
Response to revievers

Dear Editor, Dear Reviewers,

Thank you for considering our manuscript for publication in Geoscientific Model Development. Below,
we address in detail each point raised by the reviewers, and describe the changes we have made to
the manuscript in response to those points. In addition, we have made a few other changes, the most
important being an added sentence in the abstract, and a reference to our simulation code, of which we
have created a permanently available version with a DOI from zenodo. All the changes are visible in the
marked-up manuscript provided further down in this pdf.

Reviewer 1

Thank you for your comments. We are glad you agree with the motivation for the manuscript, and that
you say it would be a welcome addition to the field. Regarding your comments, we address these below,
and we also outline the changes we suggest to make in the manuscript.

Major comments

Comment 1

The authors make the case for higher-order spatial interpolation, as if that is always better.
However, there is no discussion at all about how the order of spatial interpolation is related
to the order of the advection schemes within the OGCM from which the data is derived.
Intuitively, I’d say that the most appropriate interpolation would be the scheme that most
closely mimics the model advection scheme. I’d suggest the authors discuss this.

There are two points in this comment that we would like to address. First, it is not our intention to
advocate higher-order interpolation as always better. There are advantages and disadvantages to all
types of interpolation. Among the disadvantages of linear interpolation are the obviously unphysical dis-
continuous derivatives. Among the disadvantages of higher-degree splines is the increased computational
effort per evaluation, and the possibility of overshoot/oscillations. The question we seek to address in
this paper is of a numerical nature: ”Given an interpolation scheme, which integrator gives the best
balance between accuracy and performance?”. We touch upon this in lines 333-335, but we agree that
this can be made more clear in the manuscript. Towards the end of the introduction, around line 65 in
the original manuscript, we have added the following:

”We note that the purpose of our investigation is not to determine how well different model resolutions
and different interpolation schemes reproduce physical drifter trajectories. Rather, we address the purely
numerical question of which combinations of integrator and interpolator give the best work–precision
balance, for a given resolution.”

Second, we feel that the point about using an advection scheme that mimics the ocean model is outside
the scope of the paper. Our motivation is to provide guidance towards solving the common problem of
integrating trajectories from offline velocity fields. Being a common oceanographic task, diverse ocean
models are used, and each ocean model often has different advection schemes to choose from when
configuring the model. For example, a popular ocean model, ROMS, offers four horizontal advection
schemes for the user to choose from: second-order centered, fourth-order centered, fourth-order Akima
and third-order upwind; e.g. see https://www.myroms.org/wiki/Numerical_Solution_Technique#

Horizontal_and_Vertical_Advection. Advection schemes in ocean modelling is also a topic of active
research, and new methods are expected to be introduced. See for example

1

https://www.sciencedirect.com/science/article/abs/pii/S146350031000106X

https://www.sciencedirect.com/science/article/abs/pii/S1463500311001831

https://www.sciencedirect.com/science/article/abs/pii/S1463500308001510

https://archimer.ifremer.fr/doc/00435/54690/

Additionally, information about the advection scheme is not always readily available for public ocean
current data sets. It is therefore impractical to try to mimic an advection scheme for the general problem
of interest studied here. Our intent is to help oceanographers implement an efficient method to integrate
any ocean model velocity provided on a rectangular grid, without further concern.

Comment 2

The authors also but then quickly step over the problem of interpolation near land. Higher-
order interpolation would mean that the halo of land is further extended into the ocean (as
very briefly mentioned in line 362). I feel that this should be given more discussion. How
would this problem compare to the error that the ’consistency of order p of the numerical
method is no longer satisfied when the derivatives are not continuous’ (lines 222-223)

It is worth commenting on this issue, but a full discussion would, we feel, be outside the scope of the
current study. The global integration error is a universal issue that occur in all Lagrangian models
using numerical integration of ODEs, while the handling of land is very much application dependent.
For applications like LCS calculations, and global or large-scale transport simulations, interaction with
the coastline may be almost negligible, whereas for applications like near-shore oil spills coastline in-
teraction may be very important, and is implemented differently in different oil spill models (see, e.g.,
https://www.mdpi.com/2077-1312/6/3/104). Hence, it is impossible to say something generally appli-
cable about how the error due to the handling of land cells compares to the global interpolation error.

We have added the following at line 364 in the original manuscript:

”Note that with higher-degree interpolation schemes, the fact that we set the currents to zero in land
cells will have an effect on one or more of the closest cells to the coastline. For applications such as oil
spill modelling, where shoreline interactions are important, a different strategy might be needed.”

Comment 3

There is no discussion at all about the widely-used Analytical advection scheme of e.g. https:
//doi.org/10.5194/gmd-10-1733-2017. How does that scheme compare to the integrators
discussed here?

Implementing a Lagrangian particle tracker with an interpolation scheme and an ODE solver can be
accomplished very quickly, with just a few tens of lines of code in, e.g., Python or Matlab. As evidenced
by the literature, many authors implement their own Lagrangian particle tracking codes in this way,
and use different combinations of interpolation and integration schemes. Hence, we feel that the current
manuscript provides useful information to the community, even without a detailed discussion/comparison
to more advanced schemes.

While we are not very familiar with the advection scheme used in TRACMASS, it is our understanding
that it (bi- or tri-) linearly interpolates the current internally in each cell based on vector components at
the cell faces, and then solves analytically to find the passage of a particle through the interpolated field
inside a cell. Rather than using a specified timestep or tolerance, this approach analytically calculates
the trajectory through a cell as one step.

In the case of trilinear interpolation, it should be possible to compare our trajectories to those obtained
with TRACMASS, but for the higher-degree interpolation schemes a direct comparison would be (nu-
merically) meaningless. In any case, we feel that a detailed discussion/comparison to the TRACMASS
trajectory scheme would be outside the scope of the current investigation, but might be an interesting
topic for a future study.

Comment 4

The authors mention that they ignore diffusion (line 74). However, in most applications
diffusion will be included in the computations. I wonder whether the errors caused by the

2

finite-sized set in the Wiener process are not much larger than any errors in interpolation as
discussed here. It would be good if the authors could comment on this.

There are two points we would like to raise, in response to this comment. First a point on applications,
and second an numerical/theoretical point.

First, although it is true that the addition of diffusion is common in many applications, there are also
many oceanographic and atmospheric studies which will want to compute trajectories without diffusion.
One example includes all LCS computations, as a requirement for LCS theory to hold is that the velocity
be deterministic.

Furthermore, there are studies that deal with Lagrangian trajectories that intentionally do not include
diffusivity. Examples include using backwards trajectories to investigate the source of particles that end
up in the sediments in a particular location, and using Lagrangian trajectories to study the path and
history of water arriving at a particular location of upwelling:

www.nature.com/articles/ncomms7521

journals.ametsoc.org/jpo/article/41/1/88/11315/A-Numerical-Modeling-Study-of-the-Upwelling-Source

Second, the issue of adding diffusion is not entirely straightforward theoretically and numerically. Strictly
speaking, advection-diffusion problems are not modelled with ODE methods, but with SDE methods,
which are usually of lower order. While it might be common in practice to use a higher-order ODE
method, and tack on a random displacement in an ad hoc manner, such a splitting of the problem is in
itself an approximation which introduces an error. For spatially varying diffusivity, the short timestep
required for the SDE method to give a sufficiently small error (in the weak sense) may also render the
advection error irrelevant. A thorough discussion of this issue is definitely outside the scope of the paper.

However, it is of course clear that adding random increments to the position of a particle may in many
cases dominate the numerical integration errors. In these cases, it would probably give little or no extra
benefit to use higher-order integration schemes. To address this issue a bit more, we have added a
subsection in the discussion, with the following two paragraphs (Section 5.3 in the revised manuscript):

“As mentioned in Section 2, we have considered pure advection, ignoring diffusion. Calculating trajec-
tories with pure advection by a deterministic velocity field is common in several applications, perhaps
most notably for identification of LCS (see, e.g., Haller (2015), Allshouse et al. (2017), Duran et al.
(2018)). Other examples include the use of backwards trajectories to identify source regions for par-
ticles ending up in the sediments (van Sebille et al., (2015), and analysis of Lagrangian pathways to
study the source and history of water parcels reaching a particular upwelling zone (Rivas & Samelson,
2011). In general, simulating diffusion in Lagrangian oceanography (or meteorology) may introduce a
complication that encourages some studies to compute trajectories without diffusion: Lagrangian motion
becomes ambiguous when diffusive mixing is simulated, because the identity of a fluid parcel is lost. On
the other hand, ignoring small-scale mixing may also be problematic. One approach to this problem is
to supplement purely advective trajectories with along-path changes in parcel properties, as discussed in
Rivas & Samelson (2011).

However, for many other applications diffusion must be included. Solving the advection-diffusion equation
with a particle method amounts to numerical solution of a stochastic differential equation (SDE), instead
of an ODE. A range of different SDE schemes exist, and the details differ, but all such schemes involve
adding a random increment at each timestep. If the random increment is far larger than the local
numerical error in each step, then the numerical error in the advection is probably of limited practical
importance. The details will depend on the application, and we encourage experimentation. A detailed
description of numerical SDE schemes is outside the scope of this study, but the interested reader may
find it useful to refer to, e.g., Kloeden & Platen (1992), Spivakovskaya et al. (2007), and Gräwe (2011).”

Comment 5

I wonder why the authors don’t test their method on (complex) flows where an exact solution
is known. Quite a few of these flows have been used in the literature, including e.g. the Bickley
Jet. That would save them a lot of challenges in defining the ’exact’ solution.

An important motivation for avoiding an analytical reference solution, is that it seems likely that fifth-
degree spline interpolation would out-perform cubic splines and linear interpolation in terms of accuracy,
when comparing to an analytical solution. That would lead to the conclusion that higher-degree splines

3

give more accurate results, which is by no means certain for ocean currents. By using numerically
obtained reference solutions, obtained separately for each interpolation scheme, we remain ”interpolation-
agnostic”, merely addressing the question of which integrator/interpolator pair is numerically more
efficient.

As mentioned in our response to comment 1, our intent is to help oceanographers implement an efficient
method to integrate any ocean model velocity. Hence, we wanted the discussion and conclusions to feel
directly relevant to applied oceanographers. For example, we conclude that the most efficient numerical
approach for a given level of accuracy depends on the spatial resolution of the dataset. If we were to
start with an analytically defined flowfield, and then discretely evaluate this on different grids, for later
interpolation, it is not obvious how any conclusions could be applied directly to ocean current datasets.

Comment 6

I am not sure if comparing ends points is the most appropriate metric. Why not compare the
along-trajectory differences, which is commonly used in the field (e.g. https://doi.org/10.
1029/2018JC014813), so that the full trajectories are taken into account.

The endpoints were chosen simply because of the discussion in terms of the theory for numerical solution
of ODEs. The standard approach in the ODE literature is to discuss convergence in terms of the global
error, the order of a method refers to the global error, etc. In Figure 4, the error as a function of
number of evaluations for the fixed-step integrators make straight lines in the log-log plot, with a slope
determined by the order of convergence. If we considered the along-trajectory error, there would be less
of a direct link to the theory of ODE methods when discussing these results.

From an application point of view, different metrics could be appropriate. For, e.g, LCS applications,
only the endpoint matters, while for other applications the entire particle history might be relevant. In
light of these points, we feel that the end points are, on the whole, the most appropriate metric.

Comment 7

The authors spend a large amount of attention on their ’special-purpose integrators’ (section
3.3). However, they don’t mention that most implementations of Lagrangian integrators
would quite naturally implement such special-purpose integrators, simply because they don’t
store all time slices in memory so that they need to stop integration on the time of each time
slice in order to load the next one.

We believe this is a misunderstanding by the reviewer. Taking the example of cubic interpolation, one
needs at least 4 time slices in memory simultaneously to construct the interpolation. In the case of our
special-purpose integrators, integration is stopped and restarted at every one of those time slices, not
just when new data must be loaded.

For linear interpolation, two time slices will suffice to construct the interpolator, but in for example
Taylor and Shadden (2008), which uses linear basis function interpolation and a variable-step Runge-
Kutta-Fehlberg method, there is no description of stopping and restarting integration at every time slice.
In our opinion, it is often hard to be sure of the exact details of how the full trajectory calculation has
been implemented, given the typically very short descriptions of interpolation and integration schemes
in the applied literature. Hence, a thorough discussion should be of value to the community, even if the
method itself were to have been used by others before.

For fixed-step integrators, we do discuss the fact that these perform very well when the timestep is
chosen such that integration is stopped and restarted at every time slice. See, e.g., lines 415–420 in the
Discussion, and 515–520 in the Conclusion.

Minor comments

- line 4: clarify here that this is interpolation in space and time?

OK.

- line 16: ’computations on data from atmospheric models’?

OK.

4

- line 30: ’For all these applications’?

OK.

- line 36: ’capable’ is an anthropomorphism; hyperbolic points are not capable of anything.

We have rephrased this to “... presenting hyperbolic points where initially small errors may grow expo-
nentially.”.

- line 36: By whom is this recommended?

We have rephrased to “It may therefore be useful to employ higher-order integration methods ...”.

- lines 43-54 and 126: It might be very useful to include a table with details of the different
integrators, so that readers don’t need to dig into the literature themselves to find out what
the specifics are of each of these

This comment refers to the introduction, where we mention different integrators used in the applied
literature. Given that these include not only Runge-Kutta methods, but also linear multistep methods
and predictor-corrector methods, a useful description of these would probably require several pages. We
don’t see that a table could contain enough information to be useful, and for anyone who wants to
implement these methods, looking them up would not be a large amount of work.

- line 55: ’very common’ is perhaps too strong? Lagrangian oceanography is still a bit of a
niche

We have removed ”very”.

- line 93: why is x not bold here?

We have left x in non-bold for the general theory discussion. We have added a brief explanation to make
this more clear:

“In the following, we introduce some elements from the theory of numerical integration of ODEs, which
will be needed for the later discussion. While elsewhere in this paper, we consider x(t) as a two-
dimensional vector giving the position of a particle in a horizontal plane, we here simply use x(t), as the
theory is general and can be applied to vectors and scalars alike.”.

- line 104 and other places: Would errors e and E not always be absolute values?

No. The error it self can be either positive or negative (see, e.g., Eq. (3.1) in Hairer et al. (1993)).
However, when we discuss how the error scales with the timestep, it’s the absolute value.

- line 172: At least summarise where these values 2.5 and 0.8 come from

Here there are two mistakes on our part, as the reference given doesn’t actually discuss the choice in
detail, and the parameters used in the code were actually 0.9 and 3.0. We have rephrased line 172 as
follows:

”The factors 0.9 and 3.0 were chosen from a range of values recommended by Hairer et al. (1993, p.
168), and were kept constant for all numerical experiments.”

- line 176: How does this extent to staggered grids (e.g. Arakawa-C) which are often used in
oceanography?

Simply interpolate each vector component on its own grid. The vector components are interpolated
separately, so this would require only a minimal change at the initialisation of the interpolators in our
implementation.

- line 191: The word ’quite’ is somewhat vague here

OK, will drop the word ”quite”.

- line 224: give some examples relevant to Lagrangian oceanography of these cases?

We have added the following at the end of line 225:

”The more pathological examples are perhaps unlikely to occur in practice. However, as we will see later,
when the error in even a single step is unbounded by Eq. (7), this can is some cases dominate the global
error, rendering the use of a higher-order scheme pointless.”

5

- Figure 1: Also show (some of) the trajectories here, to give readers a feeling for the extent
of dispersion?

We assume this comment is meant to refer to Figure 3? We have created a figure showing the final
positions of the particles, for the three different datasets, which has been added as Fig. 4 in the revised
manuscript.

- line 320: it is unclear at what depth the particles are released, and also whether they are
advected in 2D or in 3D

OK. It is stated in line 360 of the original manuscript that we use only the surface layer of the currents,
but we agree that this should be clearly described early in Section 4 as well. We have added the following
at the end of the first paragraph of Section 4:

”We have chosen to consider two-dimensional (horizontal) transport only, using the surface layer of
the modelled current data. The current velocity field is interpolated in three dimensions (two spatial
dimensions plus time), using the same degree of interpolation in all three dimensions.”

- line 329: is ’transport’ the best word here?

We have changed this to ”trajectories”.

- line 363: explain what kind of padding is done

Padding was probably not the right word. It only means that when cropping the dataset, the subset
selected was larger than then minimal size required to cover all the trajectories. We have rephrased this.

- line 373: explain why this creates additional discontinuities

This is somewhat technical, and hard to explain without going into details on how spline interpolations
are constructed, which we have not covered in the paper. It is also a bit on the side, as we don’t
investigate this type of interpolator. Therefore, we would prefer not to go into detail, and simply refer
the interested reader to Lekien and Marsden.

- line 381: what is the standard deviation/variability around this median? Are the differences
between the runs larger than the variability within the runs?

We have created a new figure, added as Fig. B1 in the revised manuscript, where we show the range
covering 90% of the errors. As this makes the figure somewhat more cluttered, we feel it is best to keep
the original figure as it is, and add this new figure as a full-page figure in the Appendix. A reference to
this new figure has been added in the first paragraph of Section 5.

- line 388, 389 and 390: even though the authors make a good point about comparing number
of computations instead of runtime, here they still mention that runs are ’longer’ and report
runtime in seconds.

That is only meant to illustrate that each evaluation takes longer when higher-degree interpolation is
used. However, in response to a comment by Reviewer 2, we have added an additional figure in the
appendix showing error as a function of runtime, and we have expanded and rephrased the second
paragraph of Section 5 as follows:

“Number of evaluations of the right-hand side was chosen as a measure of work, as it is more objective
than the runtime of the simulation, which would depend on the particular machine used to run the
simulations, and also be more susceptible to somewhat random variations. However, for the interested
reader we show the error as a function of runtime in Fig. B2.

While we analyse the results in terms of number of function calls, we note that higher-order interpolation
is more computationally costly than lower-order interpolation. This means that the same number of
evaluations will take more time if a higher degree of interpolation is used. We found that for the
simulations done with the fixed-step 4th-order Runge-Kutta integrator, the simulations with cubic spline
interpolation took on average four to five times longer than those with linear interpolation, and the
simulations with quintic spline interpolation took on average three to four times longer than those with
cubic spline interpolation.”

- Figure 4: I’m a bit confused by the number of points on each of these lines. Why do
some have 11 points, even though according to table 1 there were only 9 time steps and 10
tolerances tested?

6

This was an inconsistency between Table 1 and the figures, where we had included a tolerance of 10−14

in the results, but forgotten to add it to Table 1. We have fixed this.

- Table 2: Would this data be easier to parse in a figure instead of a table?

In our opinion, a table is most suited in this case.

- line 493: mention what is ’special’ about these special-purpose integrators (e.g. ’that don’t
step across time grids’ or something like that)

We have rephrased the end of the second paragraph is Section 6 as follows:

“... This is achieved by stopping and restarting the integration exactly at the grid points of the dataset
along the time dimension. By doing this, we avoid stepping across discontinuities in the (higher) deriva-
tives of the velocity field, and we thus avoid picking up local errors that are unbounded by Eq. (7) at
those points.”.

Reviewer 2

Thank you for your encouraging comments. Below, we address the suggested changes to our manuscript.

Major comments

Comment 1

Section 4.1: All three data sets have the same constant temporal resolution of 1 hour. Since
of of the key advantages of the proposed time-varying integrators is to better treat temporal
discontinuities in the sampled flow field, I’m wondering if varying temporal resolutions might
have an impact on the analysis as well? Some clarification, either in section 4 or 5 would help
here, or possibly even an additional test case with a known analytical solution and different
temporal resolutions could be used to highlight this (something akin to 3.2, but comparing
fixed / time-varying / special-purpose integrators).

There is some effect of temporal resolution. We did some tests initially, but these were not completed or
included in the manuscript, as we felt it would be too long. We also re-ran some of those tests now (with
the same datasets, but downsampled to 6 hours temporal resolution), and from a quick analysis, the
results appear relatively similar to those presented here. The improvement seen for the special-purpose
integrators appears a little smaller for datasets with coarser temporal resolution, but not by a large
amount. The reason is the relative importance of crossing discontinuities in the time dimension relative
to the spatial dimensions. This is discussed in lines 429-437 of the original manuscript, when discussing
the different spatial resolutions.

While the effect of temporal resolution would be an interesting investigation for a future study, we
have concluded that we would rather not include it in the current paper, mainly for reasons of length.
Presenting the new results takes some space, new reference solutions must be established and documented,
and the discussion would have to be expanded. We would also run into questions about resolving the tides,
and in particular when the dataset with 800 m resolution is downsampled to 6 hours temporal resolution,
the typical current velocities of about 0.25 m/s will move many cells during a timestep, meaning that
the low temporal resolution might be inadequate to capture the dynamics of the high-resolution data.
All in all, we feel that a thorough discussion of these issues would make the paper too bloated.

Comment 2

Section 4.4: ”We used only the surface layer of the data sets”, but then 3D spline interpolators
are used. Are the experiments considering 2-dimensional trajectories or 3-dimensional ones?
Please clarify.

Time is the third dimension used in the interpolator. This is mentioned in lines 368/369, but we will
make this more clear earlier in section 4, in line with our reply to comments by Reviewer 1. We have
added the following at the end of the first paragraph of Section 4:

7

”We have chosen to consider two-dimensional (horizontal) transport only, using the surface layer of
the modelled current data. The current velocity field is interpolated in three dimensions (two spatial
dimensions plus time), using the same degree of interpolation in all three dimensions.”

Comment 3

Section 5.: ”Number of evaluations of the right-hand side was chosen as a measure of work,
as it is more objective than the runtime of the simulation” is almost immediately followed
by ”We note that higher-order interpolation is more computationally costly than lower order
interpolation.” While both statements are correct in their own context, they seem a little
contradictory here. A small clarification could help clarify this. Moreover, while I agree
that the number of evaluations is an important metric to evaluate the efficiency of different
numerical integrators, the overall time-to-solution is often the final metric in practice. The
final paragraph of 5.2 hints at this, but I’m left wondering if a graph plotting error vs.
run-time could be used to highlight the points here more clearly?

We have added an additional figure in the appendix showing error as a function of runtime, and we have
expanded and rephrased the second paragraph of Section 5 as follows:

“Number of evaluations of the right-hand side was chosen as a measure of work, as it is more objective
than the runtime of the simulation, which would depend on the particular machine used to run the
simulations, and also be more susceptible to somewhat random variations. However, for the interested
reader we show the error as a function of runtime in Fig. B2.

While we analyse the results in terms of number of function calls, we note that higher-order interpolation
is more computationally costly than lower-order interpolation. This means that the same number of
evaluations will take more time if a higher degree of interpolation is used. We found that for the
simulations done with the fixed-step 4th-order Runge-Kutta integrator, the simulations with cubic spline
interpolation took on average four to five times longer than those with linear interpolation, and the
simulations with quintic spline interpolation took on average three to four times longer than those with
cubic spline interpolation.”

Comment 4

Section 6: ”The most striking conclusion from the results presented above,” This reads more
like a continuation of the discussion above, rather than a conclusion in its own right. Maybe
re-structure a little to independently re-state the objective and key findings of the paper, as
is to some extend done later in the section?

We have expanded and rephrased the start of Section 6 as follows:

“In this paper, we have investigated how different numerical integrators behave, in combination with
different degrees of interpolation, and datasets of different spatial resolution. We have calculated tra-
jectories over 72 hours, from 10000 initial positions, and compared the integrator-interpolator pairs in
terms of the error in the final position of each trajectory. We have considered linear, cubic and quintic
spline interpolation, along with four fixed-step Runge-Kutta integrators of orders 1 to 4, three commonly
used variable-step integrators, and three special-purpose variants of the latter.

The most striking conclusion from our results is that the special-purpose integrators we describe in many
cases deliver several orders of magnitude more accurate results, at no additional cost. Alternatively, they
can deliver the same accuracy as standard methods, with highly reduced computational effort. This is
achieved by stopping and restarting the integration exactly at the grid points of the dataset along the
time dimension. By doing this, we avoid stepping across discontinuities in the (higher) derivatives of the
velocity field, and thus we avoid picking up local errors that are unbounded by Eq. (7) at those points.”

Minor comments

* Link to data sets strictcly requires ‘https://‘ in the URL. Please adjust footnote on p.12.

This has been fixed.

8

* The code repository on github is very neat (much appreciated!), but I could not find the
Jupyter notebooks mentioned in the text. (In case I just missed them, maybe a link in the
README in the repo would help people find them quickly?)

The notebooks were indeed missing. Our apologies. We have added the notebooks to the repo, and
created a “release” with a DOI that can be cited.

9

Numerical integrators for Lagrangian oceanography
Tor Nordam1,2 and Rodrigo Duran3,4

1SINTEF Ocean, Trondheim, Norway
2Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
3National Energy Technology Laboratory, Albany, OR 97321, USA
4Theiss Research, San Diego, CA 92037, USA

Correspondence: Tor Nordam (tor.nordam@sintef.no)

Abstract. A common task in Lagrangian oceanography is to calculate a large number of drifter trajectories from a velocity field

pre-calculated with an ocean model. Mathematically, this is simply numerical integration of an Ordinary Differential Equation

(ODE), for which a wide range of different methods exist. However, the discrete nature of the modelled ocean currents requires

interpolation of the velocity field
::
in

::::
both

:::::
space

::::
and

::::
time, and the choice of interpolation scheme has implications for the

accuracy and efficiency of the different numerical ODE methods.5

We investigate trajectory calculation in modelled ocean currents with 800 m, 4 km, and 20 km horizontal resolution, in

combination with linear, cubic and quintic spline interpolation. We use fixed-step Runge-Kutta integrators of orders 1–4, as well

as three variable-step Runge-Kutta methods (Bogacki-Shampine 3(2), Dormand-Prince 5(4) and 8(7)). Additionally, we design

and test modified special-purpose variants of the three variable-step integrators, that are better able to handle discontinuous

derivatives in an interpolated velocity field.10

Our results show that the optimal choice of ODE integrator depends on the resolution of the ocean model, the degree of

interpolation, and the desired accuracy. For cubic interpolation, the commonly used Dormand-Prince 5(4) is rarely the most

efficient choice. We find that in many cases, our special-purpose integrators can improve accuracy by many orders of magni-

tude over their standard counterparts, with no increase in computational effort.
::::::::::
Equivalently,

:::
the

::::::::::::::
special-purpose

:::::::::
integrators

:::
can

:::::::
provide

:::
the

::::
same

::::::::
accuracy

:::
as

:::::::
standard

::::::::
methods,

::
at

::
a
:::::::
reduced

::::::::::::
computational

::::
cost.

:
The best results are seen for coarser15

resolutions (4 km and 20 km), thus the special-purpose integrators are particularly advantageous for research using regional to

global ocean models to compute large numbers of trajectories. Our results are also applicable to trajectory computations
::
on

:::
data

:
from atmospheric models.

Copyright statement. TEXT

1 Introduction20

Calculating trajectories of tracers through a pre-calculated velocity field is a common task for many applications (van Sebille

et al., 2018). Oceanic and atmospheric transport simulations are frequently built on this approach, and used to calculate, for

1

example, the transport of pollutants (see, e.g., Rye et al. (1998); North et al. (2011); Povinec et al. (2013); Onink et al. (2019)),

distribution of algae and plankton (see, e.g., Siegel et al. (2003); Woods (2005); Visser (2008)), search and rescue operations

(see, e.g., Breivik and Allen (2008); Serra et al. (2019)), or temperature and salinity pathways (see, e.g., Barkan et al. (2017)).25

Similarly, climate change studies may compute vast numbers of trajectories to understand transport of heat and salt (see, e.g.,

Dugstad et al. (2019)). Computation of trajectories for a variety of atmospheric species are also a common application (see, e.g.,

Sirois and Bottenheim (1995); Riuttanen et al. (2013); Nieto and Gimeno (2019)). Other applications include the calculation

of Lagrangian Coherent Structures (LCS), which is not a transport simulation per se, but which still uses tracer trajectories to

analyze flow fields (see, e.g., Farazmand and Haller (2012); Onu et al. (2015); Haller (2015); Duran et al. (2018)).30

For all of these applications, it is of interest to obtain trajectories of the desired accuracy with minimal computational

work, or conversely, to obtain the most accurate solution possible for a given amount of computational effort. Marine and

atmospheric transport applications often require computing large numbers of trajectories, which are essentially solutions of an

ordinary differential equation (ODE). As this can be computationally quite demanding, guidance on how to select the optimal

combination of numerical schemes for a given application is of practical value.35

We further note that in ODE parlance, the velocity fields represented by ocean currents (and wind) may be both stable

and unstable, often presenting hyperbolic points capable of exponentially growing
::::
where

:
initially small errors . It is therefore

recommended to use
:::
may

:::::
grow

::::::::::::
exponentially.

:
It
::::
may

::::::::
therefore

::
be

::::::
useful

::
to

::::::
employ

:
higher-order integration methods, or small

time steps with lower-order integration methods. This is particularly relevant for long integration times (months to years) where

error accumulates and can be amplified.40

In the applied mathematics community, a standard first choice for numerically solving an ODE is a variable-step integrator

(see, e.g., Gladwell et al. (2003)). Variable-step integrators use clever choices of function evaluations in order to evaluate the

local error in each step of the solution, and the time-step is dynamically chosen to be as long as possible while meeting a

prescribed error estimate. Thus, variable-step integrators tend to be more efficient than their fixed-step counterparts.

However, there is limited discussion of such an approach in the literature on applied Lagrangian oceanography. Integrators45

used in marine transport applications may range from Euler’s method (see, e.g., Zelenke et al. (2012); De Dominicis et al.

(2013)), to a more typical 4th-order Runge-Kutta method (see, e.g., García-Martínez and Flores-Tovar (1999)). Some alter-

natives seek to cut on computational time by using less evaluations, like the 4th-order Milne-predictor, Hamming-corrector

integration scheme (see, e.g., Narváez et al. (2012)), or the 4th-order Adams-Bashforth method (see, e.g., Yang et al. (2008)).

In the context of LCS, variable-timestep integrators appear to be a more common, yet not universal, choice. Interpolation50

schemes, which must be used to evaluate discretely gridded velocity fields at arbitrary points, have also received some attention

in the LCS field. Ali and Shah (2007) use a 4th-order Runge-Kutta-Fehlbergh method and the local cubic interpolation recipe of

Lekien and Marsden (2005). Beron-Vera et al. (2008) use linear interpolation and the classic 4th-order Runge-Kutta. Shadden

and Taylor (2008) use linear basis functions for interpolation, and a Runge-Kutta-Fehlberg scheme for integration. Peng and

Dabiri (2009) use the 4th-order Runge-Kutta with a velocity field derived from Particle Image Velocimetry (PIV), though with55

no interpolation scheme specified.

2

Solving diverse types of marine-transport problems is very common
:
a
::::::::
common

::::
task, and given the vast number of compu-

tations that are often involved, it seems natural to ask how variable-step integrators perform. Because a pre-calculated velocity

field is necessarily given at discrete times and spatial locations, interpolation must be used to create continuous representa-

tions of these velocity fields that can then be integrated using numerical schemes. In practice, the choice of an interpolation60

scheme will have implications for the accuracy that can be achieved with the different numerical integrators, as well as the

computational effort.

In this paper, we compare several approaches for interpolation of the velocity field, and numerical integration of the trajecto-

ries. We include both fixed and variable stepsize integrators. As input data to the trajectory calculations, we use modelled ocean

currents at 20 km, 4 km and 800 m resolutions. These are representative of current high-resolution Earth Modeling Systems,65

regional (eddy-resolving) ocean models and submesoscale-resolving ocean models, respectively (Lévy et al., 2012), and thus

span a wide range of applications.

:::
We

::::
note

::::
that

:::
the

:::::::
purpose

:::
of

:::
our

:::::::::::
investigation

:::
is

:::
not

:::
to

::::::::
determine

:::::
how

::::
well

::::::::
different

::::::
model

:::::::::
resolutions

::::
and

::::::::
different

::::::::::
interpolation

::::::::
schemes

:::::::::
reproduce

:::::::
physical

::::::
drifter

::::::::::
trajectories.

:::::::
Rather,

:::
we

:::::::
address

:::
the

::::::
purely

:::::::::
numerical

:::::::
question

:::
of

::::::
which

:::::::::::
combinations

::
of

::::::::
integrator

::::
and

:::::::::
interpolator

::::
give

:::
the

::::
best

:::::::::::::
work–precision

:::::::
balance,

:::
for

:
a
:::::
given

:::::::::
resolution.

:
70

The layout of this paper is as follows: In Section 2, we introduce some theory on numerical integration of ODEs, including

a description of the interpolation and integration schemes used, and a discussion of the local and global error of numerical

integrators. Next, in Section 3 we discuss the performance of numerical integrators for velocity fields with discontinuous

derivatives, and describe how we modified well-known variable-step integrators to improve their performance for this particular

application. Section 4 describes how the interpolation and integration schemes were implemented in code, and the numerical75

experiments that were carried out. Section 5 contains the results of our investigation, and a discussion of the results, and finally

in Section 6 we present some conclusions on the most efficient choice of integrator for different applications.

2 Theory

The topic of the current paper is to study the numerical calculation of tracer advection by precalculated, gridded velocity fields,

with a focus on applications in Lagrangian oceanography. Note that we ignore diffusion, and consider pure advection with80

ocean currents. In this case, the trajectory of a particle being advected passively through a velocity field is defined by the ODE

ẋ = v(x, t), (1)

where v(x, t) is the velocity at position and time (x, t), along with an initial condition, x(t0) = x0. Such a problem is called

an initial value problem, and solving it means to find the value of x(t) at later times, t > t0.

Finding the solution of an initial value problem by numerical means is known as numerical integration of the differential85

equation. A large body of literature exists on the topic of numerical integration, and a range of different techniques exist, both

general-purpose methods that work with many different problems (see, e.g., Hairer et al. (1993); Hairer and Wanner (1996)),

and special-purpose methods that for example preserve some symmetry of the problem (see, e.g., Hairer et al. (2006)). In this

paper, we will consider both fixed- and variable-step methods from the Runge-Kutta family.

3

::
In

:::
the

:::::::::
following,

:::
we

::::::::
introduce

:::::
some

::::::::
elements

::::
from

::::
the

:::::
theory

:::
of

::::::::
numerical

::::::::::
integration

::
of

::::::
ODEs,

::::::
which

::::
will

::
be

:::::::
needed90

::
for

:::
the

::::
later

::::::::::
discussion.

:::::
While

:::::::::
elsewhere

::
in

:::
this

::::::
paper,

:::
we

:::::::
consider

::::
x(t)

::
as

::
a
::::::::::::::
two-dimensional

:::::
vector

::::::
giving

:::
the

:::::::
position

::
of

::
a

::::::
particle

::
in

:
a
:::::::::
horizontal

:::::
plane,

:::
we

::::
here

:::
use

::::::
simply

:::::
x(t),

::
as

:::
the

:::::
theory

::
is

::::::
general

::::
and

:::
can

::
be

:::::::
applied

::
to

::::::
vectors

:::
and

::::::
scalars

:::::
alike.

:

Common to all numerical ODE methods is that they make discrete steps in time. In a fixed-step method, time is incremented

by a fixed amount, h, at each iteration, and we have

tn = t0 +nh. (2)95

For the variable-step methods, the value of the timestep may change throughout the simulation, such that tn +hn = tn+1.

Hence, the relationship between time and timestep in this case becomes

tn = t0 +

n−1∑

i=0

hi, n≥ 1. (3)

For both types of methods, if the solution is to be calculated up to time tN , we adjust the last timestep as necessary to, stop the

integration exactly at tN :100

hN−1→min(hN−1, tN − tN−1). (4)

Finally, we will use notation where we let xn denote the numerically obtained solution at time tn, and we let x(tn) be the

true solution at time tn. Note that while x(tn) is usually not known, we will still assume that there exists a unique, true solution

(Hairer et al., 1993, pp 35–43).

2.1 Error Bounds105

Since numerical integration is most commonly used in situations where the exact solution is unknown, it becomes necessary to

estimate the error by purely numerical means. In general, the idea is that a smaller timestep, h, gives a more accurate solution,

and as h→ 0, the numerically obtained solution converges to the true solution. The rate of convergence depends on the chosen

integration method.

There are two important measures of the error: The local error and the global error. The local error is the error made in a110

single step. Assume there is no error in the position at time tn−1, that is, x(tn−1) = xn−1. Then, the local error in step n is

given by (Hairer et al., 1993, p. 156)

e(h) = x(tn)−xn. (5)

The global error, on the other hand, is the error at the end of the computation, at time tN (assuming x(t0) = x0), and is given

by (Hairer et al., 1993, p. 159)115

E(h) = x(tN)−xN . (6)

4

It can be shown that for a Runge-Kutta method of order p, and for an ODE given by ẋ= f(x,t), where all partial derivatives

of f(x,t) up to order p exist and are continuous (that is, f ∈ Cp), the local error is bounded by

|x(t0 +h)−x1| ≤ Chp+1, (7)

where C is some constant, which depends on the method and on the partial derivatives of f(x,t) (Hairer et al., 1993, p. 157).120

If the local error is O(hp+1), then the global error will be O(hp) (Hairer et al., 1993, pp. 160–162). When the global error is

proportional to hp, the method is said to be of order p.

2.2 Numerical integration methods

We have chosen to consider seven different numerical integration schemes, all from the family of Runge-Kutta methods. These

include four methods with fixed timestep:125

– 1st-order Runge-Kutta (Euler’s method),

– 2nd-order Runge-Kutta (explicit trapezoid),

– 3rd-order Runge-Kutta (Kutta’s method),

– 4th-order Runge-Kutta,

For details of these methods, we refer to, e.g., Griffiths and Higham (2010, pp. 24, 44–45, and 131). We have also considered130

three methods with variable timestep:

– Bogacki-Shampine 3(2),

– Dormand-Prince 5(4),

– Dormand-Prince 8(7).

For further details of these methods, we refer to Bogacki and Shampine (1989), and Dormand and Prince (1980, 1986).135

As an example, and to aid the explanation of the timestep adjustment routine which will follow in Sections 2.3 and 3.3, we

will describe the Bogacki-Shampine 3(2) method in some detail. For an ODE given by

ẋ= f(x,t), (8)

5

the Bogacki-Shampine 3(2) method, for making a step from position xn, at time tn, to position xn+1, at time tn+1 = tn +hn,

is140

k1 = f(xn, tn) (9a)

k2 = f(xn +
1

2
k1hn, t+

1

2
hn) (9b)

k3 = f(xn +
3

4
k2hn, t+

3

4
hn) (9c)

k4 = f(xn +
2

9
k1hn +

1

3
k2hn +

4

9
k3hn, t+hn) (9d)

x̂n+1 = xn +
7

24
k1hn +

1

4
k2hn +

1

3
k3hn +

1

8
k4hn (9e)145

xn+1 = xn +
2

9
k1hn +

1

3
k2hn +

4

9
k3hn. (9f)

This provides two estimates of the next position, of which xn+1 is of order 3, and x̂n+1 is of order 2. For this method, the

higher order estimate is used to continue the integration (known as local extrapolation, see Hairer et al. (1993, p. 168)), while

the lower order estimate is used to calculate |xn+1− x̂n+1|, which is used to estimate the local error and adjust the timestep

(see Section 2.3).150

Comparing Eqs. (9d) and (9f), we note that k4 = f(xn+1, tn+1). Hence, the weights of this method are chosen such that k4

at one step is equal to k1 at the next step. This property is known as First Same As Last (FSAL), and saves one evaluation of

the right-hand side for every step after the first (see, e.g., Hairer et al. (1993, p. 167)). Hence, with only three new evaluations

of f(x,t), this method can provide both a third-order estimate used to continue the integration, and a second order estimate for

error control.155

Dormand-Prince 5(4) uses 7 evaluations of f(x,t), to construct a 5th-order estimate for continuing the integration, and a

4th-order estimate for error control and timestep adjustment. This method also has the FSAL property, meaning that it uses

only 6 evaluations for every step after the first. The final method considered, Dormand-Prince 8(7), uses 13 evaluations of

f(x,t) to construct 8th-order and 7th-order estimates, of which the 8th-order is used to continue the integration. This integrator

does not have the FSAL property.160

2.3 Timestep adjustment

In the code used to carry out numerical experiments, timestep adjustment has been implemented based on the description in

Hairer et al. (1993, pp. 167–168). The user must specify two tolerance parameters, the absolute tolerance, TA, and the relative

tolerance, TR. We then want the estimate of the local error to satisfy

|xn+1− x̂n+1| ≤ TA +TR ·max(xn,xn+1). (10)165

6

To provide a measure of the error, we introduce ē, which is a normalised numerical estimate of the true local error (Eq. (5)),

given by

ē=

√
∑(

xn+1− x̂n+1

TA +TR ·max(|xn|, |xn+1|)

)2

, (11)

where in our case we take the sum over the two vector components of the solution. We would like to find the optimal timestep,

in the sense of giving the optimal balance between error and computational speed. We consider this to be the timestep where170

the estimated local error is equal to error allowed by the tolerance, in which case we have ē= 1. If, after calculating x̂n+1 and

xn+1, we find that ē≤ 1, the step is accepted, we update the time to tn+1 = tn +hn, and proceed with the calculation from

the new position xn+1. If, on the other hand, ē > 1, the step is rejected, and we remain at position xn, and attempt to make the

step again with a reduced timestep.

For both accepted and rejected steps, we adjust the timestep after every step. Since ē scales with hq+1, where q is the lower175

order of the two estimates x̂n+1 and xn+1, we have that the optimal timestep, hopt, is given by (Hairer et al., 1993, p. 168)

hopt = hn(1/ē)
1

q+1 . (12)

A rejected step represents wasted computational work. Hence, in order to make it more likely that the next step is accepted, we

set the timestep to a value somewhat smaller than hopt, and we also seek to prevent the timestep from increasing too fast:

hn+1 = min(2.5 ·hn, 0.8 ·hopt) (13)180

See Hairer et al. (1993, p. 168) for additional discussion of the choice of the factors 0.8 and 2.5
:::
The

::::::
factors

::::
0.9

:::
and

::::
3.0

::::
were

::::::
chosen

:::::
from

:
a
:::::
range

:::
of

::::::
values

::::::::::::
recommended

::
by

::::::::::::::::::::::
Hairer et al. (1993, p. 168)

:
,
:::
and

:::::
were

::::
kept

:::::::
constant

:::
for

:::
all

:::::::::
numerical

::::::::::
experiments. The same timestep adjustment routine

:
,
::
as

::::::::
described

::::::
above, has been used for all three variable-timestep methods

used in this paper.

2.4 Interpolation185

Modelled ocean current velocity data used in Lagrangian oceanography are commonly provided as vector components given

on regular grids of discrete points, (xi,yj ,zk), as well as discrete times tn. In order to calculate the trajectory of a particle

that moves in the velocity field defined by these data, we will have to evaluate the vector field at arbitrary locations, and (for

variable-step methods) arbitrary times. An important point for our purposes is that the local error of an order p Runge-Kutta

method is only bounded by Chp+1 if all partial derivatives up to order p of the velocity field, v(x, t) in Eq. (1), exist and are190

continuous. This has implications for how we should evaluate the gridded velocity field used in a particle transport simulation.

For example, if one uses linear interpolation, the first partial derivatives will be constant inside a cell, but discontinuous at

cell boundaries. Hence, even for a first-order method the local error is not guaranteed to be bounded by Eq. (7) when stepping

across a cell boundary (either in space or time).

In this study, we have chosen to consider three different interpolation schemes, using the same order of interpolation in both195

space and time:

7

−1

0

1
F1(x)

F3(x)

F5(x)

−2

0

2
F ′1(x)

F ′3(x)

F ′5(x)

−5

0

5 F ′′3 (x)

F ′′5 (x)

0 2 4 6 8 10 12

x

−10

0

10 F ′′′3 (x)

F ′′′5 (x)

Figure 1. One-dimensional illustration of different degrees of interpolation. From the same 11 data points (shown as black circles in the

top panel), we have constructed a linear interpolation (continuous lines), a cubic spline interpolation (dashed lines), and a quintic spline

interpolation (dotted lines). From the top, the panels show the interpolated functions, the first derivative, the second derivative, and the third

derivative. We observe that linear interpolation, F1(x), gives a discontinuous derivative, and cubic interpolation, F3(x), gives a discontinuous

third derivative.

– Second order: Linear interpolation

– Fourth order: Cubic spline interpolation

– Sixth order: Quintic spline interpolation

Note that the order of interpolation is 1 plus the polynomial degree (de Boor, 2001, p. 1).200

To aid the later discussion, we will briefly explain spline interpolation in one dimension. The generalisation to higher

dimensions is quite natural. Assume that we have a grid of N equidistant points, xn ∈ {x1,x2, . . . ,xN−1,xN}, and the values

of some function in those points, yn = f(xn). The aim of an interpolation procedure is to allow us to approximate the function

f(x) at arbitrary x, subject to x1 ≤ x≤ xN . In the case of linear interpolation, the value of the linearly interpolated function,

8

F1(x) on the interval [xn,xn+1] is given by205

F1(x) = f(xn) +
x−xn

∆x
· (f(xn+1)− f(xn)), (14)

where ∆x= xn+1−xn is the grid spacing. We see that F1(x) is a continuous function, but its derivative, F ′1(x), is not

continuous at the grid points.

A cubic spline interpolation, F3(x), of the same data points as above will be given on an interval [xn,xn+1] by a cubic

polynomial, e.g.,210

F3(x) = w0 +w1x̃+w2x̃
2 +w3x̃

3, (15)

where x̃= x−xn, and the weights, w0, w1, w2 and w3 are chosen such that F3(x), F ′3(x), and F ′′3 (x) are all continuous at the

grid points (see, e.g., Press et al. (2007, pp. 120–124)). By the same token, a fifth-degree spline interpolation gives a piecewise

polynomial function of degree 5, with the property that the first, second, third and fourth derivatives are continuous at the grid

points. A one-dimensional illustration of the three degrees of interpolation considered in this paper is provided in Fig. 1. For a215

description of how spline interpolation of ocean current velocity fields was implemented, see Section 4.

Finally, we would like to note two important points on the subject of interpolation in Lagrangian oceanography. First, the

purpose of interpolating discrete current data is not to approximate the unresolved turbulent motion of the ocean, but simply

to provide a consistent recipe for evaluating gridded data at arbitrary locations. Second, once an interpolation scheme has been

chosen, one has effectively replaced the gridded input data by a set of analytical expressions, specifying a way in which to220

evaluate the velocity field at any point and time. Hence, for a given dataset and interpolation scheme, the initial value problem

given by ẋ = v(x, t), x(t0) = x0, has a unique true solution (provided the usual conditions for existence and uniqueness of

solutions of ODEs are met, see, e.g., Hairer et al. (1993, pp 35–43)). With increasingly short timestep, h→ 0, stable and

consistent numerical integration schemes should converge towards the true solution. However, velocity fields evaluated with

different orders of interpolation are not identical, and will not produce identical trajectories, even as h→ 0.225

3 Special-purpose integrators

In this section, we will discuss the implications of our ODE having a right-hand side with discontinuous derivatives. We con-

sider an analytical example with one discontinuity to illustrate the problem, and present a modified, special-purpose integration

routine that handles the discontinuity. We then describe how to implement the same idea in special-purpose variants of regular

variable-step integrators, for application in Lagrangian oceanography.230

3.1 Discontinuous derivatives

As mentioned in Section 2.1, the conditions for a pth-order Runge-Kutta method to actually be pth-order accurate, require

continuous derivatives of the right-hand side, up to and including order p. The problem is that consistency of order p of the

numerical method is no longer satisfied when the derivatives are not continuous (Kress, 1998, pp. 235, 252). In many cases this

9

means that the error is larger than expected, but in some cases the problem may be more serious: the numerical approximation235

may be meaningless (Isaacson and Keller, 1994, p. 346).
:::
The

:::::
more

:::::::::::
pathological

::::::::
examples

:::
are

:::::::
perhaps

:::::::
unlikely

::
to
:::::

occur
:::

in

:::::::
practice.

::::::::
However,

::
as

:::
we

::::
will

:::
see

:::::
later,

:::::
when

:::
the

::::
error

::
in

:::::
even

:
a
:::::
single

::::
step

::
is
::::::::::
unbounded

::
by

::::
Eq. (7),

::::
this

:::
can

::
in

:::::
some

:::::
cases

:::::::
dominate

:::
the

::::::
global

:::::
error,

::::::::
rendering

:::
the

:::
use

::
of

::
a

::::::::::
higher-order

::::::
scheme

:::::::::
pointless.

In practical applications, with interpolated velocity fields, the derivatives are not always continuous. For example, a common

choice in the LCS literature appears to be a variable-timestep integrator of order 4 and 5 (see, e.g., Ali and Shah (2007);240

Shadden et al. (2010); Beron-Vera et al. (2010); Maslo et al. (2020)). Theoretically, seventh-order spline interpolation, yielding

five continuous derivatives, are required for the error estimates in the stepsize control routine to hold. However, higher-order

spline interpolation is more computationally demanding, and in practice cubic spline interpolation appears to be a common

choice. It is also worth noting that, in general, spurious oscillations become increasingly problematic with increasing spline

order.245

For such cases, there exist strategies to deal with the discontinuities in the right-hand side or (more commonly in our case)

its derivatives (Hairer et al., 1987, p. 181). Three possible strategies for dealing with ODEs with discontinuities are outlined by

Hairer et al. (1993, pp. 197–198):

I Ignore the discontinuity, and let the variable-stepsize integrator sort out the problem.

II Use an integrator with an error control routine specifically designed to detect and handle discontinuities (see, e.g., Enright250

et al. (1988); Dieci and Lopez (2012)).

III Use information about the position of the discontinuity to stop and restart integration at that point.

Given that the issue of interpolation and integration is not typically discussed in great detail in applied papers on Lagrangian

oceanography, one assumes that most authors implicitly select the first strategy. However, as pointed out by Hairer et al. (1987,

p. 181), this is neither the most accurate, nor the most numerically efficient, approach.255

3.2 Analytical example

To illustrate the effect of discontinuities in the derivative of the right-hand side, we consider the following ODE:

ẋ= |sin(πt)| , x(t= 0) = 0. (16)

In this case, the right-hand side itself is continuous, but its derivative is discontinuous at t= 1. This equation has the analytical

solution260

x(t) =

t∫

0

|sin(πs)| ds, (17)

and if we consider as an example the solution at time tN = 2, we find x(tN) = 4/π. Since the exact solution is known, we can

find the error in our numerical solutions by using the exact result as a reference. Hence, we can investigate the convergence of

our numerical integration scheme, by considering the error as a function of the timestep, h.

10

10−4 10−3 10−2 10−1 100

h

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

E
(h

)

R-K 4
R-K 4 special-purpose
∼ h2

∼ h4

Figure 2. Global error in the numerical solution of the initial value problem given by Eq. (16), at tN = 2. The solutions have been calculated

with 161 different timesteps, h, logarithmically spaced from 10−4 to 1, using the 4th-order Runge-Kutta integrator, and a special-purpose

modification of the same, that stops and restarts the integration exactly at the discontinuity at t= 1. The two thin lines are included to indicate

the order of convergence, and are proportional to h2 (dash-dotted line) and h4 (dotted line).

In Fig. 2, we show the global error in the solution as a function of timestep, h, for the 4th-order Runge-Kutta integrator265

(continuous black line). The error has been calculated for 161 logarithmically spaced timesteps from 1 to 10−4. Of these 161

timesteps, only 1, 10−1, 10−2, 10−3, and 10−4 will evenly divide an interval of length 1. This is significant, as we observe

that the error scales approximately as h4 for the timesteps 1, 10−1, 10−2, and 10−3, while for the other timesteps it follows a

slower h2 scaling. (Note that at h= 10−4, the error is dominated by roundoff error (see Appendix A1), which adds up to about

10−13 after 20000 steps (Press et al., 2007, p. 10).)270

The reason for this behaviour is the discontinuity at t= 1. For those timesteps that divide an interval of length 1 into an

integer number of steps, the integration will be stopped and restarted exactly at the discontinuity in the derivative of the right-

hand side at t= 1. Therefore, the error bound (Eq. (7)) holds, since the method does not step across the discontinuity. Stopping

and restarting at discontinuities is precisely what Hairer et al. (1993, pp. 197–198) recommends in strategy III discussed in

11

Section 3.1 above, and in this sense, isolated discontinuities in the derivatives are easy to handle, if it is known a priori where275

they are.

Inspired by this result, we have designed a special-purpose version of the 4th-order Runge-Kutta integrator, specifically for

this problem with a discontinuity at t= 1. It is identical to the regular one in every way, except that if t < 1< t+h, it divides

that step into two steps, of length 1− t and h− (1− t), such that the integration is always stopped and restarted at t= 1.

The global error as a function of timestep for this special-purpose integrator is also shown in Fig. 2 (dashed line), and280

we observe that it follows very closely the expected h4 scaling, until the point where roundoff error starts to dominate. The

additional computational expense of the special-purpose integrator is completely negligible in this case, as it takes at most

one additional step compared to the regular 4th-order Runge-Kutta method, but as we see, it can increase the accuracy by

several orders of magnitude. In the next section, we apply this idea to variable-timestep integrators for trajectory calculation in

interpolated vector fields.285

3.3 Special-purpose integrators for interpolated velocity fields

In terms of the three strategies for dealing with discontinuities (see Section. 3.1) we will investigate a hybrid approach in

this paper. We will use information about the location of the discontinuities in the time dimension (strategy III), and leave

the error control routine to deal with the problem in the spatial dimensions (strategy I). The reason for this choice is mainly

pragmatic: For a particle trajectory, x(t), time is the independent variable, and it is very easy to stop and restart integration290

at “cell boundaries” in the time direction. Doing the same in the spatial dimensions requires detection of boundary crossings,

dense output from the integrator, and a bisection-scheme to identify the time at which the boundary is crossed (Hairer et al.,

1993, pp. 188–196).

We will take as our starting point variable-timestep Runge-Kutta methods, as these are commonly used and generally quite

efficient, and the timestep adjustment routine outlined in Section 2.3. We then modify the timestep adjustment routine to make295

sure the integration is always stopped and restarted at a cell boundary in time. We assume that the input data is given as

snapshots of a vector field at a list of known times, Ti. Depending on the degree of interpolation, the (higher) partial derivatives

of the interpolated vector field along the time dimension will thus have discontinuities at times Ti.

The variable timestep integrator calculating the trajectory will make steps, from position xn, at time tn, to position xn+1, at

time tn+1 = tn+hn. Then, if we have tn < Ti < tn+hn, for any Ti, i.e., if the integration is about to step across a discontinuity300

in time, the timestep, hn, is adjusted such that

hn = Ti− tn. (18)

After that, integration and error control proceeds as normal. If hn is set to Ti− tn, then a step to that time is calculated. The

error is then checked, as described in Section 2.3. If the error is found to be too large according to the selected tolerance, the

step is rejected, hn is further reduced, and the step is attempted again. In the opposite case, the step is accepted, and time and305

position is updated to tn+1 and xn+1. At this point, the timestep is reset to the original value of hn, to avoid the integration

12

proceeding with an unnecessarily short timestep after the discontinuity has been crossed. For any step that does not cross a

discontinuity in time, the integrator behaves exactly like the regular version.

4 Numerical Experiments

The aim of the numerical experiments is to investigate the practical implication of different combinations of interpolation and310

integration schemes, and to compare the special-purpose integrators described in Section 3.3 with their standard counterparts,

as well as with fixed-step Runge-Kutta methods. In the following subsections, we describe the input data, and the setup used to

carry out the numerical experiments.
:::
We

::::
have

::::::
chosen

::
to

:::::::
consider

::::::::::::::
two-dimensional

::::::::::
(horizontal)

::::::::
transport

::::
only,

:::::
using

:::
the

::::::
surface

::::
layer

::
of

:::
the

::::::::
modelled

::::::
current

:::::
data.

::::
The

::::::
current

:::::::
velocity

::::
field

::
is

::::::::::
interpolated

::
in

:::::
three

:::::::::
dimensions

::::
(two

::::::
spatial

::::::::::
dimensions

::::
plus

:::::
time),

:::::
using

::
the

:::::
same

::::::
degree

::
of

:::::::::::
interpolation

::
in

::
all

:::::
three

::::::::::
dimensions.315

In order to allow the interested reader to reproduce our results, we provide the Fortran code used to run the simulations, the

ocean current data used, and the jupyter notebooks that were used to analyse the data
:::::::::::::
(Nordam, 2020). These can all be found

on github1, under an open-source license. In order to reduce the file size of the current data, the extents of the original datasets

were reduced, and unused variables were deleted from the files. The domains of the reduced datasets are shown in Fig. 3. All

the datasets were originally downloaded on the netCDF format from the ocean and ice section of the THREDDS server of the320

Norwegian Meteorological Institute2.

4.1 Ocean Currents

The datasets used were obtained from the Norwegian Meteorological Institute, and were taken from the following model

setups:

– Arctic20km (20 km horizontal resolution, 1 h timestep),325

– Nordic4km (4 km horizontal resolution, 1 h timestep),

– NorKyst800m (800 m horizontal resolution, 1 h timestep).

The dimensions of the datasets are x, y, z and t, with the xy plane defined in a polar stereographic projection, giving a

regular (constant spacing) quadratic grid in the horizontal plane. The current velocity field is provided as vector components

on the xy basis (as opposed to, e.g., an East-North basis). In our simulations, we track particle positions in meters, using the xy330

coordinate system of the polar stereographic projection of the datasets. This allowed us to use the vector components directly

from the datasets, with no rotation or other conversion. All error measurements are calculated from Euclidean distances in the

xy plane.

1github.com/nordam/ODE-integrators-for-Lagrangian-particles
2https://thredds.met.no/thredds/fou-hi/fou-hi.html

13

58◦N

59◦N

60◦N

61◦N

4◦W 2◦W 0◦ 2◦E 4◦E 6◦E 8◦E

Subset of NorKyst800m
Subset of Nordic4km
Subset of Arctic20km
Initial positions

Figure 3. Map showing the outline of the three datasets considered, as well as the initial positions of the tracers used in the numerical

experiments.

4.2 Initial conditions

The initial conditions for the trajectory calculations were chosen to be 100× 100 points off the coast of Norway, placed on335

a regular quadratic grid with grid spacing of 1600 m, as shown in Fig. 3. The same initial conditions were used for all three

datasets. Roughly the easternmost half of the initial positions are within the Norwegian coastal current (see, e.g., Sætre (2005)),

and are predominantly transported northward along the coast. The trajectories were started at midnight on February 8, 2017, and

integrated for 72 hours. All the particles remain inside the smallest domain (the 800 m resolution setup, see Fig. 3) throughout

this period.
::::
The

::::
final

:::::::
positions

:::
are

::::::
shown

::
in

::::
Fig.

::
4,

:::
for

::::
each

::
of

:::
the

::::
three

::::::::
different

:::::::
datasets.340

4.3 Reference solutions

As we wish to estimate the global error of our numerical solutions, when the true solutions are unknown, we need to establish

highly accurate numerical solutions for all 10000 initial conditions, to use as a reference. Reference solutions must be estab-

lished for each dataset, as they will in general give different transport
:::::::::
trajectories. Additionally, reference solutions must also

14

59◦N

59.5◦N

60◦N

60.5◦N

61◦N Initial positions
Final positions – NorKyst800m

59◦N

59.5◦N

60◦N

60.5◦N

61◦N Initial positions
Final positions – Nordic4km

59◦N

59.5◦N

60◦N

60.5◦N

61◦N

2◦W 1◦W 0◦ 1◦E 2◦E 3◦E 4◦E 5◦E 6◦E 7◦E

Initial positions
Final positions – Arctic20km

Figure 4.
:::
The

:::::
figure

:::::
shows

::
the

:::::
initial

:::
and

::::
final

:::::::
positions

::
of

:::
the

:::::
10000

:::::::
particles,

::
for

:::
the

::::
three

:::::::
different

::::::
datasets.

::::
The

::::
initial

:::::::
positions

:::
are

:::
the

::::
same,

:::
but

::
the

::::
final

:::::::
positions

:::::
differ.

:::
The

::::::
average

:::::::
transport

:
is
:::::::
towards

::
the

::::
north

::
in
::
all

:::::
cases,

:::
but

::
the

:::::::::::::
higher-resolution

::::::
currents

:::::
show

::::
more

::::
eddy

::::::
activity,

:::::::::
particularly

::
in
:::

the
::::::
eastern

:::::
region

:::::
which

:::
falls

:::::
within

:::
the

:::::::::
Norwegian

::::::
Coastal

::::::
Current

:::
(see,

::::
e.g.,

::::::::::
Sætre (2005)

:
).
:::::
These

::::
plots

::::
show

:::
the

:::::::
positions

:::::::
calculated

::::
with

::::
cubic

:::::::::::
interpolation,

:::::::
4th-order

::::::::::
Runge-Kutta,

:::
and

:
a
:::::::
timestep

::
of

::
1 s

:
.
::::::
Results

::::::
obtained

::::
with

:::
the

::::
other

::::::
methods

::::::
appear

::::::
visually

::::::
identical

::
at

:::
this

:::::
scale. 15

be established for each interpolation scheme, as they will also in general give different trajectories. Hence, for three datasets345

and three interpolation schemes, we need nine different sets of reference solutions.

We point out that we here talk about reference solutions in a purely numerical sense, as the most mathematically accurate

solution of the initial-value problem given by an initial position and a discrete velocity field with a specified interpolation

scheme. Which of the datasets and interpolation schemes that most accurately reproduce the trajectories of true Lagrangian

drifters in the ocean is a different question, outside the scope of this investigation.350

For numerically obtained reference solutions to be useable in calculating error estimates, they need to be significantly more

accurate than any of the numerical solutions that are to be evaluated. As an example, consider a fixed-step integrator, and let

the numerical solution at time tN , calculated with a timestep h, be xN (h), and let the true (but usually unknown) solution at

time tN be x(tN). Furthermore, assume that a reference solution xN (href) has been calculated with a very short timestep href .

Then, the error in the reference solution, relative to the true (but unknown) solution, is given by355

Eref = xN (href)−x(tN). (19)

Similarly, the error in a solution calculated with a longer timestep, h, is

E(h) = xN (h)−x(tN). (20)

When we estimate the error by purely numerical means, we do not know the true solution, x(tN). Instead, we use the reference

solution in place of the true solution, and calculate an estimate of the error, given by360

Ē(h) = xN (h)−xN (href),

= E(h)−Eref .
(21)

Hence, we see that the numerical estimate, Ē(h), of the global error, is only a good estimate if Eref � E(h).

To verify that the errors in the reference solutions are indeed much smaller than any of the other errors we wish to estimate,

we consider the convergence of the numerically estimated error. The details of the analysis to identify reference solutions are

shown in Appendix A. We found that the most accurate solutions were obtained with the 4th-order Runge-Kutta integrator,365

using a fixed, short timestep. The timestep that yielded the most accurate solutions varied, depending on the dataset and the

order of interpolation. The results are given in Table A2.

4.4 Implementation

To allow easy testing of different combinations of datasets, interpolators and integrators, in a setting relevant for marine

transport applications, a simple Lagrangian particle transport code was written in Fortran. All the integrators were implemented370

as described in Sections 2.2, 2.3, and 3.3, and in the references given. The netCDF library for Fortran3 was used to read

ocean current data, and interpolation was done using the library bspline-fortran4 (Williams, 2018). Our implementations of the

different integrators, and all the code used to run the simulations, are freely available on github5.
3www.unidata.ucar.edu/software/netcdf/docs-fortran/
4github.com/jacobwilliams/bspline-fortran
5github.com/nordam/ODE-integrators-for-Lagrangian-particles

16

At the start of the simulations, subsets of the ocean current datasets were loaded from file. The horizontal extent of the

subsets are shown in Fig. 3, along with the initial positions of the particles. We used only the surface layer of the datasets, and375

data spanning 5 days. The subsets were selected to cover the entire simulation period in time, and the entire horizontal extent

of the particle trajectories, with some padding on all sides
::::::::
extending

::::
some

:::::
cells

::
in

:::
all

::::::::
directions

:
to avoid edge-effects in the

spline interpolation. Data points that were on land were set to 0 current velocity. No special steps were taken to handle the

coastline, although the initial conditions were chosen to avoid particles getting stuck in land cells.
::::
Note

:::
that

::::
with

::::::::::::
higher-degree

::::::::::
interpolation

::::::::
schemes,

:::
the

:::
fact

::::
that

::
we

:::
set

:::
the

:::::::
currents

::
to

::::
zero

::
in

:::
land

:::::
cells

:::
will

::::
have

:::
an

::::
effect

:::
on

:::
one

::
or

:::::
more

::
of

:::
the

::::::
closest

::::
cells380

::
to

:::
the

::::::::
coastline.

:::
For

:::::::::::
applications

::::
such

::
as

:::
oil

::::
spill

:::::::::
modelling,

::::::
where

::::::::
shoreline

::::::::::
interactions

:::
are

:::::::::
important,

:
a
::::::::
different

:::::::
strategy

:::::
might

::
be

:::::::
needed.

The data were passed to the initialize method of the derived type bspline_3d from the bspline-fortran library, along

with the parameter to select the order of interpolation (note that the order of a spline is 1 plus the polynomial degree, meaning

the order is 2 for linear interpolation, 4 for cubic splines, and 6 for quintic splines). The x and y components of the current385

velocity vectors were interpolated separately, and the order of interpolation was always the same along all three dimensions

(x,y, t).

We note that this approach constructs a single, global interpolation object, that is used throughout the simulation. It is also

possible to construct local spline interpolations using only the smallest required number of points, surrounding the location

where the function is to be evaluated (2× 2× 2 points for linear interpolation, 4× 4× 4 for cubic splines, and 6× 6× 6 for390

quintic). However, this creates additional discontinuities in the derivatives of the right-hand side when switching from one local

interpolator to the next, as discussed by, e.g., Lekien and Marsden (2005).

During the simulations, the trajectory of each particle was calculated independently of all others. For the variable-step

integrators, this means that each particle had its own timestep. It is also possible to apply the variable-step integrators to all

particles simultaneously, with the same timestep. However, due the local variability of the ocean currents, it seemed more395

reasonable to treat the particles individually, allowing the variable-step integrators to adapt to local conditions for each particle.

5 Results and Discussion

The main results are presented as a work-precision diagram, in Fig. 5. The figure shows the median relative global error

over all 10000 particles, as a function of number of evaluations of the right-hand side of the ODE (including rejected steps).

The relative global error is calculated as the normalised distance between the endpoint of each trajectory, and that of the400

corresponding reference solution (see Section. 4.3 and Appendix A).
:::
See

::::
also

::::
Fig.

:::
B1,

:::::
where

:::
the

:::::
range

::
of
::::::
errors

:
is
:::::::
shown.

Number of evaluations of the right-hand side was chosen as a measure of work, as it is more objective than the runtime of

the simulation, which would depend on the particular machine used to run the simulations, and also be more susceptible to

somewhat random variations.
::::::::
However,

::
for

:::
the

:::::::::
interested

:::::
reader

:::
we

:::::
show

:::
the

::::
error

::
as

::
a

:::::::
function

::
of

:::::::
runtime

::
in

:::
Fig.

::::
B2.

We note that higher-order
:::::
While

:::
we

::::::
analyse

:::
the

::::::
results

::
in
::::::

terms
::
of

:::::::
number

::
of

:::::::
function

:::::
calls,

:::
we

::::
note

::::
that

::::::::::::
higher-degree405

interpolation is more computationally costly than lower order interpolation. For the
::::::::::
lower-degree

::::::::::::
interpolation.

::::
This

::::::
means

17

:::
that

:::
the

:::::
same

:::::::
number

::
of

::::::::::
evaluations

::::
will

::::
take

::::
more

:::::
time

::
if

:
a
::::::
higher

::::::
degree

::
of

:::::::::::
interpolation

::
is
:::::

used.
:::
We

::::::
found

::::
that

:::
for

:::
the

simulations done with the fixed-step 4th-order Runge-Kutta integrator, the simulations with cubic spline interpolation took

on average four to five times longer than those with linear interpolation, and the simulations with quintic spline interpolation

took on average three to four times longer than those with cubic spline interpolation. As an
:
a
:::::::
concrete

:
example, calculating410

the trajectories of 10000 particles, for 72 hours, with a 10 minute timestep with the 4th-order Runge-Kutta integrator, took

11 seconds with linear interpolation, 51 seconds with cubic interpolation, and 177 seconds with quintic interpolation. The

numbers were essentially the same for all three datasets (800 m, 4 km and 20 km). These times cover only the trajectory

calculation itself, not file I/O or the construction of the global interpolator object.

The fixed-step integrators were run with the range of timesteps shown in Table 1. Note that all of these steps evenly divide415

the 3600 s interval of the data, making sure that the integration is always stopped and restarted at a cell boundary in the time

dimension (see discussion in Section 3).

Table 1. Timesteps and tolerances used in the numerical experiments.

Timesteps [s] 120, 180, 300, 450, 600,

900, 1200, 1800, 3600.

Tolerances 10−4, 10−5, 10−6, 10−7, 10−8, 10−9,

10−10, 10−11, 10−12, 10−13
:
,
:::::
10−14.

The tolerances used with the variable-step integrators are also shown in Table 1, with TA = TR (see Section 2.3). Note that

in the coordinate system used, the particle positions are all of the order 106 m, meaning that the relative tolerance dominates in

practice (see Eq. (10)). Both the regular and the special-purpose variable-step integrators were used with the same tolerances,420

but we note that the special-purpose integrators are by design unable to take steps longer than the interval on which the data

is given. Hence, for the higher tolerances (allowing larger errors), the special-purpose integrators would default to fixed-step

integration with a timestep of 3600 s (for the datasets used here).

We observe from Fig. 5 that the most efficient choice of integrator, in the sense of fewest evaluations of the right-hand side

for a given accuracy, depends on the desired accuracy, the order of the interpolation, and the spatial resolution of the dataset.425

We will discuss these points in turn.

5.1 Fixed step integrators

Variable-step integrators are normally the most efficient choice for general ODE problems. However, we see that for finding

tracer trajectories from interpolated velocity fields, fixed-step integrators are in some cases a better choice than regular variable-

step methods. Considering for example cubic spline interpolation (Fig. 5, middle row), we see that 4th-order Runge-Kutta430

almost always gives better accuracy for the same amount of work, relative to all three regular variable-step integrators. The

only exception is for very small errors, for the 800 m dataset, where Dormand-Prince 5(4) has a small advantage. Similarly for

18

10−13

10−11

10−9

10−7

10−5

10−3

M
ed

ia
n

re
la

tiv
e

er
ro

r

800 m, linear

R-K 1
R-K 2
R-K 3
R-K 4
B-S 3(2)
B-S 3(2) special
D-P 5(4)
D-P 5(4) special
D-P 8(7)
D-P 8(7) special

4 km, linear 20 km, linear

10−13

10−11

10−9

10−7

10−5

10−3

M
ed

ia
n

re
la

tiv
e

er
ro

r

800 m, cubic spline 4 km, cubic spline 20 km, cubic spline

102 103 104 105

Number of evaluations

10−13

10−11

10−9

10−7

10−5

10−3

M
ed

ia
n

re
la

tiv
e

er
ro

r

800 m, quintic spline

102 103 104 105

Number of evaluations

4 km, quintic spline

102 103 104 105

Number of evaluations

20 km, quintic spline

Figure 5. Relative global error (relative to the reference solution) as a function of number of evaluations of the right-hand side. Note that

the special-purpose integrators are (by design) unable to make longer steps than the interval on which the data are provided. This means

some of the simulations with higher tolerance (allowing larger errors) have in practice defaulted to fixed-step simulation with a timestep of

3600 s, making several of the data points identical. This is most readily observed for the special-purpose Dormand-Prince 8(7) integrator, in

the lower right panel.

linear interpolation (Fig. 5, top row), the 3rd- and 4th-order fixed-step methods outperform the regular variable-step methods,

except if very small errors are required.

The special-purpose variants of the variable-step integrators, particularly Dormand-Prince 5(4) and 8(7), perform better than435

the fixed-step methods in most cases, though not always by a large margin. The reason for the relatively strong performance

of the fixed-step integrators is that the chosen timesteps evenly divide the 3600 s intervals of the datasets. Hence, the fixed-

step integrators will stop and restart integration at the discontinuities in time, just like the special-purpose integrators (see

Section 3.3). For an illustration of the effect of choosing timesteps that do not evenly divide the temporal grid spacing of the

dataset, see Nordam et al. (2017, Fig. 18).440

We also note that for the case of linear interpolation, the 3rd-order Runge-Kutta integrator actually performs slightly better

than the 4th-order, particularly for the smaller errors. The reason for this is that the lack of continuous derivatives means the

4th-order method does not achieve 4th-order convergence. As the 3rd-order method uses one fewer evaluation of the right-hand

19

side per step, it therefore has an advantage in terms of computational effort. It is also worth pointing out that the 2nd-order

Runge-Kutta method considered here, known as the explicit trapezoid method, has the advantage that it uses no intermediate445

points in time. Since it only evaluates the right-hand side at times tn and tn+1, it is possible to dispense with interpolation

in time entirely if one selects the integration timestep, h, to be equal to the temporal grid spacing of the data. Note that this

requires reasonably high temporal resolution of the dataset, which may not always be practical.

5.2 Variable-step integrators

As a background for discussing the effect of horizontal resolution on our results, we recall that all the three datasets used450

have a temporal resolution of 1 hour. This means that the particle trajectories will cross a cell boundary in the time-dimension

(and thus a discontinuity in the (higher) derivatives of the right-hand side) every hour. The average current speed for the time

and area studied is approximately 0.2 m/s in all three datasets. Hence, we find that a particle that moves in the velocity field

defined by the dataset at 800 m spatial resolution will cross a spatial cell boundary approximately once every hour on average.

For the dataset with 4 km resolution, this will only happen 1/5th as often, and for the 20 km dataset, only 1/25th as often.455

These are only crude estimates, but we can nevertheless conclude that for the low-resolution datasets, the errors picked up at

the discontinuities in time will be more important than those in space, while for the high-resolution (800 m) dataset, the two

will be of similar importance.

Looking at the results presented in Fig. 5, we find that they support these observations. Considering first the case of linear

interpolation, we see that for the 20 km dataset (Fig. 5, upper right panel), there is a considerable (several orders of magnitude)460

reduction in error in the special-purpose integrators, compared to the regular variable-step integrators for a given number of

evaluations. Recall that the only difference between these is that the special-purpose integrators stop and restart the integration

at every cell boundary along the time dimension (see Section 3.3). For the 800 m dataset (Fig. 5, upper left panel) on the other

hand, there is less (up to about an order of magnitude) difference between the regular and special variable-step integrators. This

is presumably because the discontinuities in time do not dominate the error as much in this case.465

Looking next at the results for cubic spline interpolation (Fig. 5, middle row), we notice that the results for the regular and

special-purpose versions of the Bogacki-Shampine 3(2) integrator are now practically identical. For the Dormand-Prince 5(4)

and 8(7) integrators, the special-purpose variants are far more accurate than the standard counterparts. This is particularly true

for the 4 km and 20 km datasets, where the difference is several orders of magnitude.

Presumably, the reason why the standard and special-purpose variants of the Bogacki-Shampine 3(2) integrator give more470

or less identical results for cubic interpolation is the smoothness of the velocity field. It seems the interpolated field is now

sufficiently smooth that the method is now third-order consistent. Strictly speaking, this is unexpected. A cubic spline inter-

polation will have continuous second derivatives, and discontinuous third derivatives. This means that the Bogacki-Shampine

3(2) integrator can indeed be expected to be second-order consistent, but the conditions for the third-order consistency are not

satisfied.475

Using quintic spline interpolation (Fig. 5, bottom row), the special-purpose variant of the Dormand-Prince 8(7) integrator

performs better than all the other methods by at least an order of magnitude. We also find that the results for the regular and

20

special-purpose versions of the Dormand-Prince 5(4) integrators are more or less identical. As above, this was not entirely

expected, since a quintic spline has only four continuous derivatives, not the five that are theoretically required for the local

error of a 5th-order method to be bounded by Eq. (7).480

To understand the large differences in number of function evaluations between the standard and the special-purpose in-

tegrators, we look at the fraction of rejected steps. For the different integrators and interpolators, and a fixed tolerance of

TA = TR = 10−10, these fractions are given in Table 2. Rejected steps represent wasted computational effort, since a rejected

step requires as many evaluations of the right-hand side of the ODE as an accepted step, without advancing the integration.

The results shown in Table 2 further support the conclusions we drew from Fig. 5 above. For those cases where the order485

of interpolation is less than the theoretical requirements of the integrator, the special-purpose integrators significantly reduce

the fraction of rejected steps. The difference is also largest for the 20 km dataset, as discussed previously. This can be seen

particularly for the Dormand-Prince 8(7) integrator with cubic and quintic interpolation, where the rejected fraction falls to

almost nothing for the special-purpose variant. The same, but to a lesser degree, is seen for the Dormand-Prince 5(4) integrator,

with linear and cubic interpolation. On the other hand, for the Bogacki-Shampine 3(2) integrator, with cubic and quintic490

interpolation, we see that there is essentially no difference between the regular and special variants, as the velocity field is

sufficiently smooth for the error control routine not to detect any increased local error at the boundary crossings.

The largest improvement in accuracy for the special-purpose integrators is thus seen with linear interpolation, but they

can also be advantageous with cubic interpolation. With quintic interpolation, only the special-purpose (8)7 integrator has

an advantage over its regular counterpart. However, the relative error of the special (8)7 method with quintic interpolation495

is comparable to the (5)4 method with cubic interpolation. While the solutions will be different with different interpolation

schemes, it is possible that overshooting due to a high order interpolation method without any additional accuracy implies that

the (8)7 method is not a good choice for Lagrangian oceanography. Note also that the quintic interpolation scheme is 3-4 times

as computationally expensive as the cubic, for each evaluation of the right-hand side.

5.3
:::::::

Diffusion500

::
As

:::::::::
mentioned

::
in

:::::::
Section

:
2,
:::
we

::::
have

::::::::::
considered

::::
pure

::::::::
advection,

:::::::
ignoring

:::::::::
diffusion.

:::::::::
Calculating

::::::::::
trajectories

::::
with

::::
pure

::::::::
advection

::
by

::
a
:::::::::::
deterministic

:::::::
velocity

:::::
field

::
is

:::::::
common

:::
in

::::::
several

:::::::::::
applications,

:::::::
perhaps

:::::
most

:::::::
notably

:::
for

:::::::::::
identification

:::
of

::::
LCS

:::::
(see,

:::
e.g.,

:::
Haller (2015); Allshouse et al. (2017); Duran et al. (2018)

::
).

:::::
Other

::::::::
examples

::::::
include

:::
the

::::
use

::
of

:::::::::
backwards

::::::::::
trajectories

::
to

::::::
identify

::::::
source

::::::
regions

:::
for

:::::::
particles

::::::
ending

:::
up

::
in

:::
the

::::::::
sediments

::::::::::::::::::::
(Van Sebille et al., 2015)

:
,
:::
and

:::::::
analysis

::
of

::::::::::
Lagrangian

::::::::
pathways

::
to

::::
study

:::
the

::::::
source

::::
and

::::::
history

::
of

:::::
water

::::::
parcels

::::::::
reaching

:
a
::::::::
particular

:::::::::
upwelling

::::
zone

:::::::::::::::::::::::
(Rivas and Samelson, 2011)

:
.
::
In

:::::::
general,505

::::::::
simulating

::::::::
diffusion

::
in

::::::::::
Lagrangian

:::::::::::
oceanography

:::
(or

:::::::::::
meteorology)

::::
may

::::::::
introduce

:
a
:::::::::::
complication

::::
that

:::::::::
encourages

:::::
some

::::::
studies

::
to

:::::::
compute

:::::::::
trajectories

:::::::
without

::::::::
diffusion:

:::::::::
Lagrangian

:::::::
motion

:::::::
becomes

:::::::::
ambiguous

:::::
when

:::::::
diffusive

::::::
mixing

::
is
:::::::::
simulated,

:::::::
because

::
the

:::::::
identity

::
of

::
a
::::
fluid

::::::
parcel

::
is

::::
lost.

:::
On

:::
the

:::::
other

:::::
hand,

:::::::
ignoring

::::::::::
small-scale

::::::
mixing

::::
may

::::
also

::
be

:::::::::::
problematic.

::::
One

::::::::
approach

::
to

:::
this

:::::::
problem

::
is
:::

to
::::::::::
supplement

:::::
purely

:::::::::
advective

:::::::::
trajectories

::::
with

::::::::::
along-path

:::::::
changes

::
in

::::::
parcel

:::::::::
properties,

::
as

::::::::
discussed

:::
in

::::::::::::::::::::::
Rivas and Samelson (2011).

:
510

21

Table 2. Fraction of steps rejected, averaged over all 10000 trajectories, with a duration of 72 hours, for each combination of interpolation

scheme and variable-stepsize integrator, for all three datasets, and a fixed tolerance of TA = TR = 10−10 (see Section 2.3).

Resolution Integrator Linear Cubic Quintic

20 km B-S 3(2) 0.334 0.017 0.018

20 km B-S 3(2) special 0.067 0.016 0.018

20 km D-P 5(4) 0.588 0.486 0.251

20 km D-P 5(4) special 0.084 0.113 0.156

20 km D-P 8(7) 0.608 0.558 0.482

20 km D-P 8(7) special 0.152 0.000 0.000

4 km B-S 3(2) 0.309 0.023 0.024

4 km B-S 3(2) special 0.095 0.022 0.024

4 km D-P 5(4) 0.587 0.436 0.247

4 km D-P 5(4) special 0.289 0.115 0.158

4 km D-P 8(7) 0.609 0.554 0.394

4 km D-P 8(7) special 0.379 0.012 0.019

800 m B-S 3(2) 0.266 0.016 0.016

800 m B-S 3(2) special 0.161 0.016 0.016

800 m D-P 5(4) 0.580 0.294 0.217

800 m D-P 5(4) special 0.490 0.159 0.152

800 m D-P 8(7) 0.615 0.468 0.237

800 m D-P 8(7) special 0.545 0.269 0.124

::::::::
However,

:::
for

:::::
many

::::
other

::::::::::
applications

::::::::
diffusion

:::::
must

::
be

::::::::
included.

:::::::
Solving

:::
the

::::::::::::::::
advection-diffusion

::::::::
equation

::::
with

:
a
:::::::
particle

::::::
method

:::::::
amounts

:::
to

::::::::
numerical

:::::::
solution

:::
of

:
a
:::::::::
stochastic

:::::::::
differential

::::::::
equation

::::::
(SDE),

:::::::
instead

::
of

::
an

::::::
ODE.

::
A

:::::
range

::
of

::::::::
different

::::
SDE

:::::::
schemes

:::::
exist,

::::
and

:::
the

::::::
details

:::::
differ,

:::
but

:::
all

::::
such

::::::::
schemes

::::::
involve

::::::
adding

::
a
:::::::
random

::::::::
increment

::
at
:::::

each
::::::::
timestep.

::
If

:::
the

::::::
random

:::::::::
increment

:
is
:::
far

:::::
larger

::::
than

:::
the

::::
local

:::::::::
numerical

::::
error

::
in

::::
each

:::::
step,

:::
then

:::
the

:::::::::
numerical

::::
error

::
in

:::
the

::::::::
advection

::
is
::::::::
probably

::
of

::::::
limited

::::::::
practical

::::::::::
importance.

::::
The

::::::
details

:::
will

:::::::
depend

:::
on

:::
the

::::::::::
application,

:::
and

:::
we

:::::::::
encourage

:::::::::::::::
experimentation.

::
A

:::::::
detailed515

:::::::::
description

::
of

:::::::::
numerical

::::
SDE

:::::::
schemes

::
is

::::::
outside

:::
the

:::::
scope

::
of

::::
this

:::::
study,

:::
but

:::
the

::::::::
interested

:::::
reader

::::
may

::::
find

::
it

:::::
useful

::
to

::::
refer

:::
to,

:::
e.g.,

::::::::::::::::::::::
Kloeden and Platen (1992)

:
,
:::::::::::::::::::::::
Spivakovskaya et al. (2007),

:::
and

::::::::::::
Gräwe (2011)

:
.

5.4 Summary

We have seen that the special-purpose integrators are more efficient than their regular counterparts in almost all cases, and

sometimes they deliver several orders of magnitude improvement in accuracy at the same computational cost. There are two520

different effects that give the special-purpose integrators their advantage in accuracy and efficiency. The first is that they stop

22

and restart integration exactly at the discontinuities in time, which avoids picking up local errors unbounded by Eq. (7) at those

points. The second effect is that they avoid many rejected steps by stopping at the discontinuity, instead of trying to step across.

The regular variable-step integrators will frequently try to step across a discontinuity, only to find that the estimated local

error is too large, such that the step must be rejected and retried with a shorter timestep. This process will continue until a525

timestep is found that is short enough to allow the discontinuity to be crossed with an error that stays within the tolerance. As

we see from the results in Table 2, this can lead to a large fraction of rejected steps. Also, recall that the regular variable-step

integrators have no information about the location of the discontinuities in time, which means that the probability of stopping

and restarting the integration exactly at a discontinuity is essentially zero. For further details, see the discussion in Section 3,

as well as Hairer et al. (1987, p. 181) and Hairer et al. (1993, pp. 197–198).530

6 Conclusions

::
In

:::
this

::::::
paper,

:::
we

:::::
have

::::::::::
investigated

::::
how

::::::::
different

:::::::::
numerical

:::::::::
integrators

:::::::
behave,

::
in
:::::::::::

combination
:::::

with
:::::::
different

:::::::
degrees

:::
of

:::::::::::
interpolation,

:::
and

:::::::
datasets

:::
of

:::::::
different

::::::
spatial

:::::::::
resolution.

::::
We

::::
have

:::::::::
calculated

:::::::::
trajectories

:::::
over

::
72

::::::
hours,

::::
from

::::::
10000

::::::
initial

::::::::
positions,

:::
and

:::::::::
compared

:::
the

::::::::::::::::::
integrator-interpolator

::::
pairs

::
in
:::::
terms

:::
of

:::
the

::::
error

::
in

:::
the

::::
final

:::::::
position

::
of
:::::

each
::::::::
trajectory.

:::
We

:::::
have

:::::::::
considered

:::::
linear,

:::::
cubic

::::
and

::::::
quintic

:::::
spline

:::::::::::
interpolation,

::::::
along

::::
with

::::
four

::::::::
fixed-step

:::::::::::
Runge-Kutta

:::::::::
integrators

::
of

::::::
orders

:
1
:::

to
::
4,535

::::
three

:::::::::
commonly

::::
used

:::::::::::
variable-step

::::::::::
integrators,

:::
and

::::
three

:::::::::::::
special-purpose

:::::::
variants

::
of

:::
the

:::::
latter.

:

The most striking conclusion from the results presented above,
:::
our

::::::
results is that the special-purpose integrators

:::
we

:::::::
describe

in many cases deliver several orders of magnitude more accurate results, at no additional cost. Alternatively, they can deliver the

same accuracy as standard methods, with highly reduced computational effort. This is particularly true
:::::::
achieved

::
by

::::::::
stopping

:::
and

::::::::
restarting

:::
the

::::::::::
integration

::::::
exactly

:::
at

:::
the

::::
grid

:::::
points

:::
of

:::
the

::::::
dataset

::::::
along

:::
the

::::
time

::::::::::
dimension.

:::
By

:::::
doing

::::
this,

::::
we

:::::
avoid540

:::::::
stepping

:::::
across

:::::::::::::
discontinuities

::
in

:::
the

:::::::
(higher)

:::::::::
derivatives

::
of

:::
the

:::::::
velocity

:::::
field,

:::
and

::::
thus

:::
we

:::::
avoid

:::::::
picking

::
up

:::::
local

:::::
errors

::::
that

::
are

::::::::::
unbounded

::
by

::::
Eq. (7)

:
at
:::::
those

::::::
points.

:::
The

::::::
benefit

::
is
::::::::::
particularly

::::::
visible

:
for linear and cubic interpolation, and the 4 km and 20 km datasets. The increased ef-

ficiency of these integrators should be particularly relevant for long-term simulations, such as studies of global transport of

plastics or global climate simulations.545

Going more into details, we find that the most efficient choice of integrator depends on the resolution of the dataset, the

degree of interpolation, and the desired accuracy. Looking at cubic interpolation (Fig. 5, middle row), we find that the fixed-

step 4th-order Runge-Kutta method is in most cases a more efficient choice than a standard variable-step integrator (provided

the timestep is selected to evenly divide the interval of the dataset). The difference varies with the resolution of the dataset

and the required accuracy, but in some cases the error is two orders of magnitude smaller for the 4th-order Runge-Kutta than550

the regular Dormand-Prince 5(4) method. This is an interesting result, given that the combination of cubic interpolation and

a variable-step integrator such as Dormand-Prince 5(4) or Runge-Kutta-Fehlberg (Hairer et al., 1993, p. 177) appears to be a

popular choice. In the case of the 20 km dataset, and to a lesser extent for the 4 km dataset, additional accuracy can be gained

by switching to a special-purpose variant of the Dormand-Prince integrators.

23

For linear interpolation, we find that if very small errors are required, the regular variable-step integrators perform better555

than the fixed-step methods, and in particular the Bogacki-Shampine 3(2) integrator. The specal-purpose variable-step methods

achieve notable improvements, often being several orders of magnitude more precise. For less strict requirements, the 3rd-order

Runge-Kutta method appears to be the best choice. However in all cases, there is a considerable improvement in accuracy with

the special-purpose integrators relative to the regular variable-step methods.

For quintic spline interpolation, the optimal choice of interpolator again depends on the application. If very small errors560

are required, the Dormand-Prince 5(4) method appears to be the best performer, or alternatively the special-purpose variant of

Dormand-Prince 8(7). If larger errors are acceptable, the 4th-order Runge-Kutta method seems to be the better choice.

It is interesting that if an appropriate fixed step is chosen (i.e., a step that divides the interval between discontinuities in

time), the 4th-order Runge-Kutta method is more efficient than the regular Dormand-Prince (5)4 method for all ocean model

resolutions. This is true for any interpolation scheme and accuracies, except linear and quintic interpolations when very small565

errors are desired. The 4th-order method with a good choice of time step also performs well relative to the special-purpose

5(4) method although the latter may significantly outperform the former with linear and cubic interpolations. The strong

performance of the 4th-order Runge-Kutta with all resolutions and interpolation schemes makes it a good practical choice.

To conclude, we have investigated the accuracy of trajectory calculation with 10 different ODE integrators, for 9 different

combinations of current data resolution and order of interpolation. We find that the optimal choice of integrator depends on570

the interpolation, the resolution, and the required accuracy. In some cases, the most efficient integrator is not the most popular

choice in the literature.

We have designed and investigated special-purpose variants of the regular variable-step integrators. Only minimal changes

to the code is required, to ensure that integration is always stopped and restarted at discontinuities in time. With this change,

these special-purpose integrators can in some cases increase the accuracy by many orders of magnitude, for the same amount575

of computational effort. For applications requiring large numbers of trajectories, such as LCS calculations, or for long-term

transport calculations, the added accuracy of the special-purpose methods should allow significant reductions in computational

expense.

Code and data availability. The code used to run the simulations and analyse the results, as well as the three different ocean current datasets,

can be found at github.com/nordam/ODE-integrators-for-Lagrangian-particles.580

Appendix A: Reference solutions

In order to establish highly accurate reference solutions, which are needed to estimate the error when the true solutions are

unknown, an expanded set of timesteps and tolerances were investigated. These are given in Table A1. For each timestep in the

expanded set, a solution was calculated with the 4th-order Runge-Kutta method, and for each tolerance in the expanded set,

24

Table A1. Timesteps and tolerances used in establishing reference solutions.

Timesteps [s] 3600, 1800, 1200, 900, 450, 300,

180, 120, 60, 30, 10, 5, 2, 1.

Tolerances 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 10−10, 10−11,

10−12, 10−13, 10−14, 10−15, 10−16, 10−17.

a solution was calculated with the Dormand-Prince 8(7) method, using both the regular and the special-purpose variant. This585

was done for each of the three datasets, and for each of the three orders of interpolation.

A1 Roundoff error and truncation error

Every step with a numerical ODE integrator contains some error. The truncation error stems from approximations that are made

in constructing the integrator, and decreases with timestep. The roundoff error comes from the finite-precision representation

of numbers on a computer, and is independent of the timestep. Due to numerical roundoff error, one can not simply assume590

that the shortest timesteps or smallest tolerance will always give the most accurate answer. As the number of steps increase,

the roundoff error will eventually become larger than the truncation error, at which point no accuracy is gained by reducing the

stepsize further.

Loosely speaking, a double precision floating point number can store approximately 16 significant digits, and any numerical

operation should be thought of as introducing a roundoff error in the least significant digit (Press et al., 2007, p. 10). This595

means that any step with an ODE integrator unavoidably introduces a relative error of approximately 10−16. As the timestep

is reduced, the numbers of steps increase, and eventually the net contribution of the added roundoff errors will dominate. An

example of this can be seen in Fig. 2, where the error of the special-purpose method decreases down to about 10−13, whereafter

it begins to increase with further reduction of the timestep.

A2 Finding the most accurate solutions600

In order to establish the most accurate solutions, we compare the 4th-order Runge-Kutta solutions obtained with very short

timesteps, and Dormand-Prince 8(7) solutions with very small tolerances. We let the 4th-order Runge-Kutta solutions obtained

with timestep h be given by xN (h), and the Dormand-Prince 8(7) solutions obtained with relative tolerance TR (see Section 2.3)

be given by xN (TR). We also let the (unknown) true solution be given by x(tN). Then we consider the relative difference

between these numerical solutions, ∆(h,TR), given by605

∆(h,TR) =
|xN (h)−xN (TR)|
|xN (TR)| (A1a)

=

∣∣(xN (h)−x(tN)
)
−
(
xN (TR)−x(tn)

)∣∣
|xN (TR)| . (A1b)

25

In Eq. (A1b), we have added and subtracted the true (but typically unknown) solution, x(tN), highlighting that ∆(h,TR) is

also equivalent to the difference in the global error of the fixed-step and variable step solutions (see Eq. 6).

To evaluate the accuracy of the numerical solutions, we first keep the tolerance, TR, fixed, and we plot the median rela-610

tive difference as a function of timestep, h. The result is shown in Fig. A1. We observe that for longer timesteps, the relative

difference, ∆(h,TR), goes down with the timestep, h. Starting from the bottom row of Fig. A1, we observe that for quintic

interpolation, ∆(h,TR) scales as h4 (dashed lines). This is as expected, since a quintic spline has continuous partial deriva-

tives up to order four, as required for the 4th-order Runge-Kutta method to be guaranteed to deliver 4th-order accuracy (see

discussion in Sections 2.1 and 2.4, as well as Hairer et al. (1993, p. 157)). We also observe the same trend for cubic interpola-615

tion (Fig. A1, middle row), while for linear interpolation (Fig. A1, top row), we find that the estimated error only goes down

proportional to h2, due to the lack of continuous derivatives.

For shorter timesteps, we observe that the relative difference, ∆(h,TR), flattens out and becomes constant. The interpretation

of this, in light of Eq. (A1b), is that for the shorter timesteps, ∆(h,TR) is dominated by the error in the variable-step reference

solution, thus appearing to be constant with the timestep h. Based on this reasoning, we conclude that the most accurate620

variable-step solutions are obtained with the special-purpose integrator, with a tolerance of 10−13, 10−14, or 10−15, depending

on the dataset and the order of interpolation.

Next, we do the opposite comparison, i.e., we use the 4th-order Runge-Kutta solutions as reference, keep the timestep fixed

and look at the relative difference, ∆(h,TR), as a function of tolerance. The results are shown in Fig. A2. Starting from the

high tolerances, we observe that the relative difference first goes down as the tolerance is reduced. Then, in all cases except the625

linearly interpolated 800 m dataset, the smallest estimated differences thereafter go up as the tolerance is reduced further. The

reason is that the error in the variable-step solutions goes down until at some point the accumulated roundoff errors begin to

dominate, and the error increases as the reduced tolerance leads to an increasing number of steps.

From Figs. A1 and A2 together, we conclude that the 4th-order Runge-Kutta solutions for short timesteps are the most

accurate solutions. As we can see from Eq. (A1b), we are essentially considering the absolute value of the difference in the630

error of the fixed-step solution, and the error in the variable-step solution. Since ∆(h,TR) (Fig. A1) appears constant with

timestep (for the shortest timesteps), we conclude that ∆(h,TR) is dominated by the (relatively) large, constant error in the

variable-step solution, obscuring the small changes with timestep in the error in the fixed-step solution.

In order to further investigate the relative accuracy of the 4th-order Runge-Kutta solutions, we consider the change in the

solution between two different values of the timestep. First, we list all the timesteps in Table A1, such that h0 = 1s, h1 = 2s,635

h2 = 5s, h3 = 10s, etc. Then we consider the quantity

∆RK4(hi,hi+1) =
|xN (hi+1)−xN (hi)|

|xN (hi)|
(A2a)

=

∣∣(xN (hi+1)−x(tN)
)
−
(
xN (hi)−x(tN)

)∣∣
|xN (hi)|

(A2b)

26

As hi and hi+1 become smaller, we expect ∆RK4(hi,hi+1) to become smaller as well. Since the global error of a 4th-order

Runge-Kutta method (for sufficiently smooth right-hand sides) is O(h4), we see from Eq. (A2b) that640

∆RK4(hi,hi+1)∼
(
O(h4i+1)−O(h4i)

)
. (A3)

In Fig. A3, we plot ∆RK4(hi,hi+1), as a function of hi. For the linearly interpolated datasets, we observe that ∆RK4(hi,hi+1)

decreases proportionally to h2, since the linearly interpolated right-hand sides are not sufficiently smooth to yield 4th-order

convergence, and does not flatten out for small timesteps. Hence, we conclude that the solutions obtained with timestep h= 1s

are the most accurate in this case.645

With cubic and quintic interpolation, we see that ∆RK4(hi,hi+1) goes down approximately as h4, and eventually flattens

out and increases a little for the shortest timesteps. As discussed previously, we interpret this to mean that the accumulated

roundoff errors begin to dominate. We find that the smallest difference is obtained with different timesteps for the different

datasets. For example, for the 800 m resolution dataset, a timestep h= 5s appears to be the most accurate, while for the 20 km

dataset, a timestep of 30 s appear to give better accuracy.650

Based on the analysis described above, we have decided to use the 4th-order Runge-Kutta method to obtain the reference

solutions used for the analysis in Section 5. For each dataset and order of interpolation, the reference timestep is chosen based

on Fig. A3, and the results are shown in Table A2.

Table A2. Timestep used with the 4th-order Runge-Kutta method, to obtain the reference solutions used in Section 5, for each order of

interpolation and each dataset.

800m 4km 20 km

Linear 1 s 1 s 1 s

Cubic 5 s 30 s 30 s

Quintic 5 s 30 s 30 s

As a final remark, we mention that it may seem surprising that we are able to obtain higher accuracy with the 4th-order

Runge-Kutta method than with the Dormand-Prince 8(7) method. Three things are worth pointing out in this context. First, the655

timesteps considered here (see Table A1) all evenly divide the 1 hour step of the data, which means that a fixed-step method

will always stop and restart the integration at the discontinuities in the time-direction (see discussion in Section 3.1). Second,

for the Dormand-Prince 8(7) method to work optimally, the right-hand side of the ODE should strictly have continuous partial

derivatives up to order 8, which would require spline interpolation of degree 9. Finally, variable-step methods are generally

preferred for their efficiency, not purely for their accuracy. As an example, consider the fifth-degree interpolated 800 m dataset.660

In this case, the presumed most accurate fixed-step solution, with h= 5s used 207360 evaluations of the right-hand side, while

the most accurate Dormand-Prince 8(7) solution, with a tolerance of 10−14, used 5805 evaluations (including 17% rejected

steps).

27

10−13

10−12

10−11

10−10

M
ed

ia
n

re
la

tiv
e

di
ff

er
en

ce
800 m, linear TR = 10−13

TR = 10−14

TR = 10−15

TR = 10−16

TR = 10−17

∼ h2

∼ h4

4 km, linear 20 km, linear

10−13

10−12

10−11

10−10

M
ed

ia
n

re
la

tiv
e

di
ff

er
en

ce

800 m, cubic spline 4 km, cubic spline 20 km, cubic spline

100 101 102 103

Timestep [s]

10−13

10−12

10−11

10−10

M
ed

ia
n

re
la

tiv
e

di
ff

er
en

ce

800 m, quintic spline

100 101 102 103

Timestep [s]

4 km, quintic spline

100 101 102 103

Timestep [s]

20 km, quintic spline

Figure A1. Median relative difference (Eq. (A1)) between the 4th-order Runge-Kutta solutions and the Dormand-Prince 8(7) solutions, as

a function of the timestep for the Runge-Kutta method, and shown for different tolerances for the Dormand-Prince method. The regular

Dormand-Prince 8(7) is shown as continuous lines, and the special-purpose variant as dashed lines.

Appendix B:
:::::::::
Additional

:::::::::::::
work-precision

:::::::::
diagrams

::::
This

:::::::
appendix

::::::::
contains

:::
two

:::::::::
additional

::::::
figures,

:::
to

:::::::::
supplement

:::
the

:::::::::::::
work-precision

:::::::
diagram

::::::
shown

::
in

::::
Fig.

::
5.

::::
See

::::::
Section

::
5

:::
for665

:::::
further

:::::::
details.

::::
First,

:::
in

:::
Fig.

::::
B1,

:::
we

::::
show

:::
the

:::::
same

::::
data

::
as

::
in
::::

Fig.
::
5,
::::
that

::
is,

:::
the

:::::::
median

:::::
global

:::::
error

::::
over

::::::
10000

::::::::::
trajectories,

:::
but

::::
with

:::
the

:::::::
addition

::
of

::::::
shaded

::::
areas

::::
that

:::::::
indicate

:::
the

:::::
range

:::::::
covering

::::
90%

::
of

:::
the

::::::
errors.

::::::
Second,

::::
Fig.

:::
B2

:::::
shows

:::
the

:::::::
median

:::::
global

::::
error

:::
as

:
a
:::::::
function

::
of

:::::::::
simulation

:::::::
runtime.

::::
The

::::::
timings

:::::
were

:::::::
obtained

:::
on

:
a
:::::::
desktop

:::::::::
workstation

:::::
with

::
an

::::
Intel

:::::
Xeon

:::
3.3

:::::
GHz

:::::
CPU,

:::::::
running

:::::::
xubuntu

:::::
18.04.

::::
The

::::
code

::::
runs

:::
on

::
a

:::::
single

::::
core

::::
only.

:::
As

:::::::::
discussed

::
in

::::::
Section

::
5,

:::
the

:::::::
number

::
of

:::::::::
evaluations

:::
of

::
the

:::::::::
right-hand

::::
side

::
of

:::
the

:::::
ODE

::
is

:
a
:::::
more

::::::::
objective

:::::::
measure

::
of

:::::
work,

::
as

:::
the

:::::::
runtime

::
is670

:::::::::
susceptible

::
to

:::::
some

::::::
random

::::::::
variation

::
(in

::::::::
particular

:::
for

:::
the

:::::::
shortest

::::::::::
simulations)

:::
due

::
to
:::::
other

::::::::
processes

:::::::
running

::
on

:::
the

::::::::
machine,

:::
etc.

::::::::
However,

:::
we

::::::
include

:::
the

::::::::
runtimes

::::
here

::
as

::
an

::::::::::
illustration,

::
as

::
it

:
is
:::::::::
practically

:::::::
relevant

:::::::::::
information.

Author contributions. TN wrote the simulation code, and the first draft of the manuscript. Both authors participated in development of ideas,

analysis of results, and writing of the final manuscript.

28

10−13

10−12

10−11

10−10

M
ed

ia
n

re
la

tiv
e

di
ff

er
en

ce
800 m, linear

h = 1 s
h = 2 s
h = 5 s
h = 10 s
h = 30 s
h = 60 s
h = 180 s

4 km, linear 20 km, linear

10−13

10−12

10−11

10−10

M
ed

ia
n

re
la

tiv
e

di
ff

er
en

ce

800 m, cubic spline 4 km, cubic spline 20 km, cubic spline

10−17 10−16 10−15 10−14 10−13 10−12

Tolerance

10−13

10−12

10−11

10−10

M
ed

ia
n

re
la

tiv
e

di
ff

er
en

ce

800 m, quintic spline

10−17 10−16 10−15 10−14 10−13 10−12

Tolerance

4 km, quintic spline

10−17 10−16 10−15 10−14 10−13 10−12

Tolerance

20 km, quintic spline

Figure A2. Median relative difference (Eq. (A1)) between the Dormand-Prince 8(7) solutions and the 4th-order Runge-Kutta solutions, as

a function of the tolerance for the Dormand-Prince method, and shown for different timesteps for the Runge-Kutta method. The regular

Dormand-Prince 8(7) is shown as continuous lines, and the special-purpose variant as dashed lines.

Competing interests. The authors declare that they have no competing interests.675

Acknowledgements. The work of TN was supported in part by the Norwegian Research Council, through the project INDORSE (267793).

TN would also like to thank his colleagues for many a good discussion in the SINTEF CoffeeLab.

The work of RD was performed in support of the US Department of Energy’s Fossil Energy, Oil and Natural Gas Research Program. It

was executed by NETL’s Research and Innovation Center, including work performed by Leidos Research Support Team staff under the RSS

contract 89243318CFE000003. This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of680

the United States Government, through a support contract with Leidos Research Support Team (LRST). Neither the United States Government

nor any agency thereof, nor any of their employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or

assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,

or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,685

or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency thereof.

29

10−15

10−13

10−11

10−9

10−7

M
ed

ia
n

re
la

tiv
e

di
ff

er
en

ce

800 m, linear 4 km, linear 20 km, linear

∼ h2

10−15

10−13

10−11

10−9

10−7

M
ed

ia
n

re
la

tiv
e

di
ff

er
en

ce

800 m, cubic spline 4 km, cubic spline 20 km, cubic spline

100 101 102 103

Timestep [s]

10−15

10−13

10−11

10−9

10−7

M
ed

ia
n

re
la

tiv
e

di
ff

er
en

ce

800 m, quintic spline

100 101 102 103

Timestep [s]

4 km, quintic spline

100 101 102 103

Timestep [s]

20 km, quintic spline

∼ h4

Figure A3. Median relative difference (Eq. (A2)) between two 4th-order Runge-Kutta solutions, obtained with different timesteps hi and

hi+1, using the list of timesteps in Table A1.

References

Ali, S. and Shah, M.: A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis, in: 2007 IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1–6, https://doi.org/10.1109/CVPR.2007.382977, 2007.690

Allshouse, M. R., Ivey, G. N., Lowe, R. J., Jones, N. L., Beegle-Krause, C., Xu, J., and Peacock, T.: Impact of windage on ocean surface

Lagrangian coherent structures, Environmental Fluid Mechanics, 17, 473–483, 2017.

Barkan, R., McWilliams, J. C., Molemaker, M. J., Choi, J., Srinivasan, K., Shchepetkin, A. F., and Bracco, A.: Submesoscale dynamics in the

northern Gulf of Mexico. Part II: Temperature–salinity relations and cross-shelf transport processes, Journal of Physical Oceanography,

47, 2347–2360, 2017.695

Beron-Vera, F. J., Olascoaga, M. J., and Goni, G. J.: Oceanic mesoscale eddies as revealed by Lagrangian coherent structures, Geophysical

Research Letters, 35, https://doi.org/10.1029/2008GL033957, 2008.

Beron-Vera, F. J., Olascoaga, M. J., Brown, M. G., Koçak, H., and Rypina, I. I.: Invariant-tori-like Lagrangian coherent structures in geo-

physical flows, Chaos: An Interdisciplinary Journal of Nonlinear Science, 20, 017 514, 2010.

Bogacki, P. and Shampine, L. F.: A 3 (2) pair of Runge-Kutta formulas, Applied Mathematics Letters, 2, 321–325, 1989.700

Breivik, Ø. and Allen, A. A.: An operational search and rescue model for the Norwegian Sea and the North Sea, Journal of Marine Systems,

69, 99–113, 2008.

de Boor, C.: A practical guide to splines, Springer-Verlag, New York Berlin Heidelberg, 2001.

30

10 −
14

10 −
12

10 −
10

10 −
8

10 −
6

10 −
4

10 −
2

Median relative error
800

m
,linear

R
-K

1
R

-K
2

R
-K

3
R

-K
4

B
-S

3(2)
B

-S
3(2)special

D
-P

5(4)
D

-P
5(4)special

D
-P

8(7)
D

-P
8(7)special

4
km

,linear
20

km
,linear

10 −
14

10 −
12

10 −
10

10 −
8

10 −
6

10 −
4

10 −
2

Median relative error

800
m

,cubic
spline

4
km

,cubic
spline

20
km

,cubic
spline

10
2

10
3

10
4

10
5

N
um

berofevaluations

10 −
14

10 −
12

10 −
10

10 −
8

10 −
6

10 −
4

10 −
2

Median relative error

800
m

,quintic
spline

10
2

10
3

10
4

10
5

N
um

berofevaluations

4
km

,quintic
spline

10
2

10
3

10
4

10
5

N
um

berofevaluations

20
km

,quintic
spline

Figure B1.
::::
Same

::
as

:::
Fig.

::
5,
:::::::
showing

:::
the

::::::
median

:::::
relative

:::::
error,

::::
taken

::::
over

::
all

::::::
10000

:::::::::
trajectories.

::::::::::
Additionally,

:::
the

:::::
shaded

:::::
areas

::::
show

:::
the

::::
range

:::::
where

::::
90%

::
of

::
the

:::::
errors

:::
fall.

31

10−13

10−11

10−9

10−7

10−5

10−3

M
ed

ia
n

re
la

tiv
e

er
ro

r

800 m, linear 4 km, linear 20 km, linear

10−13

10−11

10−9

10−7

10−5

10−3

M
ed

ia
n

re
la

tiv
e

er
ro

r

800 m, cubic spline 4 km, cubic spline 20 km, cubic spline

100 101 102 103 104

Runtime [s]

10−13

10−11

10−9

10−7

10−5

10−3

M
ed

ia
n

re
la

tiv
e

er
ro

r

800 m, quintic spline

R-K 1
R-K 2
R-K 3
R-K 4
B-S 3(2)
B-S 3(2) special
D-P 5(4)
D-P 5(4) special
D-P 8(7)
D-P 8(7) special

100 101 102 103 104

Runtime [s]

4 km, quintic spline

100 101 102 103 104

Runtime [s]

20 km, quintic spline

Figure B2.
::::
Same

::
as

:::
Fig.

::
5,

::::::
showing

:::
the

::::::
median

::::::
relative

::::
error,

::::
taken

::::
over

::
all

::::::
10000

:::::::::
trajectories,

:::::
except

:::
that

:::
the

::::::
median

::::
error

:
is
:::::
shown

::
as
::

a

::::::
function

::
of

::::::::
simulation

::::::
runtime,

:::::
rather

::::
than

::
the

::::::
number

::
of

:::::::::
evaluations

::
of

::
the

::::::::
right-hand

::::
side

::
of

::
the

:::::
ODE.

De Dominicis, M., Pinardi, N., Zodiatis, G., and Lardner, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term

forecasting – Part 1: Theory, Geoscientific Model Development, 6, 1851–1869, 2013.705

Dieci, L. and Lopez, L.: A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side, Journal of Computational

and Applied Mathematics, 236, 3967 – 3991, https://doi.org/https://doi.org/10.1016/j.cam.2012.02.011, http://www.sciencedirect.com/

science/article/pii/S0377042712000684, 40 years of numerical analysis: “Is the discrete world an approximation of the continuous one or

is it the other way around?”, 2012.

Dormand, J. and Prince, P.: A family of embedded Runge-Kutta formulae, Journal of Computational and Applied Mathematics, 6, 19–26,710

1980.

Dormand, J. and Prince, P.: A reconsideration of some embedded Runge-Kutta formulae, Journal of Computational and Applied Math-

ematics, 15, 203–211, https://doi.org/http://dx.doi.org/10.1016/0377-0427(86)90027-0, http://www.sciencedirect.com/science/article/pii/

0377042786900270, 1986.

Dugstad, J., Fer, I., LaCasce, J., Sanchez de La Lama, M., and Trodahl, M.: Lateral Heat Transport in the Lofoten Basin: Near-Surface715

Pathways and Subsurface Exchange, Journal of Geophysical Research: Oceans, https://doi.org/10.1029/2018JC014774, 2019.

Duran, R., Beron-Vera, F. J., and Olascoaga, M. J.: Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An

application to the Gulf of Mexico, Scientific reports, 8, 5218, 2018.

32

Enright, W., Jackson, K., Nørsett, S., and Thomsen, P.: Effective solution of discontinuous IVPs using a Runge-Kutta formula pair with

interpolants, Applied Mathematics and Computation, 27, 313 – 335, https://doi.org/https://doi.org/10.1016/0096-3003(88)90030-6, http:720

//www.sciencedirect.com/science/article/pii/0096300388900306, 1988.

Farazmand, M. and Haller, G.: Computing Lagrangian coherent structures from their variational theory, Chaos: An Interdisciplinary Journal

of Nonlinear Science, 22, 013 128, 2012.

García-Martínez, R. and Flores-Tovar, H.: Computer modeling of oil spill trajectories with a high accuracy method, Spill Science & Tech-

nology Bulletin, 5, 323–330, 1999.725

Gladwell, I., Shampine, L., and Thompson, S.: Solving ODEs with MATLAB, Cambridge University Press, New York, NY, USA, 2003.

Gräwe, U.: Implementation of high-order particle-tracking schemes in a water column model, Ocean Modelling, 36, 80–89, 2011.

Griffiths, D. F. and Higham, D. J.: Numerical methods for ordinary differential equations, Springer-Verlag, London, 2010.

Hairer, E. and Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer-Verlag Berlin

Heidelberg, 1996.730

Hairer, E., Nørsett, S. P., and Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag Berlin Heidelberg,

1st edition edn., 1987.

Hairer, E., Nørsett, S. P., and Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag Berlin Heidelberg,

2nd edition edn., 1993.

Hairer, E., Wanner, G., and Lubich, C.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equa-735

tions, Springer-Verlag Berlin Heidelberg, 2006.

Haller, G.: Lagrangian coherent structures, Annual Review of Fluid Mechanics, 47, 137–162, 2015.

Isaacson, E. and Keller, H. B.: Analysis of Numerical Methods, Dover Publications, 1994.

Kloeden, P. E. and Platen, E.: Numerical Solution of Stochastic Differential Equations, Springer-Verlag Berlin Heidelberg, 1992.

Kress, R.: Numerical Analysis, Spinger, 1998.740

Lekien, F. and Marsden, J.: Tricubic interpolation in three dimensions, International Journal for Numerical Methods in Engineering, 63,

455–471, https://doi.org/10.1002/nme.1296, 2005.

Lévy, M., Resplandy, L., Klein, P., Capet, X., Iovino, D., and Éthé, C.: Grid degradation of submesoscale resolving ocean models: Benefits

for offline passive tracer transport, Ocean Modelling, 48, 1–9, 2012.

Maslo, A., de Souza, J. M. A. C., Andrade-Canto, F., and Outerelo, J. R.: Connectivity of deep waters in the Gulf of Mexico, Journal of745

Marine Systems, 203, 103 267, 2020.

Narváez, D. A., Klinck, J. M., Powell, E. N., Hofmann, E. E., Wilkin, J., and Haidvogel, D. B.: Modeling the dispersal of eastern oyster

(Crassostrea virginica) larvae in Delaware Bay, Journal of Marine Research, 70, 381–409, 2012.

Nieto, R. and Gimeno, L.: A database of optimal integration times for Lagrangian studies of atmospheric moisture sources and sinks,

Scientific data, https://doi.org/10.1038/s41597-019-0068-8, 2019.750

Nordam, T.: nordam/ODE-integrators-for-Lagrangian-particles 0.9, https://doi.org/10.5281/zenodo.4041979, 2020.

Nordam, T., Brönner, U., Skancke, J., Nepstad, R., Rønningen, P., and Alver, M. O.: Numerical integration and interpolation in marine

pollutant transport modelling, in: Proceedings of the 40th AMOP Technical Seminar, Calgary, AB, Canada, pp. 586–609, hdl.handle.net/

11250/2653393, 2017.

33

North, E. W., Adams, E. E., Schlag, Z., Sherwood, C. R., He, R., Hyun, K. H., and Socolofsky, S. A.: Simulating Oil Droplet Dispersal From755

the Deepwater Horizon Spill With a Lagrangian Approach, in: Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record

Breaking Enterprise, pp. 217–226, 2011.

Onink, V., Wichmann, D., Delandmeter, P., and van Sebille, E.: The Role of Ekman Currents, Geostrophy, and Stokes Drift in the Accu-

mulation of Floating Microplastic, Journal of Geophysical Research: Oceans, 124, 1474–1490, https://doi.org/10.1029/2018JC014547,

2019.760

Onu, K., Huhn, F., and Haller, G.: LCS Tool: A computational platform for Lagrangian coherent structures, Journal of Computational Science,

7, 26–36, 2015.

Peng, J. and Dabiri, J. O.: Transport of inertial particles by Lagrangian coherent structures: application to predator–prey interaction in jellyfish

feeding, Journal of Fluid Mechanics, 623, 75–84, https://doi.org/10.1017/S0022112008005089, 2009.

Povinec, P., Gera, M., Holý, K., Hirose, K., Lujaniené, G., Nakano, M., Plastino, W., Sýkora, I., Bartok, J., and Gažák, M.:765

Dispersion of Fukushima radionuclides in the global atmosphere and the ocean, Applied Radiation and Isotopes, 81, 383–392,

https://doi.org/https://doi.org/10.1016/j.apradiso.2013.03.058, 6th International Conference on Radionuclide Metrology - Low Level Ra-

dioactivity Measurement Techniques, 2013.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical recipes 3rd edition: The art of scientific computing, Cam-

bridge university press, 2007.770

Riuttanen, L., Hulkkonen, M., Dal Maso, M., Junninen, H., and Kulmala, M.: Trajectory analysis of atmospheric transport of fine particles,

SO 2, NOx and O3 to the SMEAR II station in Finland in 1996-2008, Atmospheric Chemistry and Physics, https://doi.org/10.5194/acp-

13-2153-2013, 2013.

Rivas, D. and Samelson, R. M.: A Numerical Modeling Study of the Upwelling Source Waters along the Oregon Coast during 2005, Journal

of Physical Oceanography, 41, 88–112, https://doi.org/10.1175/2010JPO4327.1, 2011.775

Rye, H., Reed, M., and Ekrol, N.: The ParTrack model for calculation of the spreading and deposition of drilling mud, chemicals and drill

cuttings, Environmental Modelling & Software, 13, 431–441, 1998.

Sætre, R.: The Norwegian Coastal Current: Oceanography and Climate, Tapir Akademisk Forlag, Trondheim, 2005.

Serra, M., Sathe, P., Rypina, I., Kirincich, A., Ross, S. D., Lermusiaux, P., Allen, A., Peacock, T., and Haller, G.: Search and rescue at sea

aided by hidden flow structures, 2019.780

Shadden, S. C. and Taylor, C. A.: Characterization of Coherent Structures in the Cardiovascular System, Annals of Biomedical Engineering,

36, 1152–1162, https://doi.org/10.1007/s10439-008-9502-3, 2008.

Shadden, S. C., Astorino, M., and Gerbeau, J.-F.: Computational analysis of an aortic valve jet with Lagrangian coherent structures, Chaos:

An Interdisciplinary Journal of Nonlinear Science, 20, 017 512, https://doi.org/10.1063/1.3272780, 2010.

Siegel, D., Kinlan, B., Gaylord, B., and Gaines, S.: Lagrangian descriptions of marine larval dispersion, Marine Ecology Progress Series,785

260, 83–96, 2003.

Sirois, A. and Bottenheim, J. W.: Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air

concentrations at Kejimkujik National Park, Nova Scotia, Journal of Geophysical Research: Atmospheres, 100, 2867–2881,

https://doi.org/10.1029/94JD02951, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JD02951, 1995.

Spivakovskaya, D., Heemink, A. W., and Deleersnijder, E.: Lagrangian modelling of multi-dimensional advection-diffusion with space-790

varying diffusivities: theory and idealized test cases, Ocean Dynamics, 57, 189–203, 2007.

34

Van Sebille, E., Scussolini, P., Durgadoo, J. V., Peeters, F. J., Biastoch, A., Weijer, W., Turney, C., Paris, C. B., and Zahn, R.: Ocean currents

generate large footprints in marine palaeoclimate proxies, Nature Communications, 6, 1–8, 2015.

van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,

Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,795

MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli, F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S.,

Shah, S. H., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.: Lagrangian ocean analysis: Fundamentals and practices,

Ocean Modelling, 121, 49–75, 2018.

Visser, A. W.: Lagrangian modelling of plankton motion: From deceptively simple random walks to Fokker-Planck and back again, Journal

of Marine Systems, 70, 287–299, 2008.800

Williams, J.: Bspline-Fortran: Multidimensional B-Spline Interpolation of Data on a Regular Grid, https://doi.org/10.5281/zenodo.1215290,

2018.

Woods, J.: The Lagrangian Ensemble metamodel for simulating plankton ecosystems, Progress in Oceanography, 67, 84–159, 2005.

Yang, Y., He, G.-W., and Wang, L.-P.: Effects of subgrid-scale modeling on Lagrangian statistics in large-eddy simulation, Journal of Turbu-

lence, p. N8, 2008.805

Zelenke, B., O’Connor, C., Barker, C., Beegle-Krause, C., and (Eds.), L. E.: General NOAA Operational Modeling Environment

(GNOME), Technical Documentation, NOAA Technical Memorandum NOS OR&R 40, NOAA Technical Memorandum NOS OR&R 40,

p. 105, http://response.restoration.noaa.gov/sites/default/files/GNOME{_}Tech{_}Doc.pdf{%}5Cnhttp://response.restoration.noaa.gov/

gnome{_}manual, 2012.

35

