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Abstract. A common task in Lagrangian oceanography is
to calculate a large number of drifter trajectories from a ve-
locity field precalculated with an ocean model. Mathemati-
cally, this is simply numerical integration of an ordinary dif-
ferential equation (ODE), for which a wide range of different5

methods exist. However, the discrete nature of the modelled
ocean currents requires interpolation of the velocity field in
both space and time, and the choice of interpolation scheme
has implications for the accuracy and efficiency of the differ-
ent numerical ODE methods.10

We investigate trajectory calculation in modelled ocean
currents with 800 m, 4 km, and 20 km horizontal resolution,
in combination with linear, cubic and quintic spline inter-
polation. We use fixed-step Runge–Kutta integrators of or-
ders 1–4, as well as three variable-step Runge–Kutta methods15

(Bogacki–Shampine 3(2), Dormand–Prince 5(4) and 8(7)).
Additionally, we design and test modified special-purpose
variants of the three variable-step integrators, which are bet-
ter able to handle discontinuous derivatives in an interpolated
velocity field.20

Our results show that the optimal choice of ODE integrator
depends on the resolution of the ocean model, the degree of
interpolation, and the desired accuracy. For cubic interpola-
tion, the commonly used Dormand–Prince 5(4) is rarely the
most efficient choice. We find that in many cases, our special-25

purpose integrators can improve accuracy by many orders of
magnitude over their standard counterparts, with no increase
in computational effort. Equivalently, the special-purpose in-
tegrators can provide the same accuracy as standard methods
at a reduced computational cost. The best results are seen for30

coarser resolutions (4 and 20 km), thus the special-purpose
integrators are particularly advantageous for research using

regional to global ocean models to compute large numbers
of trajectories. Our results are also applicable to trajectory
computations on data from atmospheric models. 35

1 Introduction

Calculating trajectories of tracers through a precalculated ve-
locity field is a common task for many applications (van Se-
bille et al., 2018). Oceanic and atmospheric transport simu-
lations are frequently built on this approach, and used to cal- 40

culate, for example, the transport of pollutants (see, e.g. Rye
et al., 1998; North et al., 2011; Povinec et al., 2013; Onink
et al., 2019), distribution of algae and plankton (see, e.g.
Siegel et al., 2003; Woods, 2005; Visser, 2008), search and
rescue operations (see, e.g. Breivik and Allen, 2008; Serra 45

et al., 2020), or temperature and salinity pathways (see, e.g.
Barkan et al., 2017). Similarly, climate change studies may
compute vast numbers of trajectories to understand trans-
port of heat and salt (see, e.g. Dugstad et al., 2019). Com-
putation of trajectories for a variety of atmospheric species 50

is also a common application (see, e.g. Sirois and Botten-
heim, 1995; Riuttanen et al., 2013; Nieto and Gimeno, 2019).
Other applications include the calculation of Lagrangian Co-
herent Structures (LCSs), which is not a transport simula-
tion per se, but which still uses tracer trajectories to analyse 55

flow fields (see, e.g. Farazmand and Haller, 2012; Onu et al.,
2015; Haller, 2015; Duran et al., 2018).

For all these applications, it is of interest to obtain trajec-
tories of the desired accuracy with minimal computational
work or conversely to obtain the most accurate solution pos- 60

sible for a given amount of computational effort. Marine and
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2 T. Nordam and R. Duran: Numerical integrators for Lagrangian oceanography

atmospheric transport applications often require computing
large numbers of trajectories, which are essentially solutions
of an ordinary differential equation (ODE). As this can be
computationally quite demanding, guidance on how to select
the optimal combination of numerical schemes for a given5

application is of practical value.
We further note that in ODE parlance, the velocity fields

represented by ocean currents (and wind) may be both sta-
ble and unstable, often presenting hyperbolic points where
initially small errors may grow exponentially. It may there-10

fore be useful to employ higher-order integration methods or
small time steps with lower-order integration methods. This
is particularly relevant for long integration times (months to
years) where errors accumulate and can be amplified.

In the applied mathematics community, a standard first15

choice for numerically solving an ODE is a variable-step in-
tegrator (see, e.g. Gladwell et al., 2003). Variable-step inte-
grators use clever choices of function evaluations in order to
evaluate the local error in each step of the solution, and the
time step is dynamically chosen to be as long as possible20

while meeting a prescribed error estimate. Thus, variable-
step integrators tend to be more efficient than their fixed-step
counterparts.

However, there is limited discussion of such an approach
in the literature on applied Lagrangian oceanography. Inte-25

grators used in marine transport applications may range from
Euler’s method (see, e.g. Zelenke et al., 2012; De Domini-
cis et al., 2013) to a more typical fourth-order Runge–Kutta
method (see, e.g. García-Martínez and Flores-Tovar, 1999).
Some alternatives seek to cut computational time by us-30

ing fewer evaluations, like the fourth-order Milne predictor,
Hamming corrector integration scheme (see, e.g. Narváez
et al., 2012), or the fourth-order Adams–Bashforth method
(see, e.g. Yang et al., 2008).

In the context of LCS, variable-time-step integrators ap-35

pear to be a more common, yet not universal, choice. In-
terpolation schemes, which must be used to evaluate dis-
cretely gridded velocity fields at arbitrary points, have also
received some attention in the LCS field. Ali and Shah
(2007) use a fourth-order Runge–Kutta–Fehlbergh method40

and the local cubic interpolation recipe of Lekien and Mars-
den (2005). Beron-Vera et al. (2008) use linear interpolation
and the classic fourth-order Runge–Kutta. Shadden and Tay-
lor (2008) use linear basis functions for interpolation, and
a Runge–Kutta–Fehlberg scheme for integration. Peng and45

Dabiri (2009) use the fourth-order Runge–Kutta with a ve-
locity field derived from Particle Image Velocimetry (PIV),
though with no interpolation scheme specified.

Solving diverse types of marine-transport problems is a
common task, and given the vast number of computations50

that are often involved, it seems natural to ask how variable-
step integrators perform. Because a precalculated velocity
field is necessarily given at discrete times and spatial loca-
tions, interpolation must be used to create continuous repre-
sentations of these velocity fields that can then be integrated55

using numerical schemes. In practice, the choice of an inter-
polation scheme will have implications for the accuracy that
can be achieved with the different numerical integrators, as
well as the computational effort.

In this paper, we compare several approaches for interpo- 60

lation of the velocity field and numerical integration of the
trajectories. We include both fixed and variable step-size in-
tegrators. As input data to the trajectory calculations, we use
modelled ocean currents at 20 km, 4 km, and 800 m reso-
lutions. These are representative of current high-resolution 65

Earth Modelling Systems, regional (eddy-resolving) ocean
models, and submesoscale-resolving ocean models, respec-
tively (Lévy et al., 2012), and they thus span a wide range of
applications.

We note that the purpose of our investigation is not to 70

determine how well different model resolutions and differ-
ent interpolation schemes reproduce physical drifter trajec-
tories. Rather, we address the purely numerical question of
which combinations of integrator and interpolator give the
best work–precision balance for a given resolution. 75

The layout of this paper is as follows: in Sect. 2, we intro-
duce some theory on numerical integration of ODEs, includ-
ing a description of the interpolation and integration schemes
used and a discussion of the local and global error of numer-
ical integrators. Next, in Sect. 3 we discuss the performance 80

of numerical integrators for velocity fields with discontinu-
ous derivatives and describe how we modified well-known
variable-step integrators to improve their performance for
this particular application. Section 4 describes how the inter-
polation and integration schemes were implemented in code 85

and the numerical experiments that were carried out. Sec-
tion 5 contains the results of our investigation and a discus-
sion of the results, and finally in Sect. 6 we present some
conclusions on the most efficient choice of integrator for dif-
ferent applications. 90

2 Theory

The topic of the current paper is to study the numerical calcu-
lation of tracer advection by precalculated, gridded velocity
fields, with a focus on applications in Lagrangian oceanog-
raphy. Note that we ignore diffusion, and consider pure ad- 95

vection with ocean currents. In this case, the trajectory of a
particle being advected passively through a velocity field is
defined by the ODE

ẋ = v(x, t), (1)

where v(x, t) is the velocity at position and time (x, t), 100

along with an initial condition, x(t0)= x0. Such a problem
is called an initial value problem and solving it means to find
the value of x(t) at later times, t > t0.

Finding the solution of an initial value problem by numer-
ical means is known as numerical integration of the differ- 105

ential equation. A large body of literature exists on the topic
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of numerical integration, and a range of different techniques
exist, both general-purpose methods that work with many
different problems (see, e.g. Hairer et al., 1993; Hairer and
Wanner, 1996) and special-purpose methods that for exam-
ple preserve some symmetry of the problem (see, e.g. Hairer5

et al., 2006). In this paper, we will consider both fixed- and
variable-step methods from the Runge–Kutta family.

In the following, we introduce some elements from the
theory of numerical integration of ODEs, which will be
needed for the later discussion. While elsewhere in this paper10

we consider x(t) a two-dimensional vector giving the posi-
tion of a particle in a horizontal plane, we here use simply
x(t), as the theory is general and can be applied to vectors
and scalars alike.

Common to all numerical ODE methods is that they make15

discrete steps in time. In a fixed-step method, time is incre-
mented by a fixed amount, h, at each iteration, and we have

tn = t0+ nh. (2)

For the variable-step methods, the value of the time step may
change throughout the simulation, such that tn+hn = tn+1.20

Hence, the relationship between time and time step in this
case becomes

tn = t0+

n−1∑
i=0

hi, n≥ 1. (3)

For both types of methods, if the solution is to be calculated
up to time tN , we adjust the last time step as necessary to stop25

the integration exactly at tN :

hN−1→min(hN−1, tN − tN−1) . (4)

Finally, we will use notation where we let xn denote the
numerically obtained solution at time tn, and we let x(tn) be
the true solution at time tn. Note that while x(tn) is usually30

not known, we will still assume that there exists a unique,
true solution (Hairer et al., 1993, pp. 35–43).

2.1 Error bounds

Since numerical integration is most commonly used in situ-
ations where the exact solution is unknown, it becomes nec-35

essary to estimate the error by purely numerical means. In
general, the idea is that a smaller time step, h, gives a more
accurate solution, and as h→ 0, the numerically obtained so-
lution converges to the true solution. The rate of convergence
depends on the chosen integration method.40

There are two important measures of the error: the local
error and the global error. The local error is the error made in
a single step. Assume there is no error in the position at time
tn−1, that is, x(tn−1)= xn−1. Then, the local error in step n
is given by (Hairer et al., 1993, p. 156)45

e(h)= x(tn)− xn. (5)

The global error, on the other hand, is the error at the end
of the computation, at time tN (assuming x(t0)= x0), and is
given by (Hairer et al., 1993, p. 159)

E(h)= x(tN )− xN . (6) 50

It can be shown that for a Runge–Kutta method of order
p and for an ODE given by ẋ = f (x, t), where all partial
derivatives of f (x, t) up to order p exist and are continuous
(that is, f ∈ Cp), the local error is bounded by

|x(t0+h)− x1| ≤ Ch
p+1, (7) 55

where C is some constant, which depends on the method
and on the partial derivatives of f (x, t) (Hairer et al., 1993,
p. 157). If the local error is O(hp+1), then the global error
will be O(hp) (Hairer et al., 1993, pp. 160–162). When the
global error is proportional to hp, the method is said to be of 60

order p.

2.2 Numerical integration methods

We have chosen to consider seven different numerical inte-
gration schemes, all from the family of Runge–Kutta meth-
ods. These include four methods with fixed time step: 65

- first-order Runge–Kutta (Euler’s method),

- second-order Runge–Kutta (explicit trapezoid),

- third-order Runge–Kutta (Kutta’s method),

- fourth-order Runge–Kutta.

For details of these methods, we refer to, e.g. Griffiths and 70

Higham (2010, pp. 24, 44–45, and 131). We have also con-
sidered three methods with variable time step:

- Bogacki–Shampine 3(2),

- Dormand–Prince 5(4),

- Dormand–Prince 8(7). 75

For further details of these methods, we refer to Bogacki and
Shampine (1989), and Dormand and Prince (1980, 1986).

As an example and to aid the explanation of the time step
adjustment routine that will follow in Sects. 2.3 and 3.3, we
will describe the Bogacki–Shampine 3(2) method in some 80

detail. For an ODE given by

ẋ = f (x, t), (8)

the Bogacki–Shampine 3(2) method, for making a step from
position xn, at time tn, to position xn+1, at time tn+1 = tn+

hn, is as follows. 85

k1 = f (xn, tn) (9a)

k2 = f

(
xn+

1
2
k1hn, t +

1
2
hn

)
(9b)
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k3 = f

(
xn+

3
4
k2hn, t +

3
4
hn

)
(9c)

k4 = f

(
xn+

2
9
k1hn+

1
3
k2hn+

4
9
k3hn, t +hn

)
(9d)

x̂n+1 = xn+
7

24
k1hn+

1
4
k2hn+

1
3
k3hn+

1
8
k4hn (9e)

xn+1 = xn+
2
9
k1hn+

1
3
k2hn+

4
9
k3hn. (9f)

This provides two estimates of the next position, of which5

xn+1 is of order 3, and x̂n+1 is of order 2. For this method,
the higher-order estimate is used to continue the integration
(known as local extrapolation; see Hairer et al., 1993, p. 168),
while the lower-order estimate is used to calculate |xn+1−

x̂n+1|, which is used to estimate the local error and adjust the10

time step (see Sect. 2.3).
Comparing Eqs. (9d) and (9f), we note that k4 =

f (xn+1, tn+1). Hence, the weights of this method are cho-
sen such that k4 at one step is equal to k1 at the next step.
This property is known as First Same As Last (FSAL) and15

saves one evaluation of the right-hand side for every step af-
ter the first (see, e.g. Hairer et al., 1993, p. 167). Hence, with
only three new evaluations of f (x, t), this method can pro-
vide both a third-order estimate used to continue the integra-
tion and a second-order estimate for error control.20

Dormand–Prince 5(4) uses 7 evaluations of f (x, t) to con-
struct a fifth-order estimate for continuing the integration and
a fourth-order estimate for error control and time step adjust-
ment. This method also has the FSAL property, meaning that
it uses only six evaluations for every step after the first. The25

final method considered, Dormand–Prince 8(7), uses 13 eval-
uations of f (x, t) to construct eighth-order and seventh-order
estimates, of which the eighth-order is used to continue the
integration. This integrator does not have the FSAL property.

2.3 Time step adjustment30

In the code used to carry out numerical experiments, time
step adjustment has been implemented based on the descrip-
tion in Hairer et al. (1993, pp. 167–168). The user must spec-
ify two tolerance parameters, the absolute tolerance, TA, and
the relative tolerance, TR. We then want the estimate of the35

local error to satisfy∣∣xn+1− x̂n+1
∣∣≤ TA+ TR ·max(xn,xn+1). (10)

To provide a measure of the error, we introduce e, which is a
normalised numerical estimate of the true local error (Eq. 5),
given by40

e =

√∑(
xn+1− x̂n+1

TA+ TR ·max(|xn| , |xn+1|)

)2

, (11)

where in our case we take the sum over the two vector com-
ponents of the solution. We would like to find the optimal
time step, in the sense of giving the optimal balance between

error and computational speed. We consider this to be the 45

time step where the estimated local error is equal to error
allowed by the tolerance, in which case we have e = 1. If, af-
ter calculating x̂n+1 and xn+1, we find that e ≤ 1, the step is
accepted, we update the time to tn+1 = tn+hn, and proceed
with the calculation from the new position xn+1. If, on the 50

other hand, e > 1, the step is rejected, and we remain at po-
sition xn and attempt to make the step again with a reduced
time step.

For both accepted and rejected steps, we adjust the time
step after every step. Since e scales with hq+1, where q is the 55

lower order of the two estimates x̂n+1 and xn+1, we find that
the optimal time step, hopt, is given by (Hairer et al., 1993,
p. 168)

hopt = hn(1/e)
1
q+1 . (12)

A rejected step represents wasted computational work. 60

Hence, in order to make it more likely that the next step is
accepted, we set the time step to a value somewhat smaller
than hopt, and we also seek to prevent the time step from in-
creasing too quickly:TS1

hn+1 =min
(
2.5 ·hn, 0.8 ·hopt

)
. (13) 65

The factors 0.9 and 3.0 were chosen from a range of values
recommended by Hairer et al. (1993, p. 168) and were kept
constant for all numerical experiments. The same time step
adjustment routine as described above has been used for all
three variable-time-step methods used in this paper. 70

2.4 Interpolation

Modelled ocean current velocity data used in Lagrangian
oceanography are commonly provided as vector components
given on regular grids of discrete points (xi , yj , zk) and dis-
crete times (tn). In order to calculate the trajectory of a par- 75

ticle that moves in the velocity field defined by these data,
we will have to evaluate the vector field at arbitrary locations
and (for variable-step methods) arbitrary times. An impor-
tant point for our purposes is that the local error of an order
p Runge–Kutta method is only bounded by Chp+1 if all par- 80

tial derivatives up to order p of the velocity field, v(x, t) in
Eq. (1), exist and are continuous. This has implications for
how we should evaluate the gridded velocity field used in a
particle transport simulation. For example, if one uses linear
interpolation, the first partial derivatives will be constant in- 85

side a cell but discontinuous at cell boundaries. Hence, even
for a first-order method the local error is not guaranteed to
be bounded by Eq. (7) when stepping across a cell boundary
(either in space or time).

In this study, we have chosen to consider three different 90

interpolation schemes, using the same order of interpolation
in both space and time:

- second-order: linear interpolation;
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- fourth-order: cubic spline interpolation;

- sixth-order: quintic spline interpolation.

Note that the order of interpolation is 1 plus the polynomial
degree (de Boor, 2001, p. 1).

To aid the later discussion, we will briefly explain spline5

interpolation in one dimension. The generalisation to higher
dimensions is natural. Assume that we have a grid of N
equidistant points, xn ∈ {x1,x2, . . .,xN−1,xN }, and the val-
ues of some function in those points, yn = f (xn). The aim
of an interpolation procedure is to allow us to approximate10

the function f (x) at arbitrary x, subject to x1 ≤ x ≤ xN . In
the case of linear interpolation, the value of the linearly in-
terpolated function F1(x) on the interval [xn,xn+1] is given
by

F1(x)= f (xn)+
x− xn

1x
· (f (xn+1)− f (xn)) , (14)15

where1x = xn+1−xn is the grid spacing. We see that F1(x)

is a continuous function, but its derivative, F ′1(x), is not con-
tinuous at the grid points. A cubic spline interpolation, F3(x),
of the same data points as above will be given on an interval
[xn,xn+1] by a cubic polynomial, e.g.20

F3(x)= w0+w1x̃+w2x̃
2
+w3x̃

3, (15)

where x̃ = x− xn and the weights, w0, w1, w2, and w3 are
chosen such that F3(x), F ′3(x), and F ′′3 (x) are all continuous
at the grid points (see, e.g. Press et al., 2007, pp. 120–124).
By the same token, a fifth-degree spline interpolation gives a25

piecewise polynomial function of degree 5, with the property
that the first, second, third, and fourth derivatives are contin-
uous at the grid points. A one-dimensional illustration of the
three degrees of interpolation considered in this paper is pro-
vided in Fig. 1. For a description of how spline interpolation30

of ocean current velocity fields was implemented, see Sect. 4.
Finally, we would like to note two important points on the

subject of interpolation in Lagrangian oceanography. First,
the purpose of interpolating discrete current data is not to ap-
proximate the unresolved turbulent motion of the ocean but35

simply to provide a consistent recipe for evaluating gridded
data at arbitrary locations.CE1 Second, once an interpolation
scheme has been chosen, one has effectively replaced the
gridded input data by a set of analytical expressions, spec-
ifying a way in which to evaluate the velocity field at any40

point and time. Hence, for a given dataset and interpola-
tion scheme, the initial value problem given by ẋ = v(x, t),
x(t0)= x0, has a unique true solution (provided the usual
conditions for existence and uniqueness of solutions of ODEs
are met; see, e.g. Hairer et al., 1993, pp. 35–43). With an45

increasingly short time step, h→ 0, stable and consistent
numerical integration schemes should converge towards the
true solution. However, velocity fields evaluated with differ-
ent orders of interpolation are not identical, and will not pro-
duce identical trajectories, even as h→ 0.50

3 Special-purpose integrators

In this section, we will discuss the implications of our ODE
having a right-hand side with discontinuous derivatives. We
consider an analytical example with one discontinuity to il-
lustrate the problem and present a modified special-purpose 55

integration routine that handles the discontinuity. We then de-
scribe how to implement the same idea in special-purpose
variants of regular variable-step integrators for application in
Lagrangian oceanography.

3.1 Discontinuous derivatives 60

As mentioned in Sect. 2.1, the conditions for a pth-order
Runge–Kutta method to actually be pth-order accurate, re-
quire continuous derivatives of the right-hand side, up to and
including order p. The problem is that consistency of order
p of the numerical method is no longer satisfied when the 65

derivatives are not continuous (Kress, 1998, pp. 235, 252).
In many cases this means that the error is larger than ex-
pected, but in some cases the problem may be more serious:
the numerical approximation may be meaningless (Isaacson
and Keller, 1994, p. 346). The more pathological examples 70

are perhaps unlikely to occur in practice. However, as we will
see later, when the error in even a single step is unbounded
by Eq. (7), this can in some cases dominate the global error,
rendering the use of a higher-order scheme pointless.

In practical applications, with interpolated velocity fields, 75

the derivatives are not always continuous. For example,
a common choice in the LCS literature appears to be a
variable-time-step integrator of order 4 and 5 (see, e.g. Ali
and Shah, 2007; Shadden et al., 2010; Beron-Vera et al.,
2010; Maslo et al., 2020). Theoretically, seventh-order spline 80

interpolation, yielding five continuous derivatives, is required
for the error estimates in the step size control routine to hold.
However, higher-order spline interpolation is more computa-
tionally demanding, and in practice cubic spline interpolation
appears to be a common choice. It is also worth noting that, 85

in general, spurious oscillations become increasingly prob-
lematic with increasing spline order.

For such cases, strategies exist to deal with the discontinu-
ities in the right-hand side or (more commonly in our case) its
derivatives (Hairer et al., 1987, p. 181). Three possible strate- 90

gies for dealing with ODEs with discontinuities are outlined
below Hairer et al. (1993, pp. 197–198).

i Ignore the discontinuity, and let the variable-step-size
integrator sort out the problem.

ii Use an integrator with an error control routine specifi- 95

cally designed to detect and handle discontinuities (see,
e.g. Enright et al., 1988; Dieci and Lopez, 2012).

iii Use information about the position of the discontinuity
to stop and restart integration at that point.
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6 T. Nordam and R. Duran: Numerical integrators for Lagrangian oceanography

Figure 1. One-dimensional illustration of different degrees of interpolation. From the same 11 data points (shown as black circles in the
top panel), we have constructed a linear interpolation (continuous lines), a cubic spline interpolation (dashed lines), and a quintic spline
interpolation (dotted lines). From the top, the panels show the interpolated functions, the first derivative, the second derivative, and the third
derivative. We observe that linear interpolation, F1(x), gives a discontinuous derivative, and cubic interpolation, F3(x), gives a discontinuous
third derivative.

Given that the issue of interpolation and integration is not
typically discussed in great detail in applied papers on La-
grangian oceanography, one assumes that most authors im-
plicitly select the first strategy. However, as pointed out by
Hairer et al. (1987, p. 181), this is neither the most accurate5

nor the most numerically efficient approach.

3.2 Analytical example

To illustrate the effect of discontinuities in the derivative of
the right-hand side, we consider the following ODE:

ẋ = |sin(πt)| , x(t = 0)= 0. (16)10

In this case, the right-hand side itself is continuous, but its
derivative is discontinuous at t = 1. This equation has the
following analytical solution:

x(t)=

t∫
0

|sin(πs)| ds, (17)

and if we consider the solution at time tN = 2 as an exam-15

ple, we find x(tN )= 4/π . Since the exact solution is known,
we can find the error in our numerical solutions by using the
exact result as a reference. Hence, we can investigate the con-
vergence of our numerical integration scheme by considering
the error as a function of the time step, h.20

In Fig. 2, we show the global error in the solution as a
function of time step, h, for the fourth-order Runge–Kutta
integrator (continuous black line). The error has been cal-
culated for 161 logarithmically spaced time steps from 1 to

Figure 2. Global error in the numerical solution of the initial value
problem given by Eq. (16) at tN = 2. The solutions have been calcu-
lated with 161 different time steps, h, logarithmically spaced from
10−4 to 1, using the fourth-order Runge–Kutta integrator and a
special-purpose modification of the same that stops and restarts the
integration exactly at the discontinuity at t = 1. The two thin lines
are included to indicate the order of convergence and are propor-
tional to h2 (dashed–dotted line) and h4 (dotted line).

10−4. Of these 161 time steps, only 1, 10−1, 10−2, 10−3, and 25

10−4 will evenly divide an interval of length 1. This is sig-
nificant, as we observe that the error scales approximately as
h4 for the time steps 1, 10−1, 10−2, and 10−3, while for the
other time steps it follows a slower h2 scaling. (Note that at
h= 10−4, the error is dominated by roundoff error (see Ap- 30

pendix A1), which adds up to about 10−13 after 20 000 steps;
Press et al., 2007, p. 10.)

Geosci. Model Dev., 13, 1–23, 2020 https://doi.org/10.5194/gmd-13-1-2020



T. Nordam and R. Duran: Numerical integrators for Lagrangian oceanography 7

The reason for this behaviour is the discontinuity at t = 1.
For those time steps that divide an interval of length 1 into an
integer number of steps, the integration will be stopped and
restarted exactly at the discontinuity in the derivative of the
right-hand side at t = 1. Therefore, the error bound (Eq. 7)5

holds, since the method does not step across the disconti-
nuity. Stopping and restarting at discontinuities is precisely
what Hairer et al. (1993, pp. 197–198) recommends in strat-
egy iii discussed in Sect. 3.1 above, and in this sense, iso-
lated discontinuities in the derivatives are easy to handle if it10

is known where they are a priori.
Inspired by this result, we have designed a special-purpose

version of the fourth-order Runge–Kutta integrator, specif-
ically for this problem with a discontinuity at t = 1. It is
identical to the regular one in every way, except that if15

t < 1< t+h, it divides that step into two steps of length 1−t
and h−(1−t), such that the integration is always stopped and
restarted at t = 1.

The global error as a function of time step for this special-
purpose integrator is also shown in Fig. 2 (dashed line),20

and we observe that it follows the expected h4 scaling very
closely until the point where round off error starts to dom-
inate. The additional computational expense of the special-
purpose integrator is completely negligible in this case, as
it takes at most one additional step compared to the regular25

fourth-order Runge–Kutta method, but as we see, it can in-
crease the accuracy by several orders of magnitude. In the
next section, we apply this idea to variable-time-step integra-
tors for trajectory calculation in interpolated vector fields.

3.3 Special-purpose integrators for interpolated30

velocity fields

In terms of the three strategies for dealing with discontinu-
ities (see Sect. 3.1) we will investigate a hybrid approach
in this paper. We will use information about the location of
the discontinuities in the time dimension (strategy iii) and35

leave the error control routine to deal with the problem in the
spatial dimensions (strategy i). The reason for this choice is
mainly pragmatic: for a particle trajectory, x(t), time is the
independent variable, and it is very easy to stop and restart
integration at “cell boundaries” in the time direction. Do-40

ing the same in the spatial dimensions requires detection of
boundary crossings, dense output from the integrator, and a
bisection scheme to identify the time at which the boundary
is crossed (Hairer et al., 1993, pp. 188–196).

We will take as our starting point variable-time-step45

Runge–Kutta methods, as these are commonly used and gen-
erally quite efficient, and the time step adjustment routine
outlined in Sect. 2.3. We then modify the time step adjust-
ment routine to make sure the integration is always stopped
and restarted at a cell boundary in time. We assume that the50

input data is given as snapshots of a vector field at a list of
known times, Ti . Depending on the degree of interpolation,
the (higher) partial derivatives of the interpolated vector field

along the time dimension will thus have discontinuities at
times Ti . 55

The variable-time-step integrator calculating the trajectory
will make steps, from position xn, at time tn, to position
xn+1, at time tn+1 = tn+hn. Then, if we have tn < Ti <
tn+hn, for any Ti , i.e. if the integration is about to step across
a discontinuity in time, the time step, hn, is adjusted such that 60

hn = Ti − tn. (18)

After that, integration and error control proceeds as normal.
If hn is set to Ti − tn, then a step to that time is calculated.
The error is then checked, as described in Sect. 2.3. If the
error is found to be too large according to the selected tol- 65

erance, the step is rejected, hn is further reduced, and the
step is attempted again. In the opposite case, the step is ac-
cepted, and time and position is updated to tn+1 and xn+1. At
this point, the time step is reset to the original value of hn to
avoid the integration proceeding with an unnecessarily short 70

time step after the discontinuity has been crossed. For any
step that does not cross a discontinuity in time, the integrator
behaves exactly like the regular version.

4 Numerical experiments

The aim of the numerical experiments is to investigate the 75

practical implication of different combinations of interpo-
lation and integration schemes and to compare the special-
purpose integrators described in Sect. 3.3 with their standard
counterparts, as well as with fixed-step Runge–Kutta meth-
ods. In the following subsections, we describe the input data 80

and the setup used to carry out the numerical experiments.
We have chosen to consider two-dimensional (horizontal)
transport only, using the surface layer of the modelled cur-
rent data. The current velocity field is interpolated in three di-
mensions (two spatial dimensions plus time), using the same 85

degree of interpolation in all three dimensions.
In order to allow the interested reader to reproduce our

results, we provide the Fortran code used to run the simula-
tions, the ocean current data used, and the Jupyter notebooks
that were used to analyse the data (Nordam, 2020). These can 90

all be found on GitHub1 under an open-source license. In or-
der to reduce the file size of the current data, the extents of
the original datasets were reduced, and unused variables were
deleted from the files. The domains of the reduced datasets
are shown in Fig. 3. All of the datasets were originally down- 95

loaded in the netCDF format from the ocean and ice section
of the THREDDS server of the Norwegian Meteorological
Institute2.

1https://github.com/nordam/ODE-integrators-for-
Lagrangian-particles (last access: 17 November 2020)

2https://thredds.met.no/thredds/fou-hi/fou-hi.html (last access:
17 November 2020)
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Figure 3. TS2Map showing the outline of the three datasets con-
sidered, as well as the initial positions of the tracers used in the
numerical experiments.

4.1 Ocean currents

The datasets used were obtained from the Norwegian Meteo-
rological Institute, and were taken from the following model
setups:

- Arctic20km (20 km horizontal resolution, 1 h time step),5

- Nordic4km (4 km horizontal resolution, 1 h time step),

- NorKyst800m (800 m horizontal resolution, 1 h time
step).

The dimensions of the datasets are x, y, z, and t , with the
xy plane defined in a polar stereographic projection, giving10

a regular (constant spacing) quadratic grid in the horizontal
plane. The current velocity field is provided as vector com-
ponents on the xy basis (as opposed to, e.g. an east–north ba-
sis). In our simulations, we track particle positions in metres,
using the xy coordinate system of the polar stereographic15

projection of the datasets. This allowed us to use the vec-
tor components directly from the datasets, with no rotation
or other conversion. All error measurements are calculated
from Euclidean distances in the xy plane.

4.2 Initial conditions20

The initial conditions for the trajectory calculations were
chosen to be 100×100 points off the coast of Norway, placed
on a regular quadratic grid with grid spacing of 1600 m, as
shown in Fig. 3. The same initial conditions were used for
all three datasets. Roughly the easternmost half of the initial25

positions are within the Norwegian coastal current (see, e.g.
Sætre, 2005) and are predominantly transported northward
along the coast. The trajectories were started at midnight on
8 February 2017 and integrated for 72 h. All the particles re-
main inside the smallest domain (the 800 m resolution setup;30

see Fig. 3) throughout this period. The final positions are
shown in Fig. 4 for each of the three different datasets.

4.3 Reference solutions

As we wish to estimate the global error of our numerical so-
lutions, when the true solutions are unknown, we need to 35

establish highly accurate numerical solutions for all 10 000
initial conditions to use as a reference. Reference solutions
must be established for each dataset, as they will in general
give different trajectories. Additionally, reference solutions
must also be established for each interpolation scheme, as 40

they will also in general give different trajectories. Hence,
for three datasets and three interpolation schemes, we need
nine different sets of reference solutions.

We point out that we here talk about reference solutions
in a purely numerical sense, as the most mathematically ac- 45

curate solution of the initial-value problem given by an ini-
tial position and a discrete velocity field with a specified in-
terpolation scheme. Which of the datasets and interpolation
schemes that most accurately reproduce the trajectories of
true Lagrangian drifters in the ocean is a different question, 50

outside the scope of this investigation.
For numerically obtained reference solutions to be useable

in calculating error estimates, they need to be significantly
more accurate than any of the numerical solutions that are
to be evaluated. As an example, consider a fixed-step inte- 55

grator and let the numerical solution at time tN , calculated
with a time step h, be xN (h) and let the true (but usually un-
known) solution at time tN be x(tN ). Furthermore, assume
that a reference solution xN (href) has been calculated with a
very short time step href. 60

Then, the error in the reference solution, relative to the true
(but unknown) solution, is given by

Eref = xN (href)− x(tN ). (19)

Similarly, the error in a solution calculated with a longer time
step, h, is 65

E(h)= xN (h)− x(tN ). (20)

When we estimate the error by purely numerical means, we
do not know the true solution, x(tN ). Instead, we use the ref-
erence solution in place of the true solution, and calculate an
estimate of the error, given by 70

E(h)= xN (h)− xN (href) ,

= E(h)−Eref. (21)

Hence, we see that the numerical estimate, E(h), of the
global error, is only a good estimate if Eref� E(h).

To verify that the errors in the reference solutions are in-
deed much smaller than any of the other errors we wish to 75

estimate, we consider the convergence of the numerically es-
timated error. The details of the analysis to identify refer-
ence solutions are shown in Appendix A. We found that the
most accurate solutions were obtained with the fourth-order
Runge–Kutta integrator, using a fixed short time step. The 80
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Figure 4. The figure shows the initial and final positions of the 10 000 particles for the three different datasets. The initial positions are
the same, but the final positions differ. The average transport is towards the north in all cases, but the higher-resolution currents show more
eddy activity, particularly in the eastern region, which falls within the Norwegian Coastal Current (see, e.g. Sætre, 2005). These plots show
the positions calculated with cubic interpolation, fourth-order Runge–Kutta, and a time step of 1 s. Results obtained with the other methods
appear visually identical at this scale.

https://doi.org/10.5194/gmd-13-1-2020 Geosci. Model Dev., 13, 1–23, 2020



10 T. Nordam and R. Duran: Numerical integrators for Lagrangian oceanography

time step that yielded the most accurate solutions varied, de-
pending on the dataset and the order of interpolation. The
results are given in Table A2.

4.4 Implementation

To allow easy testing of different combinations of datasets,5

interpolators, and integrators in a setting relevant for marine
transport applications, a simple Lagrangian particle transport
code was written in Fortran. All the integrators were imple-
mented as described in Sects. 2.2, 2.3, and 3.3 and in the
references given. The netCDF library for Fortran3 was used10

to read ocean current data, and interpolation was done using
the library bspline-fortran4 (Williams, 2018). Our implemen-
tations of the different integrators, and all the code used to
run the simulations, are freely available on GitHub5.

At the start of the simulations, subsets of the ocean cur-15

rent datasets were loaded from file. The horizontal extent of
the subsets are shown in Fig. 3, along with the initial posi-
tions of the particles. We used only the surface layer of the
datasets and data spanning 5 dTS3 . The subsets were selected
to cover the entire simulation period in time and the entire20

horizontal extent of the particle trajectories, extending some
cells in all directions to avoid edge effects in the spline inter-
polation. Data points that were on land were set to 0 current
velocity. No special steps were taken to handle the coastline,
although the initial conditions were chosen to avoid particles25

getting stuck in land cells. Note that with higher-degree in-
terpolation schemes, the fact that we set the currents to zero
in land cells will have an effect on one or more of the closest
cells to the coastline. For applications such as oil spill mod-
elling, where shoreline interactions are important, a different30

strategy might be needed.
The data were passed to the initialize method of the

derived type bspline_3d from the bspline-fortran library,
along with the parameter to select the order of interpolation
(note that the order of a spline is 1 plus the polynomial de-35

gree, meaning the order is 2 for linear interpolation, 4 for
cubic splines, and 6 for quintic splines). The x and y compo-
nents of the current velocity vectors were interpolated sep-
arately, and the order of interpolation was always the same
along all three dimensions (x, y, t).40

We note that this approach constructs a single global in-
terpolation object, that is used throughout the simulation. It
is also possible to construct local spline interpolations us-
ing only the smallest required number of points, surrounding
the location where the function is to be evaluated (2× 2× 245

points for linear interpolation, 4×4×4 for cubic splines, and
6×6×6 for quintic). However, this creates additional discon-

3https://www.unidata.ucar.edu/software/netcdf/docs-fortran/
(last access: 17 November 2020)

4https://github.com/jacobwilliams/bspline-fortran (last access:
17 November 2020)

5https://github.com/nordam/ODE-integrators-for-
Lagrangian-particles (last access: 17 November 2020)

tinuities in the derivatives of the right-hand side when switch-
ing from one local interpolator to the next, as discussed by,
e.g. Lekien and Marsden (2005). 50

During the simulations, the trajectory of each particle was
calculated independently of all others. For the variable-step
integrators, this means that each particle had its own time
step. It is also possible to apply the variable-step integrators
to all particles simultaneously with the same time step. How- 55

ever, due the local variability of the ocean currents, it seemed
more reasonable to treat the particles individually, allowing
the variable-step integrators to adapt to local conditions for
each particle.

5 Results and discussion 60

The main results are presented as a work–precision diagram,
in Fig. 5. The figure shows the median relative global error
over all 10 000 particles, as a function of number of evalua-
tions of the right-hand side of the ODE (including rejected
steps). The relative global error is calculated as the nor- 65

malised distance between the endpoint of each trajectory and
that of the corresponding reference solution (see Sect. 4.3
and Appendix A). See also Fig. B1, where the range of er-
rors is shown.

Number of evaluations of the right-hand side was chosen 70

as a measure of work, as it is more objective than the run-
time of the simulation, which would depend on the particular
machine used to run the simulations and also be more sus-
ceptible to somewhat random variations. However, for the
interested reader we show the error as a function of runtime 75

in Fig. B2.
While we analyse the results in terms of number of func-

tion calls, we note that higher-degree interpolation is more
computationally costly than lower-degree interpolation. This
means that the same number of evaluations will take more 80

time if a higher degree of interpolation is used. We found
that for the simulations done with the fixed-step fourth-order
Runge–Kutta integrator, the simulations with cubic spline in-
terpolation took on average four to five times longer than
those with linear interpolation, and the simulations with 85

quintic spline interpolation took on average three to four
times longer than those with cubic spline interpolation. As a
concrete example, calculating the trajectories of 10 000 par-
ticles for 72 h with a 10 min time step with the fourth-order
Runge–Kutta integrator, took 11 s with linear interpolation, 90

51 s with cubic interpolation, and 177 s with quintic inter-
polation. The numbers were essentially the same for all three
datasets (800 m, 4 km and 20 km). These times cover only the
trajectory calculation itself, not file I/O or the construction of
the global interpolator object. 95

The fixed-step integrators were run with the range of time
steps shown in Table 1. Note that all of these steps evenly
divide the 3600 s interval of the data, making sure that the
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Table 1. Time steps and tolerances used in the numerical experi-
ments.

Time steps [s] 3600, 1800, 1200, 900, 600, 450, 300, 180, 120

Tolerances 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 10−10,
10−11, 10−12, 10−13, 10−14

integration is always stopped and restarted at a cell boundary
in the time dimension (see discussion in Sect. 3).

The tolerances used with the variable-step integrators are
also shown in Table 1, with TA = TR (see Sect. 2.3). Note
that in the coordinate system used, the particle positions are5

all of the order 106 m, meaning that the relative tolerance
dominates in practice (see Eq. 10). Both the regular and the
special-purpose variable-step integrators were used with the
same tolerances, but we note that the special-purpose inte-
grators are by design unable to take steps longer than the10

interval on which the data is given. Hence, for the higher tol-
erances (allowing larger errors), the special-purpose integra-
tors would default to fixed-step integration with a time step
of 3600 s (for the datasets used here).

We observe from Fig. 5 that the most efficient choice of15

integrator, in the sense of fewest evaluations of the right-hand
side for a given accuracy, depends on the desired accuracy,
the order of the interpolation, and the spatial resolution of
the dataset. We will discuss these points in turn.

5.1 Fixed-step integrators20

Variable-step integrators are normally the most efficient
choice for general ODE problems. However, we see that for
finding tracer trajectories from interpolated velocity fields,
fixed-step integrators are in some cases a better choice than
regular variable-step methods. Considering for example cu-25

bic spline interpolation (Fig. 5, middle row), we see that
fourth-order Runge–Kutta almost always gives better accu-
racy for the same amount of work, relative to all three reg-
ular variable-step integrators. The only exception is for very
small errors, for the 800 m dataset, where Dormand–Prince30

5(4) has a small advantage. Similarly, for linear interpolation
(Fig. 5, top row) the third- and fourth-order fixed-step meth-
ods outperform the regular variable-step methods, except if
very small errors are required.

The special-purpose variants of the variable-step integra-35

tors, particularly Dormand–Prince 5(4) and 8(7), perform
better than the fixed-step methods in most cases, though not
always by a large margin. The reason for the relatively strong
performance of the fixed-step integrators is that the chosen
time steps evenly divide the 3600 s intervals of the datasets.40

Hence, the fixed-step integrators will stop and restart inte-
gration at the discontinuities in time, just like the special-
purpose integrators (see Sect. 3.3). For an illustration of the
effect of choosing time steps that do not evenly divide the

temporal grid spacing of the dataset, see Nordam et al. (2017, 45

Fig. 18).
We also note that for the case of linear interpolation,

the third-order Runge–Kutta integrator actually performs
slightly better than the fourth-order integrator, particularly
for the smaller errors. The reason for this is that the lack of 50

continuous derivatives means the fourth-order method does
not achieve fourth-order convergence. As the third-order
method uses one fewer evaluation of the right-hand side per
step, it therefore has an advantage in terms of computational
effort. It is also worth pointing out that the second-order 55

Runge–Kutta method considered here, known as the explicit
trapezoid method, has the advantage that it uses no interme-
diate points in time. Since it only evaluates the right-hand
side at times tn and tn+1, it is possible to dispense with in-
terpolation in time entirely if one selects the integration time 60

step, h, to be equal to the temporal grid spacing of the data.
Note that this requires reasonably high temporal resolution
of the dataset, which may not always be practical.

5.2 Variable-step integrators

As a background for discussing the effect of horizontal reso- 65

lution on our results, we recall that all the three datasets used
have a temporal resolution of 1 h. This means that the particle
trajectories will cross a cell boundary in the time-dimension
(and thus a discontinuity in the (higher) derivatives of the
right-hand side) every hour. The average current speed for 70

the time and area studied is approximately 0.2 m s−1 in all
three datasets. Hence, we find that a particle that moves in
the velocity field defined by the dataset at 800 m spatial reso-
lution will cross a spatial cell boundary approximately once
every hour on average. For the dataset with 4 km resolution, 75

this will only happen 1/5th as often, and for the 20 km dataset
this will only happen 1/25th as often. These are only crude
estimates, but we can nevertheless conclude that for the low-
resolution datasets, the errors picked up at the discontinuities
in time will be more important than those in space, while for 80

the high-resolution (800 m) dataset, the two will be of similar
importance.

Looking at the results presented in Fig. 5, we find that they
support these observations. Considering first the case of lin-
ear interpolation, we see that for the 20 km dataset (Fig. 5, 85

upper-right panel), there is a considerable (several orders of
magnitude) reduction in error in the special-purpose integra-
tors compared to the regular variable-step integrators for a
given number of evaluations. Recall that the only difference
between these is that the special-purpose integrators stop 90

and restart the integration at every cell boundary along the
time dimension (see Sect. 3.3). For the 800 m dataset (Fig. 5,
upper-left panel) on the other hand, there is less (up to about
an order of magnitude) difference between the regular and
special variable-step integrators. This is presumably because 95

the discontinuities in time do not dominate the error as much
in this case.

https://doi.org/10.5194/gmd-13-1-2020 Geosci. Model Dev., 13, 1–23, 2020
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Figure 5. Relative global error (relative to the reference solution) as a function of number of evaluations of the right-hand side. Note that
the special-purpose integrators are (by design) unable to make longer steps than the interval on which the data are provided. This means
some of the simulations with higher tolerance (allowing larger errors) have in practice defaulted to fixed-step simulation with a time step of
3600 s, making several of the data points identical. This is most readily observed for the special-purpose Dormand–Prince 8(7) integrator in
the lower-right panel.

Looking next at the results for cubic spline interpolation
(Fig. 5, middle row), we notice that the results for the regular
and special-purpose versions of the Bogacki–Shampine 3(2)
integrator are now practically identical. For the Dormand–
Prince 5(4) and 8(7) integrators, the special-purpose variants5

are far more accurate than the standard counterparts. This
is particularly true for the 4 and 20 km datasets, where the
difference is several orders of magnitude.

Presumably, the reason why the standard and special-
purpose variants of the Bogacki–Shampine 3(2) integrator10

give more or less identical results for cubic interpolation is
the smoothness of the velocity field. It seems the interpolated
field is now sufficiently smooth that the method is now third-
order consistent. Strictly speaking, this is unexpected. A cu-
bic spline interpolation will have continuous second deriva-15

tives, and discontinuous third derivatives. This means that the
Bogacki–Shampine 3(2) integrator can indeed be expected to
be second-order consistent, but the conditions for the third-
order consistency are not satisfied.

Using quintic spline interpolation (Fig. 5, bottom row), the20

special-purpose variant of the Dormand–Prince 8(7) integra-
tor performs better than all the other methods by at least an
order of magnitude. We also find that the results for the regu-
lar and special-purpose versions of the Dormand–Prince 5(4)

integrators are more or less identical. As above, this was not 25

entirely expected, since a quintic spline has only four contin-
uous derivatives, not the five that are theoretically required
for the local error of a fifth-order method to be bounded by
Eq. (7).

To understand the large differences in number of function 30

evaluations between the standard and the special-purpose in-
tegrators, we look at the fraction of rejected steps. For the
different integrators and interpolators, and a fixed tolerance
of TA = TR = 10−10, these fractions are given in Table 2. Re-
jected steps represent wasted computational effort, since a 35

rejected step requires as many evaluations of the right-hand
side of the ODE as an accepted step, without advancing the
integration.

The results shown in Table 2 further support the conclu-
sions we drew from Fig. 5 above. For those cases where 40

the order of interpolation is less than the theoretical require-
ments of the integrator, the special-purpose integrators sig-
nificantly reduce the fraction of rejected steps. The differ-
ence is also largest for the 20 km dataset, as discussed previ-
ously. This can be seen particularly for the Dormand–Prince 45

8(7) integrator with cubic and quintic interpolation, where
the rejected fraction falls to almost nothing for the special-
purpose variant. The same, but to a lesser degree, is seen for

Geosci. Model Dev., 13, 1–23, 2020 https://doi.org/10.5194/gmd-13-1-2020
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Table 2. Fraction of steps rejected, averaged over all 10 000 trajec-
tories, with a duration of 72 h, for each combination of interpolation
scheme and variable-step-size integrator, for all three datasets and a
fixed tolerance of TA = TR = 10−10 (see Sect. 2.3).

Resolution Integrator Linear Cubic Quintic

20 km B-S 3(2) 0.334 0.017 0.018
20 km B-S 3(2) special 0.067 0.016 0.018
20 km D-P 5(4) 0.588 0.486 0.251
20 km D-P 5(4) special 0.084 0.113 0.156
20 km D-P 8(7) 0.608 0.558 0.482
20 km D-P 8(7) special 0.152 0.000 0.000

4 km B-S 3(2) 0.309 0.023 0.024
4 km B-S 3(2) special 0.095 0.022 0.024
4 km D-P 5(4) 0.587 0.436 0.247
4 km D-P 5(4) special 0.289 0.115 0.158
4 km D-P 8(7) 0.609 0.554 0.394
4 km D-P 8(7) special 0.379 0.012 0.019

800 m B-S 3(2) 0.266 0.016 0.016
800 m B-S 3(2) special 0.161 0.016 0.016
800 m D-P 5(4) 0.580 0.294 0.217
800 m D-P 5(4) special 0.490 0.159 0.152
800 m D-P 8(7) 0.615 0.468 0.237
800 m D-P 8(7) special 0.545 0.269 0.124

the Dormand–Prince 5(4) integrator, with linear and cubic
interpolation. On the other hand, for the Bogacki–Shampine
3(2) integrator, with cubic and quintic interpolation, we see
that there is essentially no difference between the regular and
special variants, as the velocity field is sufficiently smooth5

for the error control routine not to detect any increased local
error at the boundary crossings.

The largest improvement in accuracy for the special-
purpose integrators is thus seen with linear interpolation, but
they can also be advantageous with cubic interpolation. With10

quintic interpolation, only the special-purpose (8)7 integrator
has an advantage over its regular counterpart. However, the
relative error of the special (8)7 method with quintic inter-
polation is comparable to the (5)4 method with cubic inter-
polation. While the solutions will be different with different15

interpolation schemes, it is possible that overshooting due to
a high-order interpolation method without any additional ac-
curacy implies that the (8)7 method is not a good choice for
Lagrangian oceanography. Note also that the quintic interpo-
lation scheme is 3–4 times as computationally expensive as20

the cubic scheme for each evaluation of the right-hand side.

5.3 Diffusion

As mentioned in Sect. 2, we have considered pure advec-
tion, ignoring diffusion. Calculating trajectories with pure
advection by a deterministic velocity field is common in sev-25

eral applications, perhaps most notably for identification of
LCS (see, e.g. Haller, 2015; Allshouse et al., 2017; Duran

et al., 2018). Other examples include the use of backwards
trajectories to identify source regions for particles ending
up in the sediments (van Sebille et al., 2015) and analy- 30

sis of Lagrangian pathways to study the source and history
of water parcels reaching a particular upwelling zone (Ri-
vas and Samelson, 2011). In general, simulating diffusion in
Lagrangian oceanography (or meteorology) may introduce a
complication that encourages some studies to compute tra- 35

jectories without diffusion: Lagrangian motion becomes am-
biguous when diffusive mixing is simulated because the iden-
tity of a fluid parcel is lost. On the other hand, ignoring small-
scale mixing may also be problematic. One approach to this
problem is to supplement purely advective trajectories with 40

along-path changes in parcel properties, as discussed in Ri-
vas and Samelson (2011).

However, for many other applications diffusion must be in-
cluded. Solving the advection-diffusion equation with a par-
ticle method amounts to numerical solution of a stochastic 45

differential equation (SDE) instead of an ODE. A range of
different SDE schemes exist, and the details differ, but all
such schemes involve adding a random increment at each
time step. If the random increment is far larger than the local
numerical error in each step, then the numerical error in the 50

advection is probably of limited practical importance. The
details will depend on the application, and we encourage
experimentation. A detailed description of numerical SDE
schemes is outside the scope of this study, but the interested
reader may find it useful to refer to, e.g. Kloeden and Platen 55

(1992), Spivakovskaya et al. (2007), and Gräwe (2011).

5.4 Summary

We have seen that the special-purpose integrators are more
efficient than their regular counterparts in almost all cases,
and sometimes they deliver several orders of magnitude im- 60

provement in accuracy at the same computational cost. There
are two different effects that give the special-purpose inte-
grators their advantage in accuracy and efficiency. The first is
that they stop and restart integration exactly at the discontinu-
ities in time, which avoids picking up local errors unbounded 65

by Eq. (7) at those points. The second effect is that they avoid
many rejected steps by stopping at the discontinuity, instead
of trying to step across.

The regular variable-step integrators will frequently try to
step across a discontinuity, only to find that the estimated lo- 70

cal error is too large, such that the step must be rejected and
retried with a shorter time step. This process will continue
until a time step is found that is short enough to allow the
discontinuity to be crossed with an error that stays within the
tolerance. As we see from the results in Table 2, this can lead 75

to a large fraction of rejected steps. Also, recall that the reg-
ular variable-step integrators have no information about the
location of the discontinuities in time, which means that the
probability of stopping and restarting the integration exactly
at a discontinuity is essentially zero. For further details, see 80
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the discussion in Sect. 3, as well as Hairer et al. (1987, p. 181)
and Hairer et al. (1993, pp. 197–198).

6 Conclusions

In this paper, we have investigated how different numeri-
cal integrators behave in combination with different degrees5

of interpolation and datasets of different spatial resolution.
We have calculated trajectories over 72 h, from 10 000 ini-
tial positions, and compared the integrator–interpolator pairs
in terms of the error in the final position of each trajectory.
We have considered linear, cubic, and quintic spline interpo-10

lation, along with four fixed-step Runge–Kutta integrators of
orders 1 to 4, three commonly used variable-step integrators,
and three special-purpose variants of the latter.

The most striking conclusion from our results is that the
special-purpose integrators we describe in many cases de-15

liver several orders of magnitude more accurate results at no
additional cost. Alternatively, they can deliver the same ac-
curacy as standard methods, with highly reduced computa-
tional effort. This is achieved by stopping and restarting the
integration exactly at the grid points of the dataset along the20

time dimension. By doing this, we avoid stepping across dis-
continuities in the (higher) derivatives of the velocity field,
and thus we avoid picking up local errors that are unbounded
by Eq. (7) at those points.

The benefit is particularly visible for linear and cubic in-25

terpolation, and the 4 and 20 km datasets. The increased effi-
ciency of these integrators should be particularly relevant for
long-term simulations, such as studies of global transport of
plastics or global climate simulations.

Going into more detail, we find that the most efficient30

choice of integrator depends on the resolution of the dataset,
the degree of interpolation, and the desired accuracy. Look-
ing at cubic interpolation (Fig. 5, middle row), we find that
the fixed-step fourth-order Runge–Kutta method is in most
cases a more efficient choice than a standard variable-step35

integrator (provided the time step is selected to evenly di-
vide the interval of the dataset). The difference varies with
the resolution of the dataset and the required accuracy, but in
some cases the error is 2 orders of magnitude smaller for the
fourth-order Runge–Kutta than the regular Dormand–Prince40

5(4) method. This is an interesting result, given that the com-
bination of cubic interpolation and a variable-step integra-
tor such as Dormand–Prince 5(4) or Runge–Kutta–Fehlberg
(Hairer et al., 1993, p. 177) appears to be a popular choice.
In the case of the 20 km dataset, and to a lesser extent for the45

4 km dataset, additional accuracy can be gained by switching
to a special-purpose variant of the Dormand–Prince integra-
tors.

For linear interpolation, we find that if very small errors
are required, the regular variable-step integrators perform50

better than the fixed-step methods, particularly the Bogacki–
Shampine 3(2) integrator. The special-purpose variable-step

methods achieve notable improvements, often being several
orders of magnitude more precise. For less strict require-
ments, the third-order Runge–Kutta method appears to be the 55

best choice. However in all cases, there is a considerable im-
provement in accuracy with the special-purpose integrators
relative to the regular variable-step methods.

For quintic spline interpolation, the optimal choice of in-
terpolator again depends on the application. If very small er- 60

rors are required, the Dormand–Prince 5(4) method appears
to be the best performer, or alternatively the special-purpose
variant of Dormand–Prince 8(7). If larger errors are accept-
able, the fourth-order Runge–Kutta method seems to be the
better choice. 65

It is interesting that if an appropriate fixed step is chosen
(i.e. a step that divides the interval between discontinuities in
time), the fourth-order Runge–Kutta method is more efficient
than the regular Dormand–Prince (5)4 method for all ocean
model resolutions. This is true for any interpolation scheme 70

and accuracy, except linear and quintic interpolations when
very small errors are desired. The fourth-order method with
a good choice of time step also performs well relative to the
special-purpose 5(4) method although the latter may signif-
icantly outperform the former with linear and cubic interpo- 75

lations. The strong performance of the fourth-order Runge–
Kutta with all resolutions and interpolation schemes makes it
a good practical choice.

To conclude, we have investigated the accuracy of trajec-
tory calculation with 10 different ODE integrators for 9 dif- 80

ferent combinations of current data resolution and order of
interpolation. We find that the optimal choice of integrator
depends on the interpolation, the resolution, and the required
accuracy. In some cases, the most efficient integrator is not
the most popular choice in the literature. 85

We have designed and investigated special-purpose vari-
ants of the regular variable-step integrators. Only minimal
changes to the code is required to ensure that integration is
always stopped and restarted at discontinuities in time. With
this change, these special-purpose integrators can in some 90

cases increase the accuracy by many orders of magnitude for
the same amount of computational effort. For applications
requiring large numbers of trajectories, such as LCS calcula-
tions, or for long-term transport calculations, the added accu-
racy of the special-purpose methods should allow significant 95

reductions in computational expense.
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Appendix A: Reference solutions

In order to establish highly accurate reference solutions,
which are needed to estimate the error when the true solu-
tions are unknown, an expanded set of time steps and tol-
erances were investigated. These are given in Table A1. For5

each time step in the expanded set, a solution was calculated
with the fourth-order Runge–Kutta method, and for each tol-
erance in the expanded set, a solution was calculated with the
Dormand–Prince 8(7) method, using both the regular and the
special-purpose variant. This was done for each of the three10

datasets, and for each of the three orders of interpolation.

A1 Roundoff error and truncation error

Every step with a numerical ODE integrator contains some
error. The truncation error stems from approximations that
are made in constructing the integrator and decreases with15

time step. The round-off error comes from the finite-
precision representation of numbers on a computer and is
independent of the time step. Due to numerical round-off er-
ror, one can not simply assume that the shortest time steps
or smallest tolerance will always give the most accurate an-20

swer. As the number of steps increase, the roundoff error will
eventually become larger than the truncation error, at which
point no accuracy is gained by reducing the step size further.

Loosely speaking, a double precision floating point num-
ber can store approximately 16 significant digits, and any25

numerical operation should be thought of as introducing a
roundoff error in the least significant digit (Press et al., 2007,
p. 10). This means that any step with an ODE integrator un-
avoidably introduces a relative error of approximately 10−16.
As the time step is reduced, the numbers of steps increase,30

and eventually the net contribution of the added roundoff
errors will dominate. An example of this can be seen in
Fig. 2, where the error of the special-purpose method de-
creases down to about 10−13, whereafter it begins to increase
with further reduction of the time step.

Table A1. Time steps and tolerances used in establishing reference
solutions.

Time steps [s] 3600, 1800, 1200, 900, 450, 300, 180, 120, 60,
30, 10, 5, 2, 1

Tolerances 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 10−10,
10−11,10−12, 10−13, 10−14, 10−15,
10−16, 10−17

35

A2 Finding the most accurate solutions

In order to establish the most accurate solutions, we com-
pare the fourth-order Runge–Kutta solutions obtained with
very short time steps and Dormand–Prince 8(7) solutions
with very small tolerances. We let the fourth-order Runge– 40

Kutta solutions obtained with time step h be given by xN (h),
and the Dormand–Prince 8(7) solutions obtained with rela-
tive tolerance TR (see Sect. 2.3) be given by xN (TR). We
also let the (unknown) true solution be given by x(tN ). Then
we consider the relative difference between these numerical 45

solutions, 1(h,TR), given by

1(h,TR)=
|xN (h)− xN (TR)|

|xN (TR)|
, (A1a)

=

∣∣(xN (h)− x(tN )
)
−
(
xN (TR)− x(tn)

)∣∣
|xN (TR)|

. (A1b)

In Eq. (A1b), we have added and subtracted the true (but typ-
ically unknown) solution, x(tN ), highlighting that 1(h,TR) 50

is also equivalent to the difference in the global error of the
fixed-step and variable step solutions (see Eq. 6).

To evaluate the accuracy of the numerical solutions, we
first keep the tolerance, TR, fixed, and we plot the median
relative difference as a function of time step, h. The result 55

is shown in Fig. A1. We observe that for longer time steps,
the relative difference, 1(h,TR), goes down with the time
step, h. Starting from the bottom row of Fig. A1, we observe
that for quintic interpolation, 1(h,TR) scales as h4 (dashed
lines). This is as expected, since a quintic spline has contin- 60

uous partial derivatives up to order four, as required for the
fourth-order Runge–Kutta method to be guaranteed to deliver
fourth-order accuracy (see discussion in Sect. 2.1 and 2.4, as
well as Hairer et al., 1993, p. 157). We also observe the same
trend for cubic interpolation (Fig. A1, middle row), while for 65

linear interpolation (Fig. A1, top row), we find that the es-
timated error only goes down proportional to h2, due to the
lack of continuous derivatives.

For shorter time steps, we observe that the relative differ-
ence,1(h,TR), flattens out and becomes constant. The inter- 70

pretation of this, in light of Eq. (A1b), is that for the shorter
time steps,1(h,TR) is dominated by the error in the variable-
step reference solution, thus appearing to be constant with the
time step h. Based on this reasoning, we conclude that the
most accurate variable-step solutions are obtained with the 75

special-purpose integrator, with a tolerance of 10−13, 10−14,
or 10−15, depending on the dataset and the order of interpo-
lation.

Next, we do the opposite comparison, i.e. we use the
fourth-order Runge–Kutta solutions as reference, keep the 80

time step fixed and look at the relative difference, 1(h,TR),
as a function of tolerance. The results are shown in Fig. A2.
Starting from the high tolerances, we observe that the relative
difference first goes down as the tolerance is reduced. Then,
in all cases except the linearly interpolated 800 m dataset, the 85
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Figure A1. Median relative difference (Eqs. A1a and A1b) between the fourth-order Runge–Kutta solutions and the Dormand–Prince 8(7)
solutions, as a function of the time step for the Runge–Kutta method, and shown for different tolerances for the Dormand–Prince method.
The regular Dormand–Prince 8(7) is shown as continuous lines, and the special-purpose variant is shown as dashed lines.

smallest estimated differences thereafter go up as the toler-
ance is reduced further. The reason is that the error in the
variable-step solutions goes down until at some point the
accumulated roundoff errors begin to dominate, and the er-
ror increases as the reduced tolerance leads to an increasing5

number of steps.
From Figs. A1 and A2 together, we conclude that the

fourth-order Runge–Kutta solutions for short time steps are
the most accurate solutions. As we can see from Eq. A1b, we
are essentially considering the absolute value of the differ-10

ence in the error of the fixed-step solution, and the error in
the variable-step solution. Since 1(h,TR) (Fig. A1) appears
to be constant with time step (for the shortest time steps),
we conclude that 1(h,TR) is dominated by the (relatively)
large constant error in the variable-step solution, obscuring15

the small changes with time step in the error in the fixed-step
solution.

In order to further investigate the relative accuracy of the
fourth-order Runge–Kutta solutions, we consider the change
in the solution between two different values of the time step.20

First, we list all the time steps in Table A1, such that h0 =

1 s, h1 = 2 s, h2 = 5 s, h3 = 10 s, etc. Then we consider the
quantity

1RK4(hi,hi+1),

=
|xN (hi+1)− xN (hi)|

|xN (hi)|
(A2a)

=

∣∣(xN (hi+1)− x(tN )
)
−
(
xN (hi)− x(tN )

)∣∣
|xN (hi)|

. (A2b) 25

As hi and hi+1 become smaller, we expect 1RK4(hi,hi+1)

to become smaller as well. Since the global error of a fourth-
order Runge–Kutta method (for sufficiently smooth right-
hand sides) is O(h4), we see from Eq. (A2b) that

1RK4 (hi,hi+1)∼
(
O(h4

i+1)−O(h4
i )
)
. (A3) 30

In Fig. A3, we plot 1RK4(hi,hi+1), as a function of
hi . For the linearly interpolated datasets, we observe that
1RK4(hi,hi+1) decreases proportionally to h2, since the
linearly interpolated right-hand sides are not sufficiently
smooth to yield fourth-order convergence, and does not flat- 35

ten out for small time steps. Hence, we conclude that the so-
lutions obtained with time step h= 1 s are the most accurate
in this case.

With cubic and quintic interpolation, we see that
1RK4(hi,hi+1) goes down approximately as h4, and even- 40

tually flattens out and increases a little for the shortest time
steps. As discussed previously, we interpret this to mean that
the accumulated roundoff errors begin to dominate. We find
that the smallest difference is obtained with different time
steps for the different datasets. For example, for the 800 m 45

resolution dataset, a time step h= 5 s appears to be the most
accurate, while for the 20 km dataset, a time step of 30 s ap-
pear to give better accuracy.

Geosci. Model Dev., 13, 1–23, 2020 https://doi.org/10.5194/gmd-13-1-2020
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Figure A2. Median relative difference (Eqs. A1a and A1b) between the Dormand–Prince 8(7) solutions and the fourth-order Runge–Kutta
solutions, as a function of the tolerance for the Dormand–Prince method, and shown for different time steps for the Runge–Kutta method.
The regular Dormand–Prince 8(7) is shown as continuous lines, and the special-purpose variant is shown as dashed lines.

Figure A3. Median relative difference (Eqs. A2a and A2b) between two fourth-order Runge–Kutta solutions, obtained with different time
steps hi and hi+1, using the list of time steps in Table A1.
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Table A2. Time step used with the fourth-order Runge–Kutta
method to obtain the reference solutions used in Sect. 5 for each
order of interpolation and each dataset.

800 m 4 km 20 km

Linear 1 s 1 s 1 s
Cubic 5 s 30 s 30 s
Quintic 5 s 30 s 30 s

Based on the analysis described above, we have decided to
use the fourth-order Runge–Kutta method to obtain the ref-
erence solutions used for the analysis in Sect. 5. For each
dataset and order of interpolation, the reference time step is
chosen based on Fig. A3, and the results are shown in Ta-5

ble A2.
As a final remark, we mention that it may seem surprising

that we are able to obtain higher accuracy with the fourth-
order Runge–Kutta method than with the Dormand–Prince
8(7) method. Three things are worth pointing out in this con-10

text. First, the time steps considered here (see Table A1)
all evenly divide the 1 h step of the data, which means that
a fixed-step method will always stop and restart the inte-
gration at the discontinuities in the time-direction (see dis-
cussion in Sect. 3.1). Second, for the Dormand–Prince 8(7)15

method to work optimally, the right-hand side of the ODE
should strictly have continuous partial derivatives up to order
8, which would require spline interpolation of degree 9. Fi-
nally, variable-step methods are generally preferred for their
efficiency, not purely for their accuracy. As an example, con-20

sider the fifth-degree interpolated 800 m dataset. In this case,
the presumed most accurate fixed-step solution, with h= 5 s
used 207 360 evaluations of the right-hand side, while the
most accurate Dormand–Prince 8(7) solution, with a toler-
ance of 10−14, used 5805 evaluations (including 17 % re-25

jected steps).

Appendix B: Additional work–precision diagrams

This appendix contains two additional figures to supplement
the work–precision diagram shown in Fig. 5. See Sect. 5 for
further details. First, in Fig. B1, we show the same data as in 30

Fig. 5, i.e. the median global error over 10 000 trajectories,
but with the addition of shaded areas that indicate the range
covering 90 % of the errors.

Second, Fig. B2 shows the median global error as a func-
tion of simulation runtime. The timings were obtained on a 35

desktop workstation with an Intel Xeon 3.3 GHz CPU, run-
ning xubuntu 18.04. The code runs on a single core only. As
discussed in Sect. 5, the number of evaluations of the right-
hand side of the ODE is a more objective measure of work,
as the runtime is susceptible to some random variation (in 40

particular for the shortest simulations) due to other processes
running on the machine, etc. However, we include the run
times here as an illustration, as it is practically relevant infor-
mation.
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Figure B1. Same as Fig. 5, showing the median relative error taken over all 10 000 trajectories. Additionally, the shaded areas show the range
where 90 % of the errors fall.
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Figure B2. Same as Fig. 5, showing the median relative error, taken over all 10 000 trajectories, except that the median error is shown as a
function of simulation runtime, rather than the number of evaluations of the right-hand side of the ODE.
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