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Abstract. Current turbulence parameterizations in numerical weather prediction models at the mesoscale assume a local equi-

librium between production and dissipation of turbulence. As this assumption does not hold at fine horizontal resolutions,

improved ways to represent turbulent kinetic energy (TKE) dissipation rate (ε) are needed. Here, we use a 6-week data set of

turbulence measurements from 184 sonic anemometers in complex terrain at the Perdigão field campaign to suggest improved

representations of dissipation rate. First, we demonstrate that a widely used Mellor, Yamada, Nakanishi, and Niino (MYNN)5

parameterization of TKE dissipation rate leads to a large inaccuracy and bias in the representation of ε. Next, we assess the

potential of machine-learning techniques to predict TKE dissipation rate from a set of atmospheric and terrain-related features.

We train and test several machine-learning algorithms using the data at Perdigão, and we find that multivariate polynomial re-

gressions and random forests can eliminate the bias MYNN currently shows in representing ε, while also reducing the average

error by up to 30%. Of all the variables included in the algorithms, TKE is the variable responsible for most of the variability10

of ε, and a strong positive correlation exists between the two. These results suggest further consideration of machine-learning

techniques to enhance parameterizations of turbulence in numerical weather prediction models.
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1 Introduction

While turbulence is an essential quantity that regulates many phenomena in the atmospheric boundary layer (Garratt, 1994),20

numerical weather prediction models are not capable of fully resolving it. Instead, they rely on parameterizations to represent

some of the turbulent processes. Investigations into model sensitivity have shown that out of the various parameterizations

1

https://doi.org/10.5194/gmd-2020-16
Preprint. Discussion started: 21 April 2020
c© Author(s) 2020. CC BY 4.0 License.



currently used in mesoscale models, that of turbulent kinetic energy (TKE) dissipation rate (ε) has the greatest impact on the

accuracy of model predictions of wind speed at wind turbine hub height (Yang et al., 2017; Berg et al., 2018).

Current boundary layer parameterizations of ε in mesoscale models assume a local equilibrium between production and25

dissipation of TKE. While this assumption is generally valid for homogeneous and stationary flow (Albertson et al., 1997),

as the horizontal grid resolution of mesoscale models is constantly pushed toward finer scales thanks to the increase of the

computing resource capabilities, the theoretical bases of this assumption are violated. In fact, turbulence produced within a

model grid cell can be advected farther downstream in a different grid cell before being dissipated (Nakanishi and Niino, 2006;

Krishnamurthy et al., 2011; Hong and Dudhia, 2012).30

The inaccuracy of the mesoscale model representation of ε impacts a wide variety of processes that are controlled by the

TKE dissipation rate. In fact, the dissipation of turbulence affects the development and propagation of forest fires (Coen et al.,

2013), it has consequences on aviation meteorology and potential aviation accidents (Gerz et al., 2005; Thobois et al., 2015), it

regulates the dispersion of pollutants in the boundary layer (Huang et al., 2013), and it affects wind energy applications (Kelley

et al., 2006); for example, in terms of the development and erosion of wind turbine wakes (Bodini et al., 2017).35

Several studies have documented the variability of ε using observations from both in-situ (Champagne et al., 1977; Oncley

et al., 1996; Frehlich et al., 2006) and remote-sensing instruments (Frehlich, 1994; Smalikho, 1995; Shaw and LeMone, 2003).

Bodini et al. (2018, 2019b) showed how ε has strong diurnal and annual cycles onshore, with topography playing a key role

in triggering its variability. On the other hand, offshore turbulence regimes (Bodini et al., 2019a) are characterized by smaller

values of ε, with cycles mostly impacted by wind regimes rather than convective effects. Also, ε greatly increases in the wakes40

of obstacles, for example wind turbines (Lundquist and Bariteau, 2015; Wildmann et al., 2019) or whole wind farms (Bodini

et al., 2019b).

This knowledge on the variability of TKE dissipation rate provided by observations lays the foundation to explore innovative

ways to improve the model representation of ε in the atmospheric boundary layer. In this study, we leverage the potential of

machine-learning techiniques to explore their potential application to improve the parameterizations of ε. Machine-learning45

techniques can successfully capture the complex and nonlinear relationship between multiple variables without the need of

representing the physical process that governs this relationship. They have been successfully used to advance the understanding

of several atmospheric processes, such as convection (Gentine et al., 2018), turbulent fluxes (Leufen and Schädler, 2018), and

precipitation nowcasting (Xingjian et al., 2015). The renewable energy sector has also experienced various applications of

machine-learning techniques, in both solar (Sharma et al., 2011; Cervone et al., 2017) and wind (Giebel et al., 2011; Optis and50

Perr-Sauer, 2019) power forecasting. Applications have also been explored at the wind turbine level, for turbine power curve

modeling (Clifton et al., 2013), turbine faults and controls (Leahy et al., 2016), and turbine blade management (Arcos Jiménez

et al., 2018).

Here, we train and test different machine-learning algorithms to predict ε from a set of atmospheric and topographic vari-

ables. Section 2 describes the Perdigão field campaign and how we retrieved ε from the sonic anemometers on the meteorolog-55

ical towers. In Section 3, we then evaluate the accuracy of one of the most common planetary boundary layer parameterization

schemes used in numerical weather prediction: the Mellor, Yamada, Nakanishi, and Niino (MYNN) parameterization scheme
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Figure 1. Map of the Perdigão valley showing the location of the 48 meteorological towers whose data are used in this study.

(Nakanish, 2001). Section 4 presents the machine-learning algorithms that we used in our analysis. The results of our study are

shown in Section 5, and discussed in Section 6, where future work is suggested.

2 Data60

2.1 Meteorological towers at the Perdigão field campaign

The Perdigão field campaign (Fernando et al., 2018), an international cooperation between several universities and research

institutes, brought an impressive number of instruments to a valley in central Portugal to survey the atmospheric boundary

layer in complex terrain. The Perdigão valley is limited by two mountain ridges running from northwest to southeast (Figure

1), separated by∼1.5 km. The intensive operation period (IOP) of the campaign, used for this study, was from 1 May to 15 June65

2017.

At Perdigão, 184 sonic anemometers were mounted on 48 meteorological towers, which provided an unprecedented density

of instruments in such a limited domain (Figure 1). Observations from the sonic anemometers (a mix of Campbell Scientific

CSAT3, METEK uSonic, Gill WindMaster, and YOUNG Model 81000 instruments) are recorded at a 20-Hz frequency. The

height of the towers ranged from 2 m to 100 m, with the sonic anemometers mounted at various heights (histogram in Figure70
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Figure 2. Histogram of the heights of the 184 sonic anemometers considered in this analysis. The bin for the lowest height includes sonic

anemometers at 2 m above ground level (AGL).

2), allowing for an extensive survey of the variability of the wind flow in the boundary layer. Data from the sonic anemometers

have been tilt-corrected following the planar fit method (Wilczak et al., 2001).

2.2 TKE dissipation rate from sonic anemometers

TKE dissipation rate from the sonic anemometers on the meteorological towers is calculated from the second-order structure

function of the horizontal velocity (Muñoz-Esparza et al., 2018):75

ε=
1
Uτ

[aDU (τ)]3/2 (1)

where DU (τ) is the second-order structure function of the horizontal velocity, U , calculated over temporal increments, τ , and

a= 0.52 is the one-dimensional Kolmogorov constant (Paquin and Pond, 1971; Sreenivasan, 1995). ε is calculated every 30 s,

and the fit to the Kolmogorov model (Kolmogorov, 1941; Frisch, 1995) is done using a temporal separation between τ1 = 0.1

s and τ2 = 2 s (Bodini et al., 2018). To exclude tower wake effects, data have been discarded when the recorded wind direction80

was within ± 30◦ of the direction of the tower boom. Data during precipitation periods (as recorded by a precipitation sensor

on the tower ’riSW06’ on the southwest ridge) have also been discarded from further analysis.

2.3 Input features for machine-learning algorithms

In order to train machine-learning algorithms to predict (the logarithm of) ε, a set of input features needs to be provided. By

taking advantage of the main findings of the observational studies on the variability of ε, we decided to use both atmospheric-85

and terrain-related variables to capture the impact of topography on atmospheric turbulence. Therefore, we use the following

input features (calculated at the same location and height as ε) for all of the considered algorithms:

– wind speed;
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– TKE, calculated as

TKE =
1
2
(
σ2
u +σ2

v +σ2
w

)
(2)90

where the variances of the wind components are calculated over 2-minute intervals;

– TKE3/2, which is the main variable currently used to represent ε in parameterizations in numerical weather prediction

models (Nakanish, 2001);

– friction velocity, calculated as

u∗ = (u′w′
2

+ v′w′
2
)1/4. (3)95

An averaging period of 30 minutes (De Franceschi and Zardi, 2003; Babić et al., 2012) has been used to apply the

Reynolds decomposition and calculate average quantities and fluctuations.

– height above the ground zson;

– Obukhov length, L, calculated from each sonic anemometer to classify atmospheric stability. We calculate L as

L=− θv ·u3
∗

k · g ·w′θ′v
. (4)100

θv is the virtual potential temperature (K); u∗ = (u′w′
2

+ v′w′
2
)1/4 is the friction velocity (m s−1); k = 0.4 is the von

Kármán constant; g = 9.81 m s−2 is the gravity acceleration; and w′θ′v is the kinematic sensible heat flux (m K s−1).

For atmospheric stability, we classify neutral conditions as L≤ -500 m and L > 500 m; unstable conditions as -500 m

< L≤ 0 m; and stable conditions as 0 m < L≤ 500 m (Muñoz-Esparza et al., 2012);

– the ratio zson/L;105

– the standard deviation std(zterr) of the terrain elevation in a 1-km radius sector centered on the measurement point (i.e.,

the location of the sonic anemometer). The angular extension of the sector is set equal to ±30◦ from the recorded wind

direction (an example is shown in Figure 3). In this way, we can capture the influence of upwind topography to trigger

turbulence.

The distribution of the input features and of log(ε) are shown in the Supplement.110

While we acknowledge that the input features are not fully uncorrelated, we found that including all these features provides a

better predictive power for the learning algorithms, despite negatively affecting the computational requirements of the training

phase. The application of principal component analysis can help reduce the number of dimensions in the input features while

preserving the predictive power of each, but it is beyond the scope of the current work.
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Figure 3. Example of an upwind terrain elevation sector with a 1-km radius centered on the location of one of the meteorological towers at

Perdigão.

3 Accuracy of current parameterization of TKE dissipation rate in mesoscale models115

Before testing the performance of machine-learning algorithms in predicting TKE dissipation rates, we first assess the current

accuracy of the parameterization of ε in numerical models. In the Weather Research and Forecasting model (WRF) (Skamarock

et al., 2005), the most widely used numerical weather prediction model, turbulence in the boundary layer can be represented

with several planetary-boundary-layer (PBL) schemes, most of which implicitly assume a local balance between turbulence

production and dissipation. Among the different PBL schemes, the MYNN scheme is one of the most commonly chosen.120

Turbulence dissipation rate in MYNN is given as a function of TKE as (Nakanish, 2001)

ε=
(2 TKE)3/2

B1 LM
(5)

where B1 = 24, and the master length scale, LM , is defined with a diagnostic equation, based on large-eddy simulations, as a

function of three other length scales

1
LM

=
1
LS

+
1
LT

+
1
LB

. (6)125

LS is the length scale in the surface layer, given by

LS =





κ z/3.7 ζ ≥ 1

κ z (1 + 2.7 ζ)−1 0≤ ζ < 1

κ z (1−α4 ζ)0.2 ζ < 0

(7)
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where κ= 0.4 is the von Kármán constant, ζ = z/L (with L the Obukhov length), α4 = 100.0.

LT is the length scale depending upon the turbulent structure of the PBL (Mellor and Yamada, 1974), defined as

LT = α1

∫∞
0

q z dz∫∞
0

q dz
(8)130

where q =
√

2 TKE, and α1 = 0.23.

LB is a length scale limited by the buoyancy effect, given by

LB =





α2 q/N ∂Θ/∂z > 0 and ζ ≥ 0

α2 q+α3 q (qc/LT N)1/2

N ∂Θ/∂z > 0 and ζ < 0

∞ ∂Θ/∂z ≤ 0

(9)

with N the Brunt-Väisälä frequency, Θ the mean potential temperature, α2 = 1.0, and α3 = 5.0.

From the available observations from the meteorological towers at Perdigão, only LS can be determined, while the calculation135

of LT and LB would only be possible with critical assumptions about the vertical profile of TKE. Therefore, we decide to

approximate LM as

1
LM
≈ 1
LS

. (10)

By doing so, LM is overestimated, which in turn implies that ε as calculated from Eq. (5) will be underestimated.

To evaluate the accuracy of the MYNN parameterization of ε, we calculated, every 30 s, the parameterized ε using Eq. (5)140

(with the approximation in Eq. (10)) from all of the 184 sonic anemometers considered in the study, and compared with the

observed values of TKE dissipation rate (Figure 4) derived from the sonic anemometers with Eq. (1). Given the extremely

large range of variability of ε, we calculate all the error metrics using the logarithm of predicted and observed ε. The TKE

dissipation rate predicted by the MYNN parameterization shows, on average, a large positive bias compared to the observed

values, with a mean bias (in logarithmic space) of +28%. This bias would be even larger if LM was calculated including all the145

contributions according to Eq. (6), and not Ls only as in our approximation. The root-mean-square error (RMSE) is 0.76, and

the mean absolute error (MAE) is 0.57.

Different atmospheric stability conditions give different biases. Figure 5 compares observed and parameterized ε values for

stable and unstable conditions, classified based on the Obukhov length, L, measured at each sonic anemometer. Stable cases

show the largest bias (mean of +63% in terms of the logarithms of ε), whereas for unstable conditions the bias is smaller (mean150

of +7% in terms of the logarithms of ε). The MYNN parameterization of ε is therefore especially inadequate to represent small

values of ε, which mainly occur in stable conditions.

Different heights also impact the accuracy of the parameterization of ε. As shown in Figure 6, the mean bias in parameterized

log(ε) decreases with height. Close to the surface (data from the sonic anemometers at 2 m AGL), a mean bias (in logarithmic

space) of almost +30% is found, whereas for the sonic anemometers at 100 m AGL, we find a mean bias of ∼ +20%. This155

difference in bias with height becomes much larger if the bias is calculated on the actual ε values (and not on their logarithm).

7

https://doi.org/10.5194/gmd-2020-16
Preprint. Discussion started: 21 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 4. Density histogram showing the comparison between observed and MYNN-parameterized ε from the 184 sonic anemometers at

Perdigão.

Figure 5. Density histogram showing the comparison between observed and MYNN-parameterized ε from the 184 sonic anemometers at

Perdigão for stable conditions (left) and unstable conditions (right), as quantified by the Obukhov length calculated at each sonic anemometer.

Therefore, our results show how the MYNN formulation fails in accurately representing atmospheric turbulence especially in

the lowest part of the boundary layer.
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Figure 6. Mean bias in the MYNN-parameterized log(ε) at different heights, as calculated from the 184 sonic anemometers at Perdigão.

4 Machine-learning algorithms

To test the power of machine learning to improve the numerical representation of the TKE dissipation rate, we consider three160

learning algorithms in this study: multivariate linear regression, multivariate third-order polynomial regression, and random

forest. These models are trained and tested to predict the logarithm of ε. For all but the random forest algorithm, the data were

scaled and normalized. Time stamps with missing data were removed from the analysis.

For the purpose of machine-learning algorithms, the data set has to be divided into three subsets: training, validation, and

testing sets (Friedman et al., 2001). The algorithms are first trained multiple times with different hyperparameters (model165

parameters set before the training phase) on the training set, then the validation set is used to choose the best set of hyperpa-

rameters, and finally the predicting performance of the trained algorithm is assessed on the testing set. Usually, the data set is

split randomly into training, validation, and testing sets. However, as the data used in this study consist of observations taken

every 30 s, data in contiguous time stamps are likely characterized by a large auto-correlation. Therefore, the traditional random

split between training and testing data would lead to an artificially enhanced performance of the machine-learning algorithms,170

which would be tested on data with a large auto-correlation with the ones used for the training. Therefore, here we use one

concurrent week of the data for testing (∼17% of the data), whereas the other 5 weeks are split between training (4 weeks,

66% of the data) and validation (1 week, 17% of the data). The 1-week testing period is shifted continuously throughout the

considered 6 weeks of observations at Perdigão, so that each model is trained and its prediction performance tested six times.

For each algorithm, we evaluate the overall performance based on the RMSE between the actual and predicted (logarithm of)175

ε, averaged over the different week-long testing periods.

Before testing the models, however, it is important to avoid overfitting by setting the values of hyperparameters. To test

different combinations of hyperparameters and determine the best set, we use cross validation with randomized search, with
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Figure 7. Cross-validation approach used to evaluate the performance of the machine-learning models considered in this study.

five parameter settings sampled for each learning algorithm. For each set of hyperparameters, the RMSE between the actual

and predicted log(ε) in the validation test is calculated. For each model, we select the hyperparameter combination (among the180

ones surveyed in the cross validation) that leads to the lowest mean (across the five validation sets) RMSE. We then use this set

as the final combination for assessing the performance of the models on the testing set. Overall, the procedure is repeated six

times, by shifting the 1-week testing set (Figure 7).

In the following paragraphs, we describe the main characteristics of the three machine-learning algorithms used in our study.

A more detailed description can be found in machine-learning textbooks (Géron, 2017).185

4.1 Multivariate linear regression

To check whether simple learning algorithms can improve the current numerical parameterization of ε, we test the accuracy of

multivariate linear regression

log(ε̂) = θ0 + θ1 x1 + θ2 x2 + ...+ θn xn (11)

where ε̂ is the machine-learning predicted value of ε, n is the number of features used to predict ε (here 8), xi is the ith feature190

value, and θj is the jth model parameter.

To avoid training a model that overfits the data, regularization techniques need to be implemented, so that the learning model is

constrained: the fewer degrees of freedom the model has, the harder it will be for it to overfit the data. We use Ridge regression

(Hoerl and Kennard, 1970) (Ridge in Scikit-learn) to constrain the multivariate regression. Ridge regression constrains the

weights of the model to have them stay as small as possible. The Ridge regression is achieved by adding a regularization term195
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to the cost function (MSE)

J(θ) =MSE(θ) +α

n∑

i=1

θ2i (12)

where the hyperparameter, α, controls how much the model will be regularized. The optimal value of the hyperparameter, α,

is determined by cross validation, as described earlier, with values sampled in the range from 0.1–10.

4.2 Multivariate third-order polynomial regression200

Multivariate polynomial regression can easily be achieved by adding powers of each input feature as new features. The regres-

sion algorithm is then trained as a linear model on this extended set of features. For a third-order polynomial regression, the

model becomes

log(ε̂) = θ0 +
n∑

i=1

θi xi +
n∑

i=1

θii x
2
i +

n−1∑

i=1

n∑

j=i+1

θij xi xj

+
n∑

i=1

θiii x
3
i +

n∑

i=1

∑

j 6=i
θiij x

2
i xj

+
n−2∑

i=1

n−1∑

j=i+1

n−1∑

k=j+1

θijk xi xj xk (13)

Ridge regression (Ridge in Scikit-learn) is used again to constrain the multivariate polynomial regression, with the hyperpa-205

rameter α in Eq. (12) determined via cross validation, with values sampled in the range from 1–2000.

4.3 Random forest

Random forests (RandomForestRegressor in Scikit-learn) combine multiple decision trees to provide an ensemble pre-

diction.

A decision tree can learn patterns and then predict values by recursively splitting the training data based on thresholds of the210

different input features.

As a result, the data are divided into groups, each associated with a single predicted value of ε, calculated as the average

target value (of the observed ε) of the instances in that group.

As an ensemble of decision trees, a random forest trains them on different random subsets of the training set. Once all the

predictors are trained, the ensemble (i.e., the random forest) can make a prediction for a new instance by taking the average215

of all the predictions from the single trees. In addition, random forests introduce some extra randomness when growing trees:

instead of looking for the feature that, when split, reduces the overall error the most when splitting a node, a random forest

searches for the best feature among a random subset of features.

Decision trees make very few assumptions about the training data. As such, if unconstrained, they will adapt their structure to

the training data, fitting them closely, and most likely overfitting them, without then being able to provide accurate predictions220

on new data. To avoid overfitting, regularization can be achieved by setting various hyperparameters that insert limits to the
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Table 1. Hyperparameters considered for the random forest algorithm.

Hyperparameter Meaning Sampled values

Number of estimators Number of trees in the forest 10 - 250

Maximum depth Maximum depth of the tree 1 - 50

Maximum number of leaf nodes
Maximum number of leaf nodes

in the decision tree
2000 - 500,000

Maximum number of features
Number of features to consider

when looking for the best split
1 - 8

Minimum number of samples to split
Minimum number of samples

required to split an internal node
1 - 200

Minimum number of samples for a leaf
Minimum number of samples

required to be at a leaf node
1 - 50

structure of the trees used to create the random forests. Table 1 shows the hyperparameters considered here and the values we

sampled in the cross-validation search (with five sets of parameters sampled).

5 Results

To evaluate the prediction performance of the three machine-learning algorithms we considered, we use, for each method, a225

density histogram showing the comparison between observed and machine-learning-predicted ε. As error metrics, we compare

RMSE, MAE, and coefficient of determination (R2) of the machine-learning predictions with what we obtained from the

MYNN parameterization, with the caveat that while the MYNN scheme is thought to provide a universal representation of ε,

the machine-learning models have been specifically trained on data from a single field campaign.

Each machine-learning algorithm was tested on six 1-week-long testing periods, as described in Section 4. For each method230

we present the RMSE, MAE, and R2 averaged across the different testing periods. Because the length scale approximation we

made in calculating MYNN-predicted ε lead to an optimistic result, the RMSE and MAE for the MYNN case would in reality

be higher, and the R2 lower, and so the error reductions achieved with the machine-learning algorithms would even be greater

than the numbers we report here.

Predictions from the multivariate linear regression (Figure 8) only show a slight improvement constrained to values of ε235

greater than 10−3 m2 s−3, whereas a severe overestimation of ε is found for low turbulence regimes, when the linear regression

predicts almost constant values of ε. We speculate that this limited performance is mainly because of the fact that the linear

regression can only accurately model ε over the same range of orders of magnitude of TKE (which is the dominant input

feature, as will be systematically proven with the random forest algorithm), while the dissipation rate varies over more orders

of magnitude than TKE (see histograms in the Supplement). Despite the poor agreement with the observations, the multivari-240
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Figure 8. Density histogram showing the comparison between observed and machine-learning-predicted ε from a multivariate linear regres-

sion on the test set.

Figure 9. Density histogram showing the comparison between observed and machine-learning-predicted ε from a multivariate third-order

polynomial regression on the test set.

ate linear regression improves, on average, on MYNN. Overall, the average RMSE (0.66) is 13% smaller than the MYNN

parameterization, and the average MAE (0.51) is 12% lower than the MYNN prediction.

On the other hand, the multivariate third-order polynomial regression provides a significant improvement (Figure 9) for

the representation of ε, by eliminating the average bias found in the MNYNN parameterization. The additional input features

created by the polynomial model allow for an accurate prediction of ε even at the low turbulence regime, as they allow the245

model to cover the full range of variability of ε. We find the average RMSE (0.59) to be over 23% smaller than the MYNN

parameterization, and the average MAE (0.45) is 22% lower than the MYNN representation.
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Figure 10. Density histogram showing the comparison between observed and machine-learning-predicted ε from a random forest on the test

set.

Results from the random forest (Figure 10) provides accurate predictions at both high and low turbulence regimes. The

RMSE (0.53) is reduced by about 30% from the MYNN case, and the MAE (0.41) by 29%, with no average bias between

observed and predicted values of ε.250

Table 2 summarizes the performance of all of the considered algorithms, and includes results also in terms of the coefficient

of determination, R2.

Table 2. Performance of the machine-learning algorithms trained and tested at Perdigão, measured in terms of RMSE, MAE, andR2 between

the logarithm of observed and MYYN-parameterized ε.

MYNN

parameterization

Linear

regression

Third-order

polynomial regression

Random

forest

RMSE 0.76 0.66 0.59 0.53

% change in RMSE -13% -23% -30%

MAE 0.58 0.51 0.45 0.41

% change in MAE -12% -22% -29%

R2 0.40 0.53 0.62 0.68

% change in R2 +33% +55% +70%
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Table 3. Feature importance classification as derived from the random forest.

Input feature Feature importance

TKE 33%

TKE3/2 29%

zson 11%

Wind Speed 8%

ustar 8%

std(zterr) 6%

zson/L 3%

L 2%

5.1 Feature importance

Random forests allow for an assessment of the relative importance of the input features used to predict (the logarithm of) ε. The

importance of a feature is calculated by looking at how much the tree nodes that use that feature reduce the MSE on average255

(across all trees in the forest), weighted by the number of times the feature is selected. Table 3 shows the feature importance

for the eight input features we used in this study.

The feature importance results are affected by the correlation between some of the input features used in the models. We find

how turbulence kinetic energy is the preferred feature for tree splitting, with the largest importance (62% in total, considering

TKE and TKE3/2) in reducing the prediction error for ε in the random forest. This result, which can be expected as both TKE260

and ε are variables connected to turbulence in the boundary layer, agrees well with the current formulation of the MYNN

parameterization of ε, which includes TKE as main term. As TKE is correlated to ustar and L, we find that the decision

trees more often split the data based on TKE, so that the feature importance of its correlated variables is found to be much

lower. The limitations of the Monin-Obukhov similarity theory (Monin and Obukhov, 1954) in complex terrain might also be

an additional cause for the low feature importance of the features associated with L. The height of the measurement is the265

next most important feature (11%), followed by wind speed (at 8%). The standard deviation of the upwind elevation has an

importance of 6%. Though not negligible, the importance of topography might increase by considering different parameters

that could better capture the topographic effect.

5.2 Partial dependence plots

To assess the dependence of TKE dissipation rate on the individual features considered in this study, Figure 11 shows partial270

dependence plots for the features with the largest importance, namely wind speed, friction velocity, TKE, and z (plots for

the rest of the features are included in the Supplement). These are obtained, for each input feature, by applying the machine-

learning algorithm (here, random forests using about 120,000 instances to speed up the computation) multiple times with the
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Figure 11. Partial dependence plots for wind speed; friction velocity, u∗; TKE; and measurement height, z. Distributions of the considered

features are shown in the background.

other feature variables constant (at their means) while varying the target input feature and measuring the effect on the response

variable (here, log(ε)).275

A strong relationship appears between TKE dissipation and low wind speed, with a steep increase in ε for wind speeds up

to ∼2 m s−1. Stronger wind speeds do not appear to have a systematic impact on ε. The relationship between TKE and its

dissipation shows a similar trend, with ε systematically increasing for TKE values up to ∼2 m2 s−2, and staying constant for

stronger TKE values. TKE dissipation also increases with friction velocity, u∗, with a less steep trend. Finally, height above

the ground shows a systematic impact on ε, with a strong downward trend.280
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6 Conclusions

Despite turbulence being a fundamental quantity for the development of multiple phenomena in the atmospheric boundary

layer, the current representations of TKE dissipation rate (ε) in numerical weather prediction models suffer from large inac-

curacies. In this study, we quantified the error introduced in the MYNN parameterization of ε by comparing predicted and

observed values of ε from 184 sonic anemometers from 6 weeks of observations at the Perdigão field campaign. A large posi-285

tive bias (average +28% in logarithmic space) emerges, with larger errors found in atmospheric stable conditions. The need for

a more accurate representation of ε is therefore clearly demonstrated.

The results of this study show how machine learning can provide new ways to successfully represent TKE dissipation rate

from a set of atmospheric and topographic parameters. While ultrasimple models such as linear regression cannot provide a

satisfactory representation of ε, more sophisticated algorithms, such as a random forest approach, lead to over a 30% reduction290

in the average error introduced in the parameterization of ε and eliminate the large bias found in it, for the Perdigão field

campaign. Although the generalization gap between the universal nature of the MYNN parameterization of ε and the campaign-

specific training and testing of the machine-learning models has to be acknowledged, the results of this study can be considered

as a proof of concept of the potentialities of machine-learning-based representations of complex atmospheric processes.

Multiple opportunities exist to extend the work presented here. In the future, additional learning algorithms, such as sup-295

port vector machines and extremely randomized trees, should be considered. Deep learning methods, such as recurrent neu-

ral networks, and specifically long-short term memory, which are well-suited for time-series-based problems, could also be

considered to obtain a more complete overview of the capabilities of machine-learning techniques for improving numerical

representations of ε. Moreover, additional input features could be added to the learning algorithms to possibly identify addi-

tional variables with a large impact on atmospheric turbulence. To this extent, we expect vegetation height to be an important300

parameter to consider. The results could also be analyzed with a focus on the temporal variability of the performance of the

proposed algorithms; for example, at different times of the day, or for different atmospheric stability conditions. Finally, the

learning algorithms developed here would need to be tested using data from different field experiments, to understand whether

the results obtained in this study can be generalized everywhere. Once the performance of a machine-learning representation

of ε has been accurately tested, its implementation in numerical weather prediction models, such as the Weather Research and305

Forecasting model, should be achieved.

Code and data availability. High-resolution data from sonic anemometers on the meteorological towers (UCAR/NCAR, 2019) are avail-

able through the EOL project at https://doi.org/10.26023/8X1N-TCT4-P50X. The random forest code used for the analysis is stored at

https://doi.org/10.5281/zenodo.3754710.
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