

 1

Development and performance optimization of a parallel
computing infrastructure for an unstructured-mesh
modelling framework

Zhuang Liu1,3, Yi Zhang4, Xiaomeng Huang1,2,3, Jian Li4, Dong Wang1,3, Mingqing

Wang1,3, and Xing Huang1,3

1 Ministry of Education Key Laboratory for Earth System Modeling, and Department

of Earth System Science, Tsinghua University, Beijing, 100084, China
2 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National

Laboratory for Marine Science and Technology, Qingdao, 266237, China
3 National Supercomputing Center in Wuxi, Wuxi, 214071, China
4 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological

Sciences, China Meteorological Administration, Beijing, 100081, China

Correspondence: Xiaomeng Huang (hxm@tsinghua.edu.cn)

Abstract. This paper describes the development and performance optimization of a 1

parallel computing infrastructure for an unstructured-mesh global model (GRIST; 2

Global-to-Regional Integrated forecast SysTem). The focus is on three major aspects 3

that facilitate rapid iterative development, including parallel computing, index 4

optimization and an efficient group I/O strategy. For parallel computing, the METIS 5

tool is used for the partition of the global mesh, which is flexible and convenient for 6

both the quasi-uniform and variable-resolution simulations. The scaling tests show 7

that the partition method is efficient. To improve the cache efficiency, several mesh 8

index reordering strategies are investigated to optimize the performance of the 9

indirect addressing scheme used in the stencil calculations. The numerical results 10

show that the indexing strategies are able to speed up the calculations, especially for 11

running with a small number of processes. To overcome the bottleneck of poor I/O 12

efficiency for the high-resolution or massively parallel simulations, a group parallel 13

I/O method is implemented and proven to be of high efficiency in the numerical 14

experiments. Altogether, these three aspects of the parallel computing toolkits are 15

encapsulated in a few interfaces, which can be used for general parallel modelling on 16

unstructured meshes. 17

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 2

 18

1 Introduction 19

 20

The global atmospheric model is an important tool for operational weather 21

forecasting, climate prediction and research-oriented modelling. In recent years, with 22

the continuous improvement of computing power of massively parallel computers, the 23

global model is developed towards higher horizontal resolutions (e.g., Haarsma et al. 24

(2016); Yu et al. (2019); Stevens et al. (2019); Dueben et al. (2020)). The unstructured 25

grid (the semi-structured icosahedral grid and the generic Voronoi polygonal grid are 26

considered in this study) is one of the major choices for these newly developed global 27

models (e.g., Ullrich et al. (2017)), mainly owing to their ability to allow general 28

computational patterns and their flexibility to switch between uniform-mesh and 29

variable-resolution (VR) modelling. 30

Despite certain advantages of the unstructured meshes, several obstacles have to 31

be overcome to achieve a practical computational efficiency. First, to support both the 32

quasi-uniform and VR simulations, the parallel-partition strategy should be general 33

enough and possesses a good load balance. The conventional method of dividing an 34

icosahedral grid into 10 identical rhombi and partitioning each rhombus into blocks 35

(e.g., MacDonald et al. (2011)) is typically not applicable. Second, the neighbours of 36

a grid point on the unstructured meshes cannot be obtained by simple index shifting; 37

thus, the indirect addressing scheme (MacDonald et al. (2011)) is typically used to 38

perform the stencil calculations. This results in discontinuous memory access during 39

model integration, which reduces the efficiency of compiler optimization and cache 40

reuse. Although the directly addressed vertical index can be put on the innermost 41

dimension, the computational performance in our numerical experiment is not that 42

good, which might slightly differ from the testing conclusion of MacDonald et al. 43

(2011) where no appreciable performance penalty for the indirect addressing scheme 44

is observed. Third, because the mesh points distributed to each process cannot form a 45

regular rectangular area as supported by a structured grid, the I/O operations between 46

memory and the parallel file system are also discontinuous, posing a bottleneck for 47

high-resolution and massively parallel computing. In short, to make scientific 48

computing on an unstructured mesh practical, a unified and efficient approach to 49

handle the parallel communication, computation and data I/O is an important task. 50

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 3

Recently, several works have been published for the performance optimization of 51

the unstructured-mesh models: Sinkovits et al. (2016) introduced some serial 52

optimization techniques for accelerating the dynamical core of MPAS-A1, together 53

with a thread-level load balancing method for the atmospheric physics; Govett et al. 54

(2017) described their parallelization and optimization techniques to efficiently run 55

the Nonhydrostatic Icosahedral Model (NIM) model on CPU, GPU, and MIC 56

processors; Koldunov et al. (2019) introduced several model enhancements to 57

improve the scalability of the Finite-volumE Sea ice–Ocean Model (FESOM) for 58

large numbers of processes. On the other hand, to increase the efficiency of parallel 59

I/O, the CFIO (Climate Fast Input/Output, see Wang et al. (2013) or Huang et al. 60

(2014)) and the XIOS (XML Input/Output Server, refer to Maisonnave et al. (2017)) 61

libraries applied the asynchronous computation and I/O method that uses dedicated 62

I/O processes to perform the I/O, thus overlapping the I/O phase with the computing 63

phase and shortening the entire simulation time; Dennis et al. (2011) adopted the 64

concept of defining an I/O decomposition to flexibly control the number of I/O 65

processes and rearrange the data to an I/O friendly manner, which can improve the 66

I/O throughput. In addition, the workshop “Exascale I/O for Unstructured Grids" 67

(EIUG: https://www.esiwace.eu/events/workshop-about-unstructured-grids) focused 68

on the large-scale I/O of unstructured grids, where several talks about the data formats, 69

I/O middlewares, and post-processing tools were given to deal with the I/O bottleneck 70

of the unstructured grids. 71

In this paper, we describe the development and performance optimization of a 72

parallel computing infrastructure for an unstructured-mesh global model (GRIST; 73

Global-to-Regional Integrated forecast SysTem). The GRIST framework is developed 74

based on a hierarchical structure, from a shallow water model (Zhang (2018); Wang et 75

al. (2019)) to a layer-averaged 3D dry dynamical core (Zhang et al. (2019)), and a 76

more complete moist dynamical model that supports the incorporation of model 77

physics (Zhang et al. (2020)). To facilitate rapid iterative development, we have 78

created a set of developer-friendly parallel computing toolkits to support efficient 79

establishment of numerical modelling workflow from code development to data 80

1 The Atmospheric component of MPAS (the Model for Prediction Across Scales), refer to Skamarock et al. (2012)
for more information。

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 4

evaluation. In this study, we describe three major aspects, which are tightly related to 81

scientific computing on an unstructured mesh. These include: 82

– Parallelization. We choose the METIS library (Karypis et al. (1998)) to 83

partition the global mesh points and design a general communication interface with an 84

internal collection mechanism to improve the communication efficiency. A scientific 85

model developer can utilize these tools without knowledge of the communication 86

details. The scaling test results suggest that our parallelization method is efficient. 87

– Index optimization. To improve the cache efficiency, we compare three 88

index-optimization techniques with the default unordered option. Sarje et al. (2015) 89

applied two space filling curve (SFC) index reordering strategies (Hilbert and Morton 90

curves) for the unstructured meshes and obtained 40% improvement. These two 91

methods and the breadth-first-search (BFS: 92

https://en.wikipedia.org/wiki/Breadth-first_search) strategy are considered in this 93

paper. We find that all the three strategies are able to accelerate the calculations, and 94

the BFS strategy usually generates the optimal results. 95

– Data I/O strategies. For improving the I/O efficiency, we have implemented a 96

group I/O method for the unstructured mesh. The group I/O method can combine the 97

small non-continuous accesses into larger continuous ones, thus increasing the I/O 98

granularity as well as reducing the number of I/O processes. Numerical tests show 99

that the group I/O method can significantly improve the I/O efficiency. A similar 100

strategy has also been employed by Yang et al. (2019), but for the structured grids. 101

Altogether, these efforts have helped model development and application and 102

enabled us to efficiently run GRIST at sub-10 km resolution. The rest of this paper is 103

organized as follows. Section 2 introduces the parallelization method. Section 3 104

describes the index-optimization strategies. Section 4 introduces the data I/O 105

optimization method. The concluding remarks are given in Section 5. 106

 107

2 Parallelization 108

 109

GRIST utilizes an unstructured icosahedral/Voronoi mesh that supports both the 110

quasi-uniform and VR Voronoi tessellations (Figure 1). We first define three types of 111

location/dimension, including the node point (the generating point with which the 112

primal cell is associated), the triangle point (the corner point of a Voronoi polygon 113

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 5

with which the dual cell is associated), and the edge point (the intersecting point of a 114

pair of edges that belong to a primal and dual cell, respectively). Several model 115

variables are located at each of the three types of mesh points. For example, the 116

potential temperature is located at the node point, the vorticity is located at the 117

triangle point, and the normal and tangent velocities are located at the edge point (see 118

Figure 1c in Zhang et al. (2019)). The node points can be optimized or directly 119

generated by the Centroidal Voronoi Tessellation (CVT) technique (e.g., Du et al. 120

(2003); Ringler et al. (2011)), which ensures that the generating points (node points) 121

are the centroids of the corresponding Voronoi cells (in the limit of the constraint). 122

During the model development process, two grid generators have been developed to 123

generate the required mesh information: one is a serial code that adopts the 124

STRIPACK library (Renka (1997)) to generate the Delaunay triangulations in the 125

iterations for optimizing the node points, and the other is a parallel code based on the 126

MPI-SCVT package (Jacobsen et al. (2013)). In this section, we will describe the 127

parallelization methods, including the mesh partition method and some techniques for 128

the inter-process communications. 129

 130

2.1 Mesh partition 131

 132

The partition of the entire global mesh can be obtained by partitioning the node 133

points. In practice, the METIS library is used to provide a general approach to 134

partition. METIS is a graph partitioning tool, which uses the input node points, 135

information of their neighbours and the number of partitioned groups to perform the 136

partition. A node point and one of its neighbours constitute two vertices of an edge in 137

the graph. By default, the principle of METIS is to minimize the number of edges 138

being cut under the constraint that the number of points assigned to each group is 139

roughly the same (cut-edges refer to the edges whose two vertices belong to different 140

groups). A smaller number of cut-edges implies less communication between groups, 141

and the constraint of a roughly equal number of points in each group is to ensure a 142

good load balance. Figure 1 illustrates a global mesh partitioned by METIS. In this 143

case, both the quasi-uniform and VR Voronoi cells are partitioned into ten groups. 144

Cells of the same colour fall in one group and will be assigned to the same process. 145

As a result of the partitioning principle, all processes are roughly distributed equally 146

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 6

for the quasi-uniform mesh, while more processes are assigned to the refinement 147

regions for the VR mesh. 148

Because the update of data on a mesh point usually requires information on its 149

adjacent mesh points during the model integration, each process needs the data 150

belonging to other processes when updating the data on its boundary mesh points (the 151

mesh points adjacent to mesh points of other processes). To facilitate the calculations, 152

three types of data areas are defined, including: 153

(i) Inner area: an area composed of mesh points whose data update does not 154

require the data from other processes; 155

(ii) Boundary area: an area composed of mesh points whose data update requires 156

the data from other processes; 157

(iii) Halo area: an area composed of extended mesh points in other processes for 158

the update of boundary data of this process. 159

The number of layers of the halo area can be flexibly configured. Figure 2 160

presents an example that uses three halo layers, while in most cases, two layers are 161

required (as a default). The calculation procedure for the mesh partition operates as 162

follows. First, we use METIS to partition the global node points, and determine three 163

types of areas mentioned above based on the partition and neighbourhood information 164

of the node points. Second, we determine the corresponding partitions of edge and 165

triangle points based on the partition of node points. Third, we establish the mappings 166

between the global and the local indices of the node, edge, and triangle points. This 167

completes the mesh partition. 168

 169

2.2 Communication 170

 171

Communicating with neighbouring processes is required when one process 172

updates its data in the halo area. To facilitate the communications, we initialize three 173

pairs of arrays: ‘send_sites_(v/e/t)’ and ‘recv_sites_(v/e/t)’, for data defined on the 174

node (v), edge (e) and triangle (t) points, respectively. These arrays are initialized for 175

each neighbouring process and are used to record the global indices of the data to be 176

sent to this neighbour as well as the data to be received from this neighbour. Then, the 177

global indices are converted to the local indices for the ease of data preparations and 178

assignments. 179

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 7

The inter-process communications are performed by three consecutive steps: 180

(i) Data preparation. Each process puts the variable data to be sent to the 181

temporary sending arrays according to the local indices stored in ‘send_sites’. 182

(ii) Data sending and receiving. Data are sent and received using the 183

non-blocking point-to-point communication interfaces in MPI. 184

(iii) Data assignment. Each process assigns the received data to the halo area of 185

this variable according to the local indices stored in ‘recv_sites’. 186

To improve the granularity of data exchange and reduce the number of 187

inter-process communications, we use a linked list to collect variables that need to be 188

exchanged. After the collection, the communication interface is called only once to 189

complete the data exchange of all the variables in the list, which improves the 190

communication efficiency. When the communications are done, the linked list needs 191

to be released. 192

The complicated procedures for communication mentioned above are wrapped 193

into two subroutines: ‘exchange_data_add’ and ‘exchange_data’. The former one is 194

used for adding the model variables (whose halo area needs to be updated) to the 195

linked list. The latter one is used for performing the data exchange and releases the 196

linked list when the communications are finished. In this way, scientific model 197

developers only need to decide where and when to utilize these communication tools, 198

depending on their respective solution techniques and modelling workflow. No 199

knowledge regarding the details of communication is required, which greatly 200

facilitates the implementation cost, streamlines the code flow and eases code 201

refactoring. 202

 203

2.3 Scaling tests 204

 205

We report the scaling test results to show the efficiency of the partition method 206

and the communication techniques. All the tests in this paper are carried out on a 207

Sugon HPC platform. Each computation node contains 64 CPU cores with 256 GB 208

memory. The Sugon Parastor300 parallel file system is used as the storage system. We 209

run 60 MPI processes on each node to ensure enough available memory for the tests. 210

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 8

In this paper, we choose the dry hydrostatic dynamical core for testing and 211

analysis2. Two model grids are used: the G10 grid with 10,485,672 grid cells (~7 km 212

resolution) and the G8 grid with 655,362 grid cells (~30 km resolution). The 213

timesteps are set to 10 and 40 seconds for G10 and the G8, respectively. Therefore, 214

the total computational cost of the G10 test is 64x that of the G8 test. The number of 215

vertical layers is set to 30, and the model integration time is set to 1 day. The results 216

of the run time with different numbers of processes are shown in Figure 3a. We 217

choose the run time of G10 simulation with 300 processes as the benchmark, and all 218

the run times are divided by the benchmark run time. Each run-time point is an 219

average of three independent runs. The lines of the ideal run time are obtained by 220

assuming 100% parallel efficiency, which starts from 1 and 1/64 for the G10 grid and 221

G8 grid, respectively. We may observe that the actual run-time lines are very close to 222

the ideal run-time lines, suggesting that the model scales well. It should be noted that 223

all the actual run times of the G10 grid are shorter than the corresponding ideal run 224

times, that is, the super-linear speedup is achieved for the G10 grid. This abnormal 225

phenomenon indicates that there is still room for improving the computational 226

efficiency of running with smaller numbers of processes. For models on the 227

unstructured meshes, improving the rate of cache hits is an effective way to improve 228

the computational efficiency. We apply the mesh index reordering strategies for this 229

purpose. Before entering the next section, Figure 3b first shows the scaling test results 230

of the BFS index reordering strategy. We can observe that the actual and ideal 231

run-time lines of the G10 grid are almost coincident. This implies that the index 232

reordering strategies indeed accelerate the calculations of running with smaller 233

numbers of processes. 234

 235

3 Mesh index reordering strategies 236

 237

As is known, the cache is designed to improve the memory-access efficiency of a 238

CPU. Cache works by improving the data reuse, through which the memory accesses 239

are replaced by the accesses to the cache. Because the CPU accesses the cache much 240

2 One may also find in Zhang et al. (2020) (their supplement file), for a strong scaling test that extends from 5120
to 10,240 processes using the moist model with simple physics, a parallel efficiency of ~90% is achieved on a
different machine.

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 9

faster than the main memory, the computational efficiency can be improved. Under 241

the general caching mechanisms, improving the data locality is an efficient way to 242

enhance the cache reuse. For computing on the unstructured mesh, the stencil 243

calculations are almost the most computationally intensive tasks. Performing stencil 244

calculations for a mesh point requires data on its neighbouring points, which is 245

supported by the indirect addressing scheme. Since the neighbours of a mesh point lie 246

nearby in the two-dimensional (2D) sphere, it is important to find an indexing strategy 247

to assign a nearby location in memory for these 2D spatially nearby mesh points. 248

Generally, the inner area of each process contains most of its mesh points, and 249

for the application of asynchronous communication technology in the future, we only 250

reorder the indices of the mesh points in the inner area: it is difficult to apply the 251

asynchronous communication technology if the mesh points in the inner area and 252

boundary area are mixed. From the governing equations and the discretization 253

methods utilized in Zhang et al. (2019), it can be easily deduced that not only the 254

locality of node points is important but the localities of edge and triangle points are 255

also important to the cache efficiency. For example, the construction of tangent force 256

(Thuburn et al. (2009); Ringler et al. (2010)) and the calculation of horizontal flux 257

(Skamarock and Gassmann (2011); Zhang (2018)) require the loop over the edge 258

points, while the calculations of Coriolis force and vorticity require the loop over the 259

triangle points. However, in the practical implementation, only the indices of the node 260

points need to be reordered. The reason is that the index orders of edge and triangle 261

points depend on that of the node points, so the locality of node points can ensure the 262

locality of edge and triangle points. 263

We apply three index reordering strategies to optimize the locality of the mesh 264

points: the breadth-first-search (BFS) strategy, the Hilbert curve strategy, and the 265

Morton curve (a.k.a., Z-order curve) strategy. These indexing strategies help to 266

generate a distribution of points that has better locality in memory, leading to a higher 267

cache hit rate and computational efficiency. Before introducing each of them, Figure 268

4a first shows the mesh index order without reordering. The index order of the node 269

points is completely chaotic, as the node points are generated by the recursive 270

bisection of the icosahedral grid with small modifications. 271

 272

3.1 The BFS strategy 273

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 10

 274

The BFS strategy is a graph search algorithm commonly used to solve the 275

shortest path problem of unweighted graphs, which can be implemented by the 276

following three steps: 277

(i) Initialize an empty queue, and select a node point as the first node of the 278

queue; 279

(ii) Take out the first node of the queue and then add all its child nodes 280

(neighbouring points) into the queue (if a child node is already in the queue or has 281

been in the queue before, it will not be added); 282

(iii) If the queue is empty, then the procedure ends; otherwise, go to step (ii). 283

Since the neighbours of each node point are arranged counter-clockwise in the 284

grid data, the index order of the BFS strategy presents the form as shown in Figure 285

4b. 286

 287

3.2 The Hilbert curve indexing strategy 288

 289

The Hilbert curve is a kind of fractal curve, which maps 2D or 290

higher-dimensional data into one dimensional data and well preserves the spatial 291

locality. Because the original Hilbert curve indexing strategy is used for regular node 292

points, we need to convert the unstructured node points into a regular pattern. That is, 293

the 2D coordinates need to be determined for each node point. This can be 294

accomplished by establishing an oblique coordinate system, as shown in Figure 5. 295

First, we need to determine the origin of the system. We choose the first node point 296

with six neighbours (the hexagon points) in the inner area as the origin, whose 297

coordinates are (0, 0). After that, the six neighbours of the origin are sequentially 298

initialized with coordinates +1 or -1 in the x or y directions, that is (0, 1), (-1, 1), (-1, 299

0), (0, -1), (1, -1), (1, 0) are assigned as the coordinates of the six neighbours in a 300

counter-clockwise manner. Then, this procedure is repeated for the neighbours’ 301

neighbours until covering all the node points in the inner area. It should be pointed 302

out that since the non-hexagon points cannot be arranged in the same manner as 303

hexagon points, special treatment is required when encountering non-hexagon points. 304

The coordinates of the neighbours of the non-hexagon points are not initialized and 305

set to the default (0, 0). Since there are only a few non-hexagon points, this has little 306

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 11

impact on the performance. 307

After the 2D coordinates are initialized, the minimum x and y coordinate values 308

of all the node points are subtracted from the x and y coordinates, respectively, which 309

ensures that all coordinate values are non-negative. Since the number of points in the 310

x and y directions should be 2n (n is a non-negative integer) for the standard Hilbert 311

curve indexing strategy, we choose the smallest 2n that can cover the largest x and y 312

coordinate values as the total number of points. Finally, using the x and y coordinate 313

values of each node point, as well as 2n as the inputs, the standard xy2d function (cf. 314

https://en.wikipedia.org/wiki/Hilbert_curve) is called to obtain its converted 1D value. 315

Then, the node points are sorted according to the 1D values, which finishes the 316

application of the Hilbert index reordering strategy. Figure 4c shows the Hilbert 317

indexing order in a practical simulation. 318

 319

3.3 The Morton curve indexing strategy 320

 321

The Morton curve is also a fractal curve analogous to the Hilbert curve. The Morton 322

curve indexing strategy can be implemented by the following GeoHash algorithm: 323

(i) Convert the latitudes and longitudes of the node points into binary numbers; 324

This is done by the bisection method: if a point is in the left sub-interval, we set 325

0; otherwise, we set 1. Let us take (31, 121) as an example. For the latitude 31, divide 326

the latitude interval [-90,90] into [-90,0) and [0,90]. Since 31 is in the right interval, 327

we obtain 1. Then, divide [0, 90] into [0,45) and [45,90]; we obtain 0 as 31 is in the 328

left interval. Repeat this procedure to obtain the latitude binary number 329

101011000101110. Then, apply the same strategy to the longitude 121; we obtain the 330

longitude binary number 110101100101101. 331

(ii) Merge the binary numbers obtained by step (i); 332

Put the longitude number on the even digits and the latitude number on the odd 333

digits. For the case in step (i), we obtain 111001100111100000110011110110. 334

(iii) Encode the merged numbers according to Base32 and sort the node points 335

by the encoded strings. 336

Use the 32 characters (Base32) 0-9 and b-z (remove a, i, l, o) to encode the 337

merged numbers. Take five consecutive binary digits of a merged number as a group, 338

which ranges from decimal 0 to 31, and convert it to the corresponding character in 339

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 12

Base32. For example, the merged number in step (ii) is converted to "wtw37q". After 340

the encoding, we sort the node points according to the character strings to complete 341

the implementation of the Morton curve indexing strategy. Figure 4d shows the index 342

order of the Morton curve strategy. 343

Finally, we provide a remark about the relationship between the mesh resolution 344

and the length of the converted strings. Assume that the length of the string to be 345

converted is L; then, the total binary digits of the longitude and latitude are 5L. If L is 346

even, the number of binary conversions for longitude and latitude using the bisection 347

method is 5L/2; if L is odd, the longitude bisection times is [5L/2]+1, and the latitude 348

bisection times is [5L/2]. More clearly, the relationship between L and the resolution 349

is shown in Table 1. Since the target resolution of the densest mesh we currently use is 350

~3.5 km, setting L=5 is enough to meet our requirements. 351

 352

3.4 Numerical tests of the mesh index reordering strategies 353

 354

In this subsection, we present the performance of the mesh index reordering 355

strategies through numerical experiments. The model settings are the same as those of 356

the test cases in subsection 2.3. Three types of grids are used here: the (quasi-uniform) 357

G10 grid, the quasi-uniform G8 grid, and the variable-resolution G8 grid (a G8X4 358

gird, which means the fine-mesh and coarse-mesh resolutions vary roughly by a ratio 359

of 4, and the timestep is set to 20 seconds). The speedups of the index reordering 360

strategies relative to the original-ordering case with different numbers of processes 361

and different grids are shown in Figure 6. 362

For the G10 grid, compared with the unoptimized case, the run times of all the 363

index reordering strategies are reduced, with a speedup ranging from 1.04x to 1.42x. 364

As the number of processes increases, the optimization effect of using the index 365

reordering strategies becomes less significant. The reason is that as the number of 366

processes increases, the number of mesh points on each process decreases, implying 367

that the percentage of data put into the cache is increased. Therefore, the effect of 368

cache optimization by using the index reordering strategies becomes less obvious. 369

For the G8 grids, when using the same number of processes with the G10 grid 370

(see the lower left part of Figure 6), the three index reordering strategies can speed up 371

the calculations on some test cases, but with a smaller speedup factor. While for the 372

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 13

other test cases, acceleration is relatively hard to achieve. This is because the number 373

of mesh points distributed to each process is much less than that of the G10 grid. As 374

we decrease the number of processes, as shown in the lower right part of Figure 6, the 375

speedups of the three index reordering strategies become conspicuous again. When 376

running on 60 processes, a 1.12x speedup and a 1.22x speedup are obtained for the 377

quasi-uniform G8 grid and variable-resolution G8 grid, respectively. These results 378

suggest that the index reordering strategies can indeed speed up the calculations, 379

especially for running with a small number of processes. 380

Based on tests using the three indexing strategies, the BFS strategy typically 381

performs best and can be used as the default indexing strategy. 382

 383

4 The data I/O optimization 384

 385

4.1 The original parallel I/O method 386

 387

Except for the communication and computation, the data I/O is an important 388

issue that may lead to the increase of simulation time, posing a bottleneck for the 389

high-resolution or massively parallel simulations (see, e.g., Maisonnave et al. (2017); 390

Koldunov et al. (2019)). This issue becomes especially challenging for the 391

unstructured-mesh models because of discontinuous accesses. As shown in Figure 7a, 392

originally, we call the PnetCDF (Li et al. (2003)) interface to perform the I/O 393

operations, and each process directly interacts with the parallel file system. To give a 394

more specific example, we use the data input procedure for an illustration. When 395

reading data in parallel, the global indices of the data to be read by each process are 396

discontinuous (that is, the positions of the data to be read in the input file are 397

discontinuous, due to the use of the unstructured mesh), while the interface for 398

reading data in PnetCDF requires that the data read each time are located 399

continuously in the input file. Therefore, the reading interface in PnetCDF has to be 400

called multiple times. To reduce the number of interface calls, we initialize two arrays 401

‘var_start’ and ‘var_count’ to record the starting positions and lengths of the data to be 402

read by each process, respectively. That is, ‘var_start (i)’ is the starting position of the 403

input file for the i-th call to the PnetCDF reading interface, and ‘var_count (i)’ is the 404

length of the data for the i-th call to the PnetCDF reading interface. The sizes of these 405

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 14

two arrays are the number of times that the PnetCDF reading interface is called. With 406

these two arrays, we call the PnetCDF nonblocking reading interface ‘nfmpi_iget_var’ 407

multiple times to read the data. It is worth noting that the data are not imported when 408

calling ‘nfmpi_iget_vara’, but only the reading requests are recorded. The reading is 409

actually carried out at the wait interface ‘nfmpi_wait_all’. 410

The ‘var_start’ and ‘var_count’ arrays are initialized in the mesh partition 411

procedure, and the knowledge of implementation details is not required for scientific 412

model developers. After that, these two arrays can be used as the inputs to call the 413

‘wrap_read_par’ function to read the grid data or the variable data. The data output 414

follows the same approach as the data input, except one special treatment: the edge 415

and triangle points are partitioned following the partition of the node points, while 416

each edge or triangle has two or three node points; thus, each edge or triangle point 417

may belong to two or three processes. To avoid the conflicts during the data output, 418

we choose the process with the smallest rank to perform the output of the data defined 419

on the edge or triangle points that belong to more than one process. The users also do 420

not have to know the details of initializing the ‘var_start’ and ‘var_count’ arrays for 421

the data output. In addition, similar to the inter-process communications, we have also 422

designed a linked list to collect variables that need to be output. An interface called 423

‘wrap_add_field’ can be used to add the variables to the list. When the collection is 424

finished, an interface called ‘wrap_output’ is used to write all the collected model 425

variables in the list to the parallel file system. 426

Although the method mentioned above can combine multiple reading requests, 427

PnetCDF shows a significant performance degradation provided that the number of 428

processes scales to several hundreds or thousands. Therefore, we consider improving 429

the I/O efficiency of the parallel infrastructure through the group I/O method. 430

 431

4.2 The group I/O method 432

 433

As shown in Figure 7b, the processes in the group I/O method are grouped, and 434

only one process in each group (denoted by the I/O process) is responsible for 435

interacting with the parallel file system. The data to be read by other processes are 436

imported through the I/O process and then transmitted from the I/O process through 437

MPI. The data to be output by other processes are sent to the I/O process and then 438

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 15

written to the parallel file system by the I/O process. The group I/O method can 439

improve the I/O granularity by reducing the number of processes interacting with the 440

parallel file system, thus reducing the number of calls to the PnetCDF nonblocking 441

reading/writing interfaces. The group I/O strategy has a much higher efficiency than 442

the original ungrouped parallel I/O and is implemented in several major steps. 443

The first step to apply the group I/O method is to determine the I/O processes. 444

We use a user-specified parameter ‘group_size’ to determine the size of the 445

process-groups, i.e., how many processes are in one group. Then, the processes with 446

ranks divisible by ‘group_size’ are chosen as the I/O processes. For an I/O process 447

with rank i, the processes with ranks ranging from i + 1 to i + group_size − 1 are the 448

non-I/O processes in the same group with process i. Then, as stated in subsection 4.1, 449

the ‘var_start’ and ‘var_count’ arrays are initialized for all the processes to record the 450

starting positions and lengths of the data to be input and output. However, for the 451

group I/O method, these arrays are only required for the I/O processes. To initialize 452

the ‘var_start’ and ‘var_count’ arrays, the I/O process in each group first gathers the 453

global indices of node, edge and triangle points that distributed to the non-I/O 454

processes, which is accomplished by calling the ‘MPI_Gatherv’ interface. After that, 455

the I/O process sorts these indices to obtain the largest continuous intervals and builds 456

up maps between the original unsorted and corresponding sorted indices. These maps 457

are used for data rearrangements between the order in the processes and the order in 458

the parallel file system. 459

Next, the ‘var_start’ and ‘var_count’ arrays are determined for the sorted indices 460

of the I/O processes. Then, the group I/O can be carried out when the initialization of 461

‘var_start’ and ‘var_count’ arrays are finished. It should be noted that the 462

communicator for calling the ‘open’ or ‘create’ interface in PnetCDF is composed by 463

all the I/O processes, since only the I/O processes interact with the parallel file system. 464

For the data input, the PnetCDF nonblocking reading interface ‘nfmpi_iget_vara’ and 465

the wait interface ‘nfmpi_wait_all’ are used as in the original parallel I/O method, but 466

only by the I/O processes. When the reading is done, the I/O process in each group 467

rearranges the data from the sorted-indices order to the unsorted-indices order (the 468

order in the processes) and then calls the ‘MPI_Scatterv’ interface to send the data to 469

the non-I/O processes. For the data output, the I/O process in each group gathers the 470

data from the non-I/O processes by calling the ‘MPI_Gatherv’ interface. Then, the I/O 471

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 16

processes rearrange the data from the unsorted-indices order to the sorted-indices 472

order. Finally, the output is done by the I/O processes through calling the 473

‘nfmpi_iput_vara’ and ‘nfmpi_wait_all’ interfaces. 474

The complicated operations described above are wrapped by the 475

‘wrap_read_group’ and ‘wrap_output_group’ subroutines for the data input and output, 476

respectively. 477

 478

4.3 Numerical tests 479

 480

This subsection examines the performance of the group I/O method. The 481

(quasi-uniform) G10 grid, the quasi-uniform G8 grid, and the variable-resolution G8 482

grid (G8X4) are used. The run times of data input and output with different numbers 483

of processes and ‘group_size’s are presented in Figure 8. The run times in each 484

sub-figure are divided by the corresponding run time with 600 processes, and 485

group_size = 1 (i.e., without grouping). 486

For the data input, the reading time of the original parallel I/O method 487

(group_size = 1) increases significantly as the number of processes increases. The 488

group I/O method with any ‘group_size’ larger than 1 can reduce the reading time 489

compared with the original I/O method. For the G10 grid, the best performance is 490

usually achieved when the number of I/O processes (i.e., the number of processes 491

divided by the group_size, since there is one I/O process in each group) is near 120, 492

and more than 90x speedup is observed when the total number of processes is 4200. 493

For the G8 and G8X4 grids, the best number of I/O processes is between 30 and 70, 494

and more than 122x speedup and 108x speedup can be achieved for the quasi-uniform 495

G8 grid and G8X4 grid, respectively, when the total number of processes reaches 496

4200. 497

For the data output, the group I/O can reduce the writing time for both the G8 498

and G8X4 grids with almost all the ‘group_size’s larger than 1, while it is only 499

effective for the G10 grid with part of the ‘group_size’s. For the G10 grid, the best 500

number of I/O processes is between 120 and 200, and more than 3x speedup can be 501

achieved for all the process numbers. The reason why more speedup is achieved for 502

the data input than for output may be that the second dimensions of the input data 503

(smaller than 7, mainly grid data currently) are much smaller than those of the output 504

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 17

data (the number of vertical layers of the variables, 30 in this study). This means that 505

the input data are ‘more discontinuous’ than the output data, so the optimization effect 506

of the group I/O method for data input is more significant than for data output. For the 507

G8 and G8X4 grids, the best number of I/O processes is between 50 and 80, and more 508

than 80x speedup and 84x speedup can be obtained for the quasi-uniform G8 grid and 509

G8X4 grid, respectively, when the total number of processes reaches 4200. These 510

results demonstrate that the group I/O method can effectively improve the I/O 511

efficiency of the unstructured-mesh models, especially for the massively parallel 512

simulations. 513

 514

5 Conclusions 515

 516

In this paper, we have described the development and performance optimization 517

of a parallel computing infrastructure for supporting an unstructured-mesh global 518

model. The work manifests in three aspects, all of which contribute to performance 519

improvement. The major conclusions are summarized as follows. 520

(i) The mesh partition accomplished by the METIS library is convenient for both 521

the quasi-uniform and VR simulations. By designing a general interface with an 522

effective communication mechanism, scientific model developers only need to decide 523

where and when to utilize these communication tools, depending on their respective 524

solution techniques and modelling workflow. No knowledge regarding the details of 525

communication is required. The scaling tests demonstrate that the partition method 526

and the communication techniques are efficient. 527

(ii) The three mesh index reordering strategies are able to improve the 528

computational efficiency through the cache optimization. The effect is particularly 529

conspicuous for the high-resolution tests with a relatively small number of processes 530

(as compared to the total number of cells). The BFS strategy typically performs the 531

best and is recommended as a default option if index optimization is activated. 532

(iii) The original parallel I/O method scales poorly due to the discontinuous 533

feature of the unstructured meshes. To overcome this problem, we have developed a 534

group I/O method, which can improve the I/O granularity by reducing the number of 535

processes interacting with the parallel file system. This strategy can significantly 536

improve the I/O efficiency for massively parallel simulations, especially for global 537

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 18

high-resolution modelling. 538

The three aspects of the parallel computing toolkits mentioned above are 539

encapsulated in only a few interfaces that can be used by scientific model developers. 540

No knowledge regarding the details of parallel implementation is required, thus 541

reducing the development cost, helping to streamline the code flow and easing the 542

code refactoring. This approach shares elements of a similar philosophy inherent in 543

the OpenArray library introduced by Huang et al. (2019), while technically different. 544

These parallel computing toolkits are not only useful to the existing models but may 545

also benefit the addition of new dynamical models in the future. 546

Further, the asynchronous communication technology may be implemented to 547

overlap the computations of data in the inner area and the inter-process 548

communications for updating the data in the halo area, which can hide the 549

communication time and improve the computational efficiency. The heterogeneous 550

many-core acceleration technique will be applied to port the model to the Sunway 551

TaihuLight supercomputer for achieving higher computational efficiency. 552

 553

Code availability. GRIST is available at https://github.com/grist-dev, in private 554

repositories. A version of the model code, running and postprocessing scripts for 555

supporting this paper are available at: https://zenodo.org/record/3930643. An 556

authorized link is provided for the editor and reviewers to access the code, which does 557

not compromise their anonymity. The running scripts are located at: 558

run_scripts/Perf-test. The grid data used to enable the tests can be downloaded from: 559

https://zenodo.org/record/3779535. The source code is available to a member of the 560

model development projects, or people who have interest. Per the current policy on 561

code sharing at Chinese Academy of Meteorological Sciences, public authorization 562

may be granted provided that one accepts the terms and conditions: 563

https://github.com/GRIST-Dev/TermsAndConditions. 564

 565

Author contributions. DW implemented and tested the parallel partition code. ZL 566

designed the mesh index reordering strategies as well as the group I/O method. Xing 567

Huang and MW implemented and tested the index reordering strategies and the group 568

I/O method. Xiaomeng Huang, JL, ZL and YZ led the writing of this paper with 569

contributions from all other coauthors. 570

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 19

 571

Competing interests. The authors declare that they have no conflict of interest. 572

 573

Acknowledgements. This work is supported by a grant from the National Key R&D 574

Program of China (2017YFC1502203, 2016YFB0201100, 2017YFC1502200, 575

2018YFB0505000, 2018YFB1502800), the Qingdao National Laboratory for Marine 576

Science and Technology (QNLM2016ORP0108), the National Natural Science 577

Foundation of China (41776010), and the Center for High Performance Computing 578

and System Simulation of the Pilot National Laboratory for Marine Science and 579

Technology (Qingdao). YZ acknowledges support from the National Natural Science 580

Foundation of China (41875135) and the National Key R&D Program of China 581

(2016YFA0602101). 582

 583

References 584

 585

Dennis, J. M., Edwards, J., Loy, R., Jacob, R., Mirin, A., Craig, A. P., and Vertenstein, 586

M.: An application level parallel I/O library for Earth system models, Int. J. High 587

Perform. Comput. Appl., 26, 43–53, https://doi.org/10.1177/1094342011428143, 588

2011. 589

 590

Du, Q., Gunzburger, M., and Ju, L.: Constrained centroidal Voronoi tessellations for 591

surfaces, SIAM J. Sci. Comput., 24(5), 1488-1506, 592

https://doi.org/10.1137/S1064827501391576, 2003. 593

 594

Düeben, P. D., Wedi, N., Saarinen, S., and Zeman, C.: Global simulations of the 595

atmosphere at 1.45 km grid-spacing with the Integrated Forecasting System, J. Meteor. 596

Soc. Japan, Ser. II, https://doi.org/10.2151/jmsj.2020-016, 2020. 597

 598

Govett, M., Rosinski, J., Middlecoff, J., Henderson, T., Lee, J., MacDonald, A., Wang, 599

N., Madden, P., Schramm, J., and Duarte, A.: Parallelization and performance of the 600

NIM Weather Model on CPU, GPU and MIC processors, B. Am. Meteorol. Soc., 98, 601

2201–2213, https://doi.org/10.1175/BAMS-D-15-00278.1, 2017. 602

 603

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 20

Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., 604

Chang, P., Corti, S., Fuˇckar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., 605

Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., 606

Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von 607

Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for 608

CMIP6, Geosci. Model Dev., 9, 4185–4208, 609

https://doi.org/10.5194/gmd-9-4185-2016, 2016. 610

 611

Huang, X., Huang, X., Wang, D., Wu, Q., Li, Y., Zhang, S., Chen, Y., Wang, M., Gao, 612

Y., Tang, Q., Chen, Y., Fang, Z., Song, Z., and Yang, G.: OpenArray v1.0: a simple 613

operator library for the decoupling of ocean modeling and parallel computing, Geosci. 614

Model Dev., 12, 4729–4749, https://doi.org/10.5194/gmd-12-4729-2019, 2019. 615

 616

Huang, X. M., Wang, W. C., Fu, H. H., Yang, G. W., Wang, B., and Zhang, C.: A fast 617

input/output library for high-resolution climate models, Geosci. Model Dev., 7, 93–618

103, https://doi.org/10.5194/gmd-7-93-2014, 2014. 619

 620

Jacobsen, D. W., Gunzburger, M., Ringler, T., Burkardt, J., and Peterson, J.: Parallel 621

algorithms for planar and spherical Delaunay construction with an application to 622

centroidal Voronoi tessellations, Geosci. Model Dev., 6, 1353–1365, 623

https://doi.org/10.5194/gmd-6-1353-2013, 2013. 624

 625

Karypis, G. and Kumar, V.: A fast and highly quality multilevel scheme for 626

partitioning irregular graphs. SIAM J. Sci. Comput., 20(1), 359-392, 627

https://doi.org/10.1137/S1064827595287997, 1998. 628

 629

Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko, D., Danilov, S., 630

and Jung, T.: Scalability and some optimization of the FinitevolumE Sea ice–Ocean 631

Model, Version 2.0 (FESOM2), Geosci. Model Dev., 12, 3991–4012, 632

https://doi.org/10.5194/gmd-12-3991-2019, 2019. 633

 634

Li J., Liao W., Choudhary A., Ross R., Thakur R., Gropp W., Latham R., Siegel A., 635

Gallagher B., and Zingale M.: Parallel netCDF: a scientific high-performance I/O 636

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 21

interface, Proceedings of ACM/IEEE Conference on Supercomputing, 39-39, 637

https://doi.org/10.1109/SC.2003.10053, 2003. 638

 639

MacDonald, A. E., Middlecoff, J., Henderson, T., and Lee, J.-L.: A general method for 640

modeling on irregular grids, The Int. J. High Performa. Comput. Appl., 25, 392–403, 641

https://doi.org/10.1177/1094342010385019, 2011. 642

 643

Maisonnave, E., Fast, I., Jahns, T., Biercamp, J., Sénési, S., Meurdesoif, Y., and 644

Fladrich, U.: CDI-pio & XIOS I/O servers compatibility with HR climate models, 645

Technical Report, TR/CMGC/17/52, CECI, UMR CERFACS/CNRS No5318, 2017. 646

 647

Renka, R.: Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram 648

on the surface of a sphere, ACM T. Math. Software, 23, 416–434, 649

https://doi.org/10.1145/275323.275329, 1997. 650

 651

Ringler, T. D., Jacobsen, D., Gunzburger, M., Ju, L., Duda, M. G., and Skamarock, W.: 652

Exploring a multi-resolution modeling approach within the shallow-water equations, 653

Mon. Wea. Rev., 139, 3348–3368. doi:10.1175/MWR-D-10-05049.1, 2011. 654

 655

Ringler, T. D., Thuburn, J., Klemp, J. B., and Skamarock, W. C.: A unified approach 656

to energy conservation and potential vorticity dynamics for arbitrarily-structured 657

C-grids, J. Comput. Phys., 229, 3065–3090, https://doi.org/10.1016/j.jcp.2009.12.007, 658

2010. 659

 660

Sarje, A., Song, S., Jacobsen, D., Huck, K., Hollingsworth, J., Malony, A., Williams, 661

S., and Oliker, L.: Parallel performance optimizations on unstructured mesh-based 662

simulations, Procedia Computer Science, 51, 2016–2025, 663

https://doi.org/10.1016/j.procs.2015.05.466, 2015. 664

 665

Sinkovits, R. and Duda, M.: Optimization and parallel load balancing of the MPAS 666

atmosphere weather and climate code, Proceedings of the XSEDE16 Conference on 667

Diversity, Big Data, and Science at Scale, ACM, 1-6, 668

https://doi.org/10.1145/2949550.2949575, 2016. 669

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 22

 670

Skamarock, W. C., and Gassmann, A.: Conservative transport schemes for spherical 671

geodesic grids: High-order flux operators for ODE based time integration, Mon. Wea. 672

Rev., 139(9), 2962–2975. https://doi.org/10.1175/MWR-D-10-05056.1, 2011. 673

 674

Skamarock, W. C., Klemp J. B., Duda, M. G., Fowler, L. D., Park, S.-H. and Ringler, 675

T. D.: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi 676

tesselations and C-Grid staggering, Mon. Wea. Rev. 140 (9), 3090-3105, 677

https://doi.org/10.1175/MWR-D-1100215.1, 2012. 678

 679

Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C., Chen, X., Düben, P., 680

Judt, F., Khairoutdinov, M., Klocke, D., Kodama, C., Kornblueh, L., Lin, S.-J., 681

Neumann, P., Putman, W., Röber, N., Shibuya, R., Vannière, B., Vidale, P.L. and Zhou, 682

L.: DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On 683

Non-hydrostatic Domains, Prog. Earth Planet. Sci. 6, 61, 684

https://doi.org/10.1186/s40645019-0304-z, 2019. 685

 686

Thuburn, J., Ringler, T. D., Skamarock, W. C., and Klemp, J. B.: Numerical 687

representation of geostrophic modes on arbitrarily structured C-grids, J. Comput. 688

Phys., 228(22), 8321–8335, https://doi.org/10.1016/j.jcp.2009.08.006, 2009. 689

 690

Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., 691

Zarzycki, C. M., Hall, D. M., Dazlich, D., Heikes, R., Konor, C., Randall, D., Dubos, 692

T., Meurdesoif, Y., Chen, X., Harris, L., Kühnlein, C., Lee, V., Qaddouri, A., Girard, 693

C., Giorgetta, M., Reinert, D., Klemp, J., Park, S.-H., Skamarock, W., Miura, H., 694

Ohno, T., Yoshida, R., Walko, R., Reinecke, A., and Viner, K.: DCMIP2016: a review 695

of non-hydrostatic dynamical core design and intercomparison of participating models, 696

Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017, 697

2017. 698

 699

Wang, L., Zhang, Y., Li, J., Liu, Z. and Zhou, Y. H.: Understanding the performance 700

of an unstructured-mesh global shallow water model on kinetic energy spectra and 701

nonlinear vorticity dynamics, J. Meteoro. Res., 33(6), 1075-1097, 702

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 23

https://doi.org/10.1007/s13351-019-9004-2, 2019. 703

 704

Wang, W., Huang, X., Fu, H., Hu, Y., Xu, S., and Yang, G: CFIO: A Fast I/O Library 705

for Climate Models, Proceedings of the IEEE International Conference on Trust, 706

Security and Privacy in Computing and Communications (TrustCom 2013), 911-918, 707

https://doi.org/10.1109/TrustCom.2013.111, 2013. 708

 709

Yang, R., Ward, M., and Evans, B.: Parallel I/O in Flexible Modelling System (FMS) 710

and Modular Ocean Model 5 (MOM5), Geosci. Model Dev., 13, 1885–1902, 711

https://doi.org/10.5194/gmd-13-1885-2020, 2020. 712

 713

Yu, R., Zhang, Y., Wang, J., Li, J., Chen, H., Gong, J., and Chen, J.: Recent progress 714

in numerical atmospheric modeling in China, Adv. Atmos. Sci. 36, 938-960, 715

https://doi.org/10.1007/s00376-019-8203-1, 2019. 716

 717

Zhang, Y.: Extending high-order flux operators on spherical icosahedral grids and 718

their applications in the framework of a shallow water model, J. Adv. Model. Earth 719

Syst., 10, 145–164, https://doi.org/10.1002/2017MS001088, 2018. 720

 721

Zhang, Y., Li, J., Yu, R. C., Zhang, S. X., Liu, Z., Huang, J. H., and Zhou, Y. H.: A 722

layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for 723

global and regional atmospheric modeling: Model description, baseline evaluation 724

and sensitivity exploration, J. Adv. Model. Earth Syst., 11, 1685–1714, 725

https://doi.org/10.1029/2018MS001539, 2019. 726

 727

Zhang, Y., Li, J., Yu, R. C., Liu, Z., Zhou, Y. H., Li, X. H., Huang, X.: A multiscale 728

dynamical model in a dry-mass coordinate for weather and climate modeling: Moist 729

dynamics and its coupling to physics, Mon. Wea. Rev., to appear, 730

https://doi.org/10.1175/MWR-D-19-0305.1, 2020.731

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 24

Figure 1. The quasi-uniform and VR Voronoi tessellations. Left: the quasi-uniform

mesh, Right: the VR mesh. Both meshes are partitioned by METIS, and cells of the

same colour belong to the same process.

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 25

Figure 2. The local mesh of one process, consisting of the inner area (blue), the

boundary area (green), and the halo area (red), with three layers of halo cells.

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 26

(a) Scaling of the original code (b) Scaling after applying the BFS index reordering

strategy

Figure 3. The ideal and actual run times under different numbers of processes for the

G10 and G8 grids. X label: the number of processes, Y label: the total run time (All

the run-time points are divided by the corresponding benchmark run time, i.e., divided

by the run time of simulation under G10 grid with 300 processes).

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Processes
10-3

10-2

10-1

100

R
un

 T
im

e

Scaling Origin

Ideal G10
Actual G10
Ideal G8
Actual G8

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Processes
10-3

10-2

10-1

100

R
un

 T
im

e

Scaling BFS

Ideal G10
Actual G10
Ideal G8
Actual G8

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 27

Figure 4. The index order of node points in the inner area of process 0 for the G4 grid

(2562 node points, running with two processes). Compared with the original-ordering

case, the orders of BFS, Hilbert, and Morton strategies appear much better.

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 28

Figure 5. The Voronoi polygons and the oblique-coordinate Hilbert curve.

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 29

Figure 6. The speedups of index reordering strategies relative to the original-ordering

case. X label: the number of processes, Y label: the speedup relative to the

original-ordering case.

G10 Grid

300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200

Number of Processes

1

1.1

1.2

1.3

1.4

1.5

1.6

Sp
ee

d
U

p
BFS
Hilbert
Morton

Quasi-Uniform G8 Grid

300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200

Number of Processes

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Sp
ee

d
U

p

BFS
Hilbert
Morton

Quasi-Uniform G8 Grid

60 120 180 240 300 360 420

Number of Processes

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Sp
ee

d
U

p

BFS
Hilbert
Morton

Variable-Resolution G8 Grid

300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200

Number of Processes

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Sp
ee

d
U

p

BFS
Hilbert
Morton

Variable-Resolution G8 Grid

60 120 180 240 300 360 420

Number of Processes

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Sp
ee

d
U

p

BFS
Hilbert
Morton

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 30

Figure 7. The straight PnetCDF I/O method and the group I/O method (group_size =

4). PE (process element) denotes an MPI process.

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 31

Figure 8. The input (left) and output (right) times for different grids. X label: the

number of processes, Y label: the run time of data input/output (All the run-time

points are divided by the corresponding run time with 600 processes and group_size =

1). Different coloured bars represent results obtained with different ‘group_size’s.

G10 Grid

600 1200 1800 2400 3000 3600 4200
Number of Processes

0

5

10

15

20

In
pu

t T
im

e

1
2
3
5
10
20
30
60

G10 Grid

600 1200 1800 2400 3000 3600 4200
Number of Processes

0

0.5

1

1.5

O
ut

pu
t T

im
e

1
2
3
5
10
20
30
60

Quasi-Uniform G8 Grid

600 1200 1800 2400 3000 3600 4200
Number of Processes

0

2

4

6

8

10

12

14

In
pu

t T
im

e

1
2
3
5
10
20
30
60

Quasi-Uniform G8 Grid

600 1200 1800 2400 3000 3600 4200
Number of Processes

0

0.5

1

1.5

2

O
ut

pu
t T

im
e

1
2
3
5
10
20
30
60

Variable-Resolution G8 Grid

600 1200 1800 2400 3000 3600 4200
Number of Processes

0

2

4

6

8

10

12

14

In
pu

t T
im

e

1
2
3
5
10
20
30
60

Variable-Resolution G8 Grid

600 1200 1800 2400 3000 3600 4200
Number of Processes

0

0.5

1

1.5

2

2.5

O
ut

pu
t T

im
e

1
2
3
5
10
20
30
60

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

 32

Table 1. The relationship between the mesh resolution and the length of the converted

string L.

https://doi.org/10.5194/gmd-2020-158
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

