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Abstract. Climate has changed over the past century due to anthropogenic greenhouse gas emissions. In parallel, societies

and their  environment  have  evolved rapidly.  To identify the impacts  of  historical  climate change on human or  natural

systems, it is therefore necessary to separate the effect of different drivers. By definition this is done by comparing the

observed  situation  to  a  counterfactual  one  in  which  climate  change  is  absent  and  other  drivers  change  according  to

observations. As such a counterfactual baseline cannot be observed it has to be estimated by process-based or empirical

models. We here present ATTRICI (ATTRIbuting Climate Impacts), an approach  to remove the signal of global warming

from observational climate data to generate forcing data for the simulation of a counterfactual baseline of impact indicators.

Our method identifies the interannual and annual cycle shifts that are correlated to global mean temperature change. We use

quantile mapping to a baseline distribution that removes the global mean temperature related shifts to find counterfactual

values for the observed daily climate data. Applied to each variable of two climate datasets, we produce two counterfactual

datasets that are made available through the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) along with the

original datasets. Our method preserves the internal variability of the observed data in the sense that observed (factual) and

counterfactual  data for a given day remain in the same quantile in their respective statistical distribution. That makes it

possible to compare observed impact events and counterfactual impact events. Our approach adjusts for the long-term trends

associated with global warming but does not address the attribution of climate change to anthropogenic greenhouse gas

emissions.

1

5

10

15

20

https://doi.org/10.5194/gmd-2020-145
Preprint. Discussion started: 30 June 2020
c© Author(s) 2020. CC BY 4.0 License.



1 Introduction

Global mean temperature rises and has recently surpassed 1°C warming above pre-industrial levels. Climate change as a

phenomenon of today exerts  influence on, for example,  freshwater  resources,  terrestrial  water systems, coastal  systems,

oceans, food production systems, the economy, human health, security and livelihoods (IPCC 2014). The causal chain from

climate  change to  impacts  is  often  complex  and  intertwined  with additional  drivers,  like  land-use change,  agricultural

practices, forest management, building practices, or urban expansion (IPCC 2014).

Attribution aims to quantify the drivers of change in a system. The term is used differently in different research fields as

illustrated in Fig. 1. The attribution of changes in the climate system itself  (Hegerl et al. 2010; IPCC 2013) asks whether

changes in climatic variables are induced by anthropogenic interference, i.e. the emission of greenhouse gases (“climate

attribution”). As a sub-domain of this area of research, extreme event attribution aims to quantify to what degree the change

of strength or occurrence probability of weather extremes can be attributed to anthropogenic climate forcing  (Trenberth,

Fasullo, and Shepherd 2015; NAS 2016; Stott et al. 2016). In contrast,  “impact attribution”, which we want to facilitate

with the method and data presented here, aims to quantify to what degree observed changes in natural, human and managed

systems can be attributed to climate change, no matter what caused the climate change. Instead of tracing back climate

change to greenhouse gas emissions, the central task is to separate effects of climate change from the effects of non-climate-

related drivers. Such drivers are, for example, changes in management that alter climate-induced changes in crop yields

(Butler,  Mueller,  and Huybers 2018; Iizumi et  al.  2018; Zhu et  al. 2019) or land-use changes adding to climate-driven

changes in biodiversity  (Hof et al. 2018). Accordingly,  working group II of the IPCC AR5 (IPCC 2014, chap. 18) has

defined that an impact of climate change is detected if the observed state of the system differs from a counterfactual baseline

that characterizes the system’s behavior in the absence of changes in climate where “climate change refers to any long-term

trend in climate, irrespective of its cause” (IPCC 2014, chap. 18.2.1).

This counterfactual baseline may be stationary or may change over time, for example due to direct human influences such as

changes in agriculture  (Butler, Mueller, and Huybers 2018), water management, or land-use patterns  (Wang and Hijmans

2019). As such, a counterfactual baseline cannot be observed, it has to be estimated by empirical or process-based models.

The counterfactual  climate  data  introduced  here  is  designed  to  facilitate  climate  impact  attribution  following the  AR5

definition.

Our counterfactual  climate data is  derived from two observational  climate datasets  of  the Inter-Sectoral  Impact  Model

Comparison project (ISIMIP, www.isimip.org) that are described in the Data section. In combination with historical impact

simulations based on these factual climate datasets (ISIMIP experiment  obsclim), impact model simulations forced by the

counterfactual climate data we present here (ISIMIP experiment counterclim) 1  allow for impact attribution according to the

AR5 definition that requires the separation of non-climate-related drivers from the effects of climate change no matter what

1 https://protocol.isimip.org
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caused the climate change. In this regard the counterclim experiment differs from the counterfactual natural climate forcing

runs used to address the question of the anthropogenic influence on the climate system as addressed in IPCC WG1 (IPCC

2013). 

Many climate impacts manifest through extreme climate conditions. The approach presented here preserves the fluctuations

of the original historical climate records as extreme events are adjusted by the “contribution of the observed trend to event

magnitude”  (Diffenbaugh  et  al.  2017).  Simulated  historical  and  counterfactual  impacts  based  on  our  historical  and

counterfactual climate datasets can therefore be compared event by event.

As impact attribution does not need to address the cause of climate change, we can build the counterfactual dataset through

the  removal  of  climate  change  related  shifts  derived  from  the  historical  dataset  itself.  This  makes  it  different  from

counterfactual climate model simulations, which draw a realization of climate that is different from the observed realization

and therefore do not yield the same timing of extreme climate conditions.

2 Data

For ISIMIP3, we construct counterfactual climate data for two global observational datasets, which both have daily temporal

and 0.5° spatial resolution. The first of these observational datasets is from phase 3 of the Global Soil Wetness Project

(GSWP3; (Dirmeyer et al. 2006)) and covers the years 1901-2010. It is a dynamically downscaled and bias-adjusted version

of the 20th Century Reanalysis (20CR; (Compo et al. 2011)) and has been used as a meteorological forcing dataset in several

climate impact assessments (e.g.,  (Müller Schmied et al. 2016; Chang et al. 2017; Schewe et al. 2019)). GSWP3 has high

temporal consistency as it was produced using the same reanalysis, downscaling and bias adjustment system for all years. 

The second observational dataset, GSWP3-W5E5 was generated for phase 3a of ISIMIP and covers the years 1901 to 2016.

Next to GSWP3, it is based on W5E5 (Lange 2019a), a dataset that was compiled to support the bias adjustment of climate

input data carried out in phase 3b of ISIMIP. W5E5 combines the WFDE5 dataset (WATCH Forcing Data methodology

applied ERA5 reanalysis data; (Cucchi et al. 2020)) over land with data from the latest version of the European Reanalysis

(ERA5; (Hersbach et al. 2020)) over the ocean. Since W5E5 only covers the years 1979 to 2016, which is insufficient for

attribution studies, it was extended backward in time to generate GSWP3-W5E5, which covers the years 1901 to 2016. In

this extended dataset, GSWP3 data for 1901 to 1978 were homogenized with W5E5 data using the ISIMIP2BASD v2.3 bias

adjustment method  (Lange 2019b, 2020) to reduce discontinuities at the 1978–1979 transition. While GSWP3-W5E5 is

considered less consistent in time than GSWP3 despite this homogenization, its advantage is its high quality from 1979

onwards (Cucchi et al. 2020) and  the coverage of the years 2011-2016.  

3 Methodology

Assuming that “climate change refers to any long-term trend in climate, irrespective of its cause” (IPCC 2014, chap. 18) we

here present a method to develop time series of stationary “no climate change” climate data from observational daily data by
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removing the long-term trend while preserving the internal day-to-day variability. In the following, we first describe our

general approach and then provide a more formal description.

A very basic de-trending approach would estimate a linear  trend separately for each day of the year  and grid cell, and

subtract this estimated trend from the daily data. This approach would yield trend lines that freely fluctuate from day to day.

To make better use of the available data and ensure a smooth variation of trends from one day to the other our method uses a

functional form (finite number of periodic Fourier modes) to model the annual cycle. We also go beyond the very basic

approach by setting up probability models with explicit representations of the statistical distribution of the climate variables,

which allows for non-normal distributions to represent our data. This is particularly important for a probability model of

precipitation that can account for positivity constraints and separate trends in the number of wet days and the intensity of

precipitation on wet days.   

Finally, we use global mean temperature instead of time as a predictor of the long-term changes in the different climate

variables. Over the considered time period from 1901 to 2016, global mean temperature has not changed linearly. As global

warming is considered to be an important driver of the long-term changes in regional climate variables, it is expected to be a

better predictor of these changes than time. In fact, the classical “pattern scaling approach” builds on this assumption (Santer

et al. 1990; Mitchell 2003). We use global warming as a potentially powerful predictor of regional climate change without

claiming causality. As we only aim for stationary climate data by removing the long-term trend in observed climate data,

irrespective of its cause, we use global mean temperature as a good candidate for a predictor that allows for achieving this

aim, and finally check the created counterfactual climate data for stationarity. 

4

90

95

100

https://doi.org/10.5194/gmd-2020-145
Preprint. Discussion started: 30 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Variable Short name Unit Statistical distribution

Daily Mean Near-Surface Air
Temperature

tas K Gaussian

Daily Near-Surface Temperature
Range

tasrange K Gaussian

Daily Near-Surface Temperature
Skewness

tasskew 1 Gaussian

Daily Minimum Near-Surface Air
Temperature

tasmin K Derived from tas, tasrange and
tasskew

Daily Maximum Near-Surface
Air Temperature

tasmax K Derived from tas, tasrange and
tasskew

Precipitation pr kg  m-2 s-1 Bernoulli-Gamma

Surface Downwelling Shortwave
Radiation

rsds W m-2 Gaussian

Surface Downwelling Longwave
Radiation

rlds W m-2 Gaussian

Surface Air Pressure ps Pa Gaussian

Near-Surface Wind Speed sfcWind m s-1 Weibull

Near-Surface Relative Humidity hurs % Gaussian

Near-Surface Specific Humidity huss kg kg-1 Derived from hurs, ps and tas

Table 1: Climate variables for the ISIMIP3b counterfactual  climate datasets and the statistical distribution applied. The

variables tasrange and tasskew are auxiliary variables used to de-trend tasmin and tasmax.

3.1 Probability model

We aim to capture the statistics of a climate variable in the historical record with a parametric distribution A. We call this

distribution the factual distribution of the climate variable. This distribution evolves in time through the time dependence of

its parameters. We model the parameters as linear functions of both the global mean temperature and the annual cycle. This

is exemplified for the expected value μ (T ,t ) of the Gaussian distribution in Eq. 1-3: 
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μ (T ,t )=a0 (T )+∑
k=1

n

ak (T ) sin ( kω t )+bk (T ) cos ( k ω t ) (1)

ω=
2π

365.25

Here  T  is  the global  mean temperature  change since 1901,  t  is  the number of days since the first  day of the historic

observations, and n is the number of modes used to approximate the periodicity of the climate variables. Each of the Fourier

coefficients ak ,bk is modeled as a linear function of the global mean temperature T :

 ak (T )=ak
(slope ) T+ak

(intercept ) (2)

(same for bk)

In particular 

 a0 (T )=a0
(slope ) T+a0

(intercept ) (3)

The approach enables a long-term change of the parameter μ (T ,t ) through a0 (T ) and a change of amplitude and phase of

the annual cycle through ak (T ) and bk (T ). We produce a counterfactual distribution B from the factual distribution A by

restricting T  to the early period in which it does not deviate significantly from zero. The probabilistic model is illustrated for

daily temperatures at an exemplary grid cell in panel A of Fig. 2. The difference between the expected values of distribution

A (blue line) and B (orange line) is due to a vertical shift through a change in a0 (see Eq. (3)) and a distortion of the annual

cycle through a change in the Fourier coefficients (see  Eq. (2)). 

The parametric distribution type is the same for  A and B. It depends on the climate variable and is listed in Table 1. We

estimate the evolution of the factual distribution  A individually for each climate variable and grid cell, using a Bayesian

approach  and  building  on  the  pymc3  python package  (Salvatier,  Wiecki,  and  Fonnesbeck  2016).  We  then  utilize  the

distributions  A and  B to quantile-map each value from the observed dataset to a counterfactual value  (Wood et al. 2004;

Cannon, Sobie, and Murdock 2015; Lange 2019b). Quantile mapping is different for each day of the time series because our

approach accounts for the annual cycle and a change in the annual cycle. In Fig. 2 the quantile mapping step is shown for an

exemplary day. We obtain the percentile of the factual (i.e. observed) temperature (blue dot in panel A) at that day from the

factual cumulative distribution function (CDF) (blue line in panel B). We then obtain the counterfactual temperature (orange

dot in panel A) from the counterfactual CDF (orange line in panel B) at the same percentile.

To reduce dependencies on natural climate variability due to phenomena such as the El Niño–Southern Oscillation, we use

singular  spectrum analysis  (Golyandina  and Zhigljavsky 2013) with a  smoothing window of  10 years  to  construct  the

predictor time series of global mean temperature change T . Global mean temperature change is calculated from the gridded
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tas variable of the datasets by grid cell size-weighted averaging. The smoothed time series for both datasets are shown in Fig.

3. We use a time series normalized to the [0,1] interval in our model.

We use a Gaussian distribution to model the variables tas, rlds, rsds, ps, and hurs. We introduce two auxiliary variables

tasrange and tasskew to construct the tasmin and tasmax counterfactuals. We do not estimate counterfactual time series for

tasmin and tasmax individually to avoid large relative errors in the daily temperature range as pointed out by  (Piani et al.

2010). Following (Piani et al. 2010), we estimate counterfactuals of the daily temperature range, tasrange = tasmax - tasmin,

and the skewness of the daily temperature, tasskew = (tas - tasmin) / tasrange. We then derive counterfactual  tasmin and

tasmax from counterfactual tas, tasrange and tasskew. We use a Gaussian distribution to model tasrange and tasskew.

We use the parameter model described in Eqs. (1) to (3) for the expected value  μ (T ,t ) for  all variables with Gaussian

distribution. Except for tasskew, we use one Fourier mode to only capture the major mode of the annual cycle. We use two

modes for tasskew as it often shows two modes in the annual cycle. For all variables described with a Gaussian distribution,

the standard deviation  σ  of the Gaussian distribution is assumed to be constant, i.e. independent of both time and global

mean  temperature.  We  choose  σ  to  be  constant  for  the  Gaussian  distribution  because  a  dependency  on  global  mean

temperature leads to instabilities in the estimation of the parameters of μ (T ,t ). 

The variables tasrange, rsds and hurs have bounds, which we handle in the quantile mapping step. By definition, tasrange is

bound to be positive and taskew is bound to be positive and less than one. To avoid invalid values through quantile mapping,

we do not quantile-map values that would result in counterfactual values outside the valid range. The counterfactual values

are the same as the factual value in these cases. This happens rarely, as values close to the bounds are rare. Near-surface

relative humidity (hurs) is bound to be positive and less than or equal to one, and surface downwelling shortwave radiation

(rsds) is bound to be greater than or equal to zero. To avoid invalid counterfactual values for hurs and rsds, we set values

that are outside the valid range after quantile mapping to the closest valid value.

We use a Weibull distribution to model surface wind speed (sfcWind). The distribution has a scale parameter α  and a shape

parameter β, which both need to be positive. We use the logistic transformation to map the parameter model of Eq. (1) to

positive values to model the scale parameter  β. We assume the shape parameter  α   to be independent of both time and

global mean temperature. 

The prior distributions used for the Bayesian estimation of the parameters in Eq. (2) and (3) are Gaussian if the parameter

can take any value, and log-normal or half-Cauchy if the parameter can only take positive values. Tests have shown that the

specific  choice  of  a  prior  distribution  has  negligible  influence  on  the  results.  We  use  log-normal  and  half-Cauchy

distributions as priors for the standard deviation σ  for all variables with Gaussian distribution and for the shape parameter α

of the Weibull distribution.

We use a mixed Bernoulli-gamma distribution (Gudmundsson et al. 2012) for precipitation (pr). This approach enables us

to model both the probability of rain occurrence and the amount of rain with a single distribution. The Bernoulli-gamma
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distribution has three parameters. The parameter  p for the Bernoulli distribution describes the probability of a dry day. A

given day is defined to be a dry day if the amount of rain is below a threshold of 0.1mm per day. Wet days are all days where

the threshold is  exceeded.  The gamma distribution describes  the amount of  rain on wet  days.  We describe the gamma

distribution with its expected value μ and its standard deviation σ . All three parameters are modeled as a linear function of

the global mean temperature  following Eq. (3).  As opposed to the other  variables,  we do not model  the annual  cycle

explicitly  for  precipitation.  This  is  equivalent  to  the  assumption  that  global  mean temperature  influences  precipitation

similarly throughout the year. 

The dry-day probability p is bound to values between 0 and 1. Therefore we use a beta distribution as prior for the intercept

value  a0
intercept  in Eq. (3).  For the slope value  a0

slope we use a shifted beta distribution that ranges from  −ao
intercept to

1 −a0
intercept. In combination with the normalized global mean temperature predictor this limits the prior of p and ensures

that the modeled  p is within  0 ≤ p ≤1. For the parameters  μ and  σ , we use exponential distributions as priors to ensure

positive values. Similar to the priors for  p,  the priors for the slope values are shifted by the intercept  value.  With this

approach we detect independent trends in dry-day probability and wet-day precipitation intensity.

The computation of counterfactual values for precipitation via quantile mapping has some special cases that we handle as

follows. We need to change the number of dry days if the dry-day probability p differs between distributions A and B. If p

is larger in the counterfactual distribution, wet-days with the least precipitation amounts become dry days. If p is smaller in

the counterfactual distribution, we pick dry days in the observed time series at random and assign them a small precipitation

amount above the threshold.

A counterfactual  huss is derived from counterfactual  tas,  ps and  hurs using the equations of  (Buck 1981) as described in

(Boucher and Best 2010).

4 Results

We provide counterfactual “no climate change” daily forcing data for the 10 climate variables available in the GSWP3 and

GSWP3-W5E5 datasets available within ISIMIP and listed in Table 1. The counterfactual datasets are free to download

through the ISIMIP data portal 2  along with the underlying original GSWP3 and GSWP3-W5E5 data. In the following we

illustrate key features of the GSWP3-W5E5 dataset. The respective figures for GSWP3 can be found in the Appendix.

To test whether our approach is able to remove the signal of climate change from the observed time series of each climate

variable  we  compare  differences  between  multi-year  averages  over  the  first  and  last  30  years  of  the  factual  and

counterfactual data in Figure 4 for tas, tasmin, tasmax, pr and rsds, and in Figure 5 for rlds, ps, sfcWind, hurs and huss. Our

2 https://esg.pik-potsdam.de/search/isimip/?project=ISIMIP3a&product=input&dataset_type=Climate%20atmosphere

%20counterfactual
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method strongly reduces the observed trends (Figure 4 and 5, left columns), yielding quasi-stationary time series for most

locations and variables (Figure 4 and 5, right columns). Remaining non-stationarities are largest for precipitation in the Tibet

region, Western and Eastern Africa and South America and for wind speed in Greenland. We expand on reasons for these

exceptions in the discussion section.

In addition, we compare regional averages over 21 world regions (Giorgi and Francisco 2000) derived from the original and

the  counterfactual  datasets.  We show averages  over  Southern  South  America  in  Figures  6-8 to  illustrate  the  expected

behaviour of our approach. We show averages over Northern Europe in Figures 9-11 to show the limits of the approach in

certain cases. Similar figures for all other regions are available in the Appendix (Figures A1 to A57 for GSWP3-W5E5 and

Figures A60 to A116 for GSWP3). For Southern South America and Northern Europe our approach successfully removes

the long-term trend from the observed time series (Figures 6 and 9). By construction, it retains the year-to-year variability,

i.e. dry years stay dry and wet years stay wet. 

To check that the annual cycle in the counterfactual dataset matches the annual cycle in the early period (1901-1930) of the

factual data when climate change was still negligible, we show multi-year regional mean annual cycles in Figures 7 and 10

for Southern South America and Northern Europe, respectively (see Appendix for the other regions). The comparison of the

early annual cycle to the late annual cycle in the original observational data shows that for many variables and regions the

signal of climate change depends on the season, as monthly means have not changed uniformly and the shape of the annual

cycle has changed. 

In  Southern  South  America,  wind  speeds  have  increased  relatively  uniformly  over  all  months  while  trends  in  relative

humidity vary strongly with the season (Figure 7). Our approach successfully captures seasonalities of trends and removes

the changes so that the annual cycle of the counterfactual in the late period (orange line) is similar to the factual one in the

early period (thick blue line) for all considered variables in Southern South America. 

In Northern Europe, monthly means have changed relatively uniformly from the early to the late period except for surface air

pressure (Figure 10). Our approach successfully maps the late factual annual cycle (thin blue line) to the early factual annual

cycle (thick blue line), as indicated by the counterfactual annual cycle (orange line). However,  for precipitation and for

surface pressure, the annual cycle is complex and encompasses several modes. Our model for precipitation, which adjusts

dry day probability and the amount of rain, but has no explicit annual cycle, correctly captures the constant shift towards

lower precipitation, but does not fully represent the seasonality of the trends. Therefore the annual cycle in the counterfactual

dataset does not match the factual early annual cycle. Similarly, as we use only one Fourier mode to model the annual cycle

of air pressure, we do not capture the complex pattern of the early period. This leads to counterfactual precipitation and air

pressure (orange lines) that do not fully match the early factual cycle (thick blue lines). 

To illustrate the performance of the method on the daily scale, daily regional mean factual and counterfactual values for

years 2015 and 2016 are shown in Figures 8 and 11. In Southern South America (Figure 8), the shift from observations (blue

dots) to the counterfactual (orange dots) for relative humidity is largest in November to February and minimal around June.
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For surface air pressure, observations are mainly shifted in the second half of the year. This is different to wind, for which a

long-term trend throughout the year is evident for Southern South America. Quantile mapping therefore reduces wind speeds

throughout the year. In Northern Europe (Figure 11), surface air pressure, wind and relative humidity exhibit both positive

and negative shifts from factual to counterfactual values at different times of the year.

We present plots for  the other  Giorgi  regions analogous to Figures 6-11 in the Appendix. While for  most regions our

approach is appropriate to generate a stationary climate, there are some exceptions similar to the ones discussed for Northern

Europe. In summary, in North Asia, Southeast Asia, the Tibet and the Sahara region, the shift in precipitation is not fully

captured.  In  the Western  Sahara  region,  surface  downwelling shortwave radiation  is  not  fully  adjusted.  The respective

counterfactuals need to be applied with care for these regions.

5 Discussion

Answering the question whether and to what extent observed changes in natural, human and managed systems are already

happening in response to ongoing climate change needs a comparison of the observed state of the considered system to its

hypothetical state without climate change. Climate impact models can be considered as ideal tools to address this question as

they are usually designed to represent the response of impact indicators to climate disturbances but also account for direct

human interventions such as agricultural  management changes,  water abstraction or implementation of flood protection.

Within the model, individual drivers can be controlled such that a “full forcing” run (observed climate change + observed

direct human interventions) can be compared to a counterfactual “no climate change” baseline run (counterfactual climate +

observed direct human interventions). To be able to attribute observed changes in natural and human systems to climate

change in this way, it is necessary that impact models are able to explain the observed changes in the considered system, that

is, the full forcing run needs to reproduce the observed changes in the considered system. Despite the increasing explanatory

power of impact models  (Jägermeyr and Frieler  2018; Müller  et al.  2017) they are still  rarely used for climate impact

attribution according to the AR5 definition. By providing climate forcing data for counterfactual “no climate change” runs,

we facilitate climate impact attribution and utilize the strength of impact models to address the important question to what

degree climate change is already affecting natural and human systems. 

The proposed approach to generate counterfactual  “no-climate change” forcing data is designed to remove the signal of

climate change from observational climate data assuming that “climate change refers to any long-term trend in climate,

irrespective of its cause”, according to the AR5 definition. We apply our method to derive counterfactual stationary climate

data  from GSWP3 and GSWP3-W5E5.  The counterfactual  along with the  observational  datasets  are  provided  through

ISIMIP3a.

The design of the counterfactual data and the impact simulation framework does not directly allow for an attribution of

impacts to human greenhouse gas and aerosol emissions, but only separates climate from other drivers of change. However,

once this first step of separation is successful, attribution to anthropogenic emissions can be done in a second step (two-step
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attribution (Hegerl et al. 2010; Stone et al. 2013). Such a second step is necessary to for example attribute a fraction of an

impact to a greenhouse gas emitter and support climate litigation (Marjanac, Patton, and Thornton 2017; Burger, Wentz, and

Horton 2020).

Our method ultimately builds on the correlation between a regional climate variable and global mean temperature change to

remove long-term trends in climate. Using global mean temperature as the predictor does not imply causality. It is well

possible that changes in the statistics of regional climate variables have other origins than global warming. Our method

cannot infer the origin of change in a regional climate variable and removes shifts in the data regardless of its cause as long

as these shifts are correlated to global warming. For example, a shift in local climate data not related to global warming but

regional forcing by land use changes or aerosol emission or induced by e.g., changes in measurement technology or data

processing or human error  would also be captured by our method as long as the effects are correlated with the global

warming signal. Our method does not intend to replace climate simulations with counterfactual greenhouse gas forcings such

as the histNAT CMIP6 experiments  (Gillett et al. 2016) that  are required to attribute changes in climate or impacts to

anthropogenic emissions. 

As meteorological observations were sparse in the early 20th century, data quality is generally lower in this earlier period

than in the later  periods covered by GSWP3 and GSWP3-W5E5. Yet our approach estimates model parameters  for all

available historical values at once (40177 values for GSWP3 and 42369 for GSWP3-W5E5) so that counterfactuals do not

rely heavily on data from the early period. This at least partly mitigates the problem of data quality in the early period. It

does not resolve a problematic non-stationary counterfactual for wind speeds over Greenland. Wind speeds are high in the

early period and reach a low plateau by 1960 in both datasets,  leading to increasing wind speeds in the counterfactual

towards the high values of the early period (Figures A22 and A81). Our results also show that the harmonization applied for

the production of the GSWP3-W5E5 dataset  did not work perfectly  in all  cases.  For example,  it  introduced  a jump in

shortwave downwelling radiation over Northern Europe (Fig.  9),  which is also present in the counterfactual  data.  Such

discontinuities are not present in the GSWP3 dataset (see Data section).

Producing a precipitation counterfactual poses particular challenges as it involves the adjustment of the number of wet and

dry days as well as the intensity of wet-day precipitation. Problems found for the Tibet region (Figure 4) are probably due to

discontinuities in the factual data at around 1930 (Figure A52). While Figure 4 suggests that precipitation de-trending does

not work well over tropical Africa and South America, time series of regional mean precipitation for the Amazon region,

West Africa and East Africa (Figures A4, A28 and A31) show that our counterfactuals for these regions show the expected

behaviour and the impression from Figure 4 is only due to the capped color scale used there.

With the methods and data presented here, we aim to advance the field of climate impact attribution and reveal past and

present societal and environmental sensitivities to climate change. Getting a better understanding of the drivers of observed

changes in natural and human systems will help us to better estimate future risks related to ongoing global warming and

develop adequate adaptation measures. 
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Code and data availability. 

The current version of source code is available from www.github.com/isi-mip/attrici     under the GPLv3 license. The exact 

version used to produce the presented results is available at https://github.com/ISI-MIP/attrici/tree/v1.0.1 and archived at 

https://doi.org/10.5281/zenodo.3828915. The code to produce the figures is available at 

https://doi.org/10.5281/zenodo.3829133. The presented counterfactual climate data is available through ISIMIP 3 .  
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FIGURES

Figure 1. The two types of attribution as framed within the IPCC. Climate attribution is a focus of IPCC WGI (IPCC 2013)

and impact attribution is a focus of IPCC WGII (IPCC 2014, chap. 18).
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Figure  2.  Illustration  of  quantile  mapping  sensitive  to  the  annual  cycle.  Panel  A  shows  factual  (blue  points)  and

counterfactual (orange points) daily mean near-surface air temperature for the year 2016 of the GSWP3-W5E5 for a single

grid cell in the Mediterranean region at 43.25°N, 5.25°E. In panel A, the blue and orange lines show the temporal evolution

of the expected value μ (50th percentile) of the factual and the counterfactual distribution. In panel B, the blue and orange

lines show the factual and counterfactual cumulative distribution function (CDF) for a single day (October 25 th, 2016). The

large blue and orange points in panel A show the factual and counterfactual daily mean temperature on October 25 th. They

correspond to the 95th percentile in their respective distributions. 
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Figure 3. Time series  of smoothed global  mean temperature  change since 1901 derived from GSWP3 (grey line)  and

GSWP3-W5E5 (pink  line)  gridded  daily-mean  near-surface  air  temperature.  We smooth  the  original  time series  using

singular spectrum analysis to remove short-term fluctuations.
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Figure 4. Differences between multi-year averages over the late (1981-2010) and early (1901-1930) time period for the

factual (left) and counterfactual (right) GSWP3-W5E5 dataset. Results are shown for tas, tasmin, tasmax, pr and rsds from

the top to the bottom. Note that the color scale is capped for precipitation, i.e., values below -2e-5 and above  2e-5 kg m-2 s-

1 are displayed in dark blue and red, respectively.
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Figure 5. Same as Figure 4 but for rlds, ps, sfcWind, hurs and huss. Note that the color scale is capped for wind, i.e. values

below -0.5 and above 0.5 m s-1 are displayed in dark blue and red, respectively.
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Figure 6.  Annual regional mean time series of factual (blue line) and counterfactual (orange line) climate variables for

Southern South America for the GSWP3-W5E5 dataset.
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Figure 7. Factual and counterfactual multi-year regional mean annual cycle of the climate variables (different panels) in the

GSWP3-W5E5 dataset for Southern South America. To obtain the counterfactual annual cycle (orange line), our method

aims to map the late factual (thin blue line) to the early factual (thick blue line) annual cycle. 
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Figure 8. Factual (blue) and counterfactual (orange) daily values for the last two years (2015-2016) and all climate variables

(different panels) of the GSWP3-W5E5 dataset for Southern South America.
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Figure 9. Same as Fig. 6, but for Northern Europe.
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Figure 10. Same as Fig 7, but for Northern Europe. 
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Figure 11. Same as Fig. 8, but for Northern Europe.
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