to converge to the mean monthly value. The model does not

have any spatial context information which could counteract this tendency. Near-surface ozone concentrations at background

stations are highly influenced by air mass advection, but the IntelliO3-ts network yet has no way to take upwind information375

into account. We will investigate spatial context approaches in a forthcoming study.
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We observed, that the model loses refinement with increasing lead time which results in unsatisfactory predictions on the

tails of the observed ozone concentration. We were able to attribute this weakness to the under-representation of extreme (either

very small or high) levels in the training data set. This is a general problem for machine learning applications and regression

methods. The machine learning community is investigating possible solutions to lessen the impact of such data imbalances,380

but their adaptation is beyond the scope of this paper as proposed techniques are not directly applicable to those time series

(auto-correlation time).

Bootstrapping individual time series of the input data to analyse the importance of those variables on the predictive skill

showed, that the model mainly focused on the previous ozone concentrations. Temperature and relative humidity only have a

small effect on the model performance, while the time series of NO, NO2, and PBL have no impact.385

The IntelliO3-ts network extends previous work by using a new network architecture, and training one model on a much

larger set of measurement station data and longer time periods. In light of Rasp and Lerch (2018) who used several neural

networks to postprocess ensemble weather forecasts, we applied meteorological evaluation metices to perform a point-by-

point comparison, which is not common in the field of deep learning. We hope that the forecast quality of IntelliO3-ts can

be further improved if we take spatial context information into account so that the advection of background ozone and ozone390

precursors can be learned by the model.

Code and data availability. The current version of IntelliO3-ts is available from the project website:

https://gitlab.version.fz-juelich.de/toar/machinelearningtools/-/tree/IntelliO3-ts-v1.0_initial-submit

https://gitlab.version.fz-juelich.de/toar/mlair/-/tree/IntelliO3-ts (last access: 12. Nov. 2020) under the MIT licence (http://opensource.org/

licenses/mit-license.php). The exact version of the model and data used to produce the results in this paper are archived on b2share (Kleinert395

et al., 2020b). The initial version which was used for the initial submission is also archived on b2share (Kleinert et al., 2020a).

Appendix A

A1 Information on used stations

Table A1 lists all measurement stations which we used in this study. The table also shows the number of samples (X, y) for

each of the three data sets (training, validation, test).400

A2 Joint Distributions

Forecasts and observations are treated as random variables. Let p(m,o) represent the joint distribution of a model’s forecast m

and an observation o, which contains information on the forecast, the observation and the relationship between both of them

(Murphy and Winkler, 1987). To access specific pieces of information, we factorise the joint distribution into a conditional and

a marginal distribution in two ways. The first factorisation is called calibration-refinement and reads405

p(m,o) = p(o|m)p(m), (A1)
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where p(o|m) is the conditional distribution of observing o given the forecast m and p(m) is the marginal distribution which

indicates how often different forecast values are used (Murphy and Winkler, 1987; Wilks, 2006). A continuous forecast is

perfectly calibrated if

E (o|m) =m (A2)410

holds, whereE (o|m) is the expected value of o given the forecastm. The marginal distribution p(m) is a measure of how often

different forecasts are made and is therefore also called refinement or sharpness. Both distributions are important to evaluate a

model’s performance. Murphy and Winkler (1987) pointed out that a perfectly calibrated forecast is worth nothing if it lacks

refinement.

The second factorisation is called likelihood-base rate and consequently is given by415

p(m,o) = p(m|o)p(o), (A3)

where p(m|o) is the conditional distribution of forecast m given that o was observed. p(o) is the marginal distribution which

only contains information about the underlying rate of occurrence of observed values and is therefore also called sample

climatological distribution (Wilks, 2006).

A3 Mean Squared Error Decomposition (Murphy, 1988)420

This section provides additional information about the MSE decomposition introduced by Murphy (1988). The MSE decom-

position is performed as

MSE (m,o) =
1

n

n∑
i=1

((mi−m)− (oi− o)+ (m− o))2 (A4)

= (m− o)2 +σ2
m+σ2

o − 2σmo (A5)

= (m− o)2 +σ2
m+σ2

o − 2σmσoρmo. (A6)425

Here σm (σo) is the sample variance of the forecasts (observations) and σmo is the sample covariance of the forecasts and

observations, which is given by σmo = 1
n

∑n
i=1 (mi−m)(oi− o). ρmo is the sample coefficient of correlation between forecast

and observation.
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CASE I:

S (m,o,o) =430

ρ2mo︸︷︷︸
AI

−
(
ρmo−

σm
σo

)2

︸ ︷︷ ︸
BI

−
(
m− o
σo

)2

︸ ︷︷ ︸
CI

(A7)

CASE II:

S (m,o?,o) =

AI−BI−CI− ρ2o?o+
(
ρo?o− σo?

σo

)2
1− ρ2o?o︸︷︷︸

AII

+

(
ρo?o−

σo?

σo

)2

︸ ︷︷ ︸
BII

(A8)435

CASE III:

S (m,µ,o) =

AI−BI−CI+
(
µ−o
σo

)2
1+

(
µ− o
σo

)2

︸ ︷︷ ︸
AIII

. (A9)

440

CASE IV:

S (m,µ,o) =

AI−BI−CI− ρ2µo+
(
ρ2µo−

σµ
σo

)2
+
(
µ−o
σo

)2
1− ρ2µo︸︷︷︸

AIV

+

(
ρ2µo−

σµ
σo

)2

︸ ︷︷ ︸
BIV

+

(
µ− o
σo

)2

︸ ︷︷ ︸
CIV

. (A10)

The term AI is the square of the sample correlation coefficient and might be interpreted as the strength of linear relationship

between the forecast and the observation. This term ranges from zero (no correlation) to one (perfect correlation). Term BI445

includes the square of the differences between the sample correlation coefficient and the ratio of standard deviation of the

forecast and observation. Therefore, BI is a measure of the conditional bias of the forecast which is always positive due to the

square and tends to decrease skill as it is a subtrahend. The last term, which is included in all cases I-IV, is CI and contains the

square of the difference of the mean forecast and mean observation divided by the variance of the observation. Therefore, CI is

16



a measure of the unconditional bias in the forecast and, again, tends to decrease the skill as it is a subtrahend which is always450

greater or equal to zero.

In case of multi-value internal climatology (Case II Eq. (A8)), two additional terms appear in the dominator as well as

the numerator which tend to decrease skill in general and only vanish if 2ρo?o = σµ/σo. In Case III, the additional term

AIII appears that includes the square of the difference between the mean external and the internal climatology divided by

the variance of the observation. AIII leads to an increase of skill for any difference in the means of external and internal455

climatologies.

Three additional terms (AIV, BIV and CIV) appear if Eq. (7) is decomposed by using a multi-valued external climatology as

reference forecast (Case IV). These terms only vanish if 2ρµo = σµ/σo and µ= o. A summary of all four cases and all terms

included is given in TableA2

Figure A1 also includes all individual terms as described above.460

A4 Additional information on JUWELS

Each node on JUWELS (Jülich Supercomputing Centre, 2019) which is part of the graphical processor unit (GPU) partition is

equipped with four NVIDIA Volta V100 GPUs. The user guide for JUWELS is available from https://apps.fz-juelich.de/jsc/

hps/juwels/index.html (last access: 12. Nov. 2020).

A5 Detailed model settings465

Figure A23 and A3 shows the full architecture of IntelliO3-ts including all individual layers and tails. Table A3 lists the specific

compile options per keyword of keras’ complile method. Table A4 summarises additional settings for the specific architecture

A6 Seasonal decomposition of conditional quantiles

The following section contains all conditional quantile plots decompoed for all seasons (DJF: Fig. A4a to Fig. A4d, MAM:

Fig. A5a to Fig. A5d, JJA: Fig. A6a to Fig. A6d, and SON: Fig. A7a to Fig. A7d)470
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Figure 1. Map of central Europe showing the location of German measurement sites used in this study. This figure was created with Cartopy

(Met Office, 2010 - 2015). Map data © OpenStreetMap contributors.
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Figure 2. Data availability diagram combined for all variables and all stations. The training set is coloured in orange, the validation set in

green, and the test set in blue. Gaps in 1999 and 2003 are caused by missing model data in the TOAR database.
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Figure 3. Monthly dma8eu ozone concentrations for all test-stations as boxplots. Measurements are denoted by "orig" (green), while the

forecasts are denoted by "1d" (dark blue) to "4d" (light blue). Whiskers have a maximal length of one interquartile range. The black triangles

denote the arithmetic means.
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Figure 4. Skill scores of the IntelliO3-ts (cnn) versus the two reference models persistence (persi) and, ordinary least square (ols) based

on the mean squared error; separated for all lead times (1d (dark blue) to 4d (light blue)). Positive values denote that the first mentioned

prediction model performs better than the reference model (mentioned as second). The triangles denote the arithmetic means.
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Figure 5. Skill scores of IntelliO3-ts with respect to climatological reference forecasts: with internal single value reference (CASE I), internal

multi value (monthly) reference (CASE II), external single (CASE III) and external multi (monthly) reference (CASE IV) for all lead times

from 1d (dark blue) to 4d (light blue). Triangles denote the arithmetic means.
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Figure 6. Conditional quantile plot for all IntelliO3-ts predictions for a lead time of one day (a), two days (b), three days (c), and four

days (d). Conditional percentiles (.10th and .90th, .25th and .75th and .50th) from the conditional distribution f (oj |mi) are shown as lines

in different styles. The reference line indicates a hypothetic perfect forecast. The marginal distribution of the forecast f (mi) is shown as

log-histogram (right axis, light grey). All calculations are done by using a bin size of 1ppb. Quantiles are smoothed by using a rolling mean

of window size three. (Original design by Murphy et al. (1989))
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Figure 7. Skill scores of bootstrapped model predictions having the original forecast as the reference model are shown as boxplots for all

lead times from 1d (dark blue) to 4d (light blue). The skill score for ozone is shown on the left y-axis, while the skill score of the other

variables is shown on the right y-axis. Skill scores of bootstrapped model predictions having the original forecast as the reference model are

shown as boxplots for all lead times from 1d (dark blue) to 4d (light blue).

30



AI AII AIII AIV BI BII BIV CI
CIV

CASE
 I

CASE
 II

CASE
 III

CASE
 IV

0.2

0.0

0.2

0.4

0.6

0.8

te
rm

s a
nd

 sk
ill 

sc
or

e

summary of all stations

1d
2d
3d
4d

Figure A1. Skill scores of IntelliO3-ts with respect to climatological reference forecast; with internal single value reference (CASE I),

internal multi value (monthly) reference (CASE II), external single (CASE III) and external multi (monthly) reference (CASE IV) for all

lead times from 1d (dark blue) to 4d (light blue). All terms are described in Sect. A3 Triangles denote the arithmetic means.
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Figure A2. First part of the network showing the input, the first padding, convolution and activation, and the first inception block. This figure

was created with Netron (Roeder, 2020). Network architecture containing all inception blocks, heads, and the additional average pooling

layer.
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Figure A3. Second part of the network after the ’Concatenate’ layer in Fig. A2, showing the minor output branch, the second inception

block, and the main output branch. This figure was created with Netron (Roeder, 2020).
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Figure A4. Same as Fig. 6 but for DJF
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Figure A5. Same as Fig. 6 but for MAM
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Figure A6. Same as Fig. 6 but for JJA
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Figure A7. Same as Fig. 6 but for SON
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Table 1. Overview of the literature on ozone forecasts with neural networks. Machine learning (ML) types are abbreviated as FC for fully

connected, CNN for convolutional neural networks, RNN for recurrent neural networks, and LSTM for long-short term memories. We use

the following abbreviations for time periods : yr for years and m for month.

Citation ML

type

Total

number

of sta-

tions

Stations for

training

Time period comments

Comrie (1997) FC 8 8 5yr random split for train,

val

Cobourn et al. (2000) FC 7 7 5yr (train)+ 1yr (val)+1yr(test)

Prybutok et al. (2000) FC 1 4m + 1m

Gardner and Dorling (2001) FC 6 6 12yr

Eslami et al. (2019) CNN 25 25 3yr train 1yr test random split

Liu et al. (2019) attention

RNN

2 2 10m (train), 7 days (test) Analysis for PM2.5

Maleki et al. (2019) FC 4 4 1yr random split for train,

val, test

Silva et al. (2019) FC 2 1 13yr (train, val test); 14yr (test

on second station)

dry deposition of O3;

random split on first

station

Abdul Aziz et al. (2019) FC 1 1 7days individual measure-

ments for study

Pawlak and Jarosławski (2019) FC 2 2 6m (train) + 6m (test) Individual network per

station

Seltzer et al. (2020) FC 3557 3557 15yr focus on trends

Ma et al. (2020) Bidir.-

LSTM

19

(stan-

dard)

+ 48

(trans-

fer)

19 (stan-

dard) + 48

(transfer)

9m exploration of transfer

learning

Sayeed et al. (2020) CNN 21 21 3yr (train) + 1yr (test / retrain) retrain model for each

prediction

Zhang et al. (2020) CNN-

LSTM

35 35 19m Gridded forecast

this study inception

blocks

329 312313 18 yr
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Table 2. Input variables and applied daily statistics according to Table 3.

Variable daily statistics

NO dma8eu

NO2 dma8eu

O3 dma8eu

cloudcover average

planetary boundary layer height maximum

relative humidity average

temperature maximum

wind’s u-component average

wind’s v-component average
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Table 3. Definitions of statistical metrics in TOAR analysis relevant for this study. Adopted form Schultz et al. (2017, Supplement 1, Table

6, therein)

Name Description

data_capture Fraction of valid (hourly) values available in the aggregation period.

average_values Daily [...] average value. No data capture criterion is applied, i.e. a daily average is valid if at least one hourly

value of the day is present.

dma8eu As dma8epa, but using the EU definition of the daily 8-hour window starting from 17 h of the previous day.

(dma8epa: Daily maximum 8-hour average statistics according to the US EPA definition. 8-hour averages are

calculated for 24 bins starting at 0 h local time. The 8-h running mean for a particular hour is calculated on the

concentration for that hour plus the following 7 hours. If less than 75% of data are present (i.e. less than 6 hours),

the average is considered missing. Note that in contrast to the official EPA definition, a daily value is considered

valid if at least one 8-hour average is valid.)

maximum Daily maximum value. No data capture criterion is applied, i.e. a daily maximum is valid if at least one hourly

value of the day is present.
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Table 4. Number of stations, total number of samples (pairs of X and y), and various statistics of number of samples per station in the

training, validation and test data sets. The number of stations per set varies as not all stations have data through the full period (see Table A1

for details). Number of stations and total number of samples (pairs of X and y) used in the training (train), validation (val), and test (test)

data sets, respectively. The number of stations per set varies as not all stations have data through the full period (see Table A1 for details).

no. stations no. samples mean std min 5% 10% 25% 50% 75% 90% 95% max

training 312 643788 2063 802 369 668 939 1426 2191 2902 2989 3011 3045

validation 211 145030 687 61 370 532 625 690 710 721 721 721 721

test 203 212093 1044 92 466 759 983 1056 1075 1086 1086 1086 1086
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Table A1. Number of samples (input and output pairs) per station separated by training (train), validation (val), and test data set. "—" denotes

no samples in a set.

training val test

stat. ID

DEBB001 1104 — —

DEBB006 1455 — —

DEBB007 — 721 1086

DEBB009 1438 — —

DEBB021 2512 705 1052

DEBB024 2592 — —

DEBB028 1353 — —

DEBB031 2577 — —

DEBB036 1008 — —

DEBB038 1245 — —

DEBB040 760 — —

DEBB042 2902 721 1086

DEBB043 2194 — —

DEBB048 2473 721 1075

DEBB050 2510 721 —

DEBB051 1006 — —

DEBB053 2115 706 1086

DEBB055 1887 721 1053

DEBB063 1392 721 1086

DEBB064 1480 721 1086

DEBB065 1411 699 1086

DEBB066 1451 721 1086

DEBB067 1073 721 1086

DEBB075 — 721 1079

DEBB082 — 622 1086

DEBB083 — — 1086

DEBE010 1372 707 1035

DEBE032 2441 690 1060

DEBE034 2506 671 1031

DEBE051 2433 694 1053
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Table A1. Continued.

training val test

stat. ID

DEBE056 2481 678 1055

DEBE062 1941 677 1069

DEBW004 1440 721 1086

DEBW006 1451 721 1086

DEBW007 1440 699 —

DEBW008 656 — —

DEBW010 3041 708 1086

DEBW013 1432 710 1079

DEBW019 2962 710 1078

DEBW020 1520 — —

DEBW021 1579 — —

DEBW023 1430 721 1078

DEBW024 3011 713 1086

DEBW025 1530 — —

DEBW026 3005 721 —

DEBW027 3005 699 1075

DEBW028 1510 — —

DEBW029 3012 721 1086

DEBW030 2966 — —

DEBW031 2970 711 1069

DEBW032 2648 — —

DEBW034 3045 707 —

DEBW035 2281 — —

DEBW036 1183 — —

DEBW037 3023 721 —

DEBW039 2999 710 1086

DEBW041 1581 — —

DEBW042 2617 708 1067

DEBW044 1571 — —

DEBW045 656 — —
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Table A1. Continued.

training val test

stat. ID

DEBW046 2990 699 1086

DEBW047 1563 — —

DEBW049 646 — —

DEBW050 1556 — —

DEBW052 2652 721 1078

DEBW053 1574 — —

DEBW054 1566 — —

DEBW056 2938 721 1086

DEBW057 644 — —

DEBW059 2974 721 1086

DEBW060 1571 — —

DEBW065 1540 — —

DEBW072 480 — —

DEBW076 3035 721 708

DEBW081 2654 721 1079

DEBW084 1444 721 1042

DEBW087 3043 713 1086

DEBW094 2188 — —

DEBW102 1122 — —

DEBW103 2525 721 —

DEBW107 1801 714 1086

DEBW110 1107 721 —

DEBW111 1083 703 —

DEBW112 651 721 1079

DEBW113 678 — —

DEBY002 2924 721 747

DEBY004 2917 707 1028

DEBY005 2959 714 1086

DEBY013 1412 652 980

DEBY017 1250 — —
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Table A1. Continued.

training val test

stat. ID

DEBY020 2976 721 1013

DEBY031 2927 678 1072

DEBY032 2975 721 711

DEBY034 1555 — —

DEBY039 2554 721 1067

DEBY047 1895 721 754

DEBY049 2918 693 1066

DEBY052 2929 708 1035

DEBY062 1411 704 748

DEBY072 2907 690 1055

DEBY077 1409 721 724

DEBY079 2878 721 671

DEBY081 2932 523 713

DEBY082 1592 — —

DEBY088 2986 713 1062

DEBY089 2644 721 1086

DEBY092 616 — —

DEBY099 1828 703 725

DEBY109 1310 713 1071

DEBY113 1347 706 1086

DEBY118 937 705 727

DEBY122 — — 877

DEHB001 2567 710 953

DEHB002 2287 702 1053

DEHB003 2546 695 —

DEHB004 1428 708 1037

DEHB005 2518 683 1066

DEHE001 1451 721 1086

DEHE008 2447 707 1075

DEHE010 1600 — —
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Table A1. Continued.

training val test

stat. ID

DEHE013 — 721 1086

DEHE017 1562 — —

DEHE018 3016 721 1086

DEHE019 1958 — —

DEHE022 2643 721 1086

DEHE023 2966 708 466

DEHE024 2935 710 1086

DEHE025 1554 — —

DEHE026 2877 697 1086

DEHE027 1536 — —

DEHE028 2946 710 1068

DEHE030 3028 721 1086

DEHE032 2926 714 1075

DEHE033 1835 — —

DEHE034 1880 — —

DEHE039 — — 812

DEHE042 2966 721 1079

DEHE043 3004 721 1074

DEHE044 2543 721 1086

DEHE045 2535 699 1086

DEHE046 2513 714 1086

DEHE048 1043 — —

DEHE050 1014 — —

DEHE051 2331 721 1086

DEHE052 2078 713 1086

DEHE058 789 721 1086

DEHE060 704 672 1086

DEHH008 1439 721 1086

DEHH021 2624 710 1086

DEHH033 2148 682 1067
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Table A1. Continued.

training val test

stat. ID

DEHH047 2175 696 1086

DEHH049 2150 721 1075

DEHH050 2131 721 1069

DEMV001 794 — —

DEMV004 2908 721 1058

DEMV007 2986 721 1053

DEMV012 2885 710 1086

DEMV017 2507 708 1086

DEMV018 2113 710 —

DEMV019 1429 706 1086

DEMV021 600 688 1072

DEMV024 — — 908

DENI011 2611 452 1086

DENI016 3034 627 1051

DENI019 2919 — —

DENI020 2984 667 1086

DENI028 2927 516 1086

DENI029 2903 692 1086

DENI031 1410 451 1079

DENI038 2599 573 1083

DENI041 2935 525 1086

DENI042 2939 553 1072

DENI043 2941 606 1086

DENI051 2976 — 1072

DENI052 2910 529 1086

DENI054 2997 596 1086

DENI058 2398 — 1086

DENI059 2408 451 1079

DENI060 2386 677 1086

DENI062 2482 625 1080
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Table A1. Continued.

training val test

stat. ID

DENI063 2385 460 1073

DENI077 — — 1079

DENW004 1148 — —

DENW006 1367 694 1026

DENW008 2511 701 1064

DENW010 1397 — —

DENW013 1830 — —

DENW015 1451 — —

DENW018 1196 — —

DENW028 1655 — —

DENW029 2530 — —

DENW030 2785 630 998

DENW036 1314 — —

DENW038 2598 652 1079

DENW042 1185 — —

DENW047 1350 — —

DENW050 2488 — —

DENW051 1206 — —

DENW053 1795 678 1051

DENW059 1777 648 980

DENW062 1078 — —

DENW063 2816 — —

DENW064 2887 589 1052

DENW065 2877 550 1045

DENW066 2865 — —

DENW067 2473 686 1079

DENW068 2892 447 1009

DENW071 1827 713 1071

DENW078 1382 681 1078

DENW079 2040 706 1086
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Table A1. Continued.

training val test

stat. ID

DENW080 2147 689 1043

DENW081 2422 646 1058

DENW094 1980 627 1058

DENW095 1981 681 1071

DENW096 700 — —

DENW179 766 699 1079

DENW247 — 572 1066

DERP001 1421 721 1068

DERP007 2652 721 1077

DERP013 2883 708 1067

DERP014 2967 703 1061

DERP015 2810 710 1047

DERP016 2962 721 1086

DERP017 2955 721 1055

DERP019 1413 708 1041

DERP021 2996 713 1025

DERP022 2989 701 1059

DERP025 2918 691 1086

DERP028 2802 678 1026

DESH005 962 — —

DESH006 614 — —

DESH008 3031 721 1053

DESH016 2635 698 —

DESH021 1107 — —

DESH023 1700 721 1066

DESH033 — 721 1072

DESL003 1393 713 1086

DESL008 1371 — —

DESL011 2776 710 1086

DESL012 — — 1086
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Table A1. Continued.

training val test

stat. ID

DESL017 2785 714 1086

DESL018 1656 710 1086

DESL019 1371 472 1057

DESN001 2925 689 1072

DESN004 3011 705 1086

DESN005 1166 — —

DESN011 2613 694 1073

DESN012 2995 721 —

DESN014 2256 — —

DESN017 3028 704 —

DESN019 2934 721 —

DESN024 3017 721 —

DESN028 401 — —

DESN036 810 — —

DESN045 2913 721 1064

DESN050 2939 710 —

DESN051 1451 685 1075

DESN057 1535 — —

DESN059 2533 714 1078

DESN074 2534 702 1062

DESN076 2489 717 1075

DESN079 — — 1071

DESN085 713 — —

DESN092 — 536 1057

DEST002 3020 721 1075

DEST005 802 — —

DEST011 2924 713 1075

DEST014 996 — —

DEST022 805 — —

DEST025 480 — —
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Table A1. Continued.

training val test

stat. ID

DEST028 2694 — —

DEST030 2282 — —

DEST031 796 — —

DEST032 447 — —

DEST039 2971 676 1069

DEST044 2923 709 1086

DEST050 2672 706 1075

DEST052 1484 — —

DEST061 814 — —

DEST063 1241 — —

DEST066 2991 659 1086

DEST069 2589 707 —

DEST070 1488 — —

DEST071 462 — —

DEST072 2641 703 —

DEST077 1611 663 1086

DEST078 3042 709 —

DEST089 2467 710 1048

DEST098 1422 649 1086

DEST104 — — 1061

DETH005 3030 721 1075

DETH009 2995 721 1086

DETH013 2945 710 1086

DETH016 1937 — —

DETH018 3027 721 1086

DETH020 3002 721 1086

DETH024 1193 — —

DETH025 2542 370 —

DETH026 1474 721 1072

DETH027 1444 705 1086
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Table A1. Continued.

training val test

stat. ID

DETH036 2996 721 1086

DETH040 2926 721 1078

DETH041 3003 710 1043

DETH042 2993 697 1086

DETH060 2519 721 1086

DETH061 2465 721 1063

DETH095 — — 1059

DETH096 — — 898

DEUB001 1202 721 1075

DEUB003 1436 — —

DEUB004 2746 721 932

DEUB005 1422 721 974

DEUB013 414 — —

DEUB021 369 — —

DEUB026 1768 — —

DEUB028 2602 603 1086

DEUB029 2834 721 1062

DEUB030 2893 710 947

DEUB031 1845 — —

DEUB032 1629 — —

DEUB033 2034 — —

DEUB034 1434 — —

DEUB035 1977 — —

DEUB036 411 — —

DEUB038 1628 — —

DEUB039 1676 — —

DEUB040 1549 — —

DEUB041 781 — —

DEUB042 687 — —

Tot. stations 312313 212 204

Tot. samples 643788 145030 212093
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Table A2. Summarised skill scores S (m,r,o) based on the MSE (CASE I - IV) and relating terms (AI - CIV) as described in Sect. A3.

m denotes the prediction model, r is the reference and o denotes the observation. The ’×’ sign marks if a term (AI to CIV) appears in the

different factorisations. The following abbreviations are used: corr. for correlation, obs. for observation, ref. reference (forecast), cond. for

conditional, int. for internal, and ext. for external.

kleinert

Term CASE I CASE II CASE III CASE IV Formula Meaning

r: o o? µ µ reference

int. single int. multi ext. single ext. multi

AI × × × × ρ2mo potential skill

AII × ρ2o?o corr. obs.-ref.

AIII ×
(
µ−o
σo

)2

trend

AIV × ρ2µo corr. obs.-ref.

BI × × × ×
(
ρmo− σm

σo

)2

cond. bias

BII ×
(
ρo?o− σo?

σo

)2

cond. bias

BIV ×
(
ρ2µo−

σµ
σo

)2

cond. bias

CI × × × ×
(
m−o
σo

)2

uncond. bias

CIV ×
(
µ−o
σo

)2

trend

Eq. (A7) (A8) (A9) (A10)

53



Table A3. Specific compile options passed to keras’ compile method. Other keywords which are not listed in this table are left with default

values.

keyword value

optimizer adam(lr=0.001, amsgrad=True)

loss Eq. (3), Eq. (2)

loss_weight 0.01, 0.99
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Table A4. Specific information and rates used to setup the model architecture

Setting value

dropout rate 0.35

reguralizer keras.regularizers.l2(0.01)

epochs 300

activation (all without last layer) ELU

activation (output layers) linear

padding symmetric padding
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