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Abstract. This manuscript presents different application cases and validation results of the latest version release of the

FALL3D-8.0 model, an open-source atmospheric transport model. The code has been redesigned from scratch to incorporate

different categories of species and to overcome legacy issues that precluded its preparation towards extreme-scale computing.

Validation results are shown for long-range dispersal of fine volcanic ash and SO2 clouds, tephra fallout deposits and dispersal

and ground deposition of radionuclides. The first two examples (i.e. the 2011 Puyehue-Cordón Caulle and 2019 Raikoke erup-5

tions) make use of geostationary satellite retrievals for two purposes: first, to furnish an initial data insertion condition for the

model; and second, to validate the time series of model outputs against the satellite retrievals. The metrics used to validate the

model simulations of volcanic ash and SO2 are the Structure, Amplitude and Location (SAL) metric and the Figure of Merit

in Space (FMS). The other two application cases are validated with scattered ground-based observations of deposit load and

local particle grain size distributions from the 23 February 2013 Mt. Etna eruption and with measurements from the Radioac-10

tivity Environmental Monitoring (REM) database during the 1986 Chernobyl nuclear accident. Simulation results indicate that

FALL3D-8.0 outperforms previous code versions both in terms of model accuracy and code performance. We also find that

simulations initialised with the new data insertion scheme consistently improve agreement with satellite retrievals at all lead

times out to 48 hours for both SO2 and long-range fine ash simulations.

1 Introduction15

FALL3D-8.0 is the latest major version release of FALL3D (Costa et al., 2006; Folch et al., 2009), an open-source code with 15+

years of track record and a growing number of users in the volcanological and atmospheric science communities. A companion

paper (Folch et al., 2020) details the physics and novel numerical implementation of the code, which has been redesigned

and rewritten from scratch in the framework of the EU Center of Excellence for Exascale in Solid Earth (ChEESE). From the

point of view of model physics, a relevant improvement in the new version v8.x has been the generalisation of the code to20

deal with atmospheric species other than tephra such as other types of particles (e.g. mineral dust), aerosols and radionuclides

(see Table 3 in Folch et al., 2020, for details). These different categories and sub-categories of species can be simulated using
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independent sets of bins and dedicated parameterisations for physics, emissions (source terms) and interactions among bins

(e.g. aggregation, chemical reactions, radioactive decay, etc.). In terms of model performance, the new model version contains a

much more accurate and less diffusive solver, as well as a better memory management and parallelisation strategy that notably25

outperforms the scalability and the computing times of the precedent code versions v7.x (Folch et al., 2020).

This paper complements the companion paper by Folch et al. (2020) presenting a detailed set of validation tests on several

real application cases, all included in the new benchmark suite of the code. Here we present model validation examples for

different species including dispersal and deposition of tephra, SO2 clouds and radionuclides. The manuscript also contains

some novel aspects regarding satellite detection and retrievals, as well as a data insertion methodology for volcanic ash and SO230

clouds. This data insertion scheme is a preliminary step towards model data assimilation using ensembles, a novel functionality

currently under development. Section 2 presents the methodology for ash and SO2 detection and quantitative retrievals based on

InfraRed (IR) geostationary satellite measurements, which takes into account collocated lidar observations of cloud-top height

and thickness from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) platform (Winker et al.,

2009). These high temporal resolution mass loading retrievals are used for quantitative model validation and to demonstrate35

the new data insertion scheme in FALL3D-8.0 for both volcanic ash and SO2 dispersion. The data insertion scheme uses a

conservative interpolation algorithm to furnish an initial model condition from the satellite mass loading retrievals. Section 3

describes the validation metrics employed here, which include the Structure, Amplitude and Location (SAL) metric (Wernli

et al., 2008) and the Figure of Merit in Space (FMS; Galmarini et al., 2010; Wilkins et al., 2016) to quantitatively compare

model results with satellite retrievals and the minimization of the Root-Square-Mean-Error (RSME) and similar metrics for40

validation of the ground deposit simulations of tephra and radionuclides. Section 4 describes the different validation cases

(summarised in Table 1), which include simulations of the June 2011 Puyehue-Cordón Caulle ash cloud, the June 2019 Raikoke

SO2 cloud, the 23 February 2013 Mt. Etna ash cloud and associated tephra fallout deposit and the dispersal of radionuclides

resulting from the 1986 Chernobyl nuclear accident. Finally, Section 5 summarises the conclusions of the manuscript and

outlines the next steps in terms of model development and applications.45

2 Satellite retrievals

2.1 Volcanic ash

Satellite detection of volcanic ash using passive IR Brightness Temperature Differences (BTD) between channels centered

around 11 and 12 µm has been widely used for more than 30 years (Prata, 1989a, b). Quantitative ash retrievals based on the

BTD method have also been practiced for a long time (e.g. Wen and Rose, 1994; Prata and Grant, 2001) and the uncertainties50

stemming from detection (e.g. Simpson, 2000; Prata et al., 2001) and retrievals (e.g. Wen and Rose, 1994; Corradini et al.,

2008; Kylling et al., 2014; Stevenson et al., 2015; Western et al., 2015) are well-known. In order to validate FALL3D-8.0 and

test the new volcanic ash data insertion scheme, we use measurements from the SEVIRI (Spin Enhanced Visible and Infrared

Imager; Schmetz et al., 2002) instrument onboard Meteosat-9 during the 2011 Puyehue-Cordón Caulle (hereafter Cordón

Caulle) eruption in Chile (described in Sec. 4.1).55
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2.1.1 Volcanic ash detection

Figure 1 shows SEVIRI observations of the Cordón Caulle volcanic ash plume and illustrates the steps used to detect volcanic

ash in the present study. For context, Fig. 1a and 1b show a composite of MODIS true colour imagery and the SEVIRI 10.8

µm brightness temperature (T 11
B ) respectively. Here, we propose an ash detection scheme based on applying successive masks

that flag SEVIRI pixels as ‘ash-affected’ before attempting a subsequent quantitative ash retrieval (Sec. 2.1.2):60

1. First, we apply a temperature cut-off threshold to water vapor corrected BTDs (∆Tash):

∆Tash = T 11
B −T 12

B < Twc (1)

that is, only those pixels with ∆Tash less than the cut-off threshold of Twc =−0.5 K are flagged as potential ash pixels.

This water vapor correction follows the semi-empirical approach of Yu et al. (2002). As illustrated in Fig. 1c, this first

threshold is reasonably effective at detecting the Cordón Caulle ash cloud. However, this simple cut-off threshold may65

not remove false positives due to temperature inversions generated by clear land at night (Platt and Prata, 1993), ice-

covered surfaces (Yamanouchi et al., 1987), cold cloud-tops (Potts and Ebert, 1996) and high satellite zenith angles (Gu

et al., 2005).

2. Second, we apply a cold surface mask designed to remove false positives due to reasons mentioned above. This cut-off

condition relabels potential ash pixels as ‘ash free’ if:70

∆Tash > Tsc and




T 11
B > 255 K over land

T 11
B > 240 K over ocean

(2)

where Tsc =−1.5 K is the cold surface cut-off value. We note that T 11
B condition of this mask will preserve ash detection

sensitivity for high altitude (cold) ash clouds, which is particularly well-suited for the Cordón Caulle case study. How-

ever, this condition may not be suitable for low-level ash clouds (low thermal contrast resulting in less negative BTDs in

addition to warmer cloud-tops). The effect of this mask is illustrated by comparing Figs. 1c and d. Note how, for the case75

shown, the cold surface mask removes almost all false positives over the region covered by low-level stratiform cloud.

3. Third, we apply a mask for false positives due to an increased path length at high satellite zenith angles (Gu et al., 2005).

We mask out false positives at high zenith angles imposing:

∆Tash > Tzc and ζ > 80o (3)

where Tzc =−2 K is the zenith cut-off threshold and ζ is the satellite zenith angle. The effect of the high zenith mask80

can be seen by comparing Figs. 1d and e.

4. Finally, the last step in the detection process is to remove any spurious ash-labeled pixels using a noise filter that removes

objects (groups of contiguous pixels) that are less than 16 pixels in size (Fig. 1f).
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The MODIS true color composite shown in Fig. 1a illustrates that, even in a relatively complex scene (numerous clouds, large

regions of land and ocean, high mountains, ice-covered surfaces, etc.), the ash detection is robust and provides a good balance85

between reduced false positives and increased true positives. An interesting point to note is that negative BTDs in the vicinity

of Cordón Caulle are enhanced due to the high satellite zenith angles at these locations. Gu et al. (2005) discuss the benefit of

improved sensitivity to ash at high satellite zenith angles, but also show that mass loading retrievals can be overestimated in

these situations. We correct for the effect of high zenith angles after retrieving the mass loading.

2.1.2 Volcanic ash retrieval90

Once pixels have been identified as being ‘ash-affected’ we apply a Look-up Table (LuT) approach (Prata and Grant, 2001;

Prata and Prata, 2012) to retrieve volcanic ash optical depth (τ ), effective radius (re; in µm), and column mass loading (ml;

in gm−2). The retrieval procedure is illustrated in Fig. 2a. The temperature difference model employed here is based on the

forward model developed by Prata (1989b) and Wen and Rose (1994):

Iλ ≈ e−τ(λ)B(Ts) +
(

1− e−τ(λ)
)
B(Tc) (4)95

where Iλ is the radiance at the top of the atmosphere at wavelength (λ), τλ is the wavelength-dependent optical depth,B(Ts) is

the Planck radiance evaluated for surface temperature (Ts) below the ash cloud, andB(Tc) is the Planck radiance corresponding

to the temperature at the ash cloud-top (Tc). The optical depth is defined as:

τ(λ) = πL

∞∫

0

r2Qext(λ,r)n(r)dr (5)

where L is the geometric thickness of the ash cloud, Qext(λ,r) is the extinction efficiency factor (determined from Mie100

calculations), r is the particle radius and n(r) represents the distribution of particles within the ash cloud. The ash mass

loading is determined as:

ml =
4
3
ρ

reτ(λ)
Qext(λ,re)

cos(ζ), (6)

where ρ is the ash particle density (set to 2500 kgm−3 based on field measurements reported by Dominguez et al. (2020) for

distal ash) and the cos(ζ) term corrects the mass loading based on the satellite zenith angle. Uncertainties using this approach105

have been previously estimated to be up to 50% (Wen and Rose, 1994; Corradini et al., 2008). Our microphysical model, used

to parameterize a volcanic ash cloud in the radiative transfer calculations, assumes that ash particles are spherical, composed

of andesite and conform to a lognormal size distribution with a spread equal to 0.5 (geometric standard deviation σg = 1.65),

similar to existing operational volcanic ash retrieval algorithms (e.g. Francis et al., 2012; Pavolonis et al., 2013).

The retrieval scheme relies on interpolating pre-computed LuTs generated by conducting radiative transfer calculations made110

for varying values of re, τ , Ts and Tc. The LuTs are generated using a new python implementation of the original FORTRAN

code developed by Prata (1989b) to solve the radiative transfer equation for a single-layer ash cloud using the Discrete Ordi-

nates Method (DOM; Stamnes et al., 1988; Laszlo et al., 2016). In the present study, we consider τ in the range from 0–9.9 in

4
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steps of 0.1 and re from 1–15 µm in steps of 0.2 µm. All radiative transfer calculations use 16 radiation streams and a unique

LuT is generated for every combination of Tc and Ts identified from ash-affected pixels. Figure 3 shows a graphical example115

of a LuT generated for one combination of Ts and Tc and the range of τ and re considered.

To determine Ts directly from measurements it is generally recommended to find a clear-air pixel near the volcanic cloud of

interest (e.g. Wen and Rose, 1994) and can sometimes be determined by finding the maximum value of T 11
B in the scene (Prata

and Lynch, 2019). Obtaining an estimate for Tc from measurements, however, can be more difficult as the minimum value

of T 11
B may not correspond to the (semi-transparent) ash cloud of interest. Nevertheless, even if Ts and Tc can be reasonably120

estimated from measurements, it is often assumed that a single or mean value (and corresponding standard deviation) is repre-

sentative of the entire ash cloud. Figure 1 shows that, in our case, the ash plume extends more than 60° in longitude and 20° in

latitude, over land (including the Andes mountain ranges) and ocean, meaning that there is a considerable variation in cloud-top

and surface temperature across ash-affected pixels. In addition, the meteorological setting within the considered spatial and

temporal domains is complex (significant amounts of clouds), making estimates of Ts and Tc from measurements challenging125

for the Cordón Caulle case study. To account for variation in Ts and Tc across space and time, we use ERA5 reanalysis data to

determine Ts and Tc at every ash-affected pixel over our study period from 5–10 June 2011 (in one hour time steps).

To determine Ts from ERA5, we use the surface skin temperature (Tskin) and assume that the atmospheric transmittance

(tatm) has only a small effect on measured radiances at the top of the atmosphere for spit-window channels (i.e. tatm ≈ 1).

We also correct Tskin for variations in land surface emissivity using the University of Wisconsin global IR land surface emis-130

sivity database (Seemann et al., 2008). For ocean surfaces, we set the emissivity to 0.99 consistent with Western et al. (2015).

Analysis comparing T 11
B SEVIRI measurements against the emissivity-corrected Tskin for clear-sky pixels on 4 June 2011

indicates average differences of ∼2 K. To determine Tc from ERA5 we require an estimate of the volcanic cloud-top height.

A fortuitous CALIPSO pass early on during the eruption on 5 June 2011 reveals that the Cordón Caulle ash cloud reached as

high as 13–14 km above sea level (Fig. 4a) and later observations indicate heights from 10–13 km (Fig. 4b). For the retrievals135

presented here, we take Tc to be the ERA5 temperature at 13 km (a. s. l.) and make the simplifying assumption of constant

height at all locations (and times) for every ash-affected pixel detected during 5–10 June 2011. The assumption of constant

cloud-top height allows Tc to vary in time, horizontally but not vertically. However, FALL3D-8.0 simulations indicate that the

height of the Cordón Caulle ash cloud was relatively stable over the course of its dispersion in the atmosphere and so we expect

errors introduced by this assumption to be small. This was probably due to its injection into the stratosphere and its transport140

via the Southern hemisphere jet stream (height variations from 11–15 km; Klüser et al., 2013; Vernier et al., 2013; Prata et al.,

2017). For our study period from 5–10 June 2011, Tc ranged from 206–226 K while Ts ranged from 230–304 K. We therefore

performed radiative transfer calculations to construct unique LuTs, in steps of 2 K, for every possible combination of Ts and

Tc within these ranges.

2.2 Sulphur dioxide145

Retrieval methods applicable to broadband IR satellite observations have largely focussed on exploiting SO2 absorption fea-

tures near 8.6 µm and 7.3 µm (e.g. Realmuto et al., 1994; Prata et al., 2003; Watson et al., 2004). To validate the new SO2
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scheme in FALL3D-8.0, we apply a three-channel technique to IR geostationary satellite measurements to retrieve total SO2

column densities in Dobson Units (DU) (Prata et al., 2003; Prata and Kerkmann, 2007; Doutriaux-Boucher and Dubuisson,

2009). The three-channel technique exploits the strong SO2 absorption feature near 7.3 µm and is only sensitive to upper-level150

SO2 (> 4 km) due to the absorption of lower-level water vapor at this wavelength. We use the recent SO2-rich eruption of

Raikoke volcano in Russia during June 2019 as a validation case study and apply the SO2 retrieval to observations made by the

multispectral Advanced Himawari Imager (AHI) instrument aboard Himawari-8 geostationary satellite (Bessho et al., 2016).

2.2.1 SO2 detection

The three channels used to detect SO2 using AHI measurements are centred around 6.9, 7.3 and 11.2 µm. To determine whether155

there is an SO2 signal in the data, we first construct a synthetic 7.3 µm brightness temperature by interpolating from 6.9 to

11.2 µm in the radiance space and then converting to brightness temperature via the Planck function (Prata et al., 2003). Figure 5

illustrates how the interpolation procedure works in radiance space. The resulting ‘clear’ brightness temperature (T 7.3
BC) is a

good approximation of the measured value (T 7.3
B ) in a SO2-free atmosphere, so that one can identify SO2 clouds by taking the

difference between these two variables:160

∆TSO2 = T 7.3
BC −T 7.3

B (7)

In theory, ∆TSO2 should be equal to zero under clear-sky conditions and increase with increasing SO2 column density. However,

in reality, high satellite zenith angles and variations in temperature and humidity can cause ∆TSO2 to be positive even under

clear-sky conditions (Prata et al., 2003; Doutriaux-Boucher and Dubuisson, 2009). To remove false positives due to high

satellite zenith angles and high water vapour burdens, we compute two SO2-related BTDs (∆T69 and ∆T86) and apply two165

successive temperature cut-off thresholds:

∆T69 = T 6.9
B −T 7.3

B > T69 (8)

where only those pixels with a ∆T69 greater than a cut-off threshold of T69 =−2.5 K are flagged as potential SO2. The second

threshold takes advantage of the SO2 absorption feature near 8.6 µm:

∆T86 = T 11
B −T 8.6

B > T86 (9)170

where only those pixels with a ∆T86 greater than a cut-off threshold of T86 = 3.5 K are flagged as potential SO2.

In addition, the presence of meteorological clouds and embedded volcanic ash can also affect the interpolation procedure

used to construct T 7.3
BC . Figures 6a to 6c show, respectively, T 7.3

B , T 7.3
BC , and ∆TSO2 brightness temperatures for the SO2-rich

Raikoke cloud on 22 June 2019 at 21:00 UTC. Clearly, the interpolation procedure does a good job at removing the SO2 signal

from the measurements resulting in excellent detection sensitively for ∆TSO2 . Comparison of Figures 6d, e and f show how the175

∆T69 and ∆T86 thresholds are used to remove false alarms whilst preserving legitimate SO2-affected pixels.
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2.2.2 SO2 retrieval

As mentioned above, ∆TSO2 calculated via Eq. (7) is a function of the total column density of SO2. The SO2 retrieval is

based on constructing this function from offline radiative transfer calculations. For this purpose we use the MODTRAN-

6.0 code (Berk et al., 2014) to compute top-of-the-atmosphere (TOA) radiances at the 7.3 µm wavelength (Fig. 2b). All180

radiances determined from MODTRAN-6.0 were convolved using the AHI spectral response functions. These radiances are

then converted to brightness temperatures to compute BTDs between an SO2-free atmosphere and atmospheres with varying

column amounts of SO2 at 7.3 µm (i.e. ∆TSO2 ). We are then able to generate a function representing the relationship between

the SO2 column density, u(∆TSO2), and ∆TSO2 by interpolating between the data points generated from the radiative transfer

modelling (Fig. 8). In practice we generate this function using a 1D quadratic interpolation procedure implemented in the185

SciPy python package (Virtanen et al., 2020). Atmospheric profiles of temperature, humidity and gases were taken from the US

standard atmosphere. In varying the SO2 column amounts, we must specify an SO2 profile. We use CALIPSO total attenuated

backscatter profiles collocated with Himawari-8 observations of ∆TSO2 to constrain the SO2 profiles used in the radiative

transfer calculations for the Raikoke case. When using the CALIPSO observations to determine the height and thickness of

SO2 layers we make the assumption that SO2 is collocated with sulphate aerosols (Carboni et al., 2016; Prata et al., 2017).190

Figure 7a shows a daytime CALIOP overpass intersecting SO2 layers detected by Himawari-8 during the initial explosive phase

of the Raikoke eruption. The vertical distribution of cloud/aerosol layers in the CALIOP observations reveal that the eastern

part of the plume reached at least 12 km (a.s.l.). Later CALIOP/AHI observations reveal complex stratospheric dynamics;

two distinct components are apparent in the attenuated backscatter data with thin layers (1–2 km) present at 13–15 km in the

northern part of the SO2 cloud and ∼12 km in the southern part (Fig. 7b). Based on these initial observations, we constructed195

u(∆TSO2) using a uniform SO2 distribution with a maximum cloud-top height of 13.5 km and thickness of 2.5 km (Fig. 8).

The retrieval then proceeds by computing ∆TSO2 from AHI data and evaluating u(∆TSO2) for every SO2-affected pixel.

2.3 Data insertion

The data insertion scheme was recently introduced in FALL3D-8.0 and is briefly described in Folch et al. (2020). Here we

describe the data insertion setup used for the Cordón Caulle and Raikoke case studies. To insert IR satellite retrievals of200

volcanic ash and SO2 (described in Sects. 2.1.2 and 2.2.2) into FALL3D, the satellite retrievals were re-sampled (using nearest

neighbour sampling) from their native projection into a regular 0.1°× 0.1° latitude-longitude grid, consistent with the FALL3D

grid. The vertical distribution must also be specified in the model as the satellite retrievals represent total column loadings (i.e.

2D spatial fields). For the cases presented here, CALIOP observations were used to constrain the vertical distribution of ash

and SO2. Note that the vertical distribution is only required for the data insertion time. The data insertion times used for205

Cordón Caulle and Raikoke are 2011-06-05 15:00 UTC and 2019-06-22 18:00 UTC, respectively. The FALL3D configuration

parameters for the simulations with and without data insertion are summarised in Table 1.
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3 Validation metrics

Both qualitative and quantitative validation approaches have been used to validate previous versions of FALL3D against satel-

lite observations (Corradini et al., 2011; Folch et al., 2012). Here we use the SAL metric (Wernli et al., 2008) to quantitatively210

compare satellite retrievals of volcanic ash (Sect. 2.1.2) and SO2 (Sect. 2.2.2) to the corresponding simulations with and without

data insertion. The SAL metric was developed for validation of precipitation forecasts against radar and satellite data (Wernli

et al., 2008). Dacre (2011) demonstrated its use for validation air pollution simulations and Wilkins et al. (2016) employed SAL

for dispersion model validation against IR satellite volcanic ash retrievals for the 2010 Eyjafjallajökull eruption. More recently

SAL has been used to compare online vs. offline model simulations of volcanic ash (Marti and Folch, 2018). As in Wilkins215

et al. (2016) and Marti and Folch (2018), we also use the FMS score as a complement to SAL for comparing the spatial cover-

age of observed vs. modelled fields. A detailed mathematical description of the SAL metric is presented in Wernli et al. (2008)

and so we only provide a brief description of each of the components of SAL (i.e. S, A and L) in the following subsections.

The main requirement for calculating SAL is the determination of model and observation objects. Objects are identified as

clusters of contiguous pixels whose magnitude is above some threshold corresponding to a physical quantity determined from220

observations. In our case, the threshold is determined based on the detection limit of the satellite retrievals. For the SEVIRI

ash retrievals (Cordón Caulle case; Sect. 2.1.2), we use a threshold of 0.2 gm−2 consistent with the threshold suggested by

Prata and Prata (2012). For the Himawari-8 SO2 retrievals (Raikoke case; Sect. 2.2.2), there is currently no commonly accepted

detection threshold. For the purposes of identifying SO2 objects, we allowed for a threshold of 5 DU, noting that the minimum

detected SO2 total column burdens at each time step in the satellite retrievals were∼8–10 DU (after applying the threshold tests225

defined in Sect. 2.2.1). The objects are determined for both observation (satellite retrievals) and model fields and are computed

as the absolute sum of S, A and L, which results in an index that varies from 0 (best agreement) to 6 (worst agreement). All

comparisons between observations and model simulations are made using a regular 0.1° × 0.1° latitude-longitude grid.

3.1 Amplitude

The Amplitude (A) metric is the simplest of the three metrics used to construct SAL and compares the normalised difference230

of the mass-averaged values of the observation and model fields. It can vary from -2 to +2 where negative (positive) values

indicate that the model is under-predicting (over-predicting) the mass when compared with observations.

3.2 Location

The Location (L) metric has two components (L = L1 + L2). L1 is calculated as the distance between the centers of mass between

the model and observation fields, normalised by the maximum distance across the specified domain. It can vary from 0 to +1235

and is considered a first-order indication of the accuracy of the model simulation compared with observations. However, L1 can

equal 0 (suggesting perfect agreement) for situations where observation and model fields clearly do not agree. For example,

Wernli et al. (2008) describe the case of two objects at opposite sides of the domain having the same center of mass as a single

object in the center of the domain. L2 was introduced to handle these situations by considering the weighted average distance
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between the overall center of mass and the center of mass of each individual object for both model and observation fields. L2240

is computed by taking the normalised difference between the model weighted average distance and the observation weighted

average distance. It is scaled such that it varies from 0 to +1 (to vary over the same range as L1), meaning that L varies in the

range from 0 to +2.

3.3 Structure

The Structure (S) metric is the most complex of the three metrics used to construct SAL. The general idea is to compute the245

normalised ‘volume’ of all individual objects for each dataset (i.e. the model and observation fields). The normalised volumes

are computed by dividing the total (sum) mass of each object by its maximum mass. The weighted mean of the normalised

volumes is then computed for the observation and model fields and S is computed by taking the difference between the weighted

means. The S metric can vary from -2 to +2, where negative values indicate that modelled objects are too small or too peaked

(or a combination of both) compared to the observed fields.250

3.4 Figure of Merit in Space

The FMS score compares the spatial coverage of observed vs. modelled fields. It is simply the area of intersection divided by

the area of union between the ash mass loading observation and model fields:

FMS =
Amod ∩Aobs

Amod ∪Aobs
, (10)

where Amod and Aobs are the modelled and observed ash mass loading areas, respectively. The FMS varies from 0 (no intersec-255

tion) to 1 (perfect overlap).

4 Validation cases

4.1 The 2011 Cordón Caulle fine ash cloud

The Puyehue-Cordón Caulle volcanic complex (PCCVC), located in the southern volcanic zone of the central Andes, comprises

a 20 km long, NW-SE oriented fissure system (Cordón Caulle) and the Puyehue stratovolcano (Elissondo et al., 2016). On 4260

June at around 14:45 LT (18:45 UTC), a new vent opened at 7 km NNW from the Puyehue volcano (Collini et al., 2013),

initiating a remarkable example of a long-lasting plume with complex dynamics, strongly influenced by the interplay between

eruptive style, atmospheric winds and deposit erosion (Bonadonna et al., 2015). The initial explosive phase of the eruption (4-

14 June) was characterised by the development of eruption columns with heights oscillating between 6-14 km above sea level

(a.s.l.). Plume heights progressively decreased (4-6 km a.s.l) between 15 and 30 June, and low intensity ash emission persisted265

for several months (Elissondo et al., 2016). Due to the predominant westerly winds, ash was transported towards Argentina and

a wide area of the arid and semi-arid regions of northern Patagonia was severely affected by tephra dispersal and fallout. The

eruption had multiple impacts on the ecosystem, critical infrastructures, human activities and several economic sectors (e.g.
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agriculture, aviation, and tourism; Wilson et al., 2013).

Figures 9 and 10 compare satellite retrievals and model simulations at 24, 48, and 72 h after starting time for runs with and270

without data insertion, respectively. The time-series of each validation metric (for Cordón Caulle and Raikoke) are also shown

in Fig. 11 and summarised in Table 2. Comparison of Figs. 9a and 10a highlight the advantage of a data insertion scheme. For

the simulation without data insertion (Fig. 10a), the plume has already begun to deviate from the satellite observations with too

much mass dispersing towards the south. This is reflected in both the SAL score of 1.93 and FMS score of 0.22 at this time.

The data insertion scheme (Fig. 9a) naturally corrects for this by taking advantage of good quality satellite observations of275

the vertical and horizontal structure of the Cordón Caulle ash plume at this time. For the data insertion simulations, FALL3D

accurately represents the spatial structure of the satellite retrievals after 24 hours with a SAL score of 1.3 and FMS of 0.42

(Fig. 9b; see Supplementary Material for the full animation of the data insertion simulations). In addition, the accuracy of the

simulations over the first 24 hours shows a marked improvement when compared to the simulations without data insertion

(Fig. 10b; SAL = 1.84; FMS = 0.32). The validation metric time-series show this in more detail (Figs. 11a and c). For the280

simulations without data insertion, the SAL score remains above 2 for most of the first 24 hours while the SAL gradually

increases from 0 to 1.3 for the simulation with data insertion. Comparison of Figs. 9b and 10b shows that the data insertion

simulation is better able to capture the northern portion of the plume than the simulation without data insertion at this time

(an increase in the FMS by 0.1). Inspection of the time-series of the individual validation metrics for the simulations with data

insertion (Fig. 11a) reveals that the SAL is largely being affected by increases in the L metric (i.e. increases in the distance285

between the centres mass between the observation and model fields) and decreases in the A metric (model under-predicting

mass compared to observations). The S metric only exhibits minor deviations when compared to the observations during the

first 24 hours after data insertion. At 48 hours, the simulations with and without the data insertion are almost identical (minor

differences in the modelled ash contours near 30° S, 15° W). This is because, at this time, almost all of the ash used in

the data insertion has exited the domain. For the simulations without data insertion, the SAL score is 1.2 and FMS is 0.14290

(Fig. 9c; Table 2); however, at around 36 hours the SAL reached above 2 and then decreased sharply (Fig. 11c). The reason

for the sudden reduction in SAL just after 36 hours is most likely due to the satellite retrievals being compromised by cloud

interference at this time in addition to the continual input of mass at the source in the model simulations. This input of mass

was included to account for ash erupted after the data insertion time. The satellite retrievals capture some of the ash plume near

source (Figs. 9c and 10c), but cannot be expected to accurately characterise the plume at this location due to its high opacity295

in the IR window. Another difference between the model and observations at this time is the large difference in the centres of

mass (L = 0.32). This is due to the high mass loadings near source in the model fields and high mass loadings near the centre

of the domain (43° S, 35° W) in the observed fields. The satellite is likely over-estimating mass in this part of the ash cloud

because of underlying meteorological clouds that have not been accounted for in the radiative transfer modelling. After 72

hours (Fig. 9d), the simulations with and without data insertion are identical as all ash used in the data insertion scheme has300

exited the domain by this time. At this time the SAL has reached a score of 1.71 and the FMS has decreased to 0.10, reflecting

the fact that the model has continued to deviate from the observations with time.
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4.2 The 2019 Raikoke SO2 cloud

On 21 June 2019, a small island volcano, Raikoke (48.292° N, 153.25° E, 551 m a.s.l.), underwent a significant explosive

eruption disrupting major aviation flight routes across the North Pacific. Raikoke is located in the central Kuril Islands, a305

remote island chain that lies south of Russia’s Kamchatka peninsula. Ground-based networks are sparse in this area and so

satellite observations were crucial for tracking the volcanic ash and SO2 produced by the eruption. The eruption sequence was

characterised by a series of ∼9 ‘pulses’, injecting ash and gases into the atmosphere. The International Space Station captured

a unique view of the eruption’s umbrella plume during its initial explosive phase which was reminiscent of the 2009 Sarychev

Peak umbrella plume (https://earthobservatory.nasa.gov/images/145226/raikoke-erupts). The eruption sequence was captured310

extremely well by the Himawari-8 satellite at both IR and visible wavelengths. According to our analysis of the satellite data,

the initial explosive phase began at around 18:00 UTC on 21 June (05:00 LT on 22 June at around sunrise) and ended at

around 10:00 UTC on 22 June (21:00 LT just before sunset). The Smithsonian Institution’s Global Volcanism Program (GVP)

report on the 2019 Raikoke eruption also documents less intense activity at the volcano from 23–25 June following the initial

explosive phase (Global Volcanism Program, 2019).315

During the initial explosive phase on 21 June 2019, a significant amount of SO2 was injected into the atmosphere making

the eruption an ideal case to study long-range SO2 transport and dispersion. Preliminary analysis of TROPOMI SO2 retrievals

indicated that ∼1.4–1.5 Tg SO2 was injected into the atmosphere (Global Volcanism Program, 2019). Hyman and Pavolonis

(2020) present SO2 retrievals based on Cross-track Infrared Sounder (CrIS) measurements and show a time-series of SO2 total

mass with a peak between 1–1.1 Tg SO2. The maximum total mass recorded by the Himawari-8 retrievals presented here320

indicate ∼1.4 Tg SO2. However, it should be noted that the retrievals presented here are preliminary and require further cross-

validation with other satellite retrievals in addition to an analysis of the uncertainty on these retrievals, which is beyond the

scope of the present study.

Figures 12 and 13 show a comparison between the satellite retrievals and model simulations with and without data insertion,

respectively, in addition to the SAL and FMS validation metrics. The time-series of validation metrics for the Raikoke case325

study are shown in Figs. 11b and 11d and are summarised in Table 2. We selected a data insertion time of 22 June 2019 at 18:00

UTC (1 day after the beginning of the eruption) as this is a time when the SO2 cloud was completely detached from source

(Fig. 12a). Note that the AHI retrievals of the SO2 plume at the beginning of the eruption (Fig. 7a) were likely compromised

by interference of ice particles in the initial eruption plume (Prata et al., 2003; Doutriaux-Boucher and Dubuisson, 2009). In

addition, retrievals early on in the plume’s dispersion may have been affected by band saturation caused by extremely high SO2330

column loads.

At the data insertion time (22 June 2019 at 18:00 UTC), the SAL score for the FALL3D SO2 simulation without data

insertion is 2.87 and the FMS is 0.32. Therefore, applying data insertion at this time represents a significant correction of

the model simulation to the satellite observations (compare Fig. 12a and Fig. 13a). The main difference between the satellite

observations and simulation without data insertion is that the model indicates a portion of the SO2 plume connecting back to335

the volcano while this feature is not present in the observations. TROPOMI observations of the SO2 cloud confirm this spatial
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structure (see Fig. 13 of Global Volcanism Program, 2019). The reason for the lack of detection of SO2 in this region in the

AHI retrievals is probably due to water vapour interference, implying that this part of the plume was at lower altitudes than

the main SO2 cloud. Indeed, SO2 height retrievals from CrIS data show that plume heights varied from ∼3–7 km a.s.l. in this

region (see Fig. 5 of Hyman and Pavolonis, 2020).340

For the simulations without data insertion, at 24 hours after insertion, the validation metrics exhibit minor changes with

SAL decreasing from 2.87 to 2.59 and the FMS from 0.32 to 0.23 (Fig. 13a, b). For the simulations with data insertion, SAL

has steadily increased from 0 to 1.21 while the FMS has decreased from 1 to 0.29 over the first 24 hours (Fig. 12a, b; see

Supplementary Material for the full animation of the data insertion simulations). Figure 11b shows that the SAL score for the

simulation with data insertion is largely affected by the S and A scores whereas the L score is low (0.05) indicating the FALL3D345

is able to track the centre of mass of SO2 very well when initialised with satellite retrievals (Fig. 11b). In this case the A metric

is negative, meaning that the model is under-predicting the mass when compared to the satellite retrievals. This is probably due

to the fact that the total mass retrieved by the satellite actually increases after the data insertion time. An increase in SO2 mass

cannot be accounted for in the data insertion scheme if no new sources of SO2 are included in the model simulations. A reason

for an increase in mass in the satellite retrievals, even after the SO2 cloud has detached from source, could be due to several350

factors related to the detection sensitivity of the retrieval. An interesting physical reason for the increase in SO2 could be that

ice particles in the nascent plume were sequestering SO2 initially and then releasing it later on as the plume dispersed into

the atmosphere (Rose et al., 2001). Increases in the satellite-retrieved SO2 mass can also be due to the horizontal and vertical

distribution of water vapour. For example, if the SO2 cloud is in a region of high water vapour initially and then moves into a

drier region it is likely that more SO2 will be detected thus increasing the retrieved mass. This effect can also occur if the SO2355

layers are transported vertically in the atmosphere.

At 48 hours, for the simulations without data insertion (Fig. 13c), the SAL score actually improves (decreasing from 2.58

to 1.88) and the FMS largely remains the same (decreasing from 0.23 to 0.20). The improvement in the SAL score can be

attributed to a steady increase in S metric and decrease in the A metric (Fig. 11d). This indicates that the structure and mass

(amplitude) modelled by the simulations without data insertion are converging towards that observed by the satellite over 48360

hours. For the simulations with data insertion, at 48 hours after insertion (Fig. 12c), the SAL score has continued to increase

(from 1.21 to 1.38) and the FMS has continued to decrease (from 0.29 to 0.25). In general, at all lead times, the validation

metrics indicate that the data insertion simulations provide better agreement with observations than the simulations without

data insertion (Table 2).

4.3 The 2013 Mt. Etna tephra deposit365

On 23 February 2013 at 18:15 UTC, the eruptive activity of Mt. Etna increased significantly. A buoyant plume rising up to

9 km above sea level (a.s.l.) along with incandescent lava fountains exceeding 500 m above the crater were generated during

the paroxysmal phase (Poret et al., 2018), resulting in an ash plume extending towards the NE for more than 400 km away

from the source and moderate ash fallout over the Italian regions of Calabria and Puglia.

In order to simulate this event using high-resolution wind fields, we ran first the ARW (Advanced Research WRF) core of370
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the WRF (Weather Research and Forecasting) model (Skamarock et al., 2008) on a single-domain configuration consisting of

700× 700 grid points with 4 km horizontal resolution and 100 vertical levels with a maximum height of 50 hPa. The initial

and boundary conditions for WRF/ARW were extracted from hourly ERA5 reanalysis data, with a spatial resolution of around

0.25◦and 137 vertical model levels.

A FALL3D run was initialised with a start time of 18:00 UTC on 23 February with a uniform source distribution (TOP-HAT375

option) reaching 5.5 km above the vent (i.e. 8.7 km a.s.l) and a thickness of 3.5 km. The model was configured with a horizontal

resolution of 0.015◦ and 60 vertical levels up to 11 km in a computational domain comprising all deposit sampling locations.

The particle Total Grain Size Distribution (TGSD) was discretised into 32 bins (diameter d in the range −6Φ≤ d≤ 6Φ) with

densities varying between 1000 and 2500 kg m−3 for coarser and finer bins respectively, and a constant sphericity of 0.92. We

considered a bi-Gaussian (in Φ) TGSD following Poret et al. (2018), who performed numerical simulations with subpopulation380

means of µc =−2.96, µf = 0.49, and standard deviations of σc = 1.03, σf = 0.79. However, as already noted by Poret et al.

(2018), this distribution underestimates the fine ash fraction. In order to correct this drawback, the simulation was run with a

fine-enriched bi-Gaussian TGSD given by

f(Φ) =
p

σc
√

2π
exp

(
− (Φ−µc)2

2σ2
c

)
+

1− p
σf
√

2π
exp

(
− (Φ−µf )2

2σ2
f

)
(11)

with the mean and standard deviation for the fine subpopulation given, respectively, by µf = 2.54 and σf = 0.38, and the385

coarse subpopulation was defined by the parameters µc =−2.96 and σc = 1.03. The fractions of each subpopulation are p and

1− p. In this work, p= 0.7 was used. Table 1 summarises the rest of model configuration options, and the resulting tephra

ground load map is shown in Fig. 14.

In order to validate the FALL3D-8.0 deposit we compared the simulations results to the observations reported by Poret et al.

(2018), which consist of deposit load and local grain-size distribution samples at 10 locations (S1-S10). Proximal sites (S1-S7)390

are located between 5 and 16 km from the vent, whereas the rest of samples (S8-S10) correspond to the locations of Messina

(Sicily, S8), Cardinale (Calabria, S9) and Brindisi (Puglia, S10), the latter located at about 410 km from the volcano.

Figure 15a compares modelled and observed tephra loading at all sites. Note that all points lie within a factor 3 error band and,

remarkably, that a perfect agreement (black solid line) is found across four orders of magnitude (from 10−3 kg m−2 to more

than 10 kg m−2). This good agreement is also observed at a bin level in the local grain size distributions. To illustrate this,395

Fig. 15b compares computed and observed particle distribution modes at all sites (S01-S10). It should be noted that the model

predicts unimodal distributions at all sampling sites in good agreement with field observations.

4.4 The 1986 Chernobyl nuclear accident

One of the most serious nuclear accident on the Earth occurred on 25 April 1986 at 21:23 UTC at the Chernobyl Nuclear

Power Plant (NPP) in Ukraine. Two explosions in the NPP dispersed the radioactive material into the atmosphere where it was400

transported by the winds up to distances of thousands of kilometers away from the NPP.

In order to simulate the dispersion of the radioactive material an estimation of the emission rate from the Chernobyl NPP is

needed. Unfortunately, estimations of such a source term is still very uncertain and they rely on the solution of an inverse

13

https://doi.org/10.5194/gmd-2020-166
Preprint. Discussion started: 17 June 2020
c© Author(s) 2020. CC BY 4.0 License.



problem aimed to reproduce the available measurements in the region of interest at the time of the accident. However, on the

basis of high quality deposition measurements from the Radioactivity Environmental Monitoring (REM) database (De Cort405

et al., 2007), Brandt et al. (2002) reconstructed the source term. Here we used the source term reported by Brandt et al. (2002)

as input for the FALL3D simulations (see Code and data availability statement to access the corresponding input files).

Particle size distributions and settling velocities of radioactive material, such as 134Cs, 137Cs, and 131I, released during the

accident are uncertain and their estimations also complicated by the interaction with other atmospheric particles and aerosols

(Brandt et al., 2002). Effective settling velocities range from 0.0005 to 0.005 m/s for 137Cs and from 0.001 to 0.02 m/s for410
131I (Brandt et al., 2002). Considering these ranges and discretizing velocities in 4 classes (see Table 3) we chose the effective

classes and fractions through the best fit of the simulations results with the radioactivity values measured on 10 May 1986.

FALL3D simulations were carried out on the computational domain shown in Fig. 16 for the period from 24 April to 10

May 1986, considering the input values reported in Table 3 and the meteorological fields obtained from ERA5 reanalysis

(Copernicus Climate Change Service (C3S), 2017) and accounting for atmospheric diffusion, wet deposition and radioactive415

decays (see Supplementary Material). The comparison of measured and simulated values for the best case (Table 3) is reported

in Fig. 16. We can see that most of simulated values are within an order of magnitude of the measurements (Fig. 17).

Simulations results of the radioactive cloud evolution relative to 137Cs (vertically integrated radioactivity concentration in the

atmosphere, expressed in Bq/m2) from 28 April to 9 May, 1986, are reported in Fig. 18. We can clearly see that simulations

correctly reproduced the patterns described by Brandt et al. (2002). The evolution of the 137Cs dispersal is also available as a420

video in the Supplementary Material, together with videos corresponding to the dispersal of 134Cs and 131I.

5 Conclusions

Four different examples from the new FALL3D-8.0 benchmark suite have been presented to validate the accuracy of the lastest

major version release of the FALL3D model and complement a companion paper (Folch et al., 2020) on model physics and

performance.425

In the first two examples (i.e. far-range fine ash dispersal from the 2011 Cordón Caulle eruption and SO2 cloud dispersal

from the 2019 Raikoke event), collocation of geostationary Meteosat-9 (SEVIRI) and Himawari-8 (AHI) satellite observations

with polar orbiting CALIPSO (CALIOP lidar) passes were used to retrieve column mass loads and characterise the vertical

and horizontal structure of these volcanic clouds at selected data insertion times. Furthermore, new ash and SO2 detection

schemes based on applying successive masks have been proposed. For the volcanic ash case study, the new scheme enhances430

ash detection in complex scenes (e.g. numerous clouds, ice-covered surfaces) and accounts for high satellite zenith angles

(i.e. at the edges of the SEVIRI field-of-view). Simulations with and without the satellite data insertion option have been

compared with 1-hourly satellite retrievals using the SAL and the FMS metrics. The time series of the validation metrics

(Fig. 11) illustrate how simulations deviate from observations with time. According the SAL and FMS metrics, we find that

simulations initialised with data insertion consistently outperform simulations without data insertion. In general, it was found435
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that observations (satellite) are patchier when compared to the smoother model fields, resulting in consistently more objects

being detected in the observation fields, consistent with the findings of Wilkins et al. (2016).

It is not yet clear what absolute values of SAL and FMS should represent an acceptable forecast. For the data insertion

simulations presented here, SAL remained below 1 out to 18 h (Table 2) and below 2 at lead times of 24 and 48 h for both ash

and SO2 simulations. It is unlikely that in an operational setting a model simulation would be relied upon beyond 48 hours.440

Ideally, in an operational setting, the model should be re-run with an updated data insertion time when new, good quality

satellite retrievals become available. From a qualitative perspective it appears that SAL values of less than 1.5 and FMS values

of ∼0.40 indicate good spatial agreement between the model and observation fields (see Fig. 9b). However, it’s also important

to consider that the satellite retrievals can be affected by cloud interference, meaning that the ash/SO2 detection schemes

may miss some legitimate ash or SO2 that the model is otherwise predicting (see Fig. 9c). A data assimilation scheme that445

considers the errors in the satellite retrievals in addition to errors in the model simulations (constructed based on an ensemble

for example) can be used to resolve these issues (e.g. Fu et al., 2017; Pardini et al., 2020).

For the ground deposit load validation case study of the February 2013 Mt Etna eruption, we find exceptionally good

agreement between field observations and FALL3D simulations of deposit loads. Acceptable ratios of model to observed ash

loading (between 1:3 and 3:1) were found across 4 orders of magnitude, i.e., from 10−3 kgm−2 to more than 10 kgm−2. Good450

agreement (between model and field observations) in terms of the mode (φ) of distributions was also found at the majority of

field sampling sites (Fig. 14b).

For the radionuclides validation, we found that the model has a very good performance in reproducing the observations of

the dispersal of the radioactive cloud after the 22 April Chernobyl accident, similarly to other models in the literature (e.g.

Brandt et al., 2002).455

From the point of view of model performance, further expected improvements in the preparation of FALL3D towards Ex-

ascale include memory optimisation, introduction of thread parallelism (OpenMP), code vectorisation, porting to accelerators

(GPUs), performance portability, load balance, asynchronous I/O and preparation for emerging heterogeneous architectures

(Exascale hardware prototypes). In terms of model utilities, next steps are to consider ensemble forecasts and to incorporate

data assimilation.460

Code and data availability. FALL3D-8.0 is available under the version 3 of the GNU General Public License (GPL) at https://gitlab.com/fall3d-

distribution/v8.0. The satellite retrieval files for the 2011 Cordón Caulle and 2019 Raikoke case studies are also available for download on the

the GitLab repository along with input files used to generate the corresponding simulations. Input files for the 2013 Etna and 1986 Chernobyl

case studies are also accessible via the GitLab repository.
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Figure 1. Volcanic ash detection scheme for the Puyehue-Cordón Caulle (indicated by the triangle on each map) eruption. (a) MODIS true

color composite from 2011-06-06 at 15:15–18:40 UTC. (b) SEVIRI 10.8 µm brightness temperature (T 11
B ) at 2011-06-06 18:45 UTC. (c)

Same as (b) with water-vapor corrected BTD (∆Tash = T 11
B −T 12

B ) overlaid. (d), (e) and (f) are the same as (c) with cold surface, high zenith

and noise masks applied, respectively.
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Figure 2. Flow diagram showing the (a) volcanic ash retrieval process and (b) volcanic SO2 retrieval process used in the present study.

Parallelograms indicate datasets (blue for inputs, green for outputs) and rectangles indicate processes (i.e. code used to implement the

retrieval algorithms and perform radiative transfer calculations). Offline calculations are any computations that are pre-computed (i.e. before

any observations are made by the satellite).
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Figure 3. Graphical illustration of a volcanic ash look-up table for a surface temperature Ts = 280 K and cloud-top temperature, Tc = 220

K. Dashed near-vertical lines indicate lines of constant optical depth, τ , and solid U-shaped curves indicate lines of constant effective radius,

re.
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Figure 4. (a) SEVIRI ash mass loadings and CALIOP vertical profile of the Cordón Caulle ash plume on 5 June 2011 at 06:00 UTC. Top

left panel: Mass loading retrievals (yellow-orange-red color scale) with brightness temperatures plotted underneath (red triangle indicates

location of Cordón Caulle). Black line indicates CALIOP track and green highlight indicates full latitude/longitude range displayed on the

bottom panel. Top right panel: 532 nm total attenuated backscatter profile averaged over the latitude/longitude range highlighted on bottom

panel. Bottom panel: 532 nm total attenuated backscatter curtain (black line indicates tropopause). (b) Same as (a), but for 5 June 2011 at

18:00 UTC.
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Figure 5. MODTRAN6.0 simulations for atmospheres with and without SO2 demonstrationing how the interpolation procedure is used to

estimate a clear-sky radiances from an atmosphere with SO2. Convolved radiances were derived using the Himawari-8 spectral response

functions.
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Figure 6. Volcanic SO2 detection scheme applied to Himawari-8 observations of the Raikoke SO2 cloud on 22 June 2019 at 21:00 UTC.

Location of Raikoke volcano indicated by red triangle on each map. (a) Himawari-8 brightness temperature at 7.3 µm (T 7.3
B ). (b) Synthetic

7.3 µm brightness temperature (T 7.3
BC ) determined from interpolation procedure (see Sect. 2.2.1). (c) SO2 BTD (∆TSO2 = T 7.3

B −T 7.3
BC ). (d)

SO2 total column loading, u(∆SO2), (see Sect. 2.2.2 for details). (e) u(∆SO2) with ∆Twv =−2.5 K and 5 DU thresholds. (f) u(∆SO2)

with ∆Twv =−2.5 K, ∆T86 =−3.5 K and 5 DU thresholds.
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Figure 7. (a) AHI SO2 upper-troposphere lower-stratosphere (UTLS) total column burdens (DU) and CALIOP vertical profile of the Raikoke

SO2 plume on 22 June 2019 at 02:00 UTC. Top left panel: 7.3 µm SO2 total column retrievals (white-purple-green-red color scale) with 11

µm brightness temperatures plotted underneath (red triangle indicates location of Raikoke). Black line indicates CALIOP track and green

highlight indicates full latitude/longitude range displayed on the bottom panel. Top right panel: 532 nm total attenuated backscatter profile

averaged over the latitude/longitude range highlighted on the bottom panel. Bottom panel: 532 nm total attenuated backscatter curtain (black

line indicates tropopause). (b) Same (a), but for 25 June 2019 at 14:00 UTC.
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Figure 8. MODTRAN-6.0 simulation results used to derive SO2 total column density as a function of brightness temperature difference (see

Eq. 7) for a uniform distribution with cloud-top height of 13.5 km and thickness of 2.5 km.
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Figure 9. FALL3D-8.0 validation of fine ash mass loading using SEVIRI mass loading retrievals on (a) 5 June 2011 at 15:00 UTC (data

insertion time), (b) 6 June 2011 at 15:00 UTC, (c) 7 June 2011 at 15:00 UTC and (d) 8 June 2011 at 15:00 UTC. Left panels show satellite

retrievals with 0.2 g m-2 contour in blue and centre of mass indicated with ‘x’. Middle panels show FALL3D-8.0 fine ash mass loading model

simulation (0.2 g m-2 contour in red). Right panels show spatial overlap of model vs. observed fields with validation metrics annotated (see

Sect. 3 for details). A full animation of the data insertion simulations is available in the Supplementary Material.
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Figure 10. Same as Fig. 9 but without data insertion.
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Figure 11. Time-series of validation metrics for (a) Cordón Caulle with data insertion, (b) Raikoke with data insertion, (c) Cordón Caulle

without data insertion and (d) Raikoke without data insertion.
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Figure 12. FALL3D-8.0 validation of SO2 simulations using AHI upper-troposphere lower-stratosphere (UTLS) total column burdens re-

trievals (DU) on (a) 22 June 2019 at 18:00 UTC (data insertion time), (b) 23 June 2019 at 18:00 UTC and (c) 24 June 2019 at 18:00 UTC.

Left column shows satellite retrievals with 5 DU contour in blue and centre of mass indicated with ‘x’. Middle column shows FALL3D-8.0

model simulation (5 DU contour in red). Right column shows spatial overlap of model vs. observed fields. A full animation of the data

insertion simulations is available in the Supplementary Material.
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Figure 13. Same as Fig. 12 but without data insertion.
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Figure 14. Tephra fallout deposit simulated for the Mt. Etna eruptive episode on 23 February 2013. The spatial distribution of the modelled

tephra loading coincides with the locations of sampling sites. Sites S7-S10 are indicated in the map by symbols. Proximal sites S1-S6

(< 16km from the source) not shown for clarity.
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Figure 15. Comparison between field data at 10 sampling sites (S1-S10) and results of numerical simulations for the Mt. Etna eruptive

episode on 23 February 2013. (a) Tephra mass loading. (b) Mode of the distributions. Field data were obtained from the sample dataset

reported by Poret et al. (2018).

36

https://doi.org/10.5194/gmd-2020-166
Preprint. Discussion started: 17 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 16. Simulated accumulated total deposition of 137Cs related to the Chernobyl accident, evaluated on 10 May 1986. The underlying

map is reported just for reference and could contain nations borders that are under dispute.
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Figure 17. Comparison between measurements and simulated deposit at different locations of 137Cs, 134Cs and 131I, for the Chernobyl

accident, evaluated on 10 May 1986.
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Figure 18. Simulated vertically integrated radioactivity concentration in the atmosphere of 137Cs related to the Chernobyl accident, at

different times. (a) 28 April 1986, (b) 2 May 1986, (c) 5 May 1986 and (d) 9 May 1986. The underlying maps are reported just for reference

and could contain nations borders that are under dispute.
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Table 1. Summary of model setup for the validation cases.

Parameter Cordón Caulle A Cordón Caulle B Raikoke A Raikoke B Mt. Etna Chernobyl

Start date 2011-06-04 2011-06-05 2019-06-21 2019-06-22 2013-02-23 1986-04-25

Start time 21:00 UTC 15:00 UTC 18:00 UTC 18:00 UTC 18:00 UTC 00:00 UTC

Run period 99 h 81 h 72 h 48 h 10 h 384 h

Resolution (hor.) 0.1◦ 0.1◦ 0.1◦ 0.1◦ 0.015◦ 0.125◦

Vertical levels 60 60 80 80 60 60

Species Fine ash Fine ash SO2 SO2 Tephra Radionuclides

Data insertion No Yes No Yes No No

Source type Top-Hat Top-Hat Suzuki No source Top-hat hybrid

Initial col. height 11.2 km 13 km 15.5 km (max)† 13.5 km 8.7 km 3.3. km

Initial col. thickness 2 km 2 km - 2.5 km 3.5 km -

Meteo. driver ERA5 ERA5 GFS GFS WRF-ARW ERA5

Validation

Validation data
SEVIRI (Meteosat-9)

collocated with CALIPSO
AHI (Himawari-8)

collocated with CALIPSO 10 ground points
56 ground points
(REM database)

Validation metrics SAL SAL point-to-point error point-to-point error

†Variable column height between 3.5 and 15.5 km
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Table 2. Summary of the SAL and FMS validation scores for the Cordón Caulle and Raikoke case studies considered in this manuscript. The

‘DI’ columns indicate validation scores for runs with data insertion and ‘NDI’ indicates scores for runs with no data insertion.

Validation metrics S A L |SAL| FMS

DI NDI DI NDI DI NDI DI NDI DI NDI

2011 Cordón Caulle

0 h 0.0 -1.31 0.0 -0.5 0.0 0.12 0.0 1.93 1.0 0.22

6 h 0.04 -1.48 -0.24 -0.68 0.11 0.08 0.39 2.24 0.56 0.26

12 h -0.37 -1.68 -0.3 -0.69 0.24 0.05 0.91 2.42 0.48 0.24

18 h -0.17 -1.57 -0.33 -0.68 0.36 0.07 0.86 2.31 0.43 0.29

24 h -1.0 -1.22 -0.22 -0.54 0.08 0.09 1.3 1.84 0.42 0.32

30 h -0.6 -0.85 -0.24 -0.52 0.1 0.12 0.95 1.49 0.38 0.3

36 h -0.55 -0.77 -0.01 -0.23 0.74 0.75 1.3 1.76 0.4 0.34

42 h 0.46 0.15 0.11 -0.06 0.63 0.37 1.19 0.58 0.3 0.28

48 h -0.83 -0.84 0.08 0.06 0.32 0.3 1.24 1.2 0.14 0.14

54 h 0.04 0.03 0.41 0.43 0.71 0.67 1.16 1.13 0.11 0.1

60 h 0.64 0.64 0.83 0.83 0.67 0.67 2.15 2.15 0.09 0.09

66 h 0.41 0.41 0.91 0.91 0.45 0.45 1.76 1.76 0.09 0.09

72 h 0.46 0.46 0.89 0.89 0.36 0.36 1.71 1.71 0.1 0.1

2019 Raikoke

0 h 0.0 -1.18 0.0 1.67 0.0 0.02 0.0 2.87 1.0 0.32

6 h -0.09 -0.98 -0.13 1.63 0.02 0.04 0.24 2.65 0.52 0.28

12 h -0.24 -1.14 -0.29 1.57 0.04 0.05 0.57 2.76 0.37 0.24

18 h -0.46 -0.89 -0.46 1.51 0.04 0.04 0.96 2.44 0.31 0.22

24 h -0.67 -1.03 -0.49 1.5 0.05 0.04 1.21 2.58 0.29 0.23

30 h -0.62 -0.82 -0.59 1.45 0.05 0.04 1.27 2.31 0.24 0.22

36 h -0.6 -0.52 -0.58 1.46 0.11 0.09 1.29 2.07 0.25 0.2

42 h -0.84 -0.52 -0.69 1.4 0.07 0.06 1.6 1.97 0.23 0.21

48 h -0.68 -0.47 -0.67 1.39 0.03 0.02 1.38 1.88 0.25 0.2

Table 3. Total radioactivity emitted in the atmosphere during the Chernobyl accident in the period 24 April - 10 May, 1986, for Caesium and

Iodine isotopes, and their best fit fractions in the considered settling velocity classes

Radionuclide Total activity (PBq) Vs=2cm/s Vs=3cm/s Vs=4cm/s Vs=6cm/s

134Cs 54 0.54 0.46
137Cs 85 1.0
131I 1760 1.0
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