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Abstract. Land surface models (LSMs) are effective tools for near-surface permafrost
modeling. Extensive and rigorous model inter-comparison is of great importance before
application due to the uncertainties in current LSMs. This study designed an ensemble
of 6912 experiments to evaluate the Noah land surface model with multi-
parameterization (Noah-MP) for soil temperature (ST) and soil liquid water (SLW)
simulation, and investigate the sensitivity of parameterization schemes at a typical
permafrost site on the Qinghai-Tibet Plateau. The results showed that Noah-MP
systematically overestimates snow cover and thus induces great cold bias in ST. After
removing the snow process, the cold bias remain, especially during the cold season.
And the uncertainty of ST is greater in the cold season (October-April) and for the deep
soil layers. ST is most sensitive to surface layer drag coefficient (SFC) while largely
influenced by runoff and groundwater (RUN). By contrast, the influence of canopy
stomatal resistance (CRS) and soil moisture factor for stomatal resistance (BTR) on ST
is negligible. With limited impacts on ST simulation, vegetation model (VEG), canopy
gap for radiation transfer (RAD) and snow/soil temperature time scheme (STC) are
more influential on shallow ST, while super-cooled liquid water (FRZ), frozen soil
permeability (INF) and lower boundary of soil temperature (TBOT) have greater
impacts on deep ST. In addition, Noah-MP generally underestimates soil moisture. The
RUN process dominates the SLW simulation in comparison of the very limited impacts
of all other physical processes. Furthermore, an optimal configuration of Noah-MP for
permafrost modeling were extracted based on the connectivity between schemes, and
they are: table leaf area index with calculated vegetation fraction, Jarvis scheme for
CRS, Noah scheme for BTR, BATS model for RUN, Chen97 for SFC, zero canopy gap
for RAD, variant freezing-point depression for FRZ, hydraulic parameters defined by
soil moisture for INF, ST at 8 m for TBOT, and semi-implicit method for STC. The
analysis of the model structural uncertainties and characteristics of each scheme would
be constructive to a better understanding of the land surface processes on the QTP and
further model improvements towards near-surface permafrost modeling using the

LSMs.
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1 Introduction

The Qinghai-Tibet Plateau (QTP) hosts the world's largest high-altitude
permafrost covering a contemporary area of 1.06 x 10° km? (Zou et al., 2017). Under
the background of climate warming and intensifying human activities, permafrost on
the QTP has been widely suffering thermal degradation (Ran et al., 2018), resulting in
reduction of permafrost extent, disappearing of permafrost patches and thickening of
active layer (Chen et al., 2020). Moreover, such degradation could cause alterations in
hydrological cycles (Zhao et al., 2019; Woo, 2012), changes on ecosystem (Fountain et
al., 2012; Yi et al., 2011) and damages to infrastructures (Hjort et al., 2018). Therefore,
it is very important to monitor and simulate the state of permafrost to adapt to the
degradation.

Soil temperature (ST) is an intuitive indicator to evaluate the thermal state of
permafrost. A number of monitoring sites have been established on the QTP (Cao et al.,
2019). However, it is inadequate to construct the thermal state of permafrost by
considering the spatial variability of the ground thermal regime and an uneven
distribution of these observations. In contrast, numerical models are competent
alternatives. In recent years, land surface models (LSMs), which describe the exchanges
of heat, water, and momentum between the land and atmosphere (Maheu et al., 2018),
have received significant improvements in the representation of permafrost and frozen
ground processes (Koven et al., 2013; Nicolsky et al., 2007; Melton et al., 2019). LSMs
are capable of simulating the transient change of permafrost by describing subsurface
hydrothermal processes (e.g. soil temperature and moisture) with soil heat conduction
(-diffusion) and water movement equations (Daniel et al., 2008). Moreover, they can
be integrated with the numerical weather prediction system like WRF (Weather
Research and Forecasting), making them as effective tools for comprehensive
interactions between climate and permafrost (Nicolsky et al., 2007).

Some LSMs have been applied to modeling permafrost in the QTP. Guo and Wang
(2013) investigated near-surface permafrost and seasonally frozen ground states as well

as their changes using the Community Land Model, version 4 (CLM4). Hu et al. (2015)
3
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applied the coupled heat and mass transfer model to identify the hydrothermal
characteristics of the permafrost active layer in the Qinghai-Tibet Plateau. Using an
augmented Noah LSM, Wu et al. (2018) modeled the extent of permafrost, active layer
thickness, mean annual ground temperature, depth of zero annual amplitude and ground
ice content on the QTP in 2010s. Despite those achievements based on different models,
LSMs are in many aspects insufficient for permafrost modeling. For one thing, large
uncertainties still exist in the state-of-the-art LSMs when simulating the soil
hydrothermal regime on the QTP (Chen et al., 2019). For instance, 19 LSMs in CMIP5
overestimate snow depth over the QTP (Wei and Dong, 2015), which could result in the
variations of the soil thermal regime in the aspects of magnitude and vector (cooling or
warming) (Zhang, 2005). Moreover, most of the existing LSMs are not originally
developed for permafrost modeling. Many of their soil processes are designed for
shallow soil layers (Westermann et al., 2016), but permafrost may occur in the deep
soil. And the soil column is often considered homogeneous, which can not represent
the stratified soil common on the QTP (Yang et al., 2005). Given the numerous LSMs
and possible deficiencies, it is necessary to assess the parameterization schemes for
permafrost modeling on the QTP, which is helpful to identify the influential sub-
processes, enhance our understanding of model behavior, and guide the improvement
of model physics (Zhang et al., 2016).

Noah land surface model with multi-parameterization (Noah-MP) provides a
unified framework in which a given physical process can be interpreted using multiple
optional parameterization schemes (Niu et al., 2011). Due to the simplicity in selecting
alternative schemes within one modeling framework, it has been attracting increasing
attention in inter-comparison work among multiple parameterizations at point and
watershed scales (Hong et al., 2014; Zheng et al., 2017; Gan et al., 2019; Zheng et al.,
2019; Chang et al., 2020; You et al., 2020). For example, Gan et al. (2019) carried an
ensemble of 288 simulations from multi-parameterization schemes of six physical
processes, assessed the uncertainties of parameterizations in Noah-MP, and further

revealed the best-performing schemes for latent heat, sensible heat and terrestrial water
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storage simulation over ten watersheds in China. You et al. (2020) assessed the
performance of Noah-MP in simulating snow process at eight sites over distinct snow
climates and identified the shared and specific sensitive parameterizations at all sites,
finding that sensitive parameterizations contribute most of the uncertainties in the
multi-parameterization ensemble simulations. Nevertheless, there is little research on
the inter-comparison of soil thermal processes toward permafrost modeling. In this
study, an ensemble experiment of totally 6912 scheme combinations was conducted at
a typical permafrost monitoring site on the QTP. The simulated soil temperature (ST)
of Noah-MP model was assessed and the sensitivities of parameterization schemes at
different depths were further investigated. Considering the general performance and
sensitive schemes of Noah-MP, we further explored the interactions between the most
influential schemes and configured an optimal combination based on the connections
between schemes. We hope this study can provide a reference for permafrost simulation
on the QTP.

This article is structured as follows: Section 2 introduces the study site,
atmospheric forcing data, design of ensemble simulation experiments, and sensitivity
analysis and optimal selection methods. Section 3 describes the ensemble simulation
results of ST, explores the sensitivity and interactions of parameterization schemes, and
determines the optimal combination for permafrost modeling. Section 4 discusses the
schemes in each physical process and proposes further research topics. Section 5

concludes the main findings of this study.

2 Methods and materials

2.1 Site description and observation datasets

Tanggula observation station (TGL) lies in the continuous permafrost regions of
Tanggula Mountain, central QTP (33.07°N, 91.93°E, Alt.: 5,100 m a.s.l; Fig. 1). This
site a typical permafrost site on the plateau with sub-frigid and semiarid climate (Li et

al., 2019), filmy and discontinuous snow cover (Che et al., 2019), sparse grassland (Yao
5
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et al., 2011), coarse soil (Wu and Nan, 2016; He et al., 2019), and thick active layer
(Luo et al., 2016), which are common features in the permafrost regions of the plateau.
According to the observations from 2010-2011, the annual mean air temperature of
TGL site was —4.4 °C. The annual precipitation was 375 mm, and of which 80% is
concentrated between May and September. Alpine steppe with low height is the main
land surface, whose coverage range is about 40% ~ 50% (Yao et al., 2011). The active
layer thickness is about 3.15 m (Hu et al., 2017).

The atmospheric forcing data, including wind speed/direction, air
temperature/relative humidity/pressure, downward shortwave/longwave radiation, and
precipitation, were used to drive the model. These variables above were measured at a
height of 2 m and covered the period from August 10, 2010 to August 10, 2012 (Beijing
time) with a temporal resolution of 1 hour. Daily soil temperature and liquid moisture
at depths of Scm, 25c¢m, 70cm, 140cm, 220cm and 300cm from October 1, 2010 to
September 30, 2011 (Beijing time) were utilized to validate the simulation results.
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Figure 1. Location and geographic features of study site. (a) Location of observation
site and permafrost distribution (Zou et al., 2017). (b) Topography of the Qinghai-Tibet

Plateau. (c) Photo of the Tanggula observation station.
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2.2 Ensemble experiments of Noah-MP

The offline Noah-MP LSM vl1.1 was assessed in this study. It consists of 12
physical processes that are interpreted by multiple optional parameterization schemes.
These sub-processes include vegetation model (VEG), canopy stomatal resistance
(CRS), soil moisture factor for stomatal resistance (BTR), runoff and groundwater
(RUN), surface layer drag coefficient (SFC), super-cooled liquid water (FRZ), frozen
soil permeability (INF), canopy gap for radiation transfer (RAD), snow surface albedo
(ALB), precipitation partition (SNF), lower boundary of soil temperature (TBOT) and
snow/soil temperature time scheme (STC) (Table 1). Details about the processes and
optional parameterizations can be found in Yang et al. (2011a).

In this study, the dynamic vegetation option in VEG process was turned off for
simplicity. Previous studies has confirmed that Noah-MP seriously overestimate the
snow depth on the QTP (Li et al., 2020; Wang et al., 2020). However, the impact of
snow cover on ground temperatures in the permafrost regions of QTP is usually
considered weak (Jin et al., 2008; Wu et al., 2018), because the snow cover is thin,
short-lived, and patchy-distributed (Che et al., 2019). For practical purpose, the ALB
and SNF processes were not considered by setting the snow fraction in precipitation to
zero. Since no snow cover in the ground, the ground albedo equals the soil albedo. As
aresult, in total 6912 combinations are possible for the left 10 processes and orthogonal
experiments were carried out to evaluate their performance in soil thermal dynamics
and obtain the optimal combination.

The monthly leaf area index (LAI) was derived from the Advanced Very High-
Resolution Radiometer (AVHRR) (https://www.ncei.noaa.gov/data/, Claverie et al.,
2016). The Noah-MP model was modified to consider the vertical heterogeneity in the
soil profile by setting the corresponding soil parameters for each layer. The soil
hydraulic parameters, including the porosity, saturated hydraulic conductivity,
hydraulic potential, the Clapp-Hornberger parameter b, field capacity, wilt point, and
saturated soil water diffusivity, were determined using the pedotransfer functions

proposed by Hillel (1980), Cosby et al. (1984), and Wetzel and Chang (1987)
7
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(Equations S1-S7), in which the sand and clay percentages were based on Hu et al.,
(2017) (Table S1). In addition, the simulation depth was extended to 8.0 m to cover the
active layer thickness of the QTP. The soil column was discretized into 20 layers, whose
depths follow the default scheme in CLM 5.0 (Table S1, Lawrence et al., 2018). Due to
the inexact match between observed and simulated depths, the simulations at 4cm,
26¢m, 80cm, 136cm, 208cm and 299cm were compared with the observations at Scm,
25cm, 70cm, 140cm, 220cm and 300cm, respectively. A 30-year spin-up was conducted
in every simulation to reach equilibrium soil states.

Table 1. The physical processes and options of Noah-MP. Options in bold are the

optimal selections in this study.

Physical processes Options
Vegetation model (VEG) (1) table LAI, prescribed vegetation fraction
(2) dynamic vegetation

(3) table LAI, calculated vegetation fraction
(4) table LAI, prescribed max vegetation fraction
Canopy stomatal resistance (CRS) (1) Jarvis
(2) Ball-Berry
Soil moisture factor for stomatal (1) Noah
resistance (BTR) (2) CLM
(3) SSiB
Runoff and groundwater (RUN) (1) SIMGM with groundwater
(2) SIMTOP with equilibrium water table
(3) Noah (free drainage)
(4) BATS (free drainage)
Surface layer drag coefficient (1) Monin-Obukhov (M-O)
(SFC) (2) Chen97
Super-cooled liquid water (FRZ) (1) generalized freezing-point depression
(2) Variant freezing-point depression
Frozen soil permeability (INF) (1) Defined by soil moisture, more permeable
(2) Defined by liquid water, less permeable
Canopy gap for radiation transfer (1) Gap=F(3D structure, solar zenith angle)

(RAD) (2) Gap=zero
(3) Gap=1-vegetated fraction
Snow surface albedo (ALB) (1) BATS
(2) CLASS
Precipitation partition (SNF) (1) Jordan91
(2) BATS: Tsge < Tg+2.2K
3) Tste < Th
Lower boundary of soil (1) zero heat flux

8
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temperature (TBOT) (2) soil temperature at 8m depth
Snow/soil temperature time (1) semi-implicit
scheme (STC) (2) full implicit

BATS (Biosphere—Atmosphere Transfer Model); CLASS (Canadian Land Surface Scheme);
SIMGM (Simple topography-based runoff and Groundwater Model); SIMTOP (Simple

Topography-based hydrological model); SSiB (Simplified Simple Biosphere model).
2.3 Methods for sensitivity analysis

The root mean square error (RMSE) between the simulations and observations
were adopted to evaluate the performance of Noah-MP. The averages of the RMSEs of
all the soil layers were defined as column RMSE (colRMSE).

To investigate the influence degrees of each physical process on ST and SLW, we

firstly calculated the mean RMSE ()7ji) of the jth parameterization schemes (=1, 2, ...)

in the ith process (i = 1, 2, ...). Then, the maximum difference of 17ji (ARMSE) was

defined to quantify the sensitivity of the ith process (i =1, 2, ...) (Li et al., 2015):
ARMSE = Vg — Viin

where Vg, and Y}, are the largest and the smallest ¥/ in the ith process,

min
respectively. For a given physical process, a high ARMSE signifies large difference
between parameterizations, indicating high sensitiveness of the ith process.

The sensitivities of physical processes were determined by quantifying the
statistical distinction level of performance between parameterization schemes. The
Independent-sample T-test (2-tailed) was adopted to identify whether the distinction
level between two schemes is significant, and that between three or more schemes was
tested using the Tukey's test. Tukey's test has been widely used for its simple
computation and statistical features (Benjamini, 2010). The detailed descriptions about
this method can be found in Zhang et al. (2016), Gan et al. (2019), and You et al. (2020).
A process can be considered sensitive when the schemes show significant difference.
Moreover, schemes with small mean RMSE were considered favorable for ST/SLW
simulation. We distinguished the differences of the parameterization schemes at 95%

9
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confidence level.

2.4 Optimal selection methods

To extract the optimal combinations of parameterization schemes, the connection
frequency (CF) between parameterizations was calculated:

(1) Sorting the 6912 colRMSEs in an ascending order;

(2) Donating the colRMSEs concentrated below the 5th percentile as the "best
combinations" (346 members);

(3) Counting the times of a given parameterizations occurring with other
parameterizations in the "best combinations";

(4) The CF was then determined by dividing 346.

Obviously, for two given parameterization schemes, a large CF has an advantage

in terms of optimal combination.

3 Results

3.1 General performance of the ensemble simulation

3.1.1 Snow process simulation

The performance of Noah-MP for snow simulation and its impacts on soil
temperature was firstly tested by conducting an ensemble of 41472 (= 6912%*2*3)
experiments. Due to a lack of snow depth measurements, ground albedo was used as an
indicator for snow cover. Figure 1 shows the monthly variations of observed ground
albedo and the simulations produced by the ensemble simulations considering snow-
related physical processes (i.e. the ALB and SNF processes). The ground albedo was
extremely overpredicted with large uncertainties when considering the snow options in
Noah-MP, indicating the overestimation of snow depth and duration. As a result, the
soil temperature basically presented a huge cold bias and large uncertainties at all layers

(Fig. ST). When neglecting the snow, the simulated ground albedo was nearer to the

10
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observation with a mean absolute error of 0.06. And the underestimation and
uncertainties of soil temperature was greatly resolved.

The influence of snow cover on soil temperature was further analyzed based on in-
situ measurements. Figure 3 shows the meteorological conditions and soil temperatures
during a long-term snow process from 12/28/2010 — 1/27/2011. It can be seen that
shallow soil temperature (5cm, 25cm, and 70cm) basically fluctuated with air
temperature. At the beginning of the snow events on 1/1/2011, soil temperature at Scm,
25cm, and 70cm was slightly increased by 1.5°C, 1.2°C, and 0.7 °C, respectively. With
the melting of snow, the amplitude of soil temperature decreased. Meanwhile, soil
temperature at deep layers showed no obvious fluctuations during the whole period. It
indicates that snow cover at TGL site has a very limited effect on soil temperature,
especially that of deep layers.

Given the poor simulation of Noah-MP for snow cover and the weak impact of
snow on soil temperature in reality, we will focus on the results of ensemble simulations

without considering snowfall (6912 experiments in total) in the following sections.

0.8 5
1 o/ \ —u— Obs
0.7 - —e— Sim-with snow
] Q —A— Sim-no snow
0.6 - \

0.1

T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure 2. Monthly variations ground albedo at TGL site for observation (Obs), the
ensemble simulation considering snow (Sim-with snow), and ensemble simulation
neglecting snow (Sim-no snow). The green shadow represents the standard deviation

of the ensemble simulation.
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Figure 3. Variations of (a) precipitation and ground albedo, (b) air temperature and soil

temperature at TGL site from 28 December 2010 to 27 January 2011.
3.1.2 Soil temperature and moisture simulation

We evaluated ST from the 6912 experiments against observations. Figure. 4
illustrates the ensemble simulated and observed annual cycle of ST at TGL site. The
plots give the uncertainty ranges of the ensemble experiments using five statistical
indicators, i.e., the first/third quartile (Q1/Q3), mean, the lower (Q1-1.5(Q3-Q1)) and
upper bound (Q3+1.5(Q3-Q1)). The kernel density distribution of the simulated ST is
also illustrated. The ensemble experiments basically captured the seasonal variability
of ST, whose magnitude decreased with soil depth. In addition, the simulated ST in the
cold season (October-April) showed relatively wide uncertainty ranges, particularly at
the deep layers. This indicates that the selected schemes perform more differently
during the cold season, which is especially so at the deep layers. The simulated ST were

generally smaller than the observations with relatively large gap during the cold season.
12
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It indicates that the Noah-MP model generally underestimates the ST, especially during
the cold season. Moreover, the simulated ST was widely found to be bimodal
distribution across the soil column, implying that two schemes dominate the ST
simulation in the Noah-MP model.

Since the observation equipment can only record the liquid water, soil liquid water
(SLW) was evaluated against simulations from the 6912 experiments (Fig. 5). The
Noah-MP model generally underestimated surface (Scm and 25¢m) and deep (300cm)
SLW (Fig. 5g, Sh, 51). However, Noah-MP tended to overestimate the SLW at the
middle layers of 70cm, 140cm and 220cm. Moreover, the simulated SLW exhibited
relatively wide uncertainty ranges during the warm season, particularly at the middle
layers (Fig. 5). In addition, the distribution of the simulated SLW showed distinct

bimodal peaks at the depth of 70cm and 140cm.
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Figure 4. Monthly soil temperature (ST) at (a) 5 cm, (b) 25 c¢m, (¢) 70 cm, (d) 140 cm,
(e) 220 cm, (f) 300 cm at TGL site. Limits of the boxes represent upper and lower
quartiles, whiskers extend to 1.5 times the interquartile range (IQR). The green circles
in the box are the ensemble mean values. The light orange shading represents the kernel

density distribution of simulated ST. The red diamonds are observations and the blue
13
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Figure 5. Same as in Figure 4 but for SLW.

3.2 Sensitivity of physical processes

3.2.1 Influence degrees of physical processes

14
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Figure 6. The maximum difference of the mean RMSE for (a, b and c) soil temperature
(ST-ARMSE in °C) and (d, e and f) soil liquid water (SLW-ARMSE in %) in each
physical process during the (a and d) annual, (b and e) warm season, and (c and f) cold
season at different soil depths.

Figure. 6 compares the influence scores of the 10 physical processes at different
soil depths, based on the maximum difference of the mean RMSE over 6912
experiments using the same scheme, for ST and SLW at TGL site. The SFC and RUN
processes dominated the ST-ARMSE at all layers, indicating that they are the most
sensitive processes for ST simulation. While most of the ST-ARMSE of the other 8
physical processes were less than 0.6°C, among which the influence of CRS and BTR
processes were negligible. What's more, the VEG, RAD and STC processes were more
influential on the shallow STs than the deep STs. Taking the RAD process as an example,
the annual ST-ARMSE of the 5cm and 25 cm were nearly 0.4°C while that of the 70
cm, 140cm, 220cm and 300cm were around 0.2°C. In contrast, the influence of FRZ,

INF and TBOT processes were generally greater in deep soils than shallow soils. During
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the warm season, the physical processes generally showed more influence on shallow
soil temperatures. When it comes to the cold season, the influence of the physical
processes on deep layers obviously increased and comparable with that on shallow
layers, implying the relatively higher uncertainties of Noah-MP during the cold season.

Most ARMSE for SLW are far less than 10%, indicating that all the physical
processes have limited influence on the SLW, among which CRS, BTR, and STC
showed the smallest effects on SLW (Fig. 6d). The RUN process dominates the
performance of SLW simulation, especially at lower layers (70cm and 140cm, Fig. 6d,
Se, and 5f). In addition, the VEG, SFC, FRZ, RAD, and TBOT processes generally

showed more influence on deep layers, particularly in the cold season.

3.2.2 Sensitivities of physical processes and general behaviors of

parameterizations

To further investigate the sensitivity of each process and the general performance
of the parameterizations, the Independent-sample T-test (2-tailed) and Tukey's test were
conducted to test whether the difference between parameterizations within a physical
process is significant (Fig. 7). In a given sub-process, any two schemes labelled with
different letters behave significantly different, and this sub-process therefore can be
identified as sensitive. Otherwise, the sub-process is considered insensitive. Moreover,
schemes with the letters late in the alphabet have smaller mean RMSEs and outperform
the ones with the letters forward in the alphabet. Using the three schemes in vegetation
model process (hereafter VEG(1), VEG(3) and VEG(4)) in Fig. 7 as an example. At the
depth of 70cm, VEG(3) was labeled with letter "B", while VEG(1) and VEG (4) was
labeled with letter "A". For other layers, VEG(1), VEG(3) and VEG(4) were labeled
with the letter "A", "C" and "B", respectively. As described above, the VEG process
was sensitive for ST simulation. Moreover, VEG(3) had advantages in producing good
simulations than VEG(1) and VEG(4) at 70cm depth, and the performance decreased
in the order of VEG(3) > VEG(4) > VEG(1) at other layers. In terms of the whole soil
column, VEG(3) outperformed VEG(1) and VEG(4).

Consistent with the result in Fig. 6, all other physical processes showed
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sensitivities in varying magnitudes except the BTR and CRS process. And the
performance difference between schemes of the RUN and SFC were obviously greater
than other processes. For the RUN process, the performance orders for both ST and
SLW simulation generally followed RUN(4) > RUN(1) > RUN(3) > RUN(2) as a whole.
For the whole year, RUN(1), RUN(3), and RUN(4) had significant but slightly
difference between each other, among which RUN(1) and RUN(4) presented similar
performance during both warm and cold seasons (Fig. S2, S3, S4 and S5). During the
warm season, the performance of RUN(3) for ST simulation showed notable
improvements at shallow layers (5cm and 25cm, Fig. S2). By contrast, RUN(2)
performed the worst among the four schemes in spite of the good performance at
shallow layers during the cold season (5cm and 25c¢m in Fig. S3, 25cm in Fig. S5).
During both warm and cold seasons, the performance orders for ST simulations were
SFC(2) > SFC(1) for SFC process, FRZ(2) > FRZ(1) for FRZ process, and RAD(3) >
RAD(1) > RAD(2) for RAD process (Fig. S2 and S3), which are particularly so for
SLW simulations at shallow and deep layers. In particular, the FRZ process showed
higher sensitivity at the deep soils and during the cold season (Fig. 6, 7 and 8). For the
ST simulation, INF(2) performed better at the shallow soils (5cm and 25cm) while did
worse at the deep soils compared with INF(1). Despite the slightly good performance
of TBOT(2) for ST simulation at the first five layers, TBOT(1) greatly outperformed
TBOT(2) at the depth of 300cm. For the STC process, STC(2) greatly excel STC(1) in
simulating ST while showed small different with STC(1) when simulating SLW.
However, the impact of STC process on SLW increase in line with that on ST during

the cold season (Fig. 6).
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Figure 7. Distinction level for RMSE of ST at different layers during the whole year in

the ensemble simulations. Limits of the boxes represent upper and lower quartiles,

whiskers extend to the maximum and minimum RMSE. The black stations in the box

are the average values. The lines in the box indicate the median value.
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Figure 8. Same as in Figure 7 but for SLW.

3.3 The optimal combination

The CF was calculated to extract the optimal combination of parameterization
schemes for ST simulation (Fig. 9). The CF between any two schemes from the same
physical process was zero as expected. The CF of RUN(2) and RUN(3) with other
schemes was nearly zero, implying that using RUN(2) and RUN (3) provides an
extreme less chance of producing favorable simulations than using RUN(1) RUN(4). A
higher CF signify greater probability of producing advantageous simulations. For
instance, the CF between SFC(2) and VEG(3) was 0.46, about two times than the CFs
between SFC(2) and VEG(1)/VEG(4). It indicates that 46% of the 346 best

combinations adopted SFC(2) and VEG(3) simultaneously, and the combination of
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SFC(2) and VEG(3) tend to induce better ST in comparison of the combination of
SFC(2) and VEG(1)/VEG(4).

SFC(2) is firstly determined as one of the schemes that make up the optimal
combination, because it was most widely linked to other parameterization schemes with
relatively large CFs. Other optimal schemes of each physical process can be determined
by choosing the one that has large CF with SFC(2). Obviously, VEG(3), RUN(4),
FRZ(2) and INF(1) outperform other schemes in the corresponding physical processes
and were selected for optimal combination. The schemes within CRS, BTR, RAD and
STC processes scored nearly identical CFs with SFC(2). Due to the insensitivity of CRS
and BTR, CRS(1) and BTR(1), which are the default schemes in Noah-MP, were
determined as the member schemes of the optimal combination. Combining the selected
schemes above with different schemes of RAD and STC processes, there are 6
candidate combinations, among which the one with smallest colRMSE is selected as
the optimal combination. Ultimately, the determined schemes for optimal combination
is VEG(3), CRS(1), BTR(1), RUN(4), SFC(2), FRZ(2), INF(1), RAD(2), TBOT(2) and
STC(1) (Table 1).

The simulated results of the optimal scheme combination well captured the
variation of ST (Fig. 4). Despite the overestimation of ST at the shallow soil layers from
April to July, the optimal combination well produced the ST during the cold season and
of the deep layers (Fig. 4), which is crucial for modeling permafrost features such as

active layer thickness and temperature at the top of the permafrost.
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Figure 9. Connection frequency of parameterization schemes.

4 Discussion

4.1 Influence of snow cover on permafrost in the QTP

Reproducing the snow processes remains a persistent challenge for LSMs in the
QTP, most of which overestimate the snow depth (Wei and Dong, 2015), including the
Noah-MP model (Jiang et al., 2020; Li et al., 2020; Wang et al., 2020). Our ensemble
simulations also show that the surface albedo is extremely overestimated in both
magnitude and duration (Fig. 2), implying an extreme overestimation of snow cover.
The overestimation is ascribed to many causes, such as the vegetation effect (Park et
al., 2016), the snow cover fraction (Jiang et al., 2020), the sublimation from wind (Yuan
et al., 2016; Li et al., 2020), and the fresh snow albedo (Wang et al. 2020). More need
to be done in the future to quantify the influence of these physics.

However, snow cover in the permafrost regions of the QTP is thin, patchy, and
short-lived (Che et al., 2019) because of the high wind speed (Yuan et al., 2016; Xie et
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al.,, 2019) and strong solar radiation (Meng et al., 2018). Its influence on soil
temperature and contribution to permafrost state is usually considered weak (Jin et al.,
2008). The in-situ measurements at TGL site also showed limited influence on soil
temperature (Fig. 3), which is consistent with the studies at an alpine wetland site
(Zhang et al., 2018) and the Yellow River source (Yao et al., 2019) on the QTP. The
insufficient of numerical models for snow simulation seriously suppresses the accuracy
of soil temperature (Fig. S1). For practical purpose, the snow processes is usually
neglected when modeling the permafrost state in the QTP (Qin et al., 2017; Zou et al.,
2017; Wu et al., 2018).

4.2 Possible reasons for the cold bias of soil temperature

The cold bias of soil temperature on the QTP are widely reported in many of the
state-of-the-art LSMs (Yang et al., 2009;Chen et al., 2019). One of the main reason can
be the inability of representing the diurnal variation of roughness length for heat (Zon)
on the QTP ( Yang et al., 2008; Chen et al., 2010), which is of great importance for a
reliable calculation of the sensible and latent heat, and thus for the soil surface/profile
temperature calculation (Zeng et al., 2012; Zheng et al., 2012). Noah-MP parameterize
Zon in the two schemes of SFC process (Table 1). In the M-O scheme, Zon is taken as
the same with the roughness length for momentum (Zom, N1u et al., 2011). The Chen97
scheme adopts the Zilitinkevitch approach (Zilitinkevich, 1995). However, both of
them couldn't produce the diurnal variation of Zo (Chen et al., 2010).

Another possible reason is the poor representation of the thermal conductivity ()
of frozen soil. Considering that the A of ice is nearly four times higher than liquid
water, A of frozen soil is generally expected to be greater than that of unfrozen soil.
Many parameterization schemes of A, including the Johansen scheme in Noah-MP,
follow this pattern (Du et al., 2020). However, contrary phenomenon is widely reported
over the QTP (Pan et al., 2016; Hu et al., 2017; Yi et al., 2018; Li et al., 2019), including
the TGL site (Li et al., 2019). As a result, a majority of the state-of-the-art LSMs have
tended to overestimate the soil thermal conductivity of the QTP (Luo et al., 2009; Chen
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et al., 2012; Du et al., 2020), which exactly explains the underestimation of soil
temperature during cold season and, at times, an overestimation during the warm season

(Luo et al., 2009).

4.3 Discussions on the sensitivity of physical processes

4.3.1 Vegetation model (VEG) and canopy gap for radiation transfer (RAD)

Noah-MP computes energy fluxes in vegetated fraction and bare fraction
separately and then sum them up weighted by vegetation fraction (FVEG). As list in
Table 1, VEG process includes three options to calculate FVEG in this study. VEG(3)
calculates the daily FVEG based on the interpolated LAI, while VEG(1) and VEG(4)
uses the prescribed monthly and maximum FVEG, respectively. Obviously, VEG(3)
produces more realistic FVEG over the year, followed by VEG(1) and VEG(4). VEG(4)
grossly overestimates the FVEG, especially that during the cold season. Consequently,
VEG(3) outperformed VEG(1) and VEG(4). However, VEG(4) is widely used in many
studies (Gao et al., 2015; Chen et al., 2016; Li et al., 2018) despite overestimating the
FVEG. In this study, VEG(4) performed better than VEG(1).

RAD treats the radiation transfer process within the vegetation, and adopts three
methods to calculate the canopy gap. RAD(1) defines canopy gap as a function of the
3D vegetation structure and the solar zenith angle, RAD(2) employs no gap within
canopy, and RAD(3) treat the canopy gap from unity minus the FVEG (Niu and Yang,
2004). The RAD(3) scheme penetrates the most solar radiation to the ground, followed
by the RAD(1) and RAD(2) schemes. As an alpine grassland, there is a relative low
LAI at TGL site, and thus a quite high canopy gap. So, schemes with a larger canopy
gap could realistically reflect the environment. Consequently, the performance

decreased in the order of RAD(3) > RAD(1) > RAD(2) for ST/SLW simulation.

4.3.2 Canopy stomatal resistance (CRS) and soil moisture factor for stomatal

resistance (BTR)

The biophysical process BTR and CRS directly affect the canopy stomatal
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resistance and thus the plant transpiration (Niu et al., 2011). The transpiration of plants
could impact the ST through its cooling effect (Shen et al., 2015) and the water balance
of root zone (Chang et al., 2020). However, the annual transpiration of alpine steppe is
weak due to the shallow effective root zone and lower stomatal control in this dry
environment (Ma et al., 2015), which may explain the indistinctive or very small

difference among the schemes of the BTR and CRS processes (Fig. 7 and 8).
4.3.3 Runoff and groundwater (RUN)

For the RUN process, RUN(2) had the worst performance for simulating ST and
SLW (Fig. 7 and 8) among the four schemes, likely due to its higher estimation of soil
moisture (Fig. S6) and thus greater sensible heat and smaller ST (Gao et al., 2015).
Consistent with the study of Li et al. (2015), RUN(3) performed the best at shallow
layers for ST during the warm season, while that for SLW were less good. However,
RUN(4) outperformed RUN(3) at deep layers, which may be explained by the better
agreement of SLW by RUN(4) (Fig. 8 and S6).Likewise, RUN(4) was on a par with
RUN(1) in the simulation of ST due to the very small difference in SLW of two schemes
(Fig. 8 and S6). For the whole soil column, RUN(4) surpassed RUN(1) and RUN(2),
both of which define surface/subsurface runoff as functions of groundwater table depth
(Niu et al., 2005; Niu et al., 2007). This is in keeping with the study of Zheng et al.
(2017) that soil water storage-based parameterizations outperform the groundwater
table-based parameterizations in simulating the total runoff in a seasonally frozen and
high-altitude Tibetan river, Besides, RUN(4) is designed based on the infiltration-
excess runoff (Yang and Dickinson, 1996) in spite of the saturation-excess runoff in
RUN(1) and RUN(2) (Gan et al., 2019), which is more common in arid and semiarid

areas like the permafrost regions of QTP (Pilgrim et al., 1988).
4.3.4 Surface layer drag coefficient (SFC)

SFC defines the calculations of the surface exchange coefficient for heat and water
vapor (CH), which greatly impact the energy and water balance and thus the
temperature and moisture of soil. SFC(1) adopts the Monin-Obukhov similarity theory

(MOST) with a general form, while the SFC(2) uses the improved MOST modified by
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Chen et al. (1997). The most distinct difference between them is that SFC(1) considers
the zero-displacement height while SFC(2) parameterizes Zon and Zom using different
schemes. The difference between SFC(1) and SFC(2) has a great impact on the CH
value. Several studies have reported that SFC(2) has a better performance for the
simulation of sensible and latent heat on the QTP (Zhang et al., 2016; Gan et al., 2019).
The results of T-test in this study showed remarkable distinctions between the two
schemes, where SFC(2) was dramatically superior to SFC(1) (Fig. 7 and 8). SFC(2)
produces lower CH than SFC(1) (Zhang et al., 2014), resulting in less efficient
ventilation and greater heating of the land surface (Yang et al., 2011b), and substantial
improvement of the cold bias of Noah-MP in this study (Fig. 4). As the sensible heat
rising, the latent heat decline (Gao et al., 2015) and the dry bias of Noah-MP is mitigated

(Fig. 8).
4.3.5 Super-cooled liquid water (FRZ) and frozen soil permeability (INF)

FRZ treats liquid water in frozen soil (super-cooled liquid water) using two forms
of freezing-point depression equation. FRZ(1) takes a general form (Niu and Yang,
2006), while FRZ(2) exhibits a variant form that considers the increased surface area
of icy soil particles (Koren et al., 1999). FRZ(2) generally yields more liquid water in
comparison of FRZ(1). For ST simulation, FRZ process did not show sensitivity at the
shallow soil layers (5cm and 25¢m) during the warm season (Fig. S2), but showed an
increasing sensitivity at the deep layers, especially during the cold season (Fig. 4 and
S3). This can be related to the greater sensitivity of FRZ (Fig. 4, S4 and S5) and the
longer frozen duration at deep soil and during the cold season.

INF(1) uses soil moisture (Niu and Yang, 2006) while INF(2) employs only the
liquid water (Koren et al., 1999) to parameterize soil hydraulic properties. INF(2)
generally produces more impermeable frozen soil than INF(1), which is also found in
this study (Fig. S7). Due to the more realistic representation of SLW during the cold
season (Fig. S7), INF(2) surpassed INF(1) in simulating ST at 5 cm depth, while INF(1)
outperformed INF(2) at 70 cm, 140 cm and 220 cm (Fig. 7). This result also indicate

that INF(1) and INF(2) could alleviate the overestimation and underestimation of SLW,
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respectively. INF(2) simulated worse ST than INF(1) at 300 cm depth (Fig. 7) in spite
of the better agreement with observed SLW (Fig. 8 and S7), which may be related to

the overestimation of soil moisture of INF(2) at the depth of 140 cm.

4.3.6 Lower boundary of soil temperature (TBOT) and snow/soil temperature time

scheme (STC)

TBOT process adopts two schemes to describe the soil temperature boundary
conditions. TBOT (1) assumes zero heat flux at the bottom of the model, while TBOT(2)
adopts the soil temperature at the 8 m depth (Yang et al., 2011a). In general, TBOT(1)
is expected to accumulate heat in the deep soil and produce higher ST than TBOT(2).
In this study, the two assumptions performed significantly different, especially at the
deep soil. Although TBOT(2) is more representative of the realistic condition, TBOT(1)
greatly surpassed TBOT(2) at the depth of 300cm. It can be related to the overall
underestimation of the model, which can be alleviated by TBOT(1) because of heat
accumulation (Fig. S8).

Two time discretization strategies are implemented in the STC process, where
STC(1) adopts the semi-implicit scheme while STC(2) uses the full implicit scheme, to
solve the thermal diffusion equation in first soil or snow layers (Yang et al., 2011a).
STC(1) and STC(2) are not strictly a physical processes but different upper boundary
conditions of soil column (You et al., 2019). The differences between STC(1) and
STC(2) were significant (Fig. 7). Snow processes are not involved in this study, the
impacts of the two options on ST is remarkable (Fig. 6), particularly in the shallow
layers and during the cold season (Fig. 6). In addition, STC(2) outperformed STC(1) in
the ensemble simulated ST(Fig. 7), because the higher ST produced by STC(2) (Fig.

S9) alleviated the overall underestimation of Noah-MP.

4.4 Perspectives

This study analyzed the characteristics and general behaviors of each

parameterization scheme of Noah-MP at a typical permafrost site on the QTP, hoping
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to provide a reference for simulating permafrost state on the QTP. We identified the
systematic overestimation of snow cover and cold bias in Noah-MP, and discussed the
possible sources of error. Relevant results and methodologies can be practical
guidelines for improving the parameterizations of physical processes and testing their
uncertainties towards near-surface permafrost modeling on the plateau. Although the
site we selected may be representative for the typical environment on the plateau,
continued investigation with a broad spectrum of climate and environmental conditions

is required to make a general conclusion at regional scale.

5 Conclusions

In this study, an ensemble simulation using multi-parameterizations was
conducted using the Noah-MP model at the TGL site, aiming to provide a reference for
permafrost simulation using LSMs. The model was modified to consider the vertical
heterogeneity in the soil and the simulation depth was extended to cover the whole
active layer. The ensemble simulation consists of 6912 parameterization experiments,
combining ten physical processes (VEG, CRS, BTR, RUN, SFC, FRZ, INF, RAD,
TBOT, and STC) each with multiple optional schemes. On this basis, the general
performance of Noah-MP was assessed by comparing simulation results with in situ
observations, and the sensitivity of soil temperature and moisture at different depth of
active layer to parameterization schemes was explored. Furthermore, we proposed a
new method to extract the optimal combination of schemes to simulate soil temperature
in the permafrost regions of the QTP. The main conclusions are as follows:

(1) Noah-MP model tends to overestimate snow cover and thus largely underestimate
soil temperature in the permafrost regions of the QTP. Systematic cold bias and
large uncertainties of soil temperature still exist after removing the snow processes,
particularly at the deep layers and during the cold season. This is largely due to the
imperfect model structure with regard to the roughness length for heat and soil
thermal conductivity.

(2) Soil temperature is dominated by the surface layer drag coefficient (SFC) while
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largely influenced by runoff and groundwater (RUN). Other physical processes
have little impact on ST simulation, among which VEG, RAD, and STC are more
influential on shallow ST, while FRZ, INF and TBOT have greater impacts on deep
ST. In addition, CRS and BTR do not significantly affect the simulation results.

(3) The best scheme combination for permafrost simulation are as follows: VEG (table
LAI, calculated vegetation fraction), CRS (Jarvis), BTR (Noah), RUN (BATS),
SFC (Chen97), RAD (zero canopy gap), FRZ (variant freezing-point depression),
INF (hydraulic parameters defined by soil moisture), TBOT (ST at 8 m), STC (semi-

implicit).

Code availability. The source code of offline 1D Noah-MP LSM v1.1 is available at
https://ral.ucar.edu/solutions/products/noah-multiparameterization-land-surface-
model-noah-mp-lsm (last access: 15 May 2020). The modified Noah-MP with the
consideration of vertical heterogeneity, extended soil depth, and pedotransfer functions
is available upon request to the corresponding author. The data processing code are

available at http://dx.doi.org/10.17632/gc7vigkyng.1.

Data availability. The 1-hourly forcing data and daily soil temperature data at the TGL
site are available at http://dx.doi.org/10.17632/gc7vfgkyng.1. Soil texture data can be
obtained at https://doi.org/10.1016/j.catena.2017.04.011 (Hu et al., 2017). The AVHRR
LAI data can be downloaded from https://www.ncei.noaa.gov/data/ (Claverie et al.,

2016).
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