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Abstract. Land surface models (LSMs) are effective tools for near-surface permafrost 15 

modeling. Extensive and rigorous model inter-comparison is of great importance before 16 

application due to the uncertainties in current LSMs. This study designed an ensemble 17 

of 6912 experiments to evaluate the Noah land surface model with multi-18 

parameterization (Noah-MP) for soil temperature (ST) and soil liquid water (SLW) 19 

simulation, and investigate the sensitivity of parameterization schemes at a typical 20 

permafrost site on the Qinghai-Tibet Plateau. The results showed that Noah-MP 21 

systematically overestimates snow cover and thus induces great cold bias in ST. After 22 

removing the snow process, the cold bias remain, especially during the cold season. 23 

And the uncertainty of ST is greater in the cold season (October-April) and for the deep 24 

soil layers. ST is most sensitive to surface layer drag coefficient (SFC) while largely 25 

influenced by runoff and groundwater (RUN). By contrast, the influence of canopy 26 

stomatal resistance (CRS) and soil moisture factor for stomatal resistance (BTR) on ST 27 

is negligible. With limited impacts on ST simulation, vegetation model (VEG), canopy 28 

gap for radiation transfer (RAD) and snow/soil temperature time scheme (STC) are 29 

more influential on shallow ST, while super-cooled liquid water (FRZ), frozen soil 30 

permeability (INF) and lower boundary of soil temperature (TBOT) have greater 31 

impacts on deep ST. In addition, Noah-MP generally underestimates soil moisture. The 32 

RUN process dominates the SLW simulation in comparison of the very limited impacts 33 

of all other physical processes. Furthermore, an optimal configuration of Noah-MP for 34 

permafrost modeling were extracted based on the connectivity between schemes, and 35 

they are: table leaf area index with calculated vegetation fraction, Jarvis scheme for 36 

CRS, Noah scheme for BTR, BATS model for RUN, Chen97 for SFC, zero canopy gap 37 

for RAD, variant freezing-point depression for FRZ, hydraulic parameters defined by 38 

soil moisture for INF, ST at 8 m for TBOT, and semi-implicit method for STC. The 39 

analysis of the model structural uncertainties and characteristics of each scheme would 40 

be constructive to a better understanding of the land surface processes on the QTP and 41 

further model improvements towards near-surface permafrost modeling using the 42 

LSMs. 43 

  44 
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1 Introduction 45 

The Qinghai-Tibet Plateau (QTP) hosts the world's largest high-altitude 46 

permafrost covering a contemporary area of 1.06 × 106 km2 (Zou et al., 2017). Under 47 

the background of climate warming and intensifying human activities, permafrost on 48 

the QTP has been widely suffering thermal degradation (Ran et al., 2018), resulting in 49 

reduction of permafrost extent, disappearing of permafrost patches and thickening of 50 

active layer (Chen et al., 2020). Moreover, such degradation could cause alterations in 51 

hydrological cycles (Zhao et al., 2019; Woo, 2012), changes on ecosystem (Fountain et 52 

al., 2012; Yi et al., 2011) and damages to infrastructures (Hjort et al., 2018). Therefore, 53 

it is very important to monitor and simulate the state of permafrost to adapt to the 54 

degradation. 55 

Soil temperature (ST) is an intuitive indicator to evaluate the thermal state of 56 

permafrost. A number of monitoring sites have been established on the QTP (Cao et al., 57 

2019). However, it is inadequate to construct the thermal state of permafrost by 58 

considering the spatial variability of the ground thermal regime and an uneven 59 

distribution of these observations. In contrast, numerical models are competent 60 

alternatives. In recent years, land surface models (LSMs), which describe the exchanges 61 

of heat, water, and momentum between the land and atmosphere (Maheu et al., 2018), 62 

have received significant improvements in the representation of permafrost and frozen 63 

ground processes (Koven et al., 2013; Nicolsky et al., 2007; Melton et al., 2019). LSMs 64 

are capable of simulating the transient change of permafrost by describing subsurface 65 

hydrothermal processes (e.g. soil temperature and moisture) with soil heat conduction 66 

(-diffusion) and water movement equations (Daniel et al., 2008). Moreover, they can 67 

be integrated with the numerical weather prediction system like WRF (Weather 68 

Research and Forecasting), making them as effective tools for comprehensive 69 

interactions between climate and permafrost (Nicolsky et al., 2007). 70 

Some LSMs have been applied to modeling permafrost in the QTP. Guo and Wang 71 

(2013) investigated near-surface permafrost and seasonally frozen ground states as well 72 

as their changes using the Community Land Model, version 4 (CLM4). Hu et al. (2015) 73 
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applied the coupled heat and mass transfer model to identify the hydrothermal 74 

characteristics of the permafrost active layer in the Qinghai-Tibet Plateau. Using an 75 

augmented Noah LSM, Wu et al. (2018) modeled the extent of permafrost, active layer 76 

thickness, mean annual ground temperature, depth of zero annual amplitude and ground 77 

ice content on the QTP in 2010s. Despite those achievements based on different models, 78 

LSMs are in many aspects insufficient for permafrost modeling. For one thing, large 79 

uncertainties still exist in the state-of-the-art LSMs when simulating the soil 80 

hydrothermal regime on the QTP (Chen et al., 2019). For instance, 19 LSMs in CMIP5 81 

overestimate snow depth over the QTP (Wei and Dong, 2015), which could result in the 82 

variations of the soil thermal regime in the aspects of magnitude and vector (cooling or 83 

warming) (Zhang, 2005). Moreover, most of the existing LSMs are not originally 84 

developed for permafrost modeling. Many of their soil processes are designed for 85 

shallow soil layers (Westermann et al., 2016), but permafrost may occur in the deep 86 

soil. And the soil column is often considered homogeneous, which can not represent 87 

the stratified soil common on the QTP (Yang et al., 2005). Given the numerous LSMs 88 

and possible deficiencies, it is necessary to assess the parameterization schemes for 89 

permafrost modeling on the QTP, which is helpful to identify the influential sub-90 

processes, enhance our understanding of model behavior, and guide the improvement 91 

of model physics (Zhang et al., 2016). 92 

Noah land surface model with multi-parameterization (Noah-MP) provides a 93 

unified framework in which a given physical process can be interpreted using multiple 94 

optional parameterization schemes (Niu et al., 2011). Due to the simplicity in selecting 95 

alternative schemes within one modeling framework, it has been attracting increasing 96 

attention in inter-comparison work among multiple parameterizations at point and 97 

watershed scales (Hong et al., 2014; Zheng et al., 2017; Gan et al., 2019; Zheng et al., 98 

2019; Chang et al., 2020; You et al., 2020). For example, Gan et al. (2019) carried an 99 

ensemble of 288 simulations from multi-parameterization schemes of six physical 100 

processes, assessed the uncertainties of parameterizations in Noah-MP, and further 101 

revealed the best-performing schemes for latent heat, sensible heat and terrestrial water 102 
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storage simulation over ten watersheds in China. You et al. (2020) assessed the 103 

performance of Noah-MP in simulating snow process at eight sites over distinct snow 104 

climates and identified the shared and specific sensitive parameterizations at all sites, 105 

finding that sensitive parameterizations contribute most of the uncertainties in the 106 

multi-parameterization ensemble simulations. Nevertheless, there is little research on 107 

the inter-comparison of soil thermal processes toward permafrost modeling. In this 108 

study, an ensemble experiment of totally 6912 scheme combinations was conducted at 109 

a typical permafrost monitoring site on the QTP. The simulated soil temperature (ST) 110 

of Noah-MP model was assessed and the sensitivities of parameterization schemes at 111 

different depths were further investigated. Considering the general performance and 112 

sensitive schemes of Noah-MP, we further explored the interactions between the most 113 

influential schemes and configured an optimal combination based on the connections 114 

between schemes. We hope this study can provide a reference for permafrost simulation 115 

on the QTP. 116 

This article is structured as follows: Section 2 introduces the study site, 117 

atmospheric forcing data, design of ensemble simulation experiments, and sensitivity 118 

analysis and optimal selection methods. Section 3 describes the ensemble simulation 119 

results of ST, explores the sensitivity and interactions of parameterization schemes, and 120 

determines the optimal combination for permafrost modeling. Section 4 discusses the 121 

schemes in each physical process and proposes further research topics. Section 5 122 

concludes the main findings of this study. 123 

2 Methods and materials 124 

2.1 Site description and observation datasets 125 

Tanggula observation station (TGL) lies in the continuous permafrost regions of 126 

Tanggula Mountain, central QTP (33.07°N, 91.93°E, Alt.: 5,100 m a.s.l; Fig. 1). This 127 

site a typical permafrost site on the plateau with sub-frigid and semiarid climate (Li et 128 

al., 2019), filmy and discontinuous snow cover (Che et al., 2019), sparse grassland (Yao 129 
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et al., 2011), coarse soil (Wu and Nan, 2016; He et al., 2019), and thick active layer 130 

(Luo et al., 2016), which are common features in the permafrost regions of the plateau. 131 

According to the observations from 20102011, the annual mean air temperature of 132 

TGL site was −4.4 °C. The annual precipitation was 375 mm, and of which 80% is 133 

concentrated between May and September. Alpine steppe with low height is the main 134 

land surface, whose coverage range is about 40% ~ 50% (Yao et al., 2011). The active 135 

layer thickness is about 3.15 m (Hu et al., 2017). 136 

The atmospheric forcing data, including wind speed/direction, air 137 

temperature/relative humidity/pressure, downward shortwave/longwave radiation, and 138 

precipitation, were used to drive the model. These variables above were measured at a 139 

height of 2 m and covered the period from August 10, 2010 to August 10, 2012 (Beijing 140 

time) with a temporal resolution of 1 hour. Daily soil temperature and liquid moisture 141 

at depths of 5cm, 25cm, 70cm, 140cm, 220cm and 300cm from October 1, 2010 to 142 

September 30, 2011 (Beijing time) were utilized to validate the simulation results. 143 

 144 

Figure 1. Location and geographic features of study site. (a) Location of observation 145 

site and permafrost distribution (Zou et al., 2017). (b) Topography of the Qinghai-Tibet 146 

Plateau. (c) Photo of the Tanggula observation station. 147 
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2.2 Ensemble experiments of Noah-MP 148 

The offline Noah-MP LSM v1.1 was assessed in this study. It consists of 12 149 

physical processes that are interpreted by multiple optional parameterization schemes. 150 

These sub-processes include vegetation model (VEG), canopy stomatal resistance 151 

(CRS), soil moisture factor for stomatal resistance (BTR), runoff and groundwater 152 

(RUN), surface layer drag coefficient (SFC), super-cooled liquid water (FRZ), frozen 153 

soil permeability (INF), canopy gap for radiation transfer (RAD), snow surface albedo 154 

(ALB), precipitation partition (SNF), lower boundary of soil temperature (TBOT) and 155 

snow/soil temperature time scheme (STC) (Table 1). Details about the processes and 156 

optional parameterizations can be found in Yang et al. (2011a).  157 

In this study, the dynamic vegetation option in VEG process was turned off for 158 

simplicity. Previous studies has confirmed that Noah-MP seriously overestimate the 159 

snow depth on the QTP (Li et al., 2020; Wang et al., 2020). However, the impact of 160 

snow cover on ground temperatures in the permafrost regions of QTP is usually 161 

considered weak (Jin et al., 2008; Wu et al., 2018), because the snow cover is thin, 162 

short-lived, and patchy-distributed (Che et al., 2019). For practical purpose, the ALB 163 

and SNF processes were not considered by setting the snow fraction in precipitation to 164 

zero. Since no snow cover in the ground, the ground albedo equals the soil albedo. As 165 

a result, in total 6912 combinations are possible for the left 10 processes and orthogonal 166 

experiments were carried out to evaluate their performance in soil thermal dynamics 167 

and obtain the optimal combination. 168 

The monthly leaf area index (LAI) was derived from the Advanced Very High-169 

Resolution Radiometer (AVHRR) (https://www.ncei.noaa.gov/data/, Claverie et al., 170 

2016). The Noah-MP model was modified to consider the vertical heterogeneity in the 171 

soil profile by setting the corresponding soil parameters for each layer. The soil 172 

hydraulic parameters, including the porosity, saturated hydraulic conductivity, 173 

hydraulic potential, the Clapp-Hornberger parameter b, field capacity, wilt point, and 174 

saturated soil water diffusivity, were determined using the pedotransfer functions 175 

proposed by Hillel (1980), Cosby et al. (1984), and Wetzel and Chang (1987) 176 

https://www.ncei.noaa.gov/data/
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(Equations S1-S7), in which the sand and clay percentages were based on Hu et al., 177 

(2017) (Table S1). In addition, the simulation depth was extended to 8.0 m to cover the 178 

active layer thickness of the QTP. The soil column was discretized into 20 layers, whose 179 

depths follow the default scheme in CLM 5.0 (Table S1, Lawrence et al., 2018). Due to 180 

the inexact match between observed and simulated depths, the simulations at 4cm, 181 

26cm, 80cm, 136cm, 208cm and 299cm were compared with the observations at 5cm, 182 

25cm, 70cm, 140cm, 220cm and 300cm, respectively. A 30-year spin-up was conducted 183 

in every simulation to reach equilibrium soil states. 184 

Table 1. The physical processes and options of Noah-MP. Options in bold are the 185 

optimal selections in this study. 186 

Physical processes Options 

Vegetation model (VEG) (1) table LAI, prescribed vegetation fraction 

(2) dynamic vegetation 

(3) table LAI, calculated vegetation fraction 

(4) table LAI, prescribed max vegetation fraction 

Canopy stomatal resistance (CRS) (1) Jarvis 

(2) Ball-Berry 

Soil moisture factor for stomatal 

resistance (BTR) 

(1) Noah 

(2) CLM 

(3) SSiB 

Runoff and groundwater (RUN) (1) SIMGM with groundwater 

(2) SIMTOP with equilibrium water table 

(3) Noah (free drainage) 

(4) BATS (free drainage) 

Surface layer drag coefficient 

(SFC) 

(1) Monin-Obukhov (M-O) 

(2) Chen97 

Super-cooled liquid water (FRZ)  (1) generalized freezing-point depression  

(2) Variant freezing-point depression  

Frozen soil permeability (INF) (1) Defined by soil moisture, more permeable 

(2) Defined by liquid water, less permeable 

Canopy gap for radiation transfer 

(RAD) 

(1) Gap=F(3D structure, solar zenith angle) 

(2) Gap=zero 

(3) Gap=1-vegetated fraction 

Snow surface albedo (ALB) (1) BATS 

(2) CLASS 

Precipitation partition (SNF) (1) Jordan91 

(2) BATS: Tsfc < Tfrz+2.2K 

(3) Tsfc < Tfrz 

Lower boundary of soil (1) zero heat flux 
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temperature (TBOT) (2) soil temperature at 8m depth 

Snow/soil temperature time 

scheme (STC) 

(1) semi-implicit 

(2) full implicit 

BATS (Biosphere–Atmosphere Transfer Model); CLASS (Canadian Land Surface Scheme); 187 

SIMGM (Simple topography-based runoff and Groundwater Model); SIMTOP (Simple 188 

Topography-based hydrological model); SSiB (Simplified Simple Biosphere model). 189 

2.3 Methods for sensitivity analysis 190 

The root mean square error (RMSE) between the simulations and observations 191 

were adopted to evaluate the performance of Noah-MP. The averages of the RMSEs of 192 

all the soil layers were defined as column RMSE (colRMSE). 193 

To investigate the influence degrees of each physical process on ST and SLW, we 194 

firstly calculated the mean RMSE (𝑌̅𝑗
𝑖) of the jth parameterization schemes (j = 1, 2, …) 195 

in the ith process (i = 1, 2, …). Then, the maximum difference of 𝑌̅𝑗
𝑖 (∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ) was 196 

defined to quantify the sensitivity of the ith process (i = 1, 2, …) (Li et al., 2015): 197 

∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ = 𝑌̅𝑚𝑎𝑥
𝑖 − 𝑌̅𝑚𝑖𝑛

𝑖  198 

where 𝑌̅𝑚𝑎𝑥
𝑖   and 𝑌̅𝑚𝑖𝑛

𝑖   are the largest and the smallest 𝑌̅𝑗
𝑖  in the ith process, 199 

respectively. For a given physical process, a high ∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  signifies large difference 200 

between parameterizations, indicating high sensitiveness of the ith process. 201 

The sensitivities of physical processes were determined by quantifying the 202 

statistical distinction level of performance between parameterization schemes. The 203 

Independent-sample T-test (2-tailed) was adopted to identify whether the distinction 204 

level between two schemes is significant, and that between three or more schemes was 205 

tested using the Tukey's test. Tukey's test has been widely used for its simple 206 

computation and statistical features (Benjamini, 2010). The detailed descriptions about 207 

this method can be found in Zhang et al. (2016), Gan et al. (2019), and You et al. (2020). 208 

A process can be considered sensitive when the schemes show significant difference. 209 

Moreover, schemes with small mean RMSE were considered favorable for ST/SLW 210 

simulation. We distinguished the differences of the parameterization schemes at 95% 211 
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confidence level. 212 

2.4 Optimal selection methods 213 

To extract the optimal combinations of parameterization schemes, the connection 214 

frequency (CF) between parameterizations was calculated: 215 

(1) Sorting the 6912 colRMSEs in an ascending order; 216 

(2) Donating the colRMSEs concentrated below the 5th percentile as the ''best 217 

combinations'' (346 members); 218 

(3) Counting the times of a given parameterizations occurring with other 219 

parameterizations in the ''best combinations''; 220 

(4) The CF was then determined by dividing 346. 221 

Obviously, for two given parameterization schemes, a large CF has an advantage 222 

in terms of optimal combination. 223 

3 Results 224 

3.1 General performance of the ensemble simulation 225 

3.1.1 Snow process simulation 226 

The performance of Noah-MP for snow simulation and its impacts on soil 227 

temperature was firstly tested by conducting an ensemble of 41472 (= 6912*2*3) 228 

experiments. Due to a lack of snow depth measurements, ground albedo was used as an 229 

indicator for snow cover. Figure 1 shows the monthly variations of observed ground 230 

albedo and the simulations produced by the ensemble simulations considering snow-231 

related physical processes (i.e. the ALB and SNF processes). The ground albedo was 232 

extremely overpredicted with large uncertainties when considering the snow options in 233 

Noah-MP, indicating the overestimation of snow depth and duration. As a result, the 234 

soil temperature basically presented a huge cold bias and large uncertainties at all layers 235 

(Fig. S1). When neglecting the snow, the simulated ground albedo was nearer to the 236 
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observation with a mean absolute error of 0.06. And the underestimation and 237 

uncertainties of soil temperature was greatly resolved. 238 

The influence of snow cover on soil temperature was further analyzed based on in-239 

situ measurements. Figure 3 shows the meteorological conditions and soil temperatures 240 

during a long-term snow process from 12/28/2010 – 1/27/2011. It can be seen that 241 

shallow soil temperature (5cm, 25cm, and 70cm) basically fluctuated with air 242 

temperature. At the beginning of the snow events on 1/1/2011, soil temperature at 5cm, 243 

25cm, and 70cm was slightly increased by 1.5℃, 1.2℃, and 0.7 ℃, respectively. With 244 

the melting of snow, the amplitude of soil temperature decreased. Meanwhile, soil 245 

temperature at deep layers showed no obvious fluctuations during the whole period. It 246 

indicates that snow cover at TGL site has a very limited effect on soil temperature, 247 

especially that of deep layers. 248 

Given the poor simulation of Noah-MP for snow cover and the weak impact of 249 

snow on soil temperature in reality, we will focus on the results of ensemble simulations 250 

without considering snowfall (6912 experiments in total) in the following sections. 251 

 252 

Figure 2. Monthly variations ground albedo at TGL site for observation (Obs), the 253 

ensemble simulation considering snow (Sim-with snow), and ensemble simulation 254 

neglecting snow (Sim-no snow). The green shadow represents the standard deviation 255 

of the ensemble simulation. 256 
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 258 

Figure 3. Variations of (a) precipitation and ground albedo, (b) air temperature and soil 259 

temperature at TGL site from 28 December 2010 to 27 January 2011. 260 

3.1.2 Soil temperature and moisture simulation 261 

We evaluated ST from the 6912 experiments against observations. Figure. 4 262 

illustrates the ensemble simulated and observed annual cycle of ST at TGL site. The 263 

plots give the uncertainty ranges of the ensemble experiments using five statistical 264 

indicators, i.e., the first/third quartile (Q1/Q3), mean, the lower (Q1-1.5(Q3-Q1)) and 265 

upper bound (Q3+1.5(Q3-Q1)). The kernel density distribution of the simulated ST is 266 

also illustrated. The ensemble experiments basically captured the seasonal variability 267 

of ST, whose magnitude decreased with soil depth. In addition, the simulated ST in the 268 

cold season (October-April) showed relatively wide uncertainty ranges, particularly at 269 

the deep layers. This indicates that the selected schemes perform more differently 270 

during the cold season, which is especially so at the deep layers. The simulated ST were 271 

generally smaller than the observations with relatively large gap during the cold season. 272 
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It indicates that the Noah-MP model generally underestimates the ST, especially during 273 

the cold season. Moreover, the simulated ST was widely found to be bimodal 274 

distribution across the soil column, implying that two schemes dominate the ST 275 

simulation in the Noah-MP model. 276 

Since the observation equipment can only record the liquid water, soil liquid water 277 

(SLW) was evaluated against simulations from the 6912 experiments (Fig. 5). The 278 

Noah-MP model generally underestimated surface (5cm and 25cm) and deep (300cm) 279 

SLW (Fig. 5g, 5h, 5l). However, Noah-MP tended to overestimate the SLW at the 280 

middle layers of 70cm, 140cm and 220cm. Moreover, the simulated SLW exhibited 281 

relatively wide uncertainty ranges during the warm season, particularly at the middle 282 

layers (Fig. 5). In addition, the distribution of the simulated SLW showed distinct 283 

bimodal peaks at the depth of 70cm and 140cm. 284 

285 

Figure 4. Monthly soil temperature (ST) at (a) 5 cm, (b) 25 cm, (c) 70 cm, (d) 140 cm, 286 

(e) 220 cm, (f) 300 cm at TGL site. Limits of the boxes represent upper and lower 287 

quartiles, whiskers extend to 1.5 times the interquartile range (IQR). The green circles 288 

in the box are the ensemble mean values. The light orange shading represents the kernel 289 

density distribution of simulated ST. The red diamonds are observations and the blue 290 
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circles are the results of the optimal scheme combination. 291 

 292 

Figure 5. Same as in Figure 4 but for SLW. 293 
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 297 

Figure 6. The maximum difference of the mean RMSE for (a, b and c) soil temperature 298 

(ST-∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅   in ℃) and (d, e and f) soil liquid water (SLW-∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅   in %) in each 299 

physical process during the (a and d) annual, (b and e) warm season, and (c and f) cold 300 

season at different soil depths. 301 

Figure. 6 compares the influence scores of the 10 physical processes at different 302 

soil depths, based on the maximum difference of the mean RMSE over 6912 303 

experiments using the same scheme, for ST and SLW at TGL site. The SFC and RUN 304 

processes dominated the ST-∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅   at all layers, indicating that they are the most 305 

sensitive processes for ST simulation. While most of the ST-∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  of the other 8 306 

physical processes were less than 0.6℃, among which the influence of CRS and BTR 307 

processes were negligible. What's more, the VEG, RAD and STC processes were more 308 

influential on the shallow STs than the deep STs. Taking the RAD process as an example, 309 

the annual ST-∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  of the 5cm and 25 cm were nearly 0.4℃ while that of the 70 310 

cm, 140cm, 220cm and 300cm were around 0.2℃. In contrast, the influence of FRZ, 311 

INF and TBOT processes were generally greater in deep soils than shallow soils. During 312 
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the warm season, the physical processes generally showed more influence on shallow 313 

soil temperatures. When it comes to the cold season, the influence of the physical 314 

processes on deep layers obviously increased and comparable with that on shallow 315 

layers, implying the relatively higher uncertainties of Noah-MP during the cold season. 316 

Most ∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅   for SLW are far less than 10%, indicating that all the physical 317 

processes have limited influence on the SLW, among which CRS, BTR, and STC 318 

showed the smallest effects on SLW (Fig. 6d). The RUN process dominates the 319 

performance of SLW simulation, especially at lower layers (70cm and 140cm, Fig. 6d, 320 

5e, and 5f). In addition, the VEG, SFC, FRZ, RAD, and TBOT processes generally 321 

showed more influence on deep layers, particularly in the cold season. 322 

3.2.2 Sensitivities of physical processes and general behaviors of 323 

parameterizations 324 

To further investigate the sensitivity of each process and the general performance 325 

of the parameterizations, the Independent-sample T-test (2-tailed) and Tukey's test were 326 

conducted to test whether the difference between parameterizations within a physical 327 

process is significant (Fig. 7). In a given sub-process, any two schemes labelled with 328 

different letters behave significantly different, and this sub-process therefore can be 329 

identified as sensitive. Otherwise, the sub-process is considered insensitive. Moreover, 330 

schemes with the letters late in the alphabet have smaller mean RMSEs and outperform 331 

the ones with the letters forward in the alphabet. Using the three schemes in vegetation 332 

model process (hereafter VEG(1), VEG(3) and VEG(4)) in Fig. 7 as an example. At the 333 

depth of 70cm, VEG(3) was labeled with letter "B", while VEG(1) and VEG (4) was 334 

labeled with letter "A". For other layers, VEG(1), VEG(3) and VEG(4) were labeled 335 

with the letter "A", "C" and "B", respectively. As described above, the VEG process 336 

was sensitive for ST simulation. Moreover, VEG(3) had advantages in producing good 337 

simulations than VEG(1) and VEG(4) at 70cm depth, and the performance decreased 338 

in the order of VEG(3) > VEG(4) > VEG(1) at other layers. In terms of the whole soil 339 

column, VEG(3) outperformed VEG(1) and VEG(4). 340 

Consistent with the result in Fig. 6, all other physical processes showed 341 
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sensitivities in varying magnitudes except the BTR and CRS process. And the 342 

performance difference between schemes of the RUN and SFC were obviously greater 343 

than other processes. For the RUN process, the performance orders for both ST and 344 

SLW simulation generally followed RUN(4) > RUN(1) > RUN(3) > RUN(2) as a whole. 345 

For the whole year, RUN(1), RUN(3), and RUN(4) had significant but slightly 346 

difference between each other, among which RUN(1) and RUN(4) presented similar 347 

performance during both warm and cold seasons (Fig. S2, S3, S4 and S5). During the 348 

warm season, the performance of RUN(3) for ST simulation showed notable 349 

improvements at shallow layers (5cm and 25cm, Fig. S2). By contrast, RUN(2) 350 

performed the worst among the four schemes in spite of the good performance at 351 

shallow layers during the cold season (5cm and 25cm in Fig. S3, 25cm in Fig. S5). 352 

During both warm and cold seasons, the performance orders for ST simulations were 353 

SFC(2) > SFC(1) for SFC process, FRZ(2) > FRZ(1) for FRZ process, and RAD(3) > 354 

RAD(1) > RAD(2) for RAD process (Fig. S2 and S3), which are particularly so for 355 

SLW simulations at shallow and deep layers. In particular, the FRZ process showed 356 

higher sensitivity at the deep soils and during the cold season (Fig. 6, 7 and 8). For the 357 

ST simulation, INF(2) performed better at the shallow soils (5cm and 25cm) while did 358 

worse at the deep soils compared with INF(1). Despite the slightly good performance 359 

of TBOT(2) for ST simulation at the first five layers, TBOT(1) greatly outperformed 360 

TBOT(2) at the depth of 300cm. For the STC process, STC(2) greatly excel STC(1) in 361 

simulating ST while showed small different with STC(1) when simulating SLW. 362 

However, the impact of STC process on SLW increase in line with that on ST during 363 

the cold season (Fig. 6). 364 

 365 
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 366 

Figure 7. Distinction level for RMSE of ST at different layers during the whole year in 367 

the ensemble simulations. Limits of the boxes represent upper and lower quartiles, 368 

whiskers extend to the maximum and minimum RMSE. The black stations in the box 369 

are the average values. The lines in the box indicate the median value. 370 
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 371 

Figure 8. Same as in Figure 7 but for SLW. 372 

3.3 The optimal combination 373 

The CF was calculated to extract the optimal combination of parameterization 374 

schemes for ST simulation (Fig. 9). The CF between any two schemes from the same 375 

physical process was zero as expected. The CF of RUN(2) and RUN(3) with other 376 

schemes was nearly zero, implying that using RUN(2) and RUN (3) provides an 377 

extreme less chance of producing favorable simulations than using RUN(1) RUN(4). A 378 

higher CF signify greater probability of producing advantageous simulations. For 379 

instance, the CF between SFC(2) and VEG(3) was 0.46, about two times than the CFs 380 

between SFC(2) and VEG(1)/VEG(4). It indicates that 46% of the 346 best 381 

combinations adopted SFC(2) and VEG(3) simultaneously, and the combination of 382 
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SFC(2) and VEG(3) tend to induce better ST in comparison of the combination of 383 

SFC(2) and VEG(1)/VEG(4). 384 

SFC(2) is firstly determined as one of the schemes that make up the optimal 385 

combination, because it was most widely linked to other parameterization schemes with 386 

relatively large CFs. Other optimal schemes of each physical process can be determined 387 

by choosing the one that has large CF with SFC(2). Obviously, VEG(3), RUN(4), 388 

FRZ(2) and INF(1) outperform other schemes in the corresponding physical processes 389 

and were selected for optimal combination. The schemes within CRS, BTR, RAD and 390 

STC processes scored nearly identical CFs with SFC(2). Due to the insensitivity of CRS 391 

and BTR, CRS(1) and BTR(1), which are the default schemes in Noah-MP, were 392 

determined as the member schemes of the optimal combination. Combining the selected 393 

schemes above with different schemes of RAD and STC processes, there are 6 394 

candidate combinations, among which the one with smallest colRMSE is selected as 395 

the optimal combination. Ultimately, the determined schemes for optimal combination 396 

is VEG(3), CRS(1), BTR(1), RUN(4), SFC(2), FRZ(2), INF(1), RAD(2), TBOT(2) and 397 

STC(1) (Table 1). 398 

The simulated results of the optimal scheme combination well captured the 399 

variation of ST (Fig. 4). Despite the overestimation of ST at the shallow soil layers from 400 

April to July, the optimal combination well produced the ST during the cold season and 401 

of the deep layers (Fig. 4), which is crucial for modeling permafrost features such as 402 

active layer thickness and temperature at the top of the permafrost. 403 

 404 

 405 



21 

 

 406 

Figure 9. Connection frequency of parameterization schemes. 407 

4 Discussion 408 

4.1 Influence of snow cover on permafrost in the QTP 409 

Reproducing the snow processes remains a persistent challenge for LSMs in the 410 

QTP, most of which overestimate the snow depth (Wei and Dong, 2015), including the 411 

Noah-MP model (Jiang et al., 2020; Li et al., 2020; Wang et al., 2020). Our ensemble 412 

simulations also show that the surface albedo is extremely overestimated in both 413 

magnitude and duration (Fig. 2), implying an extreme overestimation of snow cover. 414 

The overestimation is ascribed to many causes, such as the vegetation effect (Park et 415 

al., 2016), the snow cover fraction (Jiang et al., 2020), the sublimation from wind (Yuan 416 

et al., 2016; Li et al., 2020), and the fresh snow albedo (Wang et al. 2020). More need 417 

to be done in the future to quantify the influence of these physics. 418 

However, snow cover in the permafrost regions of the QTP is thin, patchy, and 419 

short-lived (Che et al., 2019) because of the high wind speed (Yuan et al., 2016; Xie et 420 
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al., 2019) and strong solar radiation (Meng et al., 2018). Its influence on soil 421 

temperature and contribution to permafrost state is usually considered weak (Jin et al., 422 

2008). The in-situ measurements at TGL site also showed limited influence on soil 423 

temperature (Fig. 3), which is consistent with the studies at an alpine wetland site 424 

(Zhang et al., 2018) and the Yellow River source (Yao et al., 2019) on the QTP. The 425 

insufficient of numerical models for snow simulation seriously suppresses the accuracy 426 

of soil temperature (Fig. S1). For practical purpose, the snow processes is usually 427 

neglected when modeling the permafrost state in the QTP (Qin et al., 2017; Zou et al., 428 

2017; Wu et al., 2018). 429 

4.2 Possible reasons for the cold bias of soil temperature 430 

The cold bias of soil temperature on the QTP are widely reported in many of the 431 

state-of-the-art LSMs (Yang et al., 2009;Chen et al., 2019). One of the main reason can 432 

be the inability of representing the diurnal variation of roughness length for heat (Z0h) 433 

on the QTP ( Yang et al., 2008; Chen et al., 2010), which is of great importance for a 434 

reliable calculation of the sensible and latent heat, and thus for the soil surface/profile 435 

temperature calculation (Zeng et al., 2012; Zheng et al., 2012). Noah-MP parameterize 436 

Z0h in the two schemes of SFC process (Table 1). In the M-O scheme, Z0h is taken as 437 

the same with the roughness length for momentum (Z0m, Niu et al., 2011). The Chen97 438 

scheme adopts the Zilitinkevitch approach (Zilitinkevich, 1995). However, both of 439 

them couldn't produce the diurnal variation of Z0,h (Chen et al., 2010). 440 

Another possible reason is the poor representation of the thermal conductivity (λ) 441 

of frozen soil. Considering that the λ of ice is nearly four times higher than liquid 442 

water, λ of frozen soil is generally expected to be greater than that of unfrozen soil. 443 

Many parameterization schemes of λ , including the Johansen scheme in Noah-MP, 444 

follow this pattern (Du et al., 2020). However, contrary phenomenon is widely reported 445 

over the QTP (Pan et al., 2016; Hu et al., 2017; Yi et al., 2018; Li et al., 2019), including 446 

the TGL site (Li et al., 2019). As a result, a majority of the state-of-the-art LSMs have 447 

tended to overestimate the soil thermal conductivity of the QTP (Luo et al., 2009; Chen 448 
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et al., 2012; Du et al., 2020), which exactly explains the underestimation of soil 449 

temperature during cold season and, at times, an overestimation during the warm season 450 

(Luo et al., 2009). 451 

4.3 Discussions on the sensitivity of physical processes 452 

4.3.1 Vegetation model (VEG) and canopy gap for radiation transfer (RAD) 453 

Noah-MP computes energy fluxes in vegetated fraction and bare fraction 454 

separately and then sum them up weighted by vegetation fraction (FVEG). As list in 455 

Table 1, VEG process includes three options to calculate FVEG in this study. VEG(3) 456 

calculates the daily FVEG based on the interpolated LAI, while VEG(1) and VEG(4) 457 

uses the prescribed monthly and maximum FVEG, respectively. Obviously, VEG(3) 458 

produces more realistic FVEG over the year, followed by VEG(1) and VEG(4). VEG(4) 459 

grossly overestimates the FVEG, especially that during the cold season. Consequently, 460 

VEG(3) outperformed VEG(1) and VEG(4). However, VEG(4) is widely used in many 461 

studies (Gao et al., 2015; Chen et al., 2016; Li et al., 2018) despite overestimating the 462 

FVEG. In this study, VEG(4) performed better than VEG(1). 463 

RAD treats the radiation transfer process within the vegetation, and adopts three 464 

methods to calculate the canopy gap. RAD(1) defines canopy gap as a function of the 465 

3D vegetation structure and the solar zenith angle, RAD(2) employs no gap within 466 

canopy, and RAD(3) treat the canopy gap from unity minus the FVEG (Niu and Yang, 467 

2004). The RAD(3) scheme penetrates the most solar radiation to the ground, followed 468 

by the RAD(1) and RAD(2) schemes. As an alpine grassland, there is a relative low 469 

LAI at TGL site, and thus a quite high canopy gap. So, schemes with a larger canopy 470 

gap could realistically reflect the environment. Consequently, the performance 471 

decreased in the order of RAD(3) > RAD(1) > RAD(2) for ST/SLW simulation. 472 

4.3.2 Canopy stomatal resistance (CRS) and soil moisture factor for stomatal 473 

resistance (BTR) 474 

The biophysical process BTR and CRS directly affect the canopy stomatal 475 
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resistance and thus the plant transpiration (Niu et al., 2011). The transpiration of plants 476 

could impact the ST through its cooling effect (Shen et al., 2015) and the water balance 477 

of root zone (Chang et al., 2020). However, the annual transpiration of alpine steppe is 478 

weak due to the shallow effective root zone and lower stomatal control in this dry 479 

environment (Ma et al., 2015), which may explain the indistinctive or very small 480 

difference among the schemes of the BTR and CRS processes (Fig. 7 and 8).  481 

4.3.3 Runoff and groundwater (RUN) 482 

For the RUN process, RUN(2) had the worst performance for simulating ST and 483 

SLW (Fig. 7 and 8) among the four schemes, likely due to its higher estimation of soil 484 

moisture (Fig. S6) and thus greater sensible heat and smaller ST (Gao et al., 2015). 485 

Consistent with the study of Li et al. (2015), RUN(3) performed the best at shallow 486 

layers for ST during the warm season, while that for SLW were less good. However, 487 

RUN(4) outperformed RUN(3) at deep layers, which may be explained by the better 488 

agreement of SLW by RUN(4) (Fig. 8 and S6).Likewise, RUN(4) was on a par with 489 

RUN(1) in the simulation of ST due to the very small difference in SLW of two schemes 490 

(Fig. 8 and S6). For the whole soil column, RUN(4) surpassed RUN(1) and RUN(2), 491 

both of which define surface/subsurface runoff as functions of groundwater table depth 492 

(Niu et al., 2005; Niu et al., 2007). This is in keeping with the study of Zheng et al. 493 

(2017) that soil water storage-based parameterizations outperform the groundwater 494 

table-based parameterizations in simulating the total runoff in a seasonally frozen and 495 

high-altitude Tibetan river, Besides, RUN(4) is designed based on the infiltration-496 

excess runoff (Yang and Dickinson, 1996) in spite of the saturation-excess runoff in 497 

RUN(1) and RUN(2) (Gan et al., 2019), which is more common in arid and semiarid 498 

areas like the permafrost regions of QTP (Pilgrim et al., 1988). 499 

4.3.4 Surface layer drag coefficient (SFC) 500 

SFC defines the calculations of the surface exchange coefficient for heat and water 501 

vapor (CH), which greatly impact the energy and water balance and thus the 502 

temperature and moisture of soil. SFC(1) adopts the Monin-Obukhov similarity theory 503 

(MOST) with a general form, while the SFC(2) uses the improved MOST modified by 504 
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Chen et al. (1997). The most distinct difference between them is that SFC(1) considers 505 

the zero-displacement height while SFC(2) parameterizes Z0h and Z0m using different 506 

schemes. The difference between SFC(1) and SFC(2) has a great impact on the CH 507 

value. Several studies have reported that SFC(2) has a better performance for the 508 

simulation of sensible and latent heat on the QTP (Zhang et al., 2016; Gan et al., 2019). 509 

The results of T-test in this study showed remarkable distinctions between the two 510 

schemes, where SFC(2) was dramatically superior to SFC(1) (Fig. 7 and 8). SFC(2) 511 

produces lower CH than SFC(1) (Zhang et al., 2014), resulting in less efficient 512 

ventilation and greater heating of the land surface (Yang et al., 2011b), and substantial 513 

improvement of the cold bias of Noah-MP in this study (Fig. 4). As the sensible heat 514 

rising, the latent heat decline (Gao et al., 2015) and the dry bias of Noah-MP is mitigated 515 

(Fig. 8). 516 

4.3.5 Super-cooled liquid water (FRZ) and frozen soil permeability (INF) 517 

FRZ treats liquid water in frozen soil (super-cooled liquid water) using two forms 518 

of freezing‐point depression equation. FRZ(1) takes a general form (Niu and Yang, 519 

2006), while FRZ(2) exhibits a variant form that considers the increased surface area 520 

of icy soil particles (Koren et al., 1999). FRZ(2) generally yields more liquid water in 521 

comparison of FRZ(1). For ST simulation, FRZ process did not show sensitivity at the 522 

shallow soil layers (5cm and 25cm) during the warm season (Fig. S2), but showed an 523 

increasing sensitivity at the deep layers, especially during the cold season (Fig. 4 and 524 

S3). This can be related to the greater sensitivity of FRZ (Fig. 4, S4 and S5) and the 525 

longer frozen duration at deep soil and during the cold season. 526 

INF(1) uses soil moisture (Niu and Yang, 2006) while INF(2) employs only the 527 

liquid water (Koren et al., 1999) to parameterize soil hydraulic properties. INF(2) 528 

generally produces more impermeable frozen soil than INF(1), which is also found in 529 

this study (Fig. S7). Due to the more realistic representation of SLW during the cold 530 

season (Fig. S7), INF(2) surpassed INF(1) in simulating ST at 5 cm depth, while INF(1) 531 

outperformed INF(2) at 70 cm, 140 cm and 220 cm (Fig. 7). This result also indicate 532 

that INF(1) and INF(2) could alleviate the overestimation and underestimation of SLW, 533 
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respectively. INF(2) simulated worse ST than INF(1) at 300 cm depth (Fig. 7) in spite 534 

of the better agreement with observed SLW (Fig. 8 and S7), which may be related to 535 

the overestimation of soil moisture of INF(2) at the depth of 140 cm. 536 

4.3.6 Lower boundary of soil temperature (TBOT) and snow/soil temperature time 537 

scheme (STC) 538 

TBOT process adopts two schemes to describe the soil temperature boundary 539 

conditions. TBOT (1) assumes zero heat flux at the bottom of the model, while TBOT(2) 540 

adopts the soil temperature at the 8 m depth (Yang et al., 2011a). In general, TBOT(1) 541 

is expected to accumulate heat in the deep soil and produce higher ST than TBOT(2). 542 

In this study, the two assumptions performed significantly different, especially at the 543 

deep soil. Although TBOT(2) is more representative of the realistic condition, TBOT(1) 544 

greatly surpassed TBOT(2) at the depth of 300cm. It can be related to the overall 545 

underestimation of the model, which can be alleviated by TBOT(1) because of heat 546 

accumulation (Fig. S8). 547 

Two time discretization strategies are implemented in the STC process, where 548 

STC(1) adopts the semi-implicit scheme while STC(2) uses the full implicit scheme, to 549 

solve the thermal diffusion equation in first soil or snow layers (Yang et al., 2011a). 550 

STC(1) and STC(2) are not strictly a physical processes but different upper boundary 551 

conditions of soil column (You et al., 2019). The differences between STC(1) and 552 

STC(2) were significant (Fig. 7). Snow processes are not involved in this study, the 553 

impacts of the two options on ST is remarkable (Fig. 6), particularly in the shallow 554 

layers and during the cold season (Fig. 6). In addition, STC(2) outperformed STC(1) in 555 

the ensemble simulated ST(Fig. 7), because the higher ST produced by STC(2) (Fig. 556 

S9) alleviated the overall underestimation of Noah-MP. 557 

4.4 Perspectives 558 

This study analyzed the characteristics and general behaviors of each 559 

parameterization scheme of Noah-MP at a typical permafrost site on the QTP, hoping 560 
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to provide a reference for simulating permafrost state on the QTP. We identified the 561 

systematic overestimation of snow cover and cold bias in Noah-MP, and discussed the 562 

possible sources of error. Relevant results and methodologies can be practical 563 

guidelines for improving the parameterizations of physical processes and testing their 564 

uncertainties towards near-surface permafrost modeling on the plateau. Although the 565 

site we selected may be representative for the typical environment on the plateau, 566 

continued investigation with a broad spectrum of climate and environmental conditions 567 

is required to make a general conclusion at regional scale. 568 

5 Conclusions 569 

In this study, an ensemble simulation using multi-parameterizations was 570 

conducted using the Noah-MP model at the TGL site, aiming to provide a reference for 571 

permafrost simulation using LSMs. The model was modified to consider the vertical 572 

heterogeneity in the soil and the simulation depth was extended to cover the whole 573 

active layer. The ensemble simulation consists of 6912 parameterization experiments, 574 

combining ten physical processes (VEG, CRS, BTR, RUN, SFC, FRZ, INF, RAD, 575 

TBOT, and STC) each with multiple optional schemes. On this basis, the general 576 

performance of Noah-MP was assessed by comparing simulation results with in situ 577 

observations, and the sensitivity of soil temperature and moisture at different depth of 578 

active layer to parameterization schemes was explored. Furthermore, we proposed a 579 

new method to extract the optimal combination of schemes to simulate soil temperature 580 

in the permafrost regions of the QTP. The main conclusions are as follows: 581 

(1) Noah-MP model tends to overestimate snow cover and thus largely underestimate 582 

soil temperature in the permafrost regions of the QTP. Systematic cold bias and 583 

large uncertainties of soil temperature still exist after removing the snow processes, 584 

particularly at the deep layers and during the cold season. This is largely due to the 585 

imperfect model structure with regard to the roughness length for heat and soil 586 

thermal conductivity. 587 

(2) Soil temperature is dominated by the surface layer drag coefficient (SFC) while 588 
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largely influenced by runoff and groundwater (RUN). Other physical processes 589 

have little impact on ST simulation, among which VEG, RAD, and STC are more 590 

influential on shallow ST, while FRZ, INF and TBOT have greater impacts on deep 591 

ST. In addition, CRS and BTR do not significantly affect the simulation results. 592 

(3) The best scheme combination for permafrost simulation are as follows: VEG (table 593 

LAI, calculated vegetation fraction), CRS (Jarvis), BTR (Noah), RUN (BATS), 594 

SFC (Chen97), RAD (zero canopy gap), FRZ (variant freezing-point depression), 595 

INF (hydraulic parameters defined by soil moisture), TBOT (ST at 8 m), STC (semi-596 

implicit). 597 

 598 

Code availability. The source code of offline 1D Noah-MP LSM v1.1 is available at 599 

https://ral.ucar.edu/solutions/products/noah-multiparameterization-land-surface-600 

model-noah-mp-lsm (last access: 15 May 2020). The modified Noah-MP with the 601 

consideration of vertical heterogeneity, extended soil depth, and pedotransfer functions 602 

is available upon request to the corresponding author. The data processing code are 603 

available at http://dx.doi.org/10.17632/gc7vfgkyng.1. 604 

 605 

Data availability. The 1-hourly forcing data and daily soil temperature data at the TGL 606 
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