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This paper tries to analyse wavelike perturbations from a quasi-hydrostatic equation
set. This equation set is put into a framework in z-coordinates. This lets the equations
look like as they are formulated as we are used to them in p-coordinates (hence uses
some kind of the Richardson equation). The paper seeks for potential unstable grow-
ing solutions and finds them. However, in my opinion, the results are questionable,
because they are not leading to the results which are usually obtained, namely the
solution of gravity waves and their dispersion relation. And as we know, GW solutions
are not growing in time, but are pure waves.

My general impression is that since the underlying physics of the system does not
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differ from other analyses to be be found in the literature, the same known results
should come to the fore. A dispersion analysis of waves in a system should not depend
on the specific prognosic variables or differently written equations. All those systems
must lead to the same results, but equation (4.3) does not coincide with other known
solutions.

I tried to figure out where the problem might be in the actual derivation. Two points are
somehow strange to me. First, the system (2.23) consists of 6 instead of 5 equations.
So, there are some linear dependencies among the equations. But, this might be not so
problematic, since the found dispersion relations finds an equation in ω3, which means
three solutions, which is fine. Second, compared to more traditional approaches, the
step of the Bretherton (1966) transfromation has not been done. Consequently the co-
efficient matrices do not have constant coefficients (appendix A), because the density
depends on height. I do not know, which consequences arise due to this missing step.

In the following, I copy the part of my lecture of gravity waves, which focuses on the
derivation of them under the hydrostatic constraint (omission of blue terms) and under
shedding of acoustic waves (omission of red terms). Perhaps the authors could figure
out, how their derivation differs from these conventional steps and how their approach
could be brought under the umbrella of known results.

Here follows the lecture part:

1 Gravity waves (GWs)

1.1 Dispersion relation for gravity waves

• background state assumes arbitrarily constant N2 (includes the special isother-
mal case N2

iso = g2/(cpT ))
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• hydrostatic approximation is not needed

• assuming incompressibility is not needed, acoustic waves are later separated in
the dispersion relation itself

• it becomes obvious that the amplitudes of the wave perturbations have exponen-
tial behavior with height

• a constant Coriolis parameter f is assumed

• for simplicity we assume a dry atmosphere

• irreversible processes like friction or heating are not included in the wave analysis
(later we will include them)

The governing equations are linearized around a hydrostatic state and a mean zonal
current U , and the individual time derivative is abbreviated with dt· = ∂t · +U∂x·. The
vertical advection is separated out from this operator. We have

u = U + u′, v = v′, w = w′, p = p0(z) + p′, θ = θ0(z) + θ′ (1)

The equation of state is assumed for the mean state / the background separately:
p0(z) = %0(z)RT0. The hydrostatic relation hold for the background state ∂p0/∂z =
−%0(z)g. And we have T0(z) = θ0(z)Π0(z).
As the thermodynamic equation we use the potential temperature equation which reads

dtθ
′ + w′∂zθ0(z) = 0 | · g/θ0(z) (2)

dtb
′ + w′N2 = 0 (3)

where b′ = gθ′/θ is called the buoyancy. Brunt-Vaisala frequency / buoyancy frequency:
N2 = g∂z ln θ0(z).
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The continuity equation is not used directly, but rather, an equation for the pressure
perturbation is chosen as prognostic variable. Then we have as the not yet linearized
equation

%cvdtT + p∇ · v = 0 (4)

%cvdt
p

R%
+ p∇ · v = 0 (5)

%cv
R%

dtp− %cv
p

R%2
dt%+ p∇ · v = 0 (6)

cv
R
dtp+

%2pcv
R%2

∇ · v + p∇ · v = 0 (7)

cv
R
dtp+

(cv +R)p
R

∇ · v = 0 (8)

cv
cpRT

1
%
dtp+∇ · v = 0 (9)

1
c2s%

dtp+∇ · v = 0 (10)

Speed of sound: c2s = cpRT/cv. Note that the vertical advection of p0(z) remains
relevant when linearizing.

Original linearized equations are

dtu
′ − fv′ + 1

%0(z)
∂xp
′ = 0 (11)

dtv
′ + fu′ +

1
%0(z)

∂yp
′ = 0 (12)

dtw
′ − b′+ g

c2s

p′

%0(z)
+

1
%0(z)

∂zp
′ = 0 (13)

dtb
′ + w′N2 = 0 (14)
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1
c2s%0(z)

dtp
′ − g

c2s
w′ +∇ · v′ = 0 (15)

The blue term vanishes for the hydrostatic constraint. The red term in (15) vanishes for
incompressibility. In (13) the red term vanishes if the pseudo-density %∗ = ρ0(z)θ0(z)/θ
is used in the pressure gradient term. These conditions help filtering out sound waves.
We must now erase the height dependency of the density. Key tool is the Bretherton
transformation1. Define transformation: (u′′, v′′, w′′, b′′) =

√
%0(z)/%surf (u′, v′, w′, b′)

and p′′ =
√
%surf/%0(z) p′. This transformation guarantees the exponential increase

of wave amplitudes with height due to the density decrease (see earlier chapter on
Rossby waves).

After transformation the system becomes

dtu
′′ − fv′′ + ∂xp

′′

%surf
= 0 (16)

dtv
′′ + fu′′ +

∂yp
′′

%surf
= 0 (17)

dtw
′′ − b′′ +

(
g

c2s
− 1

2H

)
p′′

%surf
+
∂zp
′′

%surf
= 0 (18)

dtb
′′ + w′′N2 = 0 (19)

dtp
′′

c2s%surf
+∇h · v′′h +

(
1

2H
− g

c2s

)
w′′ + ∂zw

′′ = 0 (20)

Scale height:
1
H

= − 1
%0

∂%0

∂z
=
N2

g
+
g

c2s
(21)

1Bretherton FP. 1966. The propagation of groups of internal gravity waves in a shear flow. QJRMS 92: 466-480.
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Wave ansatz for an arbitrary transformed variable: ψ′′ = Aψ exp(i(kx+ ly +mz − ωt))
Intrinsic frequency: ωI = ω − kU
Linear equation system:




−iωI −f 0 0 ik
f −iωI 0 0 il
0 0 −iωI −1 im− 1

2H+ g
c2s

0 0 N2 −iωI 0
ik il im+ 1

2H−
g
c2s

0 −iωI
c2s



·




Au
Av
Aw
Ab

Ap/%surf




= 0 (22)

det (...) = 0 defines the dispersion relation

det(...) = −iωI
{
−iωI

(
iωIωI

ωI
c2s

+ iωI

(
im+

1
2H
− g
c2s

)(
im− 1

2H
+
g

c2s

)
− iωI

c2s
N2

)

−il
(
−ilωIωI + ilN2

)}

+f
{
f

(
iωIωI

ωI
c2s

+ iωI

(
im+

1
2H
− g
c2s

)(
im− 1

2H
+
g

c2s

)
− iωI

c2s
N2

)

−il
(
−ikωIωI + ikN2

)}

+ik
{
f
(
−ilωIωI + ilN2

)
+ iωI(−ikωIωI + ikN2)

}
(23)

= 0

This gives

0 = (f2 − ω2
I )
(
iωIωI

ωI
c2s

+ iωI(im+
1

2H
− g
c2s

)(im− 1
2H

+
g

c2s
)− iωI

c2s
N2

)
(24)

−il2ωI(−ωIωI +N2) + lkf(−ωIωI +N2)− klf(−ωIωI +N2)− ik2ωI(−ωIωI +N2)

And shorter

0 = [f2 − ω2
I ]

[
ωI
c2s

(ωIωI −N2) + ωI

[
−m2 −

[
1

2H
− g
c2s

]2
]]

+ ωI(l2 + k2)(ωIωI −N2) (25)
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0 =
ωI
c2s

(ωIωI −N2)(f2 − ω2
I ) + ωI

[
(ω2
I − f2)

[
m2 +

[
1

2H
− g
c2s

]2
]

+ (l2 + k2)(ωIωI −N2)

]
(26)

The red terms are significant for acoustic waves. For g = 0, N2 = 0 and f2 = 0 holds:
ω2
I,ac = c2s(k

2 + l2 +m2).
A stationary solution, the Rossby mode, ωI = 0, exists in any case, because β = 0.
GWs are derived by neglecting all the red terms, hence acoustic waves are filtered out.
Hydrostatic GWs disregard the blue term. This gives

ω2
I = f2 +

N2(k2 + l2)
m2 + 1

4H2

(27)

General GWs have the dispersion relation

ω2
I =

f2(m2 + 1
4H2 ) +N2(k2 + l2)

k2 + l2 +m2 + 1
4H2

=

(
f2 +

N2(k2 + l2)
m2 + 1

4H2

)
m2 + 1

4H2

k2 + l2 +m2 + 1
4H2

(28)
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