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Abstract. This paper describes the development and performance optimization of a 1 

parallel computing infrastructure for an unstructured-mesh global model (GRIST; 2 

Global-to-Regional Integrated forecast SysTem). The focus is on three major aspects 3 

that facilitate rapid iterative development, including parallel computing, index 4 

optimization and an efficient group I/O strategy. For parallel computing, the METIS 5 

tool is used for the partition of the global mesh, which is flexible and convenient for 6 

both the quasi-uniform and variable-resolution simulations. The scaling tests show 7 

that the partition method is efficient. To improve the cache efficiency, several mesh 8 

index reordering strategies are investigated to optimize the performance of the 9 

indirect addressing scheme used in the stencil calculations. The numerical results 10 

show that the indexing strategies are able to speed up the calculations, especially for 11 

running with a small number of processes. To overcome the bottleneck of poor I/O 12 

efficiency for the high-resolution or massively parallel simulations, a group parallel 13 

I/O method is implemented and proven to be of high efficiency in the numerical 14 

experiments. Altogether, these three aspects of the parallel computing toolkits are 15 

encapsulated in a few interfaces, which can be used for general parallel modelling on 16 

unstructured meshes. 17 
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 18 

1 Introduction  19 

 20 

The global atmospheric model is an important tool for operational weather 21 

forecasting, climate prediction and research-oriented modelling. In recent years, with 22 

the continuous improvement of computing power of massively parallel computers, the 23 

global model is developed towards higher horizontal resolutions (e.g., Haarsma et al. 24 

(2016); Yu et al. (2019); Stevens et al. (2019); Dueben et al. (2020)). The unstructured 25 

grid (the semi-structured icosahedral grid and the generic Voronoi polygonal grid are 26 

considered in this study) is one of the major choices for these newly developed global 27 

models (e.g., Ullrich et al. (2017)), mainly owing to their ability to allow general 28 

computational patterns and their flexibility to switch between uniform-mesh and 29 

variable-resolution (VR) modelling. 30 

Despite certain advantages of the unstructured meshes, several obstacles have to 31 

be overcome to achieve a practical computational efficiency. First, to support both the 32 

quasi-uniform and VR simulations, the parallel-partition strategy should be general 33 

enough and possesses a good load balance. The conventional method of dividing an 34 

icosahedral grid into 10 identical rhombi and partitioning each rhombus into blocks 35 

(e.g., MacDonald et al. (2011)) is typically not applicable. Second, the neighbours of 36 

a grid point on the unstructured meshes cannot be obtained by simple index shifting; 37 

thus, the indirect addressing scheme (MacDonald et al. (2011)) is typically used to 38 

perform the stencil calculations. This results in discontinuous memory access during 39 

model integration, which reduces the efficiency of compiler optimization and cache 40 

reuse. Although the directly addressed vertical index can be put on the innermost 41 

dimension, the computational performance in our numerical experiment is not that 42 

good, which might slightly differ from the testing conclusion of MacDonald et al. 43 

(2011) where no appreciable performance penalty for the indirect addressing scheme 44 

is observed. Third, because the mesh points distributed to each process cannot form a 45 

regular rectangular area as supported by a structured grid, the I/O operations between 46 

memory and the parallel file system are also discontinuous, posing a bottleneck for 47 

high-resolution and massively parallel computing. In short, to make scientific 48 

computing on an unstructured mesh practical, a unified and efficient approach to 49 

handle the parallel communication, computation and data I/O is an important task. 50 
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Recently, several works have been published for the performance optimization of 51 

the unstructured-mesh models: Sinkovits et al. (2016) introduced some serial 52 

optimization techniques for accelerating the dynamical core of MPAS-A1, together 53 

with a thread-level load balancing method for the atmospheric physics; Govett et al. 54 

(2017) described their parallelization and optimization techniques to efficiently run 55 

the Nonhydrostatic Icosahedral Model (NIM) model on CPU, GPU, and MIC 56 

processors; Koldunov et al. (2019) introduced several model enhancements to 57 

improve the scalability of the Finite-volumE Sea ice–Ocean Model (FESOM) for 58 

large numbers of processes. On the other hand, to increase the efficiency of parallel 59 

I/O, the CFIO (Climate Fast Input/Output, see Wang et al. (2013) or Huang et al. 60 

(2014)) and the XIOS (XML Input/Output Server, refer to Maisonnave et al. (2017)) 61 

libraries applied the asynchronous computation and I/O method that uses dedicated 62 

I/O processes to perform the I/O, thus overlapping the I/O phase with the computing 63 

phase and shortening the entire simulation time; Dennis et al. (2011) adopted the 64 

concept of defining an I/O decomposition to flexibly control the number of I/O 65 

processes and rearrange the data to an I/O friendly manner, which can improve the 66 

I/O throughput. In addition, the workshop “Exascale I/O for Unstructured Grids" 67 

(EIUG: https://www.esiwace.eu/events/workshop-about-unstructured-grids) focused 68 

on the large-scale I/O of unstructured grids, where several talks about the data formats, 69 

I/O middlewares, and post-processing tools were given to deal with the I/O bottleneck 70 

of the unstructured grids. 71 

In this paper, we describe the development and performance optimization of a 72 

parallel computing infrastructure for an unstructured-mesh global model (GRIST; 73 

Global-to-Regional Integrated forecast SysTem). The GRIST framework is developed 74 

based on a hierarchical structure, from a shallow water model (Zhang (2018); Wang et 75 

al. (2019)) to a layer-averaged 3D dry dynamical core (Zhang et al. (2019)), and a 76 

more complete moist dynamical model that supports the incorporation of model 77 

physics (Zhang et al. (2020)). To facilitate rapid iterative development, we have 78 

created a set of developer-friendly parallel computing toolkits to support efficient 79 

establishment of numerical modelling workflow from code development to data 80 

                                            
1 The Atmospheric component of MPAS (the Model for Prediction Across Scales), refer to Skamarock et al. (2012) 
for more information。 
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evaluation. In this study, we describe three major aspects, which are tightly related to 81 

scientific computing on an unstructured mesh. These include: 82 

– Parallelization. We choose the METIS library (Karypis et al. (1998)) to 83 

partition the global mesh points and design a general communication interface with an 84 

internal collection mechanism to improve the communication efficiency. A scientific 85 

model developer can utilize these tools without knowledge of the communication 86 

details. The scaling test results suggest that our parallelization method is efficient. 87 

– Index optimization. To improve the cache efficiency, we compare three 88 

index-optimization techniques with the default unordered option. Sarje et al. (2015) 89 

applied two space filling curve (SFC) index reordering strategies (Hilbert and Morton 90 

curves) for the unstructured meshes and obtained 40% improvement. These two 91 

methods and the breadth-first-search (BFS: 92 

https://en.wikipedia.org/wiki/Breadth-first_search) strategy are considered in this 93 

paper. We find that all the three strategies are able to accelerate the calculations, and 94 

the BFS strategy usually generates the optimal results. 95 

– Data I/O strategies. For improving the I/O efficiency, we have implemented a 96 

group I/O method for the unstructured mesh. The group I/O method can combine the 97 

small non-continuous accesses into larger continuous ones, thus increasing the I/O 98 

granularity as well as reducing the number of I/O processes. Numerical tests show 99 

that the group I/O method can significantly improve the I/O efficiency. A similar 100 

strategy has also been employed by Yang et al. (2019), but for the structured grids. 101 

Altogether, these efforts have helped model development and application and 102 

enabled us to efficiently run GRIST at sub-10 km resolution. The rest of this paper is 103 

organized as follows. Section 2 introduces the parallelization method. Section 3 104 

describes the index-optimization strategies. Section 4 introduces the data I/O 105 

optimization method. The concluding remarks are given in Section 5. 106 

 107 

2 Parallelization 108 

 109 

GRIST utilizes an unstructured icosahedral/Voronoi mesh that supports both the 110 

quasi-uniform and VR Voronoi tessellations (Figure 1). We first define three types of 111 

location/dimension, including the node point (the generating point with which the 112 

primal cell is associated), the triangle point (the corner point of a Voronoi polygon 113 
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with which the dual cell is associated), and the edge point (the intersecting point of a 114 

pair of edges that belong to a primal and dual cell, respectively). Several model 115 

variables are located at each of the three types of mesh points. For example, the 116 

potential temperature is located at the node point, the vorticity is located at the 117 

triangle point, and the normal and tangent velocities are located at the edge point (see 118 

Figure 1c in Zhang et al. (2019)). The node points can be optimized or directly 119 

generated by the Centroidal Voronoi Tessellation (CVT) technique (e.g., Du et al. 120 

(2003); Ringler et al. (2011)), which ensures that the generating points (node points) 121 

are the centroids of the corresponding Voronoi cells (in the limit of the constraint). 122 

During the model development process, two grid generators have been developed to 123 

generate the required mesh information: one is a serial code that adopts the 124 

STRIPACK library (Renka (1997)) to generate the Delaunay triangulations in the 125 

iterations for optimizing the node points, and the other is a parallel code based on the 126 

MPI-SCVT package (Jacobsen et al. (2013)). In this section, we will describe the 127 

parallelization methods, including the mesh partition method and some techniques for 128 

the inter-process communications. 129 

 130 

2.1 Mesh partition 131 

 132 

The partition of the entire global mesh can be obtained by partitioning the node 133 

points. In practice, the METIS library is used to provide a general approach to 134 

partition. METIS is a graph partitioning tool, which uses the input node points, 135 

information of their neighbours and the number of partitioned groups to perform the 136 

partition. A node point and one of its neighbours constitute two vertices of an edge in 137 

the graph. By default, the principle of METIS is to minimize the number of edges 138 

being cut under the constraint that the number of points assigned to each group is 139 

roughly the same (cut-edges refer to the edges whose two vertices belong to different 140 

groups). A smaller number of cut-edges implies less communication between groups, 141 

and the constraint of a roughly equal number of points in each group is to ensure a 142 

good load balance. Figure 1 illustrates a global mesh partitioned by METIS. In this 143 

case, both the quasi-uniform and VR Voronoi cells are partitioned into ten groups. 144 

Cells of the same colour fall in one group and will be assigned to the same process. 145 

As a result of the partitioning principle, all processes are roughly distributed equally 146 
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for the quasi-uniform mesh, while more processes are assigned to the refinement 147 

regions for the VR mesh. 148 

Because the update of data on a mesh point usually requires information on its 149 

adjacent mesh points during the model integration, each process needs the data 150 

belonging to other processes when updating the data on its boundary mesh points (the 151 

mesh points adjacent to mesh points of other processes). To facilitate the calculations, 152 

three types of data areas are defined, including: 153 

(i) Inner area: an area composed of mesh points whose data update does not 154 

require the data from other processes; 155 

(ii) Boundary area: an area composed of mesh points whose data update requires 156 

the data from other processes; 157 

(iii) Halo area: an area composed of extended mesh points in other processes for 158 

the update of boundary data of this process. 159 

The number of layers of the halo area can be flexibly configured. Figure 2 160 

presents an example that uses three halo layers, while in most cases, two layers are 161 

required (as a default). The calculation procedure for the mesh partition operates as 162 

follows. First, we use METIS to partition the global node points, and determine three 163 

types of areas mentioned above based on the partition and neighbourhood information 164 

of the node points. Second, we determine the corresponding partitions of edge and 165 

triangle points based on the partition of node points. Third, we establish the mappings 166 

between the global and the local indices of the node, edge, and triangle points. This 167 

completes the mesh partition. 168 

 169 

2.2 Communication 170 

 171 

Communicating with neighbouring processes is required when one process 172 

updates its data in the halo area. To facilitate the communications, we initialize three 173 

pairs of arrays: ‘send_sites_(v/e/t)’ and ‘recv_sites_(v/e/t)’, for data defined on the 174 

node (v), edge (e) and triangle (t) points, respectively. These arrays are initialized for 175 

each neighbouring process and are used to record the global indices of the data to be 176 

sent to this neighbour as well as the data to be received from this neighbour. Then, the 177 

global indices are converted to the local indices for the ease of data preparations and 178 

assignments. 179 
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The inter-process communications are performed by three consecutive steps: 180 

(i) Data preparation. Each process puts the variable data to be sent to the 181 

temporary sending arrays according to the local indices stored in ‘send_sites’. 182 

(ii) Data sending and receiving. Data are sent and received using the 183 

non-blocking point-to-point communication interfaces in MPI. 184 

(iii) Data assignment. Each process assigns the received data to the halo area of 185 

this variable according to the local indices stored in ‘recv_sites’. 186 

To improve the granularity of data exchange and reduce the number of 187 

inter-process communications, we use a linked list to collect variables that need to be 188 

exchanged. After the collection, the communication interface is called only once to 189 

complete the data exchange of all the variables in the list, which improves the 190 

communication efficiency. When the communications are done, the linked list needs 191 

to be released. 192 

The complicated procedures for communication mentioned above are wrapped 193 

into two subroutines: ‘exchange_data_add’ and ‘exchange_data’. The former one is 194 

used for adding the model variables (whose halo area needs to be updated) to the 195 

linked list. The latter one is used for performing the data exchange and releases the 196 

linked list when the communications are finished. In this way, scientific model 197 

developers only need to decide where and when to utilize these communication tools, 198 

depending on their respective solution techniques and modelling workflow. No 199 

knowledge regarding the details of communication is required, which greatly 200 

facilitates the implementation cost, streamlines the code flow and eases code 201 

refactoring. 202 

 203 

2.3 Scaling tests 204 

 205 

We report the scaling test results to show the efficiency of the partition method 206 

and the communication techniques. All the tests in this paper are carried out on a 207 

Sugon HPC platform. Each computation node contains 64 CPU cores with 256 GB 208 

memory. The Sugon Parastor300 parallel file system is used as the storage system. We 209 

run 60 MPI processes on each node to ensure enough available memory for the tests. 210 
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In this paper, we choose the dry hydrostatic dynamical core for testing and 211 

analysis2. Two model grids are used: the G10 grid with 10,485,672 grid cells (~7 km 212 

resolution) and the G8 grid with 655,362 grid cells (~30 km resolution). The 213 

timesteps are set to 10 and 40 seconds for G10 and the G8, respectively. Therefore, 214 

the total computational cost of the G10 test is 64x that of the G8 test. The number of 215 

vertical layers is set to 30, and the model integration time is set to 1 day. The results 216 

of the run time with different numbers of processes are shown in Figure 3a. We 217 

choose the run time of G10 simulation with 300 processes as the benchmark, and all 218 

the run times are divided by the benchmark run time. Each run-time point is an 219 

average of three independent runs. The lines of the ideal run time are obtained by 220 

assuming 100% parallel efficiency, which starts from 1 and 1/64 for the G10 grid and 221 

G8 grid, respectively. We may observe that the actual run-time lines are very close to 222 

the ideal run-time lines, suggesting that the model scales well. It should be noted that 223 

all the actual run times of the G10 grid are shorter than the corresponding ideal run 224 

times, that is, the super-linear speedup is achieved for the G10 grid. This abnormal 225 

phenomenon indicates that there is still room for improving the computational 226 

efficiency of running with smaller numbers of processes. For models on the 227 

unstructured meshes, improving the rate of cache hits is an effective way to improve 228 

the computational efficiency. We apply the mesh index reordering strategies for this 229 

purpose. Before entering the next section, Figure 3b first shows the scaling test results 230 

of the BFS index reordering strategy. We can observe that the actual and ideal 231 

run-time lines of the G10 grid are almost coincident. This implies that the index 232 

reordering strategies indeed accelerate the calculations of running with smaller 233 

numbers of processes. 234 

 235 

3 Mesh index reordering strategies 236 

 237 

As is known, the cache is designed to improve the memory-access efficiency of a 238 

CPU. Cache works by improving the data reuse, through which the memory accesses 239 

are replaced by the accesses to the cache. Because the CPU accesses the cache much 240 
                                            
2 One may also find in Zhang et al. (2020) (their supplement file), for a strong scaling test that extends from 5120 
to 10,240 processes using the moist model with simple physics, a parallel efficiency of ~90% is achieved on a 
different machine. 
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faster than the main memory, the computational efficiency can be improved. Under 241 

the general caching mechanisms, improving the data locality is an efficient way to 242 

enhance the cache reuse. For computing on the unstructured mesh, the stencil 243 

calculations are almost the most computationally intensive tasks. Performing stencil 244 

calculations for a mesh point requires data on its neighbouring points, which is 245 

supported by the indirect addressing scheme. Since the neighbours of a mesh point lie 246 

nearby in the two-dimensional (2D) sphere, it is important to find an indexing strategy 247 

to assign a nearby location in memory for these 2D spatially nearby mesh points. 248 

Generally, the inner area of each process contains most of its mesh points, and 249 

for the application of asynchronous communication technology in the future, we only 250 

reorder the indices of the mesh points in the inner area: it is difficult to apply the 251 

asynchronous communication technology if the mesh points in the inner area and 252 

boundary area are mixed. From the governing equations and the discretization 253 

methods utilized in Zhang et al. (2019), it can be easily deduced that not only the 254 

locality of node points is important but the localities of edge and triangle points are 255 

also important to the cache efficiency. For example, the construction of tangent force 256 

(Thuburn et al. (2009); Ringler et al. (2010)) and the calculation of horizontal flux 257 

(Skamarock and Gassmann (2011); Zhang (2018)) require the loop over the edge 258 

points, while the calculations of Coriolis force and vorticity require the loop over the 259 

triangle points. However, in the practical implementation, only the indices of the node 260 

points need to be reordered. The reason is that the index orders of edge and triangle 261 

points depend on that of the node points, so the locality of node points can ensure the 262 

locality of edge and triangle points. 263 

We apply three index reordering strategies to optimize the locality of the mesh 264 

points: the breadth-first-search (BFS) strategy, the Hilbert curve strategy, and the 265 

Morton curve (a.k.a., Z-order curve) strategy. These indexing strategies help to 266 

generate a distribution of points that has better locality in memory, leading to a higher 267 

cache hit rate and computational efficiency. Before introducing each of them, Figure 268 

4a first shows the mesh index order without reordering. The index order of the node 269 

points is completely chaotic, as the node points are generated by the recursive 270 

bisection of the icosahedral grid with small modifications. 271 

 272 

3.1 The BFS strategy 273 
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 274 

The BFS strategy is a graph search algorithm commonly used to solve the 275 

shortest path problem of unweighted graphs, which can be implemented by the 276 

following three steps: 277 

(i) Initialize an empty queue, and select a node point as the first node of the 278 

queue; 279 

(ii) Take out the first node of the queue and then add all its child nodes 280 

(neighbouring points) into the queue (if a child node is already in the queue or has 281 

been in the queue before, it will not be added); 282 

(iii) If the queue is empty, then the procedure ends; otherwise, go to step (ii). 283 

Since the neighbours of each node point are arranged counter-clockwise in the 284 

grid data, the index order of the BFS strategy presents the form as shown in Figure 285 

4b. 286 

 287 

3.2 The Hilbert curve indexing strategy 288 

 289 

The Hilbert curve is a kind of fractal curve, which maps 2D or 290 

higher-dimensional data into one dimensional data and well preserves the spatial 291 

locality. Because the original Hilbert curve indexing strategy is used for regular node 292 

points, we need to convert the unstructured node points into a regular pattern. That is, 293 

the 2D coordinates need to be determined for each node point. This can be 294 

accomplished by establishing an oblique coordinate system, as shown in Figure 5. 295 

First, we need to determine the origin of the system. We choose the first node point 296 

with six neighbours (the hexagon points) in the inner area as the origin, whose 297 

coordinates are (0, 0). After that, the six neighbours of the origin are sequentially 298 

initialized with coordinates +1 or -1 in the x or y directions, that is (0, 1), (-1, 1), (-1, 299 

0), (0, -1), (1, -1), (1, 0) are assigned as the coordinates of the six neighbours in a 300 

counter-clockwise manner. Then, this procedure is repeated for the neighbours’ 301 

neighbours until covering all the node points in the inner area. It should be pointed 302 

out that since the non-hexagon points cannot be arranged in the same manner as 303 

hexagon points, special treatment is required when encountering non-hexagon points. 304 

The coordinates of the neighbours of the non-hexagon points are not initialized and 305 

set to the default (0, 0). Since there are only a few non-hexagon points, this has little 306 
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impact on the performance. 307 

After the 2D coordinates are initialized, the minimum x and y coordinate values 308 

of all the node points are subtracted from the x and y coordinates, respectively, which 309 

ensures that all coordinate values are non-negative. Since the number of points in the 310 

x and y directions should be 2n (n is a non-negative integer) for the standard Hilbert 311 

curve indexing strategy, we choose the smallest 2n that can cover the largest x and y 312 

coordinate values as the total number of points. Finally, using the x and y coordinate 313 

values of each node point, as well as 2n as the inputs, the standard xy2d function (cf. 314 

https://en.wikipedia.org/wiki/Hilbert_curve) is called to obtain its converted 1D value. 315 

Then, the node points are sorted according to the 1D values, which finishes the 316 

application of the Hilbert index reordering strategy. Figure 4c shows the Hilbert 317 

indexing order in a practical simulation. 318 

 319 

3.3 The Morton curve indexing strategy 320 

 321 

The Morton curve is also a fractal curve analogous to the Hilbert curve. The Morton 322 

curve indexing strategy can be implemented by the following GeoHash algorithm: 323 

(i) Convert the latitudes and longitudes of the node points into binary numbers; 324 

This is done by the bisection method: if a point is in the left sub-interval, we set 325 

0; otherwise, we set 1. Let us take (31, 121) as an example. For the latitude 31, divide 326 

the latitude interval [-90,90] into [-90,0) and [0,90]. Since 31 is in the right interval, 327 

we obtain 1. Then, divide [0, 90] into [0,45) and [45,90]; we obtain 0 as 31 is in the 328 

left interval. Repeat this procedure to obtain the latitude binary number 329 

101011000101110. Then, apply the same strategy to the longitude 121; we obtain the 330 

longitude binary number 110101100101101. 331 

(ii) Merge the binary numbers obtained by step (i); 332 

Put the longitude number on the even digits and the latitude number on the odd 333 

digits. For the case in step (i), we obtain 111001100111100000110011110110. 334 

(iii) Encode the merged numbers according to Base32 and sort the node points 335 

by the encoded strings. 336 

Use the 32 characters (Base32) 0-9 and b-z (remove a, i, l, o) to encode the 337 

merged numbers. Take five consecutive binary digits of a merged number as a group, 338 

which ranges from decimal 0 to 31, and convert it to the corresponding character in 339 
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Base32. For example, the merged number in step (ii) is converted to "wtw37q". After 340 

the encoding, we sort the node points according to the character strings to complete 341 

the implementation of the Morton curve indexing strategy. Figure 4d shows the index 342 

order of the Morton curve strategy. 343 

Finally, we provide a remark about the relationship between the mesh resolution 344 

and the length of the converted strings. Assume that the length of the string to be 345 

converted is L; then, the total binary digits of the longitude and latitude are 5L. If L is 346 

even, the number of binary conversions for longitude and latitude using the bisection 347 

method is 5L/2; if L is odd, the longitude bisection times is [5L/2]+1, and the latitude 348 

bisection times is [5L/2]. More clearly, the relationship between L and the resolution 349 

is shown in Table 1. Since the target resolution of the densest mesh we currently use is 350 

~3.5 km, setting L=5 is enough to meet our requirements. 351 

 352 

3.4 Numerical tests of the mesh index reordering strategies 353 

 354 

In this subsection, we present the performance of the mesh index reordering 355 

strategies through numerical experiments. The model settings are the same as those of 356 

the test cases in subsection 2.3. Three types of grids are used here: the (quasi-uniform) 357 

G10 grid, the quasi-uniform G8 grid, and the variable-resolution G8 grid (a G8X4 358 

gird, which means the fine-mesh and coarse-mesh resolutions vary roughly by a ratio 359 

of 4, and the timestep is set to 20 seconds). The speedups of the index reordering 360 

strategies relative to the original-ordering case with different numbers of processes 361 

and different grids are shown in Figure 6. 362 

For the G10 grid, compared with the unoptimized case, the run times of all the 363 

index reordering strategies are reduced, with a speedup ranging from 1.04x to 1.42x. 364 

As the number of processes increases, the optimization effect of using the index 365 

reordering strategies becomes less significant. The reason is that as the number of 366 

processes increases, the number of mesh points on each process decreases, implying 367 

that the percentage of data put into the cache is increased. Therefore, the effect of 368 

cache optimization by using the index reordering strategies becomes less obvious. 369 

For the G8 grids, when using the same number of processes with the G10 grid 370 

(see the lower left part of Figure 6), the three index reordering strategies can speed up 371 

the calculations on some test cases, but with a smaller speedup factor. While for the 372 
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other test cases, acceleration is relatively hard to achieve. This is because the number 373 

of mesh points distributed to each process is much less than that of the G10 grid. As 374 

we decrease the number of processes, as shown in the lower right part of Figure 6, the 375 

speedups of the three index reordering strategies become conspicuous again. When 376 

running on 60 processes, a 1.12x speedup and a 1.22x speedup are obtained for the 377 

quasi-uniform G8 grid and variable-resolution G8 grid, respectively. These results 378 

suggest that the index reordering strategies can indeed speed up the calculations, 379 

especially for running with a small number of processes. 380 

Based on tests using the three indexing strategies, the BFS strategy typically 381 

performs best and can be used as the default indexing strategy. 382 

 383 

4 The data I/O optimization  384 

 385 

4.1 The original parallel I/O method  386 

 387 

Except for the communication and computation, the data I/O is an important 388 

issue that may lead to the increase of simulation time, posing a bottleneck for the 389 

high-resolution or massively parallel simulations (see, e.g., Maisonnave et al. (2017); 390 

Koldunov et al. (2019)). This issue becomes especially challenging for the 391 

unstructured-mesh models because of discontinuous accesses. As shown in Figure 7a, 392 

originally, we call the PnetCDF (Li et al. (2003)) interface to perform the I/O 393 

operations, and each process directly interacts with the parallel file system. To give a 394 

more specific example, we use the data input procedure for an illustration. When 395 

reading data in parallel, the global indices of the data to be read by each process are 396 

discontinuous (that is, the positions of the data to be read in the input file are 397 

discontinuous, due to the use of the unstructured mesh), while the interface for 398 

reading data in PnetCDF requires that the data read each time are located 399 

continuously in the input file. Therefore, the reading interface in PnetCDF has to be 400 

called multiple times. To reduce the number of interface calls, we initialize two arrays 401 

‘var_start’ and ‘var_count’ to record the starting positions and lengths of the data to be 402 

read by each process, respectively. That is, ‘var_start (i)’ is the starting position of the 403 

input file for the i-th call to the PnetCDF reading interface, and ‘var_count (i)’ is the 404 

length of the data for the i-th call to the PnetCDF reading interface. The sizes of these 405 
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two arrays are the number of times that the PnetCDF reading interface is called. With 406 

these two arrays, we call the PnetCDF nonblocking reading interface ‘nfmpi_iget_var’ 407 

multiple times to read the data. It is worth noting that the data are not imported when 408 

calling ‘nfmpi_iget_vara’, but only the reading requests are recorded. The reading is 409 

actually carried out at the wait interface ‘nfmpi_wait_all’. 410 

The ‘var_start’ and ‘var_count’ arrays are initialized in the mesh partition 411 

procedure, and the knowledge of implementation details is not required for scientific 412 

model developers. After that, these two arrays can be used as the inputs to call the 413 

‘wrap_read_par’ function to read the grid data or the variable data. The data output 414 

follows the same approach as the data input, except one special treatment: the edge 415 

and triangle points are partitioned following the partition of the node points, while 416 

each edge or triangle has two or three node points; thus, each edge or triangle point 417 

may belong to two or three processes. To avoid the conflicts during the data output, 418 

we choose the process with the smallest rank to perform the output of the data defined 419 

on the edge or triangle points that belong to more than one process. The users also do 420 

not have to know the details of initializing the ‘var_start’ and ‘var_count’ arrays for 421 

the data output. In addition, similar to the inter-process communications, we have also 422 

designed a linked list to collect variables that need to be output. An interface called 423 

‘wrap_add_field’ can be used to add the variables to the list. When the collection is 424 

finished, an interface called ‘wrap_output’ is used to write all the collected model 425 

variables in the list to the parallel file system. 426 

Although the method mentioned above can combine multiple reading requests, 427 

PnetCDF shows a significant performance degradation provided that the number of 428 

processes scales to several hundreds or thousands. Therefore, we consider improving 429 

the I/O efficiency of the parallel infrastructure through the group I/O method. 430 

 431 

4.2 The group I/O method 432 

 433 

As shown in Figure 7b, the processes in the group I/O method are grouped, and 434 

only one process in each group (denoted by the I/O process) is responsible for 435 

interacting with the parallel file system. The data to be read by other processes are 436 

imported through the I/O process and then transmitted from the I/O process through 437 

MPI. The data to be output by other processes are sent to the I/O process and then 438 
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written to the parallel file system by the I/O process. The group I/O method can 439 

improve the I/O granularity by reducing the number of processes interacting with the 440 

parallel file system, thus reducing the number of calls to the PnetCDF nonblocking 441 

reading/writing interfaces. The group I/O strategy has a much higher efficiency than 442 

the original ungrouped parallel I/O and is implemented in several major steps. 443 

The first step to apply the group I/O method is to determine the I/O processes. 444 

We use a user-specified parameter ‘group_size’ to determine the size of the 445 

process-groups, i.e., how many processes are in one group. Then, the processes with 446 

ranks divisible by ‘group_size’ are chosen as the I/O processes. For an I/O process 447 

with rank i, the processes with ranks ranging from i + 1 to i + group_size − 1 are the 448 

non-I/O processes in the same group with process i. Then, as stated in subsection 4.1, 449 

the ‘var_start’ and ‘var_count’ arrays are initialized for all the processes to record the 450 

starting positions and lengths of the data to be input and output. However, for the 451 

group I/O method, these arrays are only required for the I/O processes. To initialize 452 

the ‘var_start’ and ‘var_count’ arrays, the I/O process in each group first gathers the 453 

global indices of node, edge and triangle points that distributed to the non-I/O 454 

processes, which is accomplished by calling the ‘MPI_Gatherv’ interface. After that, 455 

the I/O process sorts these indices to obtain the largest continuous intervals and builds 456 

up maps between the original unsorted and corresponding sorted indices. These maps 457 

are used for data rearrangements between the order in the processes and the order in 458 

the parallel file system. 459 

Next, the ‘var_start’ and ‘var_count’ arrays are determined for the sorted indices 460 

of the I/O processes. Then, the group I/O can be carried out when the initialization of 461 

‘var_start’ and ‘var_count’ arrays are finished. It should be noted that the 462 

communicator for calling the ‘open’ or ‘create’ interface in PnetCDF is composed by 463 

all the I/O processes, since only the I/O processes interact with the parallel file system. 464 

For the data input, the PnetCDF nonblocking reading interface ‘nfmpi_iget_vara’ and 465 

the wait interface ‘nfmpi_wait_all’ are used as in the original parallel I/O method, but 466 

only by the I/O processes. When the reading is done, the I/O process in each group 467 

rearranges the data from the sorted-indices order to the unsorted-indices order (the 468 

order in the processes) and then calls the ‘MPI_Scatterv’ interface to send the data to 469 

the non-I/O processes. For the data output, the I/O process in each group gathers the 470 

data from the non-I/O processes by calling the ‘MPI_Gatherv’ interface. Then, the I/O 471 
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processes rearrange the data from the unsorted-indices order to the sorted-indices 472 

order. Finally, the output is done by the I/O processes through calling the 473 

‘nfmpi_iput_vara’ and ‘nfmpi_wait_all’ interfaces. 474 

The complicated operations described above are wrapped by the 475 

‘wrap_read_group’ and ‘wrap_output_group’ subroutines for the data input and output, 476 

respectively. 477 

 478 

4.3 Numerical tests 479 

 480 

This subsection examines the performance of the group I/O method. The 481 

(quasi-uniform) G10 grid, the quasi-uniform G8 grid, and the variable-resolution G8 482 

grid (G8X4) are used. The run times of data input and output with different numbers 483 

of processes and ‘group_size’s are presented in Figure 8. The run times in each 484 

sub-figure are divided by the corresponding run time with 600 processes, and 485 

group_size = 1 (i.e., without grouping). 486 

For the data input, the reading time of the original parallel I/O method 487 

(group_size = 1) increases significantly as the number of processes increases. The 488 

group I/O method with any ‘group_size’ larger than 1 can reduce the reading time 489 

compared with the original I/O method. For the G10 grid, the best performance is 490 

usually achieved when the number of I/O processes (i.e., the number of processes 491 

divided by the group_size, since there is one I/O process in each group) is near 120, 492 

and more than 90x speedup is observed when the total number of processes is 4200. 493 

For the G8 and G8X4 grids, the best number of I/O processes is between 30 and 70, 494 

and more than 122x speedup and 108x speedup can be achieved for the quasi-uniform 495 

G8 grid and G8X4 grid, respectively, when the total number of processes reaches 496 

4200. 497 

For the data output, the group I/O can reduce the writing time for both the G8 498 

and G8X4 grids with almost all the ‘group_size’s larger than 1, while it is only 499 

effective for the G10 grid with part of the ‘group_size’s. For the G10 grid, the best 500 

number of I/O processes is between 120 and 200, and more than 3x speedup can be 501 

achieved for all the process numbers. The reason why more speedup is achieved for 502 

the data input than for output may be that the second dimensions of the input data 503 

(smaller than 7, mainly grid data currently) are much smaller than those of the output 504 
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data (the number of vertical layers of the variables, 30 in this study). This means that 505 

the input data are ‘more discontinuous’ than the output data, so the optimization effect 506 

of the group I/O method for data input is more significant than for data output. For the 507 

G8 and G8X4 grids, the best number of I/O processes is between 50 and 80, and more 508 

than 80x speedup and 84x speedup can be obtained for the quasi-uniform G8 grid and 509 

G8X4 grid, respectively, when the total number of processes reaches 4200. These 510 

results demonstrate that the group I/O method can effectively improve the I/O 511 

efficiency of the unstructured-mesh models, especially for the massively parallel 512 

simulations. 513 

 514 

5 Conclusions 515 

 516 

In this paper, we have described the development and performance optimization 517 

of a parallel computing infrastructure for supporting an unstructured-mesh global 518 

model. The work manifests in three aspects, all of which contribute to performance 519 

improvement. The major conclusions are summarized as follows. 520 

(i) The mesh partition accomplished by the METIS library is convenient for both 521 

the quasi-uniform and VR simulations. By designing a general interface with an 522 

effective communication mechanism, scientific model developers only need to decide 523 

where and when to utilize these communication tools, depending on their respective 524 

solution techniques and modelling workflow. No knowledge regarding the details of 525 

communication is required. The scaling tests demonstrate that the partition method 526 

and the communication techniques are efficient. 527 

(ii) The three mesh index reordering strategies are able to improve the 528 

computational efficiency through the cache optimization. The effect is particularly 529 

conspicuous for the high-resolution tests with a relatively small number of processes 530 

(as compared to the total number of cells). The BFS strategy typically performs the 531 

best and is recommended as a default option if index optimization is activated. 532 

(iii) The original parallel I/O method scales poorly due to the discontinuous 533 

feature of the unstructured meshes. To overcome this problem, we have developed a 534 

group I/O method, which can improve the I/O granularity by reducing the number of 535 

processes interacting with the parallel file system. This strategy can significantly 536 

improve the I/O efficiency for massively parallel simulations, especially for global 537 
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high-resolution modelling. 538 

The three aspects of the parallel computing toolkits mentioned above are 539 

encapsulated in only a few interfaces that can be used by scientific model developers. 540 

No knowledge regarding the details of parallel implementation is required, thus 541 

reducing the development cost, helping to streamline the code flow and easing the 542 

code refactoring. This approach shares elements of a similar philosophy inherent in 543 

the OpenArray library introduced by Huang et al. (2019), while technically different. 544 

These parallel computing toolkits are not only useful to the existing models but may 545 

also benefit the addition of new dynamical models in the future. 546 

Further, the asynchronous communication technology may be implemented to 547 

overlap the computations of data in the inner area and the inter-process 548 

communications for updating the data in the halo area, which can hide the 549 

communication time and improve the computational efficiency. The heterogeneous 550 

many-core acceleration technique will be applied to port the model to the Sunway 551 

TaihuLight supercomputer for achieving higher computational efficiency. 552 

 553 

Code availability. GRIST is available at https://github.com/grist-dev, in private 554 

repositories. A version of the model code, running and postprocessing scripts for 555 

supporting this paper are available at: https://zenodo.org/record/3930643. An 556 

authorized link is provided for the editor and reviewers to access the code, which does 557 

not compromise their anonymity. The running scripts are located at: 558 

run_scripts/Perf-test. The grid data used to enable the tests can be downloaded from:  559 

https://zenodo.org/record/3779535. The source code is available to a member of the 560 

model development projects, or people who have interest. Per the current policy on 561 

code sharing at Chinese Academy of Meteorological Sciences, public authorization 562 

may be granted provided that one accepts the terms and conditions: 563 

https://github.com/GRIST-Dev/TermsAndConditions. 564 
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Figure 1. The quasi-uniform and VR Voronoi tessellations. Left: the quasi-uniform 

mesh, Right: the VR mesh. Both meshes are partitioned by METIS, and cells of the 

same colour belong to the same process. 
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Figure 2. The local mesh of one process, consisting of the inner area (blue), the 

boundary area (green), and the halo area (red), with three layers of halo cells. 

  

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 

 26 

 

 

 
(a) Scaling of the original code       (b) Scaling after applying the BFS index reordering 

strategy 

Figure 3. The ideal and actual run times under different numbers of processes for the 

G10 and G8 grids. X label: the number of processes, Y label: the total run time (All 

the run-time points are divided by the corresponding benchmark run time, i.e., divided 

by the run time of simulation under G10 grid with 300 processes). 
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Figure 4. The index order of node points in the inner area of process 0 for the G4 grid 

(2562 node points, running with two processes). Compared with the original-ordering 

case, the orders of BFS, Hilbert, and Morton strategies appear much better. 
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Figure 5. The Voronoi polygons and the oblique-coordinate Hilbert curve. 
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Figure 6. The speedups of index reordering strategies relative to the original-ordering 

case. X label: the number of processes, Y label: the speedup relative to the 

original-ordering case. 
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Figure 7. The straight PnetCDF I/O method and the group I/O method (group_size = 

4). PE (process element) denotes an MPI process. 
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Figure 8. The input (left) and output (right) times for different grids. X label: the 

number of processes, Y label: the run time of data input/output (All the run-time 

points are divided by the corresponding run time with 600 processes and group_size = 

1). Different coloured bars represent results obtained with different ‘group_size’s. 
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Table 1. The relationship between the mesh resolution and the length of the converted 

string L. 
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