

1 **Assessing the simulated soil hydrothermal regime of active layer**
2 **from Noah-MP LSM v1.1 in the permafrost regions of the**
3 **Qinghai-Tibet Plateau**

4

5 Xiangfei Li^{1,2,3}, Tonghua Wu^{1,3,*}, Xiaodong Wu¹, Jie Chen¹, Sizhong Yang¹, Xiaofan
6 Zhu¹, Guohui Zhao², Guojie Hu¹, Ren Li¹, Yongping Qiao¹, Cheng Yang^{1,3}, Junming
7 Hao^{1,3}, Jie Ni^{1,3}, Wensi Ma^{1,3}

8

9 ¹ Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of
10 Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese
11 Academy of Sciences, Lanzhou 730000, China

12 ² National Cryosphere Desert Data Center, Northwest Institute of Eco-Environment and
13 Resources, Chinese Academy of Sciences, Lanzhou 730000, China

14 ³ University of Chinese Academy of Sciences, Beijing 100049, China

15

16 **Correspondence:** Tonghua Wu (thuawu@lzb.ac.cn)

17

18 **Abstract.** Extensive and rigorous model inter-comparison is of great importance before
19 application due to the uncertainties in current land surface models (LSMs). Without
20 considering the uncertainties of forcing data and model parameters, this study designed
21 an ensemble of 55296 experiments to evaluate the Noah land surface model with multi-
22 parameterization (Noah-MP) for snow cover events (SCEs), soil temperature (ST) and
23 soil liquid water (SLW) simulation, and investigated the sensitivity of parameterization
24 schemes at a typical permafrost site on the Qinghai-Tibet Plateau. The results showed
25 that Noah-MP systematically overestimates snow cover, which could be greatly
26 resolved when adopting the sublimation from wind and semi-implicit snow/soil
27 temperature time scheme. As a result of the overestimated snow, Noah-MP generally
28 underestimates ST and ST is mostly influenced by the snow process. Systematic cold
29 bias and large uncertainties of soil temperature remains after eliminating the effects of
30 snow, particularly at the deep layers and during the cold season. The combination of
31 roughness length for heat and under-canopy aerodynamic resistance contributes to
32 resolve the cold bias of soil temperature. In addition, Noah-MP generally
33 underestimates top SLW. The RUN process dominates the SLW simulation in
34 comparison of the very limited impacts of all other physical processes. The analysis of
35 the model structural uncertainties and characteristics of each scheme would be
36 constructive to a better understanding of the land surface processes in the permafrost
37 regions of the QTP and further model improvements towards soil hydrothermal regime
38 modeling using the LSMs.

39

40 **1 Introduction**

41 The Qinghai-Tibet Plateau (QTP) is underlain by the world's largest high-altitude
42 permafrost covering a contemporary area of $1.06 \times 10^6 \text{ km}^2$ (Zou et al., 2017). Under
43 the background of climate warming and intensifying human activities, soil
44 hydrothermal dynamics in the permafrost regions on the QTP has been widely suffering
45 from soil warming (Wang et al., 2021), soil wetting (Zhao et al., 2019), and changes in
46 soil freeze-thaw cycle (Luo et al., 2020). Such changes has not only induced the
47 reduction of permafrost extent, disappearing of permafrost patches and thickening of
48 active layer (Chen et al., 2020), but also resulted in alterations in hydrological cycles
49 (Zhao et al., 2019; Woo, 2012), changes of ecosystem (Fountain et al., 2012; Yi et al.,
50 2011) and damages to infrastructures (Hjort et al., 2018). Therefore, it is very important
51 to monitor and simulate the soil hydrothermal regime to adapt to the changes taking
52 place.

53 A number of monitoring sites have been established in the permafrost regions of
54 the QTP (Cao et al., 2019). However, it is inadequate to construct the soil hydrothermal
55 state by considering the spatial variability of the ground thermal regime and an uneven
56 distribution of these observations. In contrast, numerical models are competent
57 alternatives. In recent years, land surface models (LSMs), which describe the exchanges
58 of heat, water, and momentum between the land and atmosphere (Maheu et al., 2018),
59 have received significant improvements in the representation of permafrost and frozen
60 ground processes (Koven et al., 2013; Nicolsky et al., 2007; Melton et al., 2019). LSMs
61 are capable of simulating the transient change of subsurface hydrothermal processes
62 (e.g. soil temperature and moisture) with soil heat conduction (-diffusion) and water
63 movement equations (Daniel et al., 2008). Moreover, they could be integrated with the
64 numerical weather prediction system like WRF (Weather Research and Forecasting),
65 making them as effective tools for comprehensive interactions between climate and
66 permafrost (Nicolsky et al., 2007).

67 Some LSMs have been evaluated and applied in the permafrost regions of the QTP.
68 Guo and Wang (2013) investigated near-surface permafrost and seasonally frozen

69 ground states as well as their changes using the Community Land Model, version 4
70 (CLM4). Hu et al. (2015) applied the coupled heat and mass transfer model to identify
71 the hydrothermal characteristics of the permafrost active layer in the Qinghai-Tibet
72 Plateau. Using an augmented Noah LSM, Wu et al. (2018) modeled the extent of
73 permafrost, active layer thickness, mean annual ground temperature, depth of zero
74 annual amplitude and ground ice content on the QTP in 2010s. Despite those
75 achievements based on different models, LSMs are in many aspects insufficient in
76 permafrost regions. For one thing, large uncertainties still exist in the state-of-the-art
77 LSMs when simulating the soil hydrothermal regime on the QTP (Chen et al., 2019).
78 For instance, 19 LSMs in CMIP5 overestimate snow depth over the QTP (Wei and Dong,
79 2015), which could result in the variations of the soil hydrothermal regime in the aspects
80 of magnitude and vector (cooling or warming) (Zhang, 2005). Moreover, most of the
81 existing LSMs are not originally developed for permafrost regions. Many of their soil
82 processes are designed for shallow soil layers (Westermann et al., 2016), but permafrost
83 would occur in the deep soil. And the soil column is often considered homogeneous,
84 which cannot represent the stratified soil common on the QTP (Yang et al., 2005). Given
85 the numerous LSMs and possible deficiencies, it is necessary to assess the
86 parameterization schemes for permafrost modeling on the QTP, which is helpful to
87 identify the influential sub-processes, enhance our understanding of model behavior,
88 and guide the improvement of model physics (Zhang et al., 2016).

89 Noah land surface model with multi-parameterization (Noah-MP) provides a
90 unified framework in which a given physical process can be interpreted using multiple
91 optional parameterization schemes (Niu et al., 2011). Due to the simplicity in selecting
92 alternative schemes within one modeling framework, it has been attracting increasing
93 attention in inter-comparison work among multiple parameterizations at point and
94 watershed scales (Hong et al., 2014; Zheng et al., 2017; Gan et al., 2019; Zheng et al.,
95 2019; Chang et al., 2020; You et al., 2020). For example, Gan et al. (2019) carried out
96 an ensemble of 288 simulations from multi-parameterization schemes of six physical
97 processes, assessed the uncertainties of parameterizations in Noah-MP, and further

98 revealed the best-performing schemes for latent heat, sensible heat and terrestrial water
99 storage simulation over ten watersheds in China. You et al. (2020) assessed the
100 performance of Noah-MP in simulating snow process at eight sites over distinct snow
101 climates and identified the shared and specific sensitive parameterizations at all sites,
102 finding that sensitive parameterizations contribute most of the uncertainties in the
103 multi-parameterization ensemble simulations. Nevertheless, there is little research on
104 the inter-comparison of soil hydrothermal processes in the permafrost regions. In this
105 study, an ensemble experiment of totally 55296 scheme combinations was conducted
106 at a typical permafrost monitoring site on the QTP. The simulated snow cover events
107 (SCEs), soil temperature (ST) and soil liquid water (SLW) of Noah-MP model was
108 assessed and the sensitivities of parameterization schemes at different depths were
109 further investigated. This study could be expected to present a reference for soil
110 hydrothermal simulation in the permafrost regions on the QTP.

111 This article is structured as follows: Section 2 introduces the study site,
112 atmospheric forcing data, design of ensemble simulation experiments, and sensitivity
113 analysis methods. Section 3 describes the ensemble simulation results of SCEs, ST and
114 SLW, explores the sensitivity and interactions of parameterization schemes. Section 4
115 discusses the schemes in each physical process. Section 5 concludes the main findings.

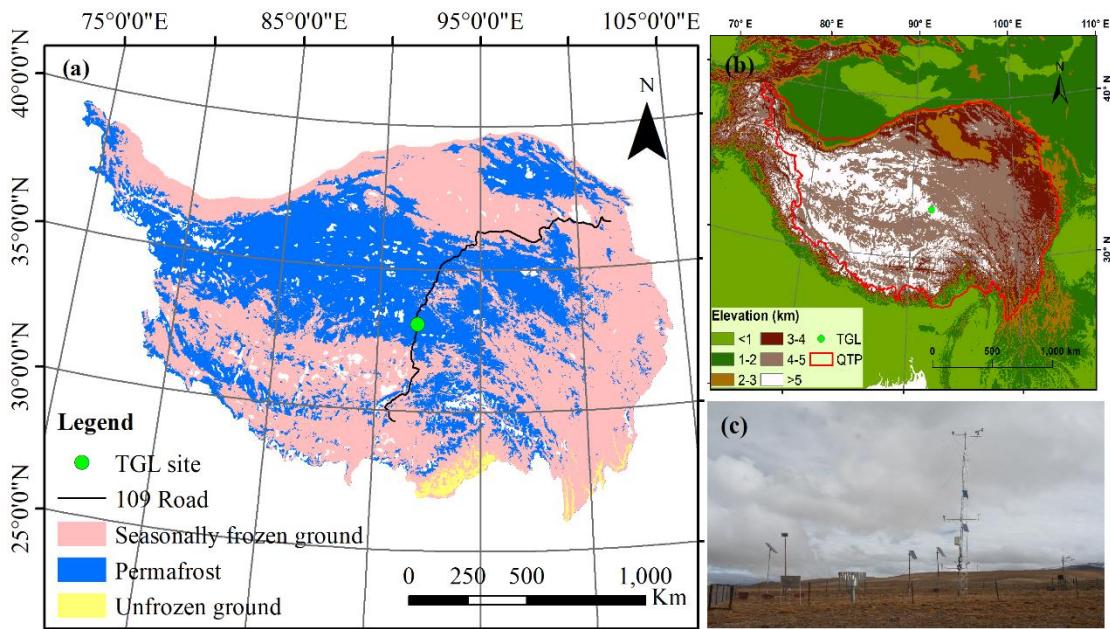
116 **2 Methods and materials**

117 **2.1 Site description and observation datasets**

118 Tanggula observation station (TGL) lies in the continuous permafrost regions of
119 Tanggula Mountain, central QTP (33.07°N, 91.93°E, Alt.: 5,100 m a.s.l; Fig. 1). This
120 site a typical permafrost site on the plateau with sub-frigid and semiarid climate (Li et
121 al., 2019), filmy and discontinuous snow cover (Che et al., 2019), sparse grassland (Yao
122 et al., 2011), coarse soil (Wu and Nan, 2016; He et al., 2019), and thick active layer
123 (Luo et al., 2016), which are common features in the permafrost regions of the plateau.
124 According to the observations from 2010–2011, the annual mean air temperature of

125 TGL site was -4.4°C . The annual precipitation was 375 mm, and of which 80% is
 126 concentrated between May and September. Alpine steppe with low height is the main
 127 land surface, whose coverage range is about 40% ~ 50% (Yao et al., 2011). The active
 128 layer thickness is about 3.15 m (Hu et al., 2017).

129 The atmospheric forcing data, including wind speed/direction, air
 130 temperature/relative humidity/pressure, downward shortwave/longwave radiation, and
 131 precipitation, were used to drive the model. These variables above were measured at a
 132 height of 2 m and covered the period from August 10, 2010 to August 10, 2012 (Beijing
 133 time) with a temporal resolution of 1 hour. Daily soil temperature and liquid moisture
 134 at depths of 5cm, 25cm, 70cm, 140cm, 220cm and 300cm from August 10, 2010 to
 135 August 9, 2011 (Beijing time) were utilized to validate the simulation results.



136
 137 **Figure 1.** Location and geographic features of study site. (a) Location of observation
 138 site and permafrost distribution (Zou et al., 2017). (b) Topography of the Qinghai-Tibet
 139 Plateau. (c) Photo of the Tanggula observation station.

140 **2.2 Ensemble experiments of Noah-MP**

141 The offline Noah-MP LSM v1.1 was assessed in this study. The default Noah-MP
 142 consists of 12 physical processes that are interpreted by multiple optional

143 parameterization schemes. These sub-processes include vegetation model (VEG),
144 canopy stomatal resistance (CRS), soil moisture factor for stomatal resistance (BTR),
145 runoff and groundwater (RUN), surface layer drag coefficient (SFC), super-cooled
146 liquid water (FRZ), frozen soil permeability (INF), canopy gap for radiation transfer
147 (RAD), snow surface albedo (ALB), precipitation partition (SNF), lower boundary of
148 soil temperature (TBOT) and snow/soil temperature time scheme (STC) (Table 1).
149 Details about the processes and optional parameterizations can be found in Yang et al.
150 (2011a).

151 VEG(1) is adopted in the VEG process, in which the vegetation fraction is
152 prescribed according to the NESDIS/NOAA 0.144 degree monthly 5-year climatology
153 green vegetation fraction (<https://www.emc.ncep.noaa.gov/mmb/gcip.html>), and the
154 monthly leaf area index (LAI) was derived from the Advanced Very High-Resolution
155 Radiometer (AVHRR) (<https://www.ncei.noaa.gov/data/>, Claverie et al., 2016).
156 Previous studies has confirmed that Noah-MP seriously overestimate the snow events
157 and underestimate soil temperature and moisture on the QTP (Jiang et al., 2020; Li et
158 al., 2020; Wang et al., 2020), which can be greatly resolved by considering the
159 sublimation from wind (Gordon scheme) and a combination of roughness length for
160 heat and under-canopy aerodynamic resistance (Y08-UCT) (Zeng et al., 2005; Yang et
161 al., 2008; Li et al., 2020). For a more comprehensive assessment, we added two physical
162 processes based on the default Noah-MP model, i.e. the snow sublimation from wind
163 (SUB) and the combination scheme process (CMB) (Table 1). In the two processes,
164 users can choose to turn on the Gordon and Y08-UCT scheme (described in the study
165 of Li et al., 2020) or not. As a result, in total 55296 combinations are possible for the
166 13 processes and orthogonal experiments were carried out to evaluate their performance
167 in soil hydrothermal dynamics.

168 The Noah-MP model was modified to consider the vertical heterogeneity in the
169 soil profile by setting the corresponding soil parameters for each layer. The soil
170 hydraulic parameters, including the porosity, saturated hydraulic conductivity,
171 hydraulic potential, the Clapp-Hornberger parameter b, field capacity, wilt point, and

172 saturated soil water diffusivity, were determined using the pedotransfer functions
 173 proposed by Hillel (1980), Cosby et al. (1984), and Wetzel and Chang (1987)
 174 (Equations S1-S7), in which the sand and clay percentages were based on Hu et al.,
 175 (2017) (Table S1). In addition, the simulation depth was extended to 8.0 m to cover the
 176 active layer thickness of the QTP. The soil column was discretized into 20 layers, whose
 177 depths follow the default scheme in CLM 5.0 (Table S1, Lawrence et al., 2018). Due to
 178 the inexact match between observed and simulated depths, the simulations at 4cm,
 179 26cm, 80cm, 136cm, 208cm and 299cm were compared with the observations at 5cm,
 180 25cm, 70cm, 140cm, 220cm and 300cm, respectively. A 30-year spin-up was conducted
 181 in every simulation to reach equilibrium soil states.

182 **Table 1.** The physical processes and options of Noah-MP.

Physical processes	Options
Vegetation model (VEG)	(1) table LAI, prescribed vegetation fraction (2) dynamic vegetation (3) table LAI, calculated vegetation fraction (4) table LAI, prescribed max vegetation fraction
Canopy stomatal resistance (CRS)	(1) Jarvis (2) Ball-Berry
Soil moisture factor for stomatal resistance (BTR)	(1) Noah (2) CLM (3) SSiB
Runoff and groundwater (RUN)	(1) SIMGM with groundwater (2) SIMTOP with equilibrium water table (3) Noah (free drainage) (4) BATS (free drainage)
Surface layer drag coefficient (SFC)	(1) Monin-Obukhov (M-O) (2) Chen97
Super-cooled liquid water (FRZ)	(1) generalized freezing-point depression (2) Variant freezing-point depression
Frozen soil permeability (INF)	(1) Defined by soil moisture, more permeable (2) Defined by liquid water, less permeable
Canopy gap for radiation transfer (RAD)	(1) Gap=F(3D structure, solar zenith angle) (2) Gap=zero (3) Gap=1-vegetated fraction
Snow surface albedo (ALB)	(1) BATS (2) CLASS
Precipitation partition (SNF)	(1) Jordan91 (2) BATS: $T_{sfc} < T_{frz} + 2.2K$ (3) $T_{sfc} < T_{frz}$

Lower boundary of soil temperature (TBOT)	(1) zero heat flux (2) soil temperature at 8m depth
Snow/soil temperature time scheme (STC)	(1) semi-implicit (2) full implicit
Snow sublimation from wind (SUB)	(1) No (2) Yes
Combination scheme by Li et al.(2020) (CMB)	(1) No (2) Yes

183 BATS (Biosphere–Atmosphere Transfer Model); CLASS (Canadian Land Surface Scheme);
 184 SIMGM (Simple topography-based runoff and Groundwater Model); SIMTOP (Simple
 185 Topography-based hydrological model); SSiB (Simplified Simple Biosphere model).

186 **2.3 Methods for sensitivity analysis**

187 The simulated snow cover events (SCEs) was quantitatively evaluated using the
 188 overall accuracy index (OA) (Toure et al., 2016):

$$189 \quad OA = \frac{a + d}{a + b + c + d}$$

190 where a is the positive hits, b represents the false alarm, c is the misses, and d
 191 represents the negtive hits. The value of OA range from 0 to 1. A higher OA signifies
 192 better performance. Ground albedo was used as an indicator for snow events due to a
 193 lack of snow depth observations. The days when the daily mean albedo is greater than
 194 the observed mean value of the warm and cold season (0.25 and 0.30, respectively) are
 195 identified as snow cover.

196 The root mean square error (RMSE) between the simulations and observations
 197 were adopted to evaluate the performance of Noah-MP in simulating soil hydrothermal
 198 dynamics.

199 To investigate the influence degrees of each physical process on SCEs, ST and
 200 SLW, we firstly calculated the mean OA (for SCE) and mean RMSE (for ST and SLW)
 201 (\bar{Y}_j^i) of the j th parameterization schemes ($j = 1, 2, \dots$) in the i th process ($i = 1, 2, \dots$).

202 Then, the maximum difference of \bar{Y}_j^i ($\Delta \bar{OA}$ or $\Delta \bar{RMSE}$) was defined to quantify the
 203 sensitivity of the i th process ($i = 1, 2, \dots$) (Li et al., 2015):

$$204 \quad \Delta \bar{OA} \text{ or } \Delta \bar{RMSE} = \bar{Y}_{max}^i - \bar{Y}_{min}^i$$

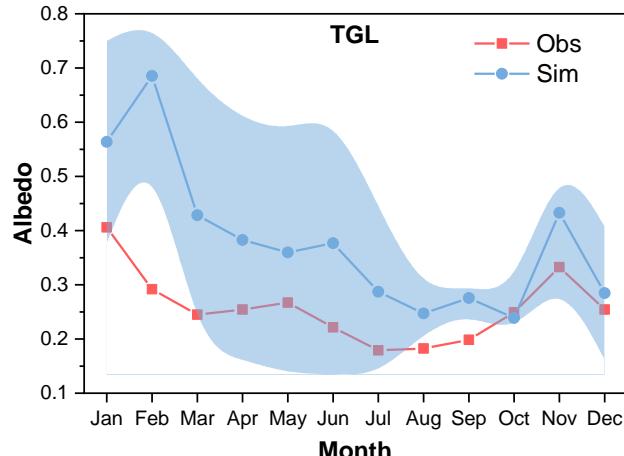
205 where \bar{Y}_{max}^i and \bar{Y}_{min}^i are the largest and the smallest \bar{Y}_j^i in the i th process,
206 respectively. For a given physical process, a high $\Delta\overline{OA}$ or $\Delta\overline{RMSE}$ signifies large
207 difference between parameterizations, indicating high sensitiveness of the i th process
208 for SCEs and ST/SLW simulation.

209 The sensitivities of physical processes were determined by quantifying the
210 statistical distinction level of performance between parameterization schemes. The
211 Independent-sample T-test (2-tailed) was adopted to identify whether the distinction
212 level between two schemes is significant, and that between three or more schemes was
213 tested using the Tukey's test. Tukey's test has been widely used for its simple
214 computation and statistical features (Benjamini, 2010). The detailed descriptions about
215 this method can be found in Zhang et al. (2016), Gan et al. (2019), and You et al. (2020).
216 A process can be considered sensitive when the schemes show significant difference.
217 Moreover, schemes with large mean OA and small mean RMSE were considered
218 favorable for SCEs and ST/SLW simulation, respectively. We distinguished the
219 differences of the parameterization schemes at 95% confidence level.

220 **3 Results**

221 **3.1 General performance of the ensemble simulation**

222 The performance of Noah-MP for snow simulation was firstly tested by conducting
223 an ensemble of 55296 experiments. Due to a lack of snow depth measurements, ground
224 albedo was used as an indicator for snow cover. Figure 2 shows the monthly variations
225 of observed ground albedo and the simulations produced by the ensemble simulations.
226 The ground albedo was extremely overestimated with large uncertainties when
227 considering the snow options in Noah-MP, indicating the overestimation of snow depth
228 and duration. Such overestimation continued till July.



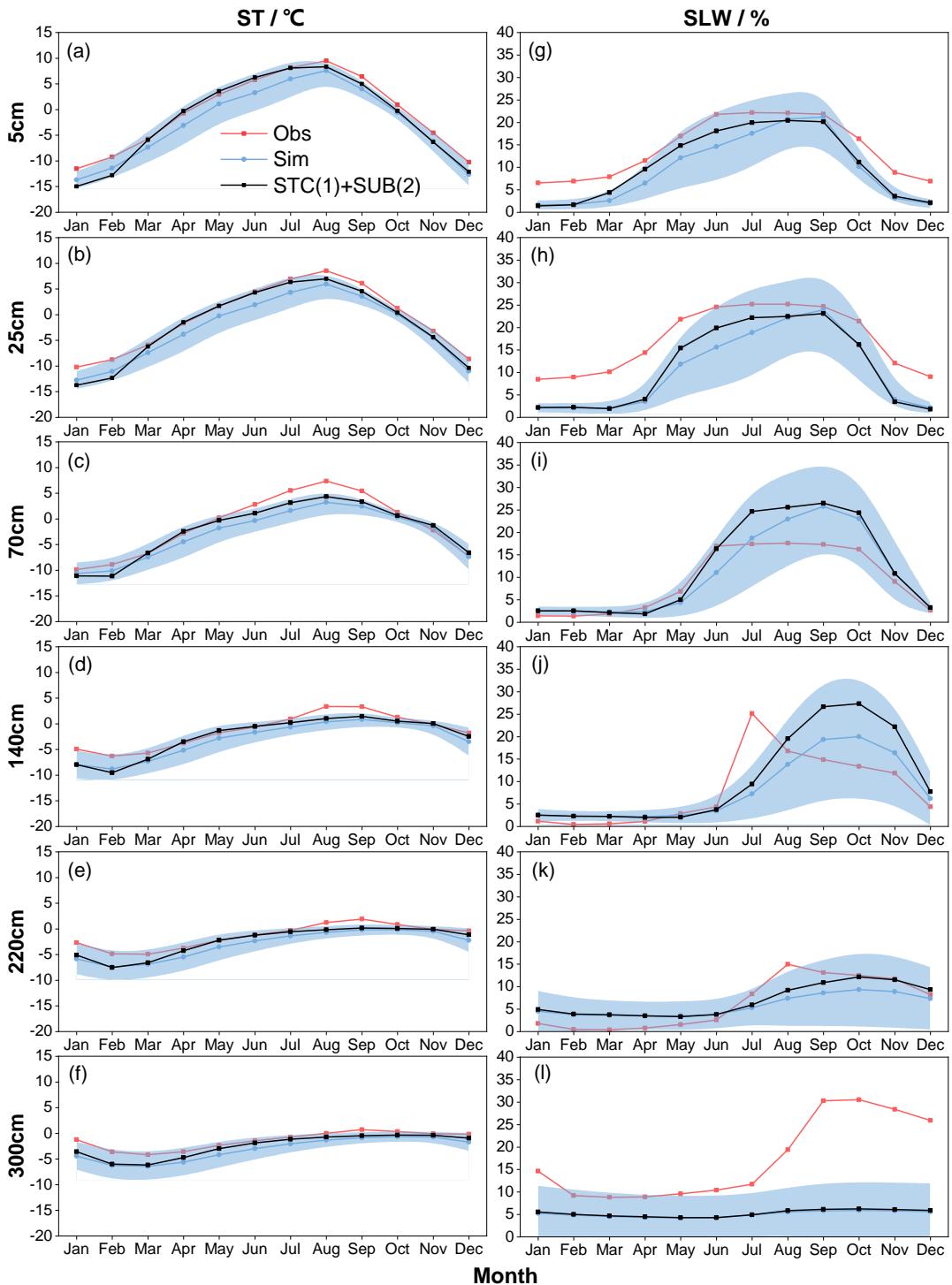
229

230 **Figure 2.** Monthly variations of ground albedo at TGL site for observation (Obs),
 231 and the ensemble simulation (Sim). The light blue shadow represents the standard deviation
 232 of the ensemble simulation.

233 Figure 3 illustrates the ensemble simulated and observed annual cycle of ST and
 234 SLW at TGL site. The ensemble experiments basically captured the seasonal variability
 235 of ST, whose magnitude decreased with soil depth. In addition, the simulated ST in the
 236 snow-affected season (October-July) showed relatively wide uncertainty ranges,
 237 particularly at the shallow layers. This indicates that the selected schemes perform
 238 much differently for snow simulation, resulting in large uncertainties of shallow STs.
 239 The simulated ST were generally smaller than the observations with relatively large
 240 gaps during the snow-affected season. It indicates that the Noah-MP model generally
 241 underestimates the ST, especially during the snow-affected months.

242 Since the observation equipment can only record the liquid water, soil liquid water
 243 (SLW) was evaluated against simulations from the ensemble experiments (Fig. 3). The
 244 Noah-MP model generally underestimated surface (5cm and 25cm) and deep (220cm
 245 and 300cm) SLW (Fig. 3g, 3h, 3k, 3l). However, Noah-MP tended to overestimate the
 246 SLW at the middle layers of 70cm and 140cm. Moreover, the simulated SLW exhibited
 247 relatively wide uncertainty ranges, particularly during the warm season (Fig. 3).

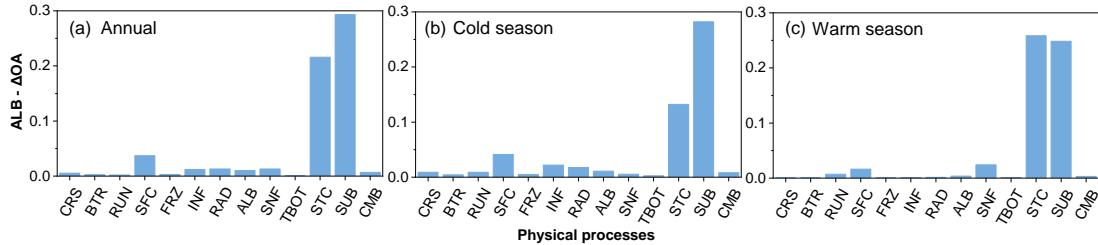
248



249

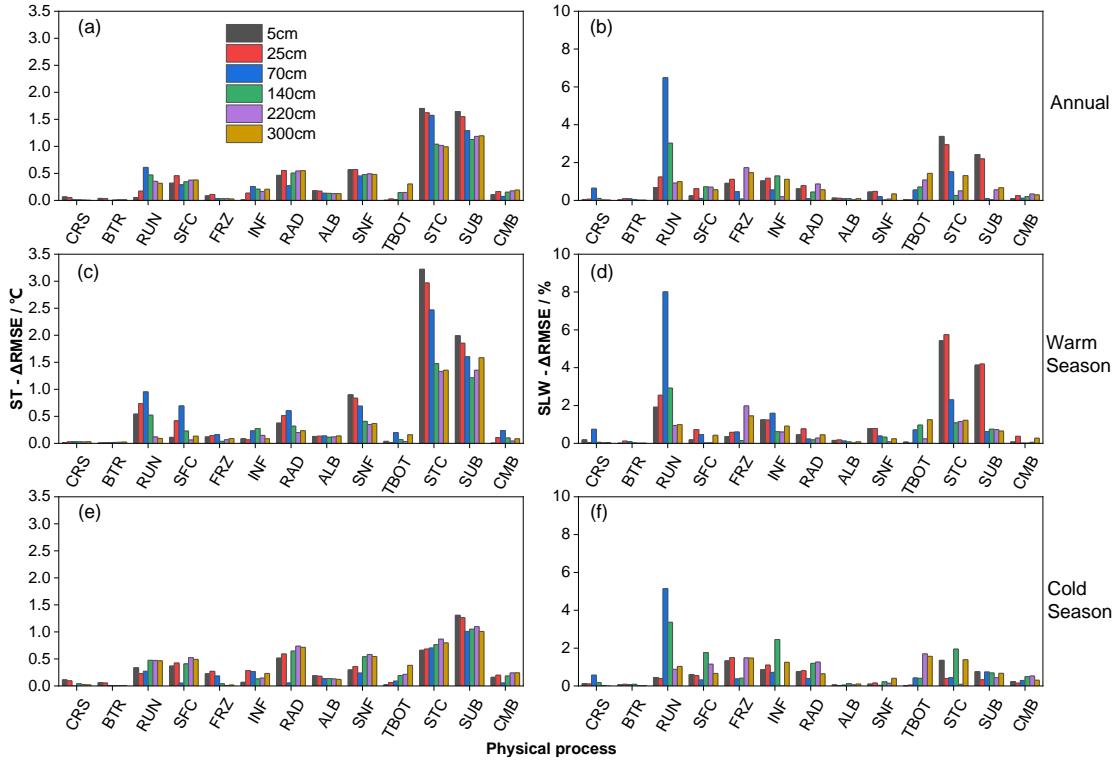
250

Figure 3. Monthly soil temperature (ST in °C) and soil liquid water (SLW in %) at (a, g) 5 cm, (b, h) 25 cm, (c, i) 70 cm, (d, j) 140 cm, (e, k) 220 cm, (f, l) 300 cm at TGL site. The light blue shadow represents the standard deviation of the ensemble simulation. The black line-symbol represents the ensemble mean of simulations with STC(1) and SUB(2).

255 **3.2 Sensitivity of physical processes**256 **3.2.1 Influence degrees of physical processes**

257
258 **Figure 4.** The maximum difference of the mean overall accuracy (OA) for albedo
259 (ALB- Δ OA) in each physical process during the (a) annual, (b) cold season, and (c)
260 warm season at TGL site.

261 Figure. 4 compares the influence scores of the 13 physical processes based on the
262 maximum difference of the mean OA over 55296 experiments using the same scheme,
263 for SCEs at TGL site. On the whole, the SUB and STC processes had the largest scores
264 for the whole year as well as during both the warm and cold seasons, and the other
265 processes showed a value less than 0.05 (Fig. 4a, 4b, 4c). Moreover, the SUB process
266 had a consistent influence on SCEs while the influence of STC differed with season. In
267 the cold season, the score of SUB process (0.28) was two times more than that of the
268 STC process (Fig. 4b), indicating the relative importance of snow sublimation for SCEs
269 simulation during the cold season. When it comes to the warm season, the influence
270 score of SUB (0.25) did not change much, while that of STC increased to 0.26 and
271 showed a similar influence on SCEs simulation with SUB.



272

273 **Figure 5.** The maximum difference of the mean RMSE for (a, c and e) soil temperature
 274 (ST- $\overline{\Delta RMSE}$ in $^{\circ}\text{C}$) and (b, d and f) soil liquid water (SLW- $\overline{\Delta RMSE}$ in %) in each
 275 physical process during the (a and b) annual, (c and d) warm, and (e and f) cold season
 276 at different soil depths at TGL site.

277 Figure. 5 compares the influence scores of the 13 physical processes at different
 278 soil depths, based on the maximum difference of the mean RMSE over 55296
 279 experiments using the same scheme, for ST and SLW at TGL site. The snow-related
 280 processes, including the STC, SUB and SNF process showed the largest ST- $\overline{\Delta RMSE}$ at
 281 all layers, followed by the RAD, SFC and RUN processes. While the ST- $\overline{\Delta RMSE}$ of
 282 the other 7 physical processes were less than 0.5°C , among which the influence of CRS
 283 and BTR processes were negligible. What's more, the FRZ, INF, and TBOT processes
 284 had larger influence scores during the cold season than warm season, and the scores of
 285 TBOT were greater in deep soils than shallow soils. During the warm season, the
 286 physical processes generally showed more influence on shallow soil temperatures.
 287 When it comes to the cold season, the influence of the physical processes on deep layers
 288 obviously increased and comparable with that on shallow layers, implying the relatively
 289 higher uncertainties of Noah-MP during the cold season.

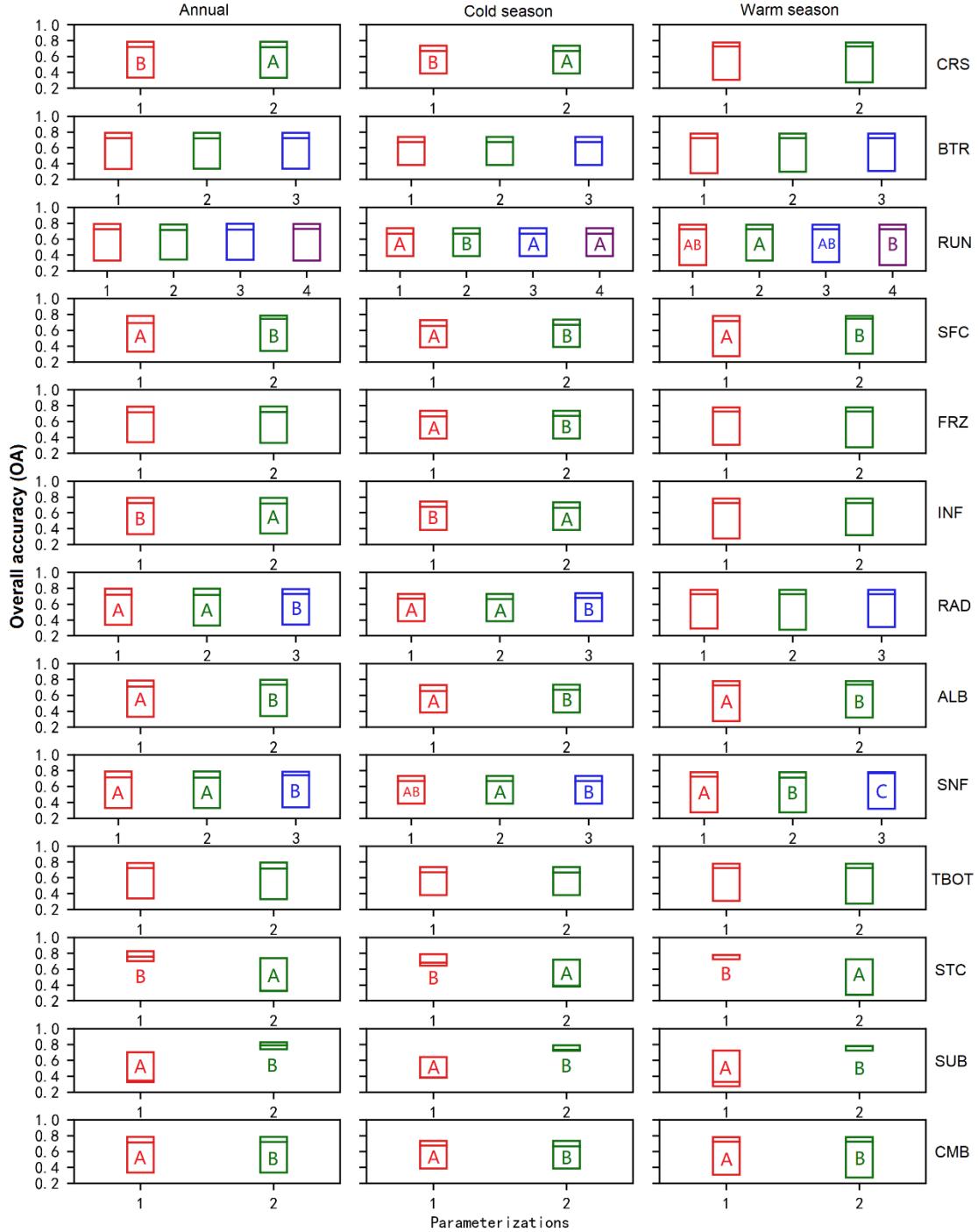
290 Most of the $\Delta\overline{RMSE}$ for SLW are less than 5%, indicating that all the physical
291 processes have limited influence on the SLW, among which CRS, BTR, ALB, SNF, and
292 CMB showed the smallest effects on SLW (Fig. 5b, 5d, 5f). During the warm season,
293 the RUN process, together with the STC and SUB processes, dominated the
294 performance of SLW simulation, especially at shallow layers (5cm, 25cm and 70cm,
295 Fig. 5d). During the cold season, however, the RUN process dominated the SLW
296 simulation with a great decline of dominance of STC and SUB processes.

297 **3.2.2 Sensitivities of physical processes and general behaviors of
298 parameterizations**

299 To further investigate the sensitivity of each process and the general performance
300 of the parameterizations, the Independent-sample T-test (2-tailed) and Tukey's test were
301 conducted to test whether the difference between parameterizations within a physical
302 process is significant (Fig. 6 and 7). In a given sub-process, any two schemes labelled
303 with different letters behave significantly different, and this sub-process therefore can
304 be identified as sensitive. Otherwise, the sub-process is considered insensitive. For
305 simplicity, schemes of insensitive sub-process are not labeled. Moreover, schemes with
306 the letters late in the alphabet have smaller mean RMSEs and outperform the ones with
307 the letters forward in the alphabet. Using the two schemes in CRS process (hereafter
308 CRS(1) and CRS(2)) in Fig. 6 as an example. For the annual and warm season, CRS(1)
309 and CRS(2) were labeled with "B" and "A", respectively. In the cold season, none of
310 them were labeled with letters. As described above, the CRS process was sensitive for
311 SCEs simulation during the annual and warm season, and CRS(1) outperformed
312 CRS(2). However, it was not sensitive during the cold season.

313 Consistent with the influence degrees in Fig. 4, the performance difference
314 between schemes of the STC and SUB for SCEs simulation were significantly greater
315 than other processes. Most other physical processes showed significant but limited
316 difference. Schemes in BTR and TBOT processes, however, had no significant different
317 performance. Specifically, the performance order followed STC(1)>STC(2), SUB(2)>
318 SUB(1), SFC(2)>SFC(1), ALB(2)>ALB(1), CMB(2)>CMB(1) in both annual and

319 seasonal scales. RAD showed no obvious difference during the warm season, while
 320 RAD(3) outperformed RAD(1) and (2) during the cold season. For SNF, SNF(3)
 321 generally excel SNF(1) and SNF(2), especially during the warm season.



322
 323 **Figure 6.** Distinction level for overall accuracy (OA) of snow cover events (SCEs)
 324 during the annual, warm, and cold seasons at TGL site. Limits of the boxes represent
 325 upper and lower quartiles, lines in the box indicate the median value.

326 All the physical processes showed sensitivities for ST and SLW simulation in

327 varying magnitudes except the BTR process and CRS process in most layers. For ST,
328 the performance difference between schemes of the STC, SUB and SNF were obviously
329 greater than other processes, indicating the importance of snow on ST, followed by the
330 RAD, SFC and RUN processes. The performance orders followed STC(1) > STC(2),
331 SUB(2) > SUB(1), SNF(3) > SNF(1) > SNF(2), RAD(3) > RAD(1) > RAD(2), and
332 SFC(2) > SFC(1). For SLW, the RUN, STC, and SUB processes showed significant and
333 higher sensitivities than other physical processes, especially during the warm season
334 and at the shallow layers (Fig. xx). Consistent with that of ST, the performance orders
335 for SLW simulation were STC(1) > STC(2), and SUB(2) > SUB(1). For the RUN
336 process, the performance orders for both ST and SLW simulation generally followed
337 RUN(4) > RUN(1) > RUN(3) > RUN(2) as a whole, among which RUN(1) and RUN(4)
338 presented similar performance during both warm and cold seasons. During both warm
339 and cold seasons, the performance orders for ST simulations were SFC(2) > SFC(1) for
340 SFC process, FRZ(2) > FRZ(1) for FRZ process, and RAD(3) > RAD(1) > RAD(2) for
341 RAD process (Fig. S2 and S3), which are particularly so for SLW simulations at shallow
342 and deep layers.

343 For ST, both FRZ and INF showed higher sensitivities during the cold season,
344 especially at shallow soils for FRZ and deep soils for INF. FRZ(2)/INF(1) outperformed
345 FRZ(1)/INF(2) for the whole year for ST simulation. Specifically, FRZ(1)/INF(2)
346 performed better at the shallow soils during the warm season while did worse during
347 the cold season compared with FRZ(2)/INF(1). For SLW, FRZ(2)/INF(2) generally
348 preceded FRZ(1)/INF(1) at shallow and deep soils (5cm, 25cm, 220cm, and 300cm)
349 while did worse at middle soil layers (140cm and 220cm).

350 For ST simulation, the performance sequence in RAD and SNF was RAD(3) >
351 RAD(1) > RAD(2) and SNF(3) > SNF(1) > SNF(2), respectively. For SLW simulation,
352 the sequence become complicated. However, RAD(3) and RAD(3) still outperformed
353 the other two schemes, respectively. ALB(2) was superior to ALB(1) for both ST and
354 SLW simulation. The influence of TBOT on soil hydrothermal arose at deep soils and
355 during cold season, and TBOT(1) excel TBOT(2). CMB(2) outperformed CMB(1) for

356 ST simulation, so did that for SLW simulation at shallow and deep soils (5cm, 25cm,
357 and 300cm).|

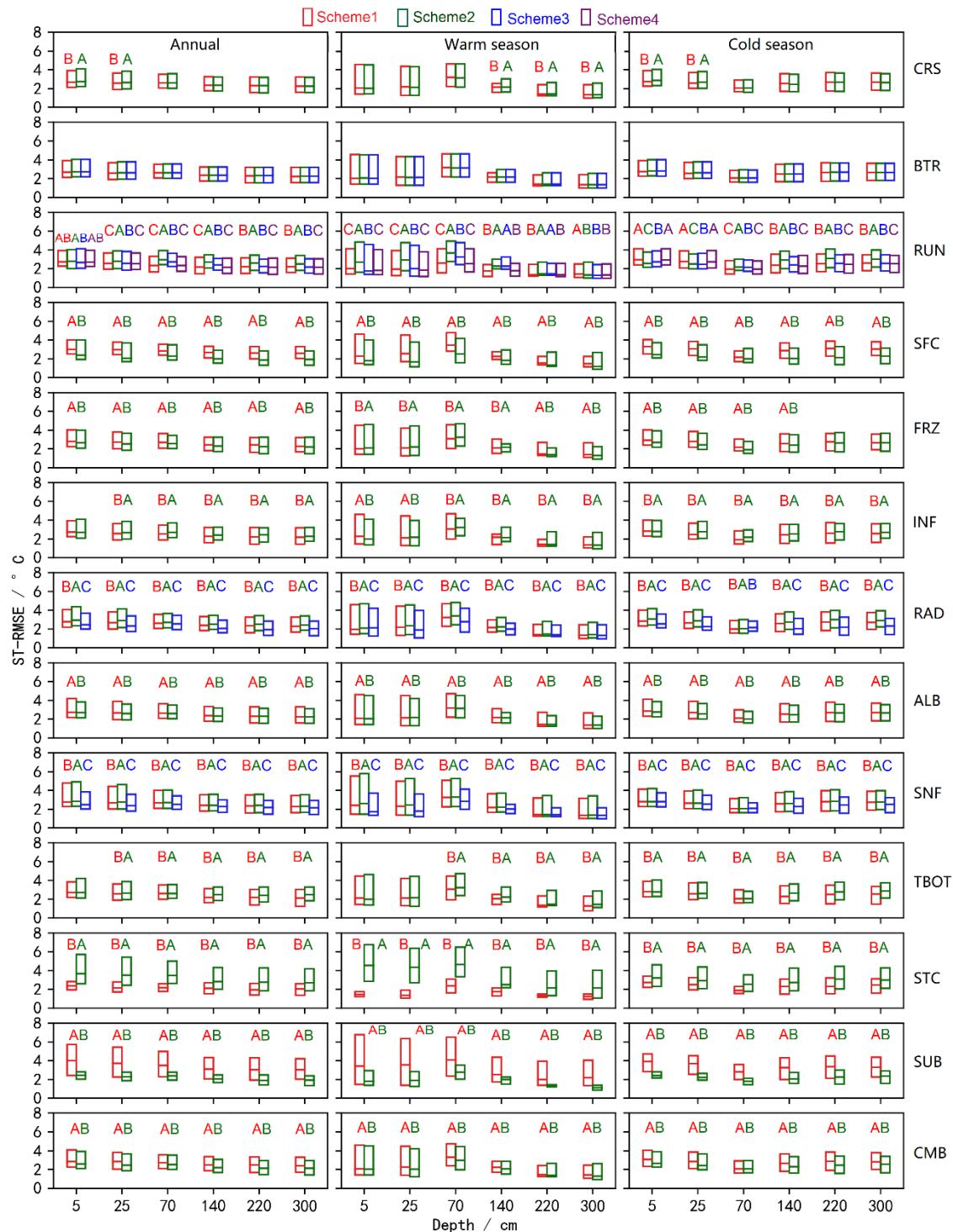


Figure 7. Distinction level for RMSE of ST at different layers during the annual, warm, and cold seasons in the ensemble simulations at TGL site. Limits of the boxes represent upper and lower quartiles, lines in the box indicate the median value.

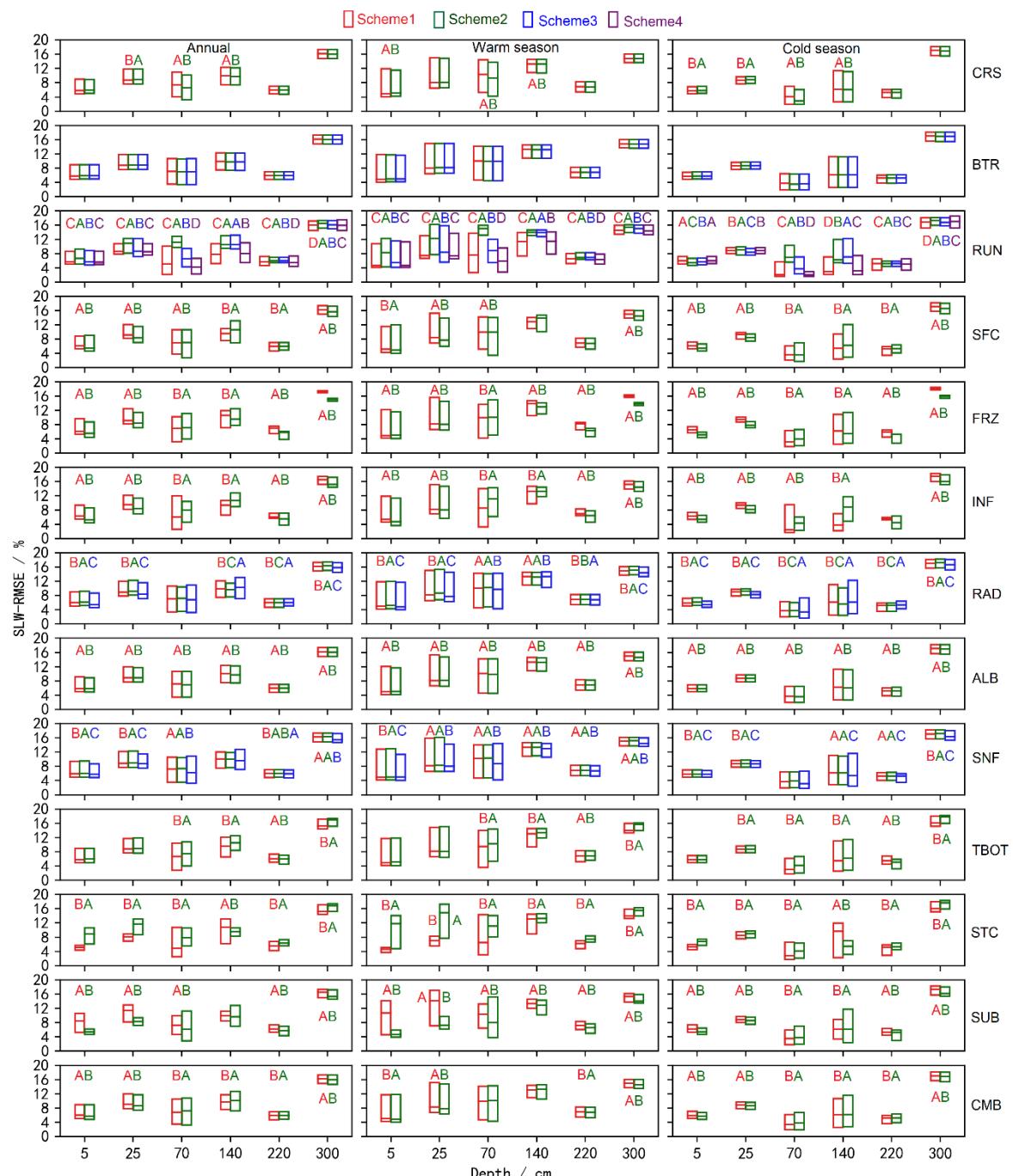
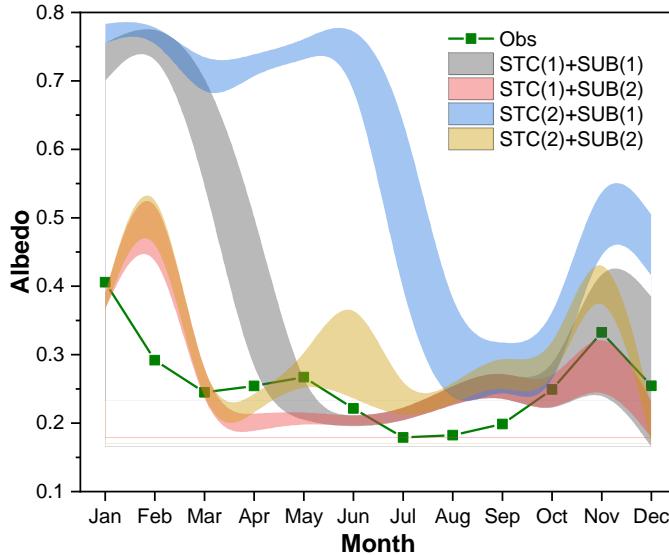


Figure 8. Same as in Figure 7 but for SLW.

365 **3.3 Influence of snow cover and surface drag coefficient on soil hydrothermal
366 dynamics**



368

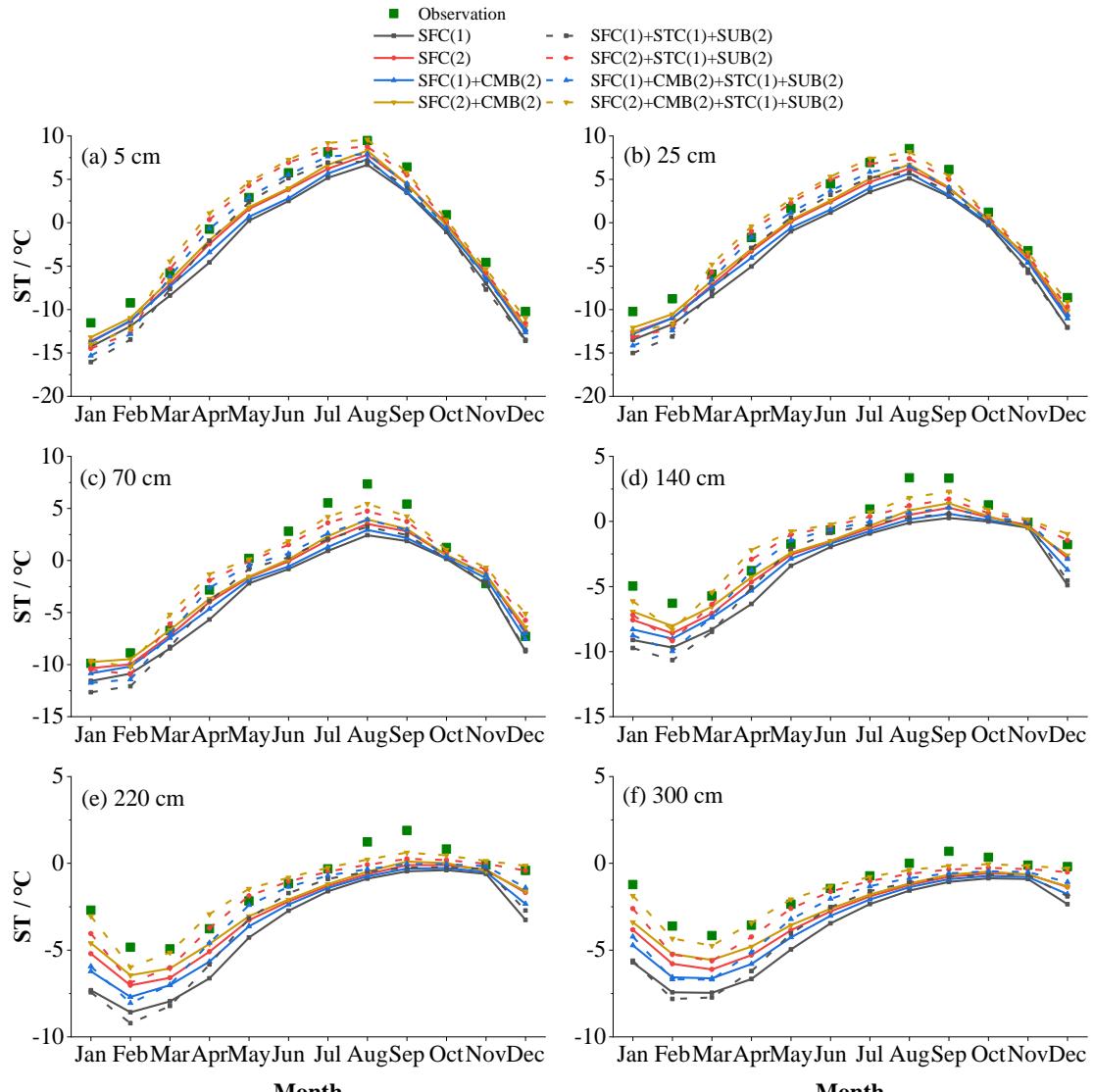
369 **Figure 9.** Uncertainty interval of ground albedo at TGL site in dominant physical
 370 processes (STC and SUB) for snow cover event simulation.

371 The influence of snow on soil temperature is firstly investigated. The dominant
 372 role of STC and SUB in the simulation of SCEs has been identified (Fig. 4 and 6).
 373 Interactions between the two physical processes are further analyzed here. Figure 9
 374 compares the uncertainty intervals of the two physics. The duration of snow cover is
 375 the longest when STC(2)+SUB(1), followed when STC(2)+SUB(1). Simulations
 376 considering SUB(2) generally has a short snow duration. Among the four combinations,
 377 STC(1)+SUB(2) is in best agreement with the measurements.

378 Given the good performance of STC(1)+SUB(2) in simulating SCEs, the influence
 379 of snow on soil hydrothermal dynamics is investigated by comparing the total ensemble
 380 mean ST and SLW with those adopting STC(1)+SUB(2) (Fig. 3). It can be seen that the
 381 ensemble mean ST of simulations adopting STC(1) and SUB(2) are generally higher
 382 than the total ensemble means, especially during the spring and summer (Mar.-Aug.).
 383 In January and February at shallow layers (5cm, 25cm and 70cm), STC(1)+SUB(2) had
 384 a lower ST and showed an insulation effect on ST during the two months. As a whole,
 385 however, snow cover has a cooling effect on ST. In addition, along with the improved
 386 SCEs and elevated ST, STC(1)+SUB(2) induced moister soil with higher SLW (Fig. 3).

387

388



389

390 **Figure 10.** Monthly soil temperature (ST in °C) at (a) 5 cm, (b) 25 cm, (c) 70 cm, (d)
 391 140 cm, (e) 220 cm, (f) 300 cm for the SFC process that consider the CMB(2) and
 392 STC(1)+SUB(2) processes or not.

393 SFC and CMB process using different ways to calculate the surface drag
 394 coefficient, which is of great influence for surface energy partitioning and thus ST and
 395 SLW. The influence of surface drag coefficient is assessed by comparing the soil
 396 temperature before and after considering the combined scheme (CMB(2)) and the effect
 397 of snow (STC(1)+SUB(2)) (Fig. 10). SFC(2) tended to produce higher ST than SFC(1),
 398 especially during the warming period (January-August). When adopting the combined
 399 scheme of Y08 and UCT (CMB(2)), the cold bias were significantly resolved. The
 400 performance order followed SFC(2)+CMB(2) > SFC(2) > SFC(1)+CMB(2) > SFC(1).

401 However, considerable underestimations of ST still exist at all layers due to the poor
402 representation of snow process. After eliminating the effects of snow (STC(1)+SUB(2),
403 dash lines in Fig. 10), the simulated ST accordingly increased except in January and
404 February. SFC(2) and SFC(2)+CMB(2) overestimated STs from March to July at
405 shallow layers (5cm and 25cm), resulting in good agreements of deep STs with
406 observations. In contrast, the simulated STs at shallow layers (5cm and 25cm) by SFC(1)
407 and SFC(1)+CMB(2) were basically consistent with observations from March to July.
408 While large cold bias remained at deep layers.

409 **4 Discussion**

410 **4.1 Snow cover on the QTP and its influence on soil hydrothermal regime**

411 Snow cover in the permafrost regions of the QTP is thin, patchy, and short-lived
412 (Che et al., 2019), whose influence on soil temperature and permafrost state is usually
413 considered weak (Jin et al., 2008; Zou et al., 2017; Wu et al., 2018; Zhang et al., 2018;
414 Yao et al., 2019). However, our ensemble simulations showed that the surface albedo
415 is extremely overestimated in both magnitude and duration (Fig. 2), implying an
416 extreme overestimation of snow cover, which is consistent with the studies using Noah-
417 MP model (Jiang et al., 2020; Li et al., 2020; Wang et al., 2020) and widely found in
418 other state-of-the-art LSMs (Wei and Dong, 2015) on the QTP.

419 Great efforts to resolve the overestimation of snow cover in LSMs include
420 considering the vegetation effect (Park et al., 2016), the snow cover fraction (Jiang et
421 al., 2020), the blowing snow (Xie et al., 2019), and the fresh snow albedo (Wang et al.
422 2020). Our results illustrated the superiority of considering the snow sublimation from
423 wind (SUB(2)) and using semi-implicit snow/soil temperature time scheme (STC(1))
424 (Fig. 4, 6 and 9) when simulating snow cover on the QTP. It is consistent with previous
425 conclusions that accounting for the loss resulting from wind contributes to improve
426 snow cover days and depth (Yuan et al., 2016), and that STC(1) has a rapid snow
427 ablation than STC(2) (You et al., 2020).

428 The impacts of snow cover on soil temperature in magnitude and vector (cooling or
429 warming) depend on its timing, duration, and depth (Zhang et al., 2005). In January and
430 February, the ground heat flux mainly goes upward, the warming effect of simulated
431 snow can be related to the overestimated snow depth that prevent heat loss from the
432 ground. During the spring and summer when snow melts, the cooling effects occurs,
433 mainly because considerable energy that used to heat the ground is reflected due to the
434 high albedo of snow. With the improvement of snow (STC(1)+SUB(2)), the originally
435 overestimated snow melts and infiltrated into the soil, resulting in improved SLWs (Fig.
436 3). And higher soil temperature also contributed to the SLWs according to the freezing-
437 point depression equation, in which SLW exponentially increase with soil temperature
438 for a given site (Niu and Yang, 2006).

439 **4.2 Discussions on the sensitivity of physical processes on soil hydrothermal
440 simulation**

441 **4.2.1 Canopy stomatal resistance (CRS) and soil moisture factor for stomatal
442 resistance (BTR)**

443 The biophysical process BTR and CRS directly affect the canopy stomatal
444 resistance and thus the plant transpiration (Niu et al., 2011). The transpiration of plants
445 could impact the ST/SLW through its cooling effect (Shen et al., 2015) and the water
446 balance of root zone (Chang et al., 2020). However, the annual transpiration of alpine
447 steppe is weak due to the shallow effective root zone and lower stomatal control in this
448 dry environment (Ma et al., 2015), which may explain the indistinctive or very small
449 difference among the schemes of the BTR and CRS processes for SCEs (Fig. 8), ST
450 (Fig. 7) and SLW (Fig. 8).

451 **4.2.2 Runoff and groundwater (RUN)**

452 In the warm season, different SLWs would result in the difference of the surface
453 energy partitioning and thus different soil temperatures. RUN(2) had the worst
454 performance for simulating ST and SLW (Fig. 7 and 8) among the four schemes, likely

455 due to its higher estimation of soil moisture (Fig. S1) and thus greater sensible heat and
456 smaller ST (Gao et al., 2015). Likewise, RUN(4) was on a par with RUN(1) in the
457 simulation of ST at most layers due to the very small difference in SLW of two schemes
458 (Fig. 8 and S1). For the whole soil column, RUN(4) surpassed RUN(1) and RUN(2) for
459 SLW simulation, both of which define surface/subsurface runoff as functions of
460 groundwater table depth (Niu et al., 2005; Niu et al., 2007). This is in keeping with the
461 study of Zheng et al. (2017) that soil water storage-based parameterizations outperform
462 the groundwater table-based parameterizations in simulating the total runoff in a
463 seasonally frozen and high-altitude Tibetan river. Besides, RUN(4) is designed based
464 on the infiltration-excess runoff (Yang and Dickinson, 1996) in spite of the saturation-
465 excess runoff in RUN(1) and RUN(2) (Gan et al., 2019), which is more common in arid
466 and semiarid areas like the permafrost regions of QTP (Pilgrim et al., 1988). In the cold
467 season, much of the liquid water freezes into ice, which would greatly influence the
468 thermal conductivity of frozen soil considering thermal conductivity of ice is nearly
469 four times that of the equivalent liquid water. Therefore, the impact of RUN is important
470 for the soil temperature simulations at both warm and cold seasons (Fig. 5 and 7).

471 **4.2.3 Surface layer drag coefficient (SFC and CMB)**

472 SFC defines the calculations of the surface exchange coefficient for heat and water
473 vapor (CH), which greatly impact the energy and water balance and thus the
474 temperature and moisture of soil (Zeng et al., 2012; Zheng et al., 2012). SFC(1) adopts
475 the Monin-Obukhov similarity theory (MOST) with a general form, while the SFC(2)
476 uses the improved MOST modified by Chen et al. (1997). In SFC(1), the roughness
477 length for heat (Z_{0h}) is taken as the same with the roughness length for momentum (Z_{0m} ,
478 Niu et al., 2011). SFC(2) adopts the Zilitinkevitch approach for $Z_{0,h}$ calculation
479 (Zilitinkevitch, 1995). The difference between SFC(1) and SFC(2) has a great impact
480 on the CH value. Several studies have reported that SFC(2) has a better performance
481 for the simulation of sensible and latent heat on the QTP (Zhang et al., 2016; Gan et al.,
482 2019). The results of T-test in this study showed remarkable distinctions between the
483 two schemes, where SFC(2) was dramatically superior to SFC(1) (Fig. 7, and 8). SFC(2)

484 produces lower CH than SFC(1) (Zhang et al., 2014), resulting in less efficient
485 ventilation and greater heating of the land surface (Yang et al., 2011b), and substantial
486 improvement of the cold bias of Noah-MP in this study (Fig. 7 and 10).

487 Both SFC(1) and SFC(2) couldn't produce the diurnal variation of $Z_{0,h}$ (Chen et al.,
488 2010). CMB offers a scheme that considered the diurnal variation of $Z_{0,h}$ in bare ground
489 and under-canopy turbulent exchange in sparse vegetated surfaces (Li et al., 2020).
490 Consistent with previous studies in the QTP (Chen et al., 2010; Guo et al., 2011; Zheng
491 et al., 2015; Li et al., 2020), the simulated ST generally followed SFC(2)+CMB(2) >
492 SFC(2) > SFC(1)+CMB(2) > SFC(1) with/without removing the overestimation of
493 snow (Fig. 10), indicating that CMB(2) contributes to resolve the cold bias of LSMs.
494 However, none of the four combinations could well reproduce the shallow and deep
495 STs simultaneously. When the snow is well-simulated, SFC(2)+CMB(2) performed the
496 best at deep layers at the cost of overestimating shallow STs. Meanwhile,
497 SFC(1)+CMB(1) showed the best agreements at shallow layers with considerable cold
498 bias at deep layers, which can be related to the overestimated frozen soil thermal
499 conductivity (Luo et al., 2009; Chen et al., 2012; Li et al., 2019).

500 **4.2.4 Super-cooled liquid water (FRZ) and frozen soil permeability (INF)**

501 FRZ and INF describe the unfrozen water and permeability of frozen soil, and had
502 a larger influence on ST/SLW during the cold season than warm season as expected
503 (Fig. 5). Specifically, FRZ treats liquid water in frozen soil (super-cooled liquid water)
504 using two forms of freezing-point depression equation. FRZ(1) takes a general form
505 (Niu and Yang, 2006), while FRZ(2) exhibits a variant form that considers the increased
506 surface area of icy soil particles (Koren et al., 1999). FRZ(2) generally yields more
507 liquid water in comparison of FRZ(1) (Fig. S2). INF(1) uses soil moisture (Niu and
508 Yang, 2006) while INF(2) employs only the liquid water (Koren et al., 1999) to
509 parameterize soil hydraulic properties. INF(2) generally produces more impermeable
510 frozen soil than INF(1), which is also found in this study (Fig. S3). For the whole year,
511 INF(1) surpassed INF(2) in simulating STs, which may be related to the more realistic
512 SLWs produced by INF(1) for the whole soil column (Fig. S3).

513 **4.2.5 Canopy gap for radiation transfer (RAD)**

514 RAD treats the radiation transfer process within the vegetation, and adopts three
515 methods to calculate the canopy gap. RAD(1) defines canopy gap as a function of the
516 3D vegetation structure and the solar zenith angle, RAD(2) employs no gap within
517 canopy, and RAD(3) treat the canopy gap from unity minus the FVEG (Niu and Yang,
518 2004). The RAD(3) scheme penetrates the most solar radiation to the ground, followed
519 by the RAD(1) and RAD(2) schemes. As an alpine grassland, there is a relative low
520 LAI at TGL site, and thus a quite high canopy gap. So, schemes with a larger canopy
521 gap could realistically reflect the environment. Consequently, the performance
522 decreased in the order of RAD(3) > RAD(1) > RAD(2) for ST/SLW simulation.

523 **4.2.6 Snow surface albedo (ALB) and precipitation partition (SNF)**

524 The ALB describe two ways for calculating snow surface albedo, in which the
525 ALB(1) and ALB(2) adopt the scheme from BATS and CLASS LSM, respectively.
526 ALB(2) generally produce lower albedo than ALB(1), especially when the ground
527 covered by snow (Fig. S4). As a result, higher net radiation absorbed by the land surface
528 and more heat is available for heating the soil in ALB(2), which is beneficial for
529 counteracting the cooling effect of overestimated snow on ST (Fig. S5). Along with the
530 higher ST, ALB(2) outperformed ALB(1) for SLW simulation, likely due to more snow
531 melt water offset the dry bias in Noah-MP (Fig. S5).

532 The SNF defines the snowfall fraction of precipitation as a function of surface air
533 temperature. SNF(1) is the most complicated of the three schemes, in which the
534 precipitation is considered rain/snow when the surface air temperature is greater/less
535 than or equal to 2.5/0.5 °C, otherwise, it is recognized as sleet. While SNF(2) and
536 SNF(3) simply distinguish rain or snow by judging whether the air temperature is above
537 2.2 °C and 0 °C or not. The significant difference between three schemes for SCEs
538 simulation during the warm season is consistent with the large difference of snowfall
539 fraction in this period (Fig. 6 and S6). SNF(3) is the most rigorous scheme and produce
540 the minimum amount of snow, followed by SNF(1) and SNF(2) with limited difference
541 (Fig. S6). This exactly explains superiority of SNF(3) for ST and SLW simulation (Fig.

542 7 and 8).

543 **4.2.7 Lower boundary of soil temperature (TBOT) and snow/soil temperature time**
544 **scheme (STC)**

545 TBOT process adopts two schemes to describe the soil temperature boundary
546 conditions. TBOT (1) assumes zero heat flux at the bottom of the model, while TBOT(2)
547 adopts the soil temperature at the 8 m depth (Yang et al., 2011a). In general, TBOT(1)
548 is expected to accumulate heat in the deep soil and produce higher ST than TBOT(2).
549 In this study, the two assumptions performed significantly different, especially at the
550 deep soils and during the cold season. Although TBOT(2) is more representative of the
551 realistic condition, TBOT(1) surpassed TBOT(2) in this study. It can be related to the
552 overall underestimation of the model, which can be alleviated by TBOT(1) because of
553 heat accumulation (Fig. S7).

554 Two time discretization strategies are implemented in the STC process, where
555 STC(1) adopts the semi-implicit scheme while STC(2) uses the full implicit scheme, to
556 solve the thermal diffusion equation in first soil or snow layers (Yang et al., 2011a).
557 STC(1) and STC(2) are not strictly a physical processes but different upper boundary
558 conditions of soil column (You et al., 2019). The differences between STC(1) and
559 STC(2) were significant (Fig. 7). The impacts of the two options on ST is remarkable
560 (Fig. 6), particularly in the shallow layers and during the warm season (Fig. 5). In
561 addition, STC(1) outperformed STC(2) in the ensemble simulated ST(Fig. 7), because
562 STC(1) greatly alleviated the cold bias in Noah-MP (Fig. S8) by producing the higher
563 OA of SCEs (Fig. 6)

564 **4.3 Perspectives**

565 This study analyzed the characteristics and general behaviors of each
566 parameterization scheme of Noah-MP at a typical permafrost site on the QTP, hoping
567 to provide a reference for simulating permafrost state on the QTP. We identified the
568 systematic overestimation of snow cover, cold bias and dry bias in Noah-MP, and

569 discussed the role of snow and surface drag coefficient on soil hydrothermal dynamics.
570 Further tests at another permafrost site (BLH site, 34.82°N, 92.92°E, Alt.: 4,659 m a.s.l)
571 basically showed consistent conclusions with that at TGL site (see Supplementary files
572 for details), indicating that relevant results and methodologies can be practical
573 guidelines for improving the parameterizations of physical processes and testing their
574 uncertainties towards soil hydrothermal modeling in the permafrost regions of the
575 plateau. Although the site we selected may be representative for the typical environment
576 on the plateau, continued investigation with a broad spectrum of climate and
577 environmental conditions is required to make a general conclusion at regional scale.

578 **5 Conclusions**

579 An ensemble simulation using multi-parameterizations was conducted using the
580 Noah-MP model at the TGL site, aiming to present a reference for simulating soil
581 hydrothermal dynamics in the permafrost regions of QTP using LSMs. The model was
582 modified to consider the vertical heterogeneity in the soil and the simulation depth was
583 extended to cover the whole active layer. The ensemble simulation consists of 55296
584 experiments, combining thirteen physical processes (CRS, BTR, RUN, SFC, FRZ, INF,
585 RAD, ALB, SNF, TBOT, STC, SUB, and CMB) each with multiple optional schemes.
586 On this basis, the general performance of Noah-MP was assessed by comparing
587 simulation results with in situ observations, and the sensitivity of snow cover event, soil
588 temperature and moisture at different depths of active layer to parameterization
589 schemes was explored. The main conclusions are as follows:

590 (1) Noah-MP model tends to overestimate snow cover, which is most influenced by the
591 STC and SUB processes. Such overestimation can be greatly resolved by
592 considering the snow sublimation from wind (SUB(2)) and semi-implicit snow/soil
593 temperature time scheme (STC(1)).

594 (2) Soil temperature is largely underestimated by the overestimated snow cover and
595 thus dominated by the STC and SUB processes. Systematic cold bias and large
596 uncertainties of soil temperature still exist after eliminating the effects of snow,

597 particularly at the deep layers and during the cold season. The combination of Y08
598 and UCT contributes to resolve the cold bias of soil temperature.

599 (3) Noah-MP tend to underestimate soil liquid water content. Most physical processes
600 have limited influence on soil liquid water content, among which the RUN process
601 plays a dominant role during the whole year. The STC and SUB process have a
602 considerable influence on topsoil liquid water during the warm season.

603
604 *Code availability.* The source code of offline 1D Noah-MP LSM v1.1 is available at
605 [https://ral.ucar.edu/solutions/products/noah-multiparameterization-land-surface-
606 model-noah-mp-lsm](https://ral.ucar.edu/solutions/products/noah-multiparameterization-land-surface-model-noah-mp-lsm) (last access: 15 May 2020). The modified Noah-MP with the
607 consideration of vertical heterogeneity, extended soil depth, and pedotransfer functions
608 is available upon request to the corresponding author. The data processing code are
609 available at <http://dx.doi.org/10.17632/gc7vfgkyng.1>.

610
611 *Data availability.* The 1-hourly forcing data and daily soil temperature data at the TGL
612 site are available at <http://dx.doi.org/10.17632/gc7vfgkyng.1>. Soil texture data can be
613 obtained at <https://doi.org/10.1016/j.catena.2017.04.011> (Hu et al., 2017). The AVHRR
614 LAI data can be downloaded from <https://www.ncei.noaa.gov/data/> (Claverie et al.,
615 2016).

616
617 *Author contributions.* TW and XL conceived the idea and designed the model
618 experiments. XL performed the simulations, analyzed the output, and wrote the paper.
619 JC and GZ helped to compile the model in a Linux environment. XW, SY, XZ, GH, RL
620 contributed to the conduction of the simulation and interpretation of the results. YQ
621 provided the observations of atmospheric forcing and soil temperature. CY and JH
622 helped in downloading and processing the AVHRR LAI data. JN and WM provide
623 guidelines for the visualization. Everyone revised and polished the paper.

624
625 *Competing interests.* The authors declare that they have no conflict of interest.

627 *Acknowledgements.* This work has been supported by the CAS "Light of West China"
628 Program, the National Natural Science Foundation of China (41690142; 41771076;
629 41961144021; 42071093), the CAS "Hundred Talents" Program (Sizhong Yang), and
630 the National Cryosphere Desert Data Center Program (E0510104). The authors thank
631 Cryosphere Research Station on the Qinghai-Tibet Plateau, CAS for providing field
632 observation data and National Cryosphere Desert Data Center for supercomputing
633 resources in this study. We would like to thank two anonymous reviewers for their
634 insightful and constructive comments and suggestions, which greatly improved the
635 quality of the manuscript.

636 **References**

637 Benjamini, Y.: Simultaneous and selective inference: Current successes and future challenges,
638 Biometrical J., 52, 708-721, <https://doi.org/10.1002/bimj.200900299>, 2010.

639 Cao, B., Zhang, T., Wu, Q., Sheng, Y., Zhao, L., and Zou, D.: Brief communication: Evaluation and
640 inter-comparisons of Qinghai-Tibet Plateau permafrost maps based on a new inventory of field
641 evidence, The Cryosphere, 13, 511-519, <https://doi.org/10.5194/tc-13-511-2019>, 2019.

642 Chang, M., Liao, W., Wang, X., Zhang, Q., Chen, W., Wu, Z., and Hu, Z.: An optimal ensemble of
643 the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical
644 forest in South China, Agric. For. Meteor., 281, 107815,
645 <https://doi.org/https://doi.org/10.1016/j.agrformet.2019.107815>, 2020.

646 Che, T., Hao, X., Dai, L., Li, H., Huang, X., and Xiao, L.: Snow cover variation and its impacts over
647 the Qinghai-Tibet Plateau, Bull. Chin. Acad. Sci., 34, 1247-1253,
648 <https://doi.org/10.16418/j.issn.1000-3045.2019.11.007>, 2019.

649 Chen, F., Janjić, Z., and Mitchell, K.: Impact of atmospheric surface-layer parameterizations in the
650 new land-surface scheme of the NCEP Mesoscale Eta Model. Boundary-Layer Meteorol. 85, 391-
651 421, <https://doi.org/10.1023/A:1000531001463>, 1997.

652 Chen, R., Yang, M., Wang, X., and Wan, G.: Review on simulation of land-surface processes on the
653 Tibetan Plateau, Sci. Cold Arid Reg., 11, 93-115, <https://doi.org/10.3724/SP.J.1226.2019.00093>,
654 2019.

655 Chen, S., Li, X., Wu, T., Xue, K., Luo, D., Wang, X., Wu, Q., Kang, S., Zhou, H., and Wei, D.: Soil
656 thermal regime alteration under experimental warming in permafrost regions of the central
657 Tibetan Plateau, Geoderma, 372, 114397,
658 <https://doi.org/https://doi.org/10.1016/j.geoderma.2020.114397>, 2020.

659 Chen, Y., Yang, K., Zhou, D., Qin, J., and Guo, X.: Improving the Noah land surface model in arid
660 regions with an appropriate parameterization of the thermal roughness length, J. Hydrometeor.,
661 11, 995-1006, <https://doi.org/10.1175/2010JHM1185.1>, 2010.

662 Chen, Y., Yang, K., Tang, W., Qin, J., and Zhao, L.: Parameterizing soil organic carbon's impacts on

663 soil porosity and thermal parameters for Eastern Tibet grasslands, *Sci. Chin. Earth Sci.*, 55, 1001-
664 1011, <https://doi.org/10.1007/s11430-012-4433-0>, 2012.

665 Claverie, M., Matthews, J. L., Vermote, E. F., and Justice, C. O.: A 30+ year AVHRR LAI and
666 FAPAR climate data record: Algorithm description and validation, *Remote Sens.*, 8, 263,
667 <https://doi.org/10.3390/rs8030263>, 2016.

668 Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A statistical exploration of the
669 relationships of soil moisture characteristics to the physical properties of soils, *Water Resour. Res.*,
670 20, 682-690, <https://doi.org/10.1029/WR020i006p00682>, 1984.

671 Daniel, R., Nikolay, S., Bernd, E., Stephan, G., and Sergei, M.: Recent advances in permafrost
672 modelling, *Permafro. Periglac. Process.*, 19, 137-156, <https://doi.org/doi:10.1002/ppp.615>, 2008.

673 Fountain, A. G., Campbell, J. L., Schuur, E. A. G., Stammerjohn, S. E., Williams, M. W., and
674 Ducklow, H. W.: The disappearing cryosphere: Impacts and ecosystem responses to rapid
675 cryosphere loss, *BioScience*, 62, 405-415, <https://doi.org/10.1525/bio.2012.62.4.11>, 2012.

676 Gan, Y. J., Liang, X. Z., Duan, Q. Y., Chen, F., Li, J. D., and Zhang, Y.: Assessment and reduction
677 of the physical parameterization uncertainty for Noah-MP land surface model, *Water Resour. Res.*,
678 55, 5518-5538, <https://doi.org/10.1029/2019wr024814>, 2019.

679 Gao, Y., Kai, L., Fei, C., Jiang, Y., and Lu, C.: Assessing and improving Noah-MP land model
680 simulations for the central Tibetan Plateau, *J. Geophys. Res.-Atmos.*, 120, 9258-9278,
681 <https://doi.org/10.1002/2015JD023404>, 2015.

682 Guo, D., and Wang, H.: Simulation of permafrost and seasonally frozen ground conditions on the
683 Tibetan Plateau, 1981-2010, *J. Geophys. Res.-Atmos.*, 118, 5216-5230,
684 <https://doi.org/10.1002/jgrd.50457>, 2013.

685 Guo, X., Yang, K., Zhao, L., Yang, W., Li, S., Zhu, M., Yao, T., and Chen, Y.: Critical evaluation of
686 scalar roughness length parametrizations over a melting valley glacier, *Boundary-Layer
687 Meteorol.*, 139(2), 307-332, <https://doi.org/10.1007/s10546-010-9586-9>, 2011.

688 He, K., Sun, J., and Chen, Q.: Response of climate and soil texture to net primary productivity and
689 precipitation-use efficiency in the Tibetan Plateau, *Pratacultural Science*, 36, 1053-1065.
690 <https://doi.org/10.11829/j.issn.1001-0629.2019-0036>, 2019.

691 Hillel, D.: *Applications of Soil Physics*, Academic Press, 400 pp., 1980.

692 Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E., Nelson, F. E., Etzelmüller,
693 B., and Luoto, M.: Degrading permafrost puts Arctic infrastructure at risk by mid-century, *Nat.
694 Commun.*, 9, 5147, <https://doi.org/10.1038/s41467-018-07557-4>, 2018.

695 Hong, S., Yu, X., Park, S. K., Choi, Y. S., and Myoung, B.: Assessing optimal set of implemented
696 physical parameterization schemes in a multi-physics land surface model using genetic algorithm,
697 *Geosci. Model Dev.*, 7, 2517-2529, <https://doi.org/10.5194/gmd-7-2517-2014>, 2014.

698 Hu, G., Zhao, L., Li, R., Wu, T., Wu, X., Pang, Q., Xiao, Y., Qiao, Y., and Shi, J.: Modeling
699 hydrothermal transfer processes in permafrost regions of Qinghai-Tibet Plateau in China, *Chin.
700 Geograph. Sci.*, 25, 713-727, <https://doi.org/10.1007/s11769-015-0733-6>, 2015.

701 Hu, G., Zhao, L., Wu, X., Li, R., Wu, T., Xie, C., Pang, Q., and Zou, D.: Comparison of the thermal
702 conductivity parameterizations for a freeze-thaw algorithm with a multi-layered soil in permafrost
703 regions, *Catena*, 156, 244-251, <https://doi.org/10.1016/j.catena.2017.04.011>, 2017.

704 Jiang, Y., Chen, F., Gao, Y., He, C., Barlage, M., and Huang, W.: Assessment of uncertainty sources
705 in snow cover simulation in the Tibetan Plateau, *J. Geophys. Res.-Atmos.*, 125, e2020JD032674,
706 <https://doi.org/10.1029/2020JD032674>, 2020.

707 Jin, H., Sun, L., Wang, S., He, R., Lu, L., and Yu, S.: Dual influences of local environmental
708 variables on ground temperatures on the interior-eastern Qinghai-Tibet Plateau (I): vegetation and
709 snow cover. *J. Glaciol. Geocryol.* 30, 535–545, 2008.

710 Koren, V., Schaake, J., Mitchell, K., Duan, Q. Y., Chen, F., and Baker, J. M.: A parameterization of
711 snowpack and frozen ground intended for NCEP weather and climate models, *J. Geophys. Res.-*
712 *Atmos.*, 104, 19569-19585, <https://doi.org/10.1029/1999JD900232>, 1999.

713 Koven, C., Riley, W., and Stern, A.: Analysis of permafrost thermal dynamics and response to
714 climate change in the CMIP5 earth system models, *J. Clim.*, 26, 1877-1900,
715 <https://doi.org/10.1175/JCLI-D-12-00228.1>, 2013.

716 Lawrence, D., Fisher, R., Koven, C., Oleson, K., Swenson, S., Vertenstein, M.: Technical description
717 of version 5.0 of the Community Land Model (CLM), Boulder, Colorado, 2018.

718 Li, K., Gao, Y., Fei, C., Xu, J., Jiang, Y., Xiao, L., Li, R., and Pan, Y.: Simulation of impact of roots
719 on soil moisture and surface fluxes over central Qinghai – Xizang Plateau. *Plateau Meteor.*, 34,
720 642-652, <https://doi.org/10.7522/j.issn.1000-0534.2015.00035>, 2015.

721 Li, R., Zhao, L., Wu, T., Wang, Q. X., Ding, Y., Yao, J., Wu, X., Hu, G., Xiao, Y., Du, Y., Zhu, X.,
722 Qin, Y., Shuhua, Y., Bai, R., Erji, D., Liu, G., Zou, D., Yongping, Q., and Shi, J.: Soil thermal
723 conductivity and its influencing factors at the Tanggula permafrost region on the Qinghai–Tibet
724 Plateau, *Agric. For. Meteor.*, 264, 235-246, <https://doi.org/10.1016/j.agrformet.2018.10.011>,
725 2019.

726 Li, X., Wu, T., Zhu, X., Jiang, Y., Hu, G., Hao, J., Ni, J., Li, R., Qiao, Y., Yang, C., Ma, W., Wen, A.,
727 and Ying, X.: Improving the Noah-MP Model for simulating hydrothermal regime of the active
728 layer in the permafrost regions of the Qinghai-Tibet Plateau, *J. Geophys. Res.-Atmos.*, 125,
729 e2020JD032588, <https://doi.org/10.1029/2020JD032588>, 2020.

730 Luo, D., Wu, Q., Jin, H., Marchenko, S., Lyu, L., and Gao, S.: Recent changes in the active layer
731 thickness across the northern hemisphere, *Environ. Earth Sci.*, 75, 555.
732 <https://doi.org/10.1007/s12665-015-5229-2>, 2016.

733 Luo, S., Lyu, S., Zhang, Y., Hu, Z., Ma, Y. M., Li, S. S., and Shang, L.: Soil thermal conductivity
734 parameterization establishment and application in numerical model of central Tibetan Plateau,
735 *Chin. J. Geophys.*, 52, 919-928, <https://doi.org/10.3969/j.issn.0001-5733.2009.04.008>, 2009.

736 Luo, S., Wang, J., Pomeroy, J. W., and Lyu, S.: Freeze–thaw changes of seasonally frozen ground
737 on the Tibetan Plateau from 1960 to 2014, *J. Clim.*, 33(21), 9427-9446,
738 <https://doi.org/10.1175/JCLI-D-19-0923.1>, 2020.

739 Ma, N., Zhang, Y., Guo, Y., Gao, H., Zhang, H., and Wang, Y.: Environmental and biophysical
740 controls on the evapotranspiration over the highest alpine steppe, *J. Hydrol.*, 529, 980-992,
741 <https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.09.013>, 2015.

742 Maheu, A., Anctil, F., Gaborit, É., Fortin, V., Nadeau, D. F., and Therrien, R.: A field evaluation of
743 soil moisture modelling with the Soil, Vegetation, and Snow (SVS) land surface model using
744 evapotranspiration observations as forcing data, *J. Hydrol.*, 558, 532-545,
745 <https://doi.org/https://doi.org/10.1016/j.jhydrol.2018.01.065>, 2018.

746 Melton, J., Verseghy, D., Sospedra-Alfonso, R., and Gruber, S.: Improving permafrost physics in
747 the coupled Canadian Land Surface Scheme (v.3.6.2) and Canadian Terrestrial Ecosystem Model
748 (v.2.1) (CLASS-CTEM), *Geosci. Model Dev.*, 12, 4443-4467, <https://doi.org/10.5194/gmd-12-4443-2019>, 2019.

750 Nicolsky, D. J., Romanovsky, V. E., Alexeev, V. A., and Lawrence, D. M.: Improved modeling of

751 permafrost dynamics in a GCM land-surface scheme, *Geophys. Res. Lett.*, 34, L08501,
752 <https://doi.org/10.1029/2007gl029525>, 2007.

753 Niu, G.-Y., and Yang, Z.-L.: Effects of vegetation canopy processes on snow surface energy and
754 mass balances, *J. Geophys. Res.-Atmos.*, 109, D23111, <https://doi.org/10.1029/2004jd004884>,
755 2004.

756 Niu, G.-Y., and Yang, Z.-L.: Effects of frozen soil on snowmelt runoff and soil water storage at a
757 continental scale, *J. Hydrometeorol.*, 7, 937-952, <https://doi.org/10.1175/JHM538.1>, 2006.

758 Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., and Gulden, L. E.: A simple TOPMODEL-based runoff
759 parameterization (SIMTOP) for use in global climate models, *J. Geophys. Res.-Atmos.*, 110,
760 D21106, <https://doi.org/10.1029/2005jd006111>, 2005.

761 Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E., and Su, H.: Development of a simple
762 groundwater model for use in climate models and evaluation with Gravity Recovery and Climate
763 Experiment data, *J. Geophys. Res.-Atmos.*, 112, D07103, <https://doi.org/10.1029/2006jd007522>,
764 2007.

765 Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K.,
766 Niyogi, D., and Rosero, E.: The community Noah land surface model with multiparameterization
767 options (Noah-MP): 1. Model description and evaluation with local-scale measurements, *J.*
768 *Geophys. Res.-Atmos.*, 116, D12109, <https://doi.org/10.1029/2010JD015139>, 2011.

769 Park, S., and Park, S.K.: Parameterization of the snow-covered surface albedo in the Noah-MP
770 Version 1.0 by implementing vegetation effects, *Geosci. Model Dev.* 9, 1073-1085,
771 <https://doi.org/10.5194/gmd-9-1073-2016>, 2016.

772 Pilgrim, D. H., Chapman, T. G., and Doran, D. G.: Problems of rainfall-runoff modelling in arid and
773 semiarid regions, *Hydrolog. Sci. J.*, 33, 379-400, <https://doi.org/10.1080/02626668809491261>,
774 1988.

775 Qin, Y., Wu, T., Zhao, L., Wu, X., Li, R., Xie, C., Pang, Q., Hu, G., Qiao, Y., Zhao, G., Liu, G., Zhu,
776 X., and Hao, J.: Numerical modeling of the active layer thickness and permafrost thermal state
777 across Qinghai-Tibetan Plateau. *J. Geophys. Res.-Atmos.*, 122, 11,604-611,620,
778 <https://doi.org/10.1002/2017JD026858>, 2017.

779 Schaake, J. C., Koren, V. I., Duan, Q. Y., Mitchell, K., and Chen, F.: Simple water balance model
780 for estimating runoff at different spatial and temporal scales, *J. Geophys. Res.-Atmos.*, 101, 7461-
781 7475, <https://doi.org/10.1029/95jd02892>, 1996.

782 Shen, M., Piao, S., Jeong, S.-J., Zhou, L., Zeng, Z., Ciais, P., Chen, D., Huang, M., Jin, C.-S., Li, L.
783 Z. X., Li, Y., Myneni, R. B., Yang, K., Zhang, G., Zhang, Y., and Yao, T.: Evaporative cooling
784 over the Tibetan Plateau induced by vegetation growth, *Proc. Natl. Acad. Sci. U. S. A.*, 112, 9299-
785 9304, <https://doi.org/10.1073/pnas.1504418112>, 2015.

786 Toure, A., Rodell, M., Yang, Z., Beaudoin, H., Kim, E., Zhang, Y., and Kwon, Y.: Evaluation of
787 the snow simulations from the community land model, version 4 (CLM4). *J. Hydrometeorol.*, 17,
788 153-170, <https://doi.org/10.1175/JHM-D-14-0165.1>, 2016.

789 Wang, X., Chen, R., Han, C., Yang, Y., Liu, J., Liu, Z., Guo, S., and Song, Y.: Response of shallow
790 soil temperature to climate change on the Qinghai-Tibetan Plateau, *Int. J. Climatol.*, 41, 1-16,
791 <https://doi.org/10.1002/joc.6605>, 2021.

792 Wang, W., Yang, K., Zhao, L., Zheng, Z., Lu, H., Mamtimin, A., Ding, B., Li, X., Zhao, L., Li, H.,
793 Che, T., and Moore, J. C.: Characterizing surface albedo of shallow fresh snow and its importance
794 for snow ablation on the interior of the Tibetan Plateau, *J. Hydrometeorol.*, 21, 815-827,

795 https://doi.org/10.1175/JHM-D-19-0193.1, 2020.

796 Wei, Z., and Dong, W.: Assessment of simulations of snow depth in the Qinghai-Tibetan Plateau
797 using CMIP5 multi-models, *Arct. Antarct. Alp. Res.*, 47, 611-525,
798 https://doi.org/10.1657/AAAR0014-050, 2015.

799 Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelmuller, B., and Krinner, G.:
800 Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-
801 surface model CryoGrid 3, *Geosci. Model Dev.*, 9, 523-546, https://doi.org/10.5194/gmd-9-523-
802 2016, 2016.

803 Wetzel, P., and Chang, J.-T.: Concerning the relationship between evapotranspiration and soil
804 moisture, *J. Clim. Appl. Meteorol.*, 26, 18-27, https://doi.org/10.1175/1520-
805 0450(1987)026<0018:CTRBEA>2.0.CO;2, 1987.

806 Woo, M. K.: *Permafrost Hydrology*, Springer, Berlin, Heidelberg, 2012.

807 Wu, X., and Nan, Z.: A multilayer soil texture dataset for permafrost modeling over Qinghai-Tibetan
808 Plateau. Paper presented at 2016 IEEE International Geoscience and Remote Sensing Symposium
809 (IGARSS), Beijing, China. https://doi.org/10.1109/IGARSS.2016.7730283, 2016.

810 Wu, X. B., Nan, Z. T., Zhao, S. P., Zhao, L., and Cheng, G. D.: Spatial modeling of permafrost
811 distribution and properties on the Qinghai-Tibet Plateau, *Permafro. Periglac. Process.*, 29, 86-99,
812 https://doi.org/10.1002/ppp.1971, 2018.

813 Xie, Z., Hu, Z., Ma, Y., Sun, G., Gu, L., Liu, S., Wang, Y., Zheng, H., and Ma, W.: Modeling blowing
814 snow over the Tibetan Plateau with the community land model: Method and preliminary
815 evaluation, *J. Geophys. Res.-Atmos.*, 124, 9332-9355, https://doi.org/10.1029/2019jd030684,
816 2019.

817 Yang, K., Koike, T., Ye, B., and Bastidas, L.: Inverse analysis of the role of soil vertical
818 heterogeneity in controlling surface soil state and energy partition, *J. Geophys. Res.-Atmos.*, 110,
819 D08101, https://doi.org/10.1029/2004jd005500, 2005.

820 Yang, K., Koike, T., Ishikawa, H., Kim, J., Li, X., Liu, H., Shaomin, L., Ma, Y., and Wang, J.:
821 Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization, *J. Appl.*
822 *Meteorol. Clim.*, 47, 276-290, https://doi.org/10.1175/2007JAMC1547.1, 2008.

823 Yang, Z.-L., and Dickinson, R. E.: Description of the biosphere-atmosphere transfer scheme (BATS)
824 for the soil moisture workshop and evaluation of its performance, *Global Planet. Change*, 13,
825 117-134, https://doi.org/10.1016/0921-8181(95)00041-0, 1996.

826 Yang, Z.-L., Cai, X., Zhang, G., Tavakoly, A., Jin, Q., Meyer, L., and Guan, X.: The Community
827 Noah Land Surface Model with Multi-Parameterization Options (Noah-MP): Technical
828 Description, 2011a.

829 Yang, Z.-L., Niu, G.-Y., E. Mitchell, K., Chen, F., B. Ek, M., Barlage, M., Longuevergne, L.,
830 Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The community Noah land surface model with
831 multiparameterization options (Noah-MP): 2. Evaluation over global river basins. *J. Geophys.*
832 *Res.-Atmos.* 116, D12110, https://doi.org/10.1029/2010JD015140, 2011b.

833 Yao, C., Lyu, S., Wang, T., Wang, J., and Ma, C.: Analysis on freezing-thawing characteristics of
834 soil in high and low snowfall years in source region of the Yellow River, *Plateau Meteor.*, 38,
835 474-483, 2019.

836 Yao, J., Zhao, L., Gu, L., Qiao, Y., and Jiao, K.: The surface energy budget in the permafrost region
837 of the Tibetan Plateau, *Atmos. Res.*, 102, 394-407,
838 https://doi.org/https://doi.org/10.1016/j.atmosres.2011.09.001, 2011.

839 Yi, S., Zhou, Z., Ren, S., Ming, X., Yu, Q., Shengyun, C., and Baisheng, Y.: Effects of permafrost
840 degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau, *Environ.*
841 *Res. Lett.*, 6, 045403, <https://doi.org/10.1088/1748-9326/6/4/045403>, 2011.

842 You, Y., Huang, C., Gu, J., Li, H., Hao, X., and Hou, J.: Assessing snow simulation performance of
843 typical combination schemes within Noah-MP in northern Xinjiang, China, *J. Hydro.*, 581,
844 124380, <https://doi.org/10.1016/j.jhydrol.2019.124380>, 2020.

845 You, Y., Huang, C., Yang, Z., Zhang, Y., Bai, Y., and Gu, J.: Assessing Noah-MP parameterization
846 sensitivity and uncertainty interval across snow climates, *J. Geophys. Res.-Atmos.*, 125,
847 e2019JD030417, <https://doi.org/10.1029/2019jd030417>, 2020.

848 Yuan, W., Xu, W., Ma, M., Chen, S., Liu, W., and Cui, L.: Improved snow cover model in terrestrial
849 ecosystem models over the Qinghai-Tibetan Plateau, *Agric. For. Meteorol.*, 218-219, 161-170,
850 <https://doi.org/10.1016/j.agrformet.2015.12.004>, 2016.

851 Zeng, X., Wang, Z., and Wang, A.: Surface skin temperature and the interplay between sensible and
852 ground heat fluxes over arid regions, *J. Hydrometeorol.*, 13, 1359-1370,
853 <https://doi.org/10.1175/JHM-D-11-0117.1>, 2012.

854 Zhang, G., Chen, F., and Gan, Y.: Assessing uncertainties in the Noah-MP ensemble simulations of
855 a cropland site during the Tibet Joint International Cooperation program field campaign, *J.*
856 *Geophys. Res.-Atmos.*, 121, 9576-9596, <https://doi.org/10.1002/2016jd024928>, 2016.

857 Zhang, H., Su, Y., Jiang, H., Chao, H., and Su, W.: Influence of snow subliming process on land-
858 atmosphere interaction at alpine wetland, *J. Glaci. Geocry.*, 40, 1223-1230, 2018.

859 Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview,
860 *Reviews of Geophysics*, 43, RG4002, <https://doi.org/10.1029/2004RG000157>, 2005.

861 Zhao, L., Hu, G., Zou, D., Wu, X., Ma, L., Sun, Z., Yuan, L., Zhou, H., and Liu, S.: Permafrost
862 changes and its effects on hydrological processes on Qinghai-Tibet Plateau, *Bull. Chin. Acad.*
863 *Sci.*, 34, 1233-1246, <https://doi.org/10.16418/j.issn.1000-3045.2019.11.006>, 2019.

864 Zeng, X., Dickinson, R., Barlage, M., Dai, Y., Wang, G., and Oleson, K.: Treatment of undercanopy
865 turbulence in land models. *J. Clim.*, 18(23), 5086-5094. <https://doi.org/10.1175/Jcli3595.1>, 2005.

866 Zheng, D., van der Velde, R., Su, Z., Wen, J., Booij, M., Hoekstra, A., and Wang, X.: Under-canopy
867 turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP, *Water*
868 *Resour. Res.*, 51, 5735-5755. <https://doi.org/10.1002/2015WR017115>, 2015.

869 Zheng, D., van der Velde, R., Su, Z., Wen, J., and Wang, X.: Assessment of Noah land surface model
870 with various runoff parameterizations over a Tibetan river, *J. Geophys. Res.-Atmos.*, 122, 1488-
871 1504, <https://doi.org/10.1002/2016jd025572>, 2017.

872 Zheng, H., Yang, Z.-L., Lin, P., Wei, J., Wu, W.-Y., Li, L., Zhao, L., and Wang, S.: On the sensitivity
873 of the precipitation partitioning into evapotranspiration and runoff in land surface
874 parameterizations, *Water Resour. Res.*, 55, 95-111, <https://doi.org/10.1029/2017WR022236>,
875 2019.

876 Zheng, W., Wei, H., Wang, Z., Zeng, X., Meng, J., Ek, M., Mitchell, K., and Derber, J.: Improvement
877 of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact
878 on satellite data assimilation, *J. Geophys. Res.-Atmos.*, 117, D06117,
879 <https://doi.org/10.1029/2011jd015901>, 2012.

880 Zilitinkevich, S.: Non-local turbulent transport pollution dispersion aspects of coherent structure of
881 convective flows, *Air Pollution III, Air pollution theory and simulation (H Power, N*
882 *Moussiopoulos, C A Brebbia, eds) Computational Mechanics Publ*, Southampton, Boston, 1, 53-

883 60, 1995.
884 Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W.,
885 Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of
886 permafrost distribution on the Tibetan Plateau, *The Cryosphere*, 11, 2527-2542,
887 <https://doi.org/10.5194/tc-11-2527-2017>, 2017.
888