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Abstract. Integrated assessment models (IAMs) project future anthropogenic emissions for input into climate models. 

However, the full list of climate-relevant emissions is lengthy and most IAMs do not model all of them. Here we present 10 

silicone, an open-source Python package which infers anthropogenic emissions of missing species based on other known 

emissions. For example, it can infer nitrous oxide emissions in one scenario based on carbon dioxide emissions from that 

scenario plus the relationship between nitrous oxide and carbon dioxide emissions in other scenarios. This broadens the 

range of IAMs available for exploring projections of future climate change. Silicone forms part of the open-source pipeline 

for assessments of the climate implications of IAMs by the IAM consortium (IAMC). A variety of infilling options are 15 

outlined and their suitability for different cases are discussed. The code and notebooks explaining details of the package and 

how to use it are available from the GitHub repository, https://github.com/GranthamImperial/silicone. There is an additional 

repository showing uses of the code to complement existing research at 

https://github.com/GranthamImperial/silicone_examples. 

 20 

1. Introduction 

1.1. General context and problem setting  

Integrated assessment models (IAMs) are scientific modelling tools that integrate knowledge from different academic 

disciplines with the aim to explore and inform policy decisions (IPCC, 2014b, 2018; Weyant, 2017). They are widely used in 25 

climate change research to combine insights from energy, economy, agricultural, and natural sciences, with the aim to create 

scenarios that explore how societal decisions can affect projected greenhouse gases and other emissions, as well as their 
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related climate outcomes (Huppmann, Rogelj, Kriegler, Krey, & Riahi, 2018; IPCC, 2014a; Riahi et al., 2017; Rogelj et al., 

2018). However, IAMs do not always exhaustively represent all possible processes or sources of climate-relevant emissions. 

Thus, many IAM scenarios lack projections for some climate forcers, be it specific greenhouse gas emissions or aerosol 30 

precursors. A complete set of these climate forcers is required to accurately estimate the overall climatic effects of a given 

scenario (Meinshausen, Raper, & Wigley, 2011; Smith et al., 2018), as a large number of supposedly minor emissions may 

exert a significant radiative forcing between them (IPCC, 2013; Meinshausen et al., 2017; O’Neill et al., 2016). Scenarios 

that only report a limited set of greenhouse gases or climate forcers thus must be complemented by estimated evolutions of 

missing emissions derived without further economic analysis. We term this estimation ‘infilling’. If no infilling is attempted, 35 

the unevaluated emissions are effectively infilled with zeros, which will clearly create systematic biases and potential 

artefacts in the projected temperatures. Depending on the radiative forcing of the species in question, this bias may be 

positive or negative, so infilling with zeros would not necessarily be a conservative choice. Most earlier studies overcame 

this problem in one of two ways: with expert-based ad-hoc decisions on how to adequately fill-in missing species (Schaeffer 

et al., 2015); or by assuming that a pathway will occur at the same quantile for each set of emissions in a particular year, 40 

although the quantile can vary over time (Meinshausen et al., 2006). However, the former clearly does not scale easily, and 

the latter approach, termed the “Equal quantile walk” (EQW), ignores trade-offs and specific relationships between emission 

species resulting from how competing technologies, behaviours and industrial practices result in different emissions. A more 

sophisticated “Generalized Quantile Walk” technique can capture the effect of trade-offs and was recently introduced in 

section 3.8.1 in (Meinshausen & Dooley, 2019), involving quantile regression between a lead variable (fossil CO2 45 

emissions) and other gases for every individual year. Unfortunately, the implementation there did not consistently guarantee 

that higher quantiles resulted in higher emissions, and has not been followed up with any peer-reviewed work that does so.  

Here we present a new toolbox of methods to address these recurring infilling challenges in the climatic assessment of 

socioeconomic emissions scenarios. The toolbox introduces new approaches as well as building on and combining  previous 

approaches. It significantly improves the codebase in terms of flexibility, applicability, reproducibility and versatility. 50 

1.2. The aim of Silicone 

Silicone is a Python package designed to enable users to expand scenario projections of a limited set of climate forcers to a 

full set required for an accurate climatic assessment. In essence, its methods are grounded in a comparison of the co-

evolution of anthropogenic emissions in scenarios that are readily available in the literature (Huppmann et al., 2018; Riahi et 

al., 2017; Rogelj et al., 2018). Silicone aims to provide IAM teams that do not represent all individual climate forcers with 55 

robust methods to complement their model output and facilitate a climatic assessment of their work. Furthermore, Silicone 

also aims to provide geoscience researchers with a tool to easily develop stylized, yet internally consistent future emission 

pathways of the most important climate forcers. It can also estimate or calculate missing sectoral data. Notebooks describing 
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how to use these tools are available on the accompanying GitHub repository (Lamboll, Nicholls, & Kikstra, 2020b) and the 

formal documentation is available at (Lamboll, Nicholls, & Kikstra, 2020a). Additional examples of using this for the 60 

specific situations outlined below are included in a separate GitHub repository (Lamboll, 2020). The package is open-source 

and intended to allow groups to write their own infilling methods if desired. Users and collaborators are invited to submit 

their code for review by the team on GitHub.  

Silicone is compatible with a suite of tools that make up the IAM climate assessment pipeline developed under the umbrella 

of the Integrated Assessment Modelling Consortium (IAMC). This pipeline includes tools to manipulate and plot IAM data 65 

(pyam, (Gidden & Huppmann, 2019)), harmonise mismatches in historical emissions (aneris, (Gidden, Fujimori, et al., 

2018)). The estimation of climatic impact is performed by OpenSCM, managed by the OpenSCM community (Nicholls, 

Gieseke, Lewis, & Willner, 2020), which is compatible with the data structure of the pipeline. This pipeline is being 

developed in support of the IAM community and the IAM scenario assessment for the forthcoming Sixth Assessment Report 

of the Intergovernmental Panel on Climate Change (IPCC AR6) in particular.  70 

2. Methods 

Silicone takes a database that contains data for at least two emissions species (this database is referred to as the ‘infiller’ 

database) and derives a relationship between these timeseries. It then applies that relationship to a second database (the 

‘infillee’ database), which does not have any data for one of the emissions species in the infiller database. For example, 

based on an infiller database of CO2 and N2O emissions, silicone could then derive N2O emissions compatible with the CO2 75 

emissions in a less complete infillee data base. 

Silicone offers a range of tools that apply methods for doing this infilling which are appropriate in different circumstances, 

depending on the amount of input data and how much we know about the narrative behind our emissions. These tools are 

referred to as ‘crunchers’. Each of these crunchers takes a ‘lead variable’, found in both the infiller and infillee databases, 

and uses it to infer the value of a ‘follower variable’, found only in the infiller database (hence missing in the infillee 80 

database). There are also several tools for easily infilling multiple variables, called ‘multiple infillers’. These may have 

multiple follower or lead variables.  

2.1. Methods overview 

2.1.1. Cruncher guide 

There are seven types of cruncher. These are outlined in Table 1 below. A flow chart to guide the choice is shown in Figure 85 

1. There is also a series of notebooks with examples of how to use them all in the main GitHub repository (Lamboll et al., 

2020b).  
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2.1.2. Multiple Infiller and Aggregation Tools Guide 

Multiple infillers are for cases where there are relationships between multiple values for inputs or outputs that need to be 

considered at the same time. They allow less tailored approaches to infilling but can ensure that the infilling is faster or more 90 

consistent than infilling each of the variables separately. These are outlined in Table 2.  

2.2. Mathematical detail 

Notebooks presenting benefits and risks of each cruncher type can be found in the silicone GitHub (Lamboll et al., 2020b) 

and may be useful to have as examples when analysing the work below, as well as demonstrating how to use them.  

There are two main classes of infillers: those based on ratios between two emission pathways and those based on the 95 

absolute emission values in the infiller database.  

The ratio-based approaches are better for cases where the lead values to be infilled are outside the range in the infiller 

database and we expect emissions to scale together. For instance, if we are infilling regional data from aggregate data, or 

splitting up aggregate emissions into their component gases. However, care needs to be taken when infilling emissions that 

are non-negative using a lead value that may be of any sign. In that case, the ratio method might produce values for the 100 

infillee emissions that are unsupported by any available evidence. Singular behaviour may also be encountered when the 

average lead data is close to zero in the infiller database. The different crunchers present different ways to estimate the ratio 

to use.  

The absolute value-based techniques infill with values derived from the absolute data found in the infiller database, or linear 

combinations of them. This means that they will always return values within the range spanned by the infiller database. This 105 

is most appropriate for processes where we have a larger number of cases, preferably with similar lead emissions in the 

infiller database or where we expect the follower emissions to be strongly bounded rather than increasing in line with other 

variables. They may be considered more stable and more conservative. The quantile rolling window (QRW) cruncher can be 

used in either ratio or absolute (non-ratio) mode, the absolute mode being the default.  

2.2.1. Ratio infilling methods 110 

These methods all firstly estimate the ratio of the lead gas to the follower gas. In all cases, we first estimate the ratios, written 

as 𝑅(𝑡) at time 𝑡. Once these have been calculated, the follower value in infillee database, 𝐸𝑓(𝑡), is valued as 𝐸𝑓(𝑡) =

𝑅(𝑡)𝐸𝑙(𝑡), where 𝐸𝑙(𝑡) is the lead value in the infillee database. ‘Constant ratio’ and ‘latest time ratio’ methods both use the 

same ratio for all infill times, 𝑅(𝑡) = 𝑅. The ratios may still be different for each different timeseries in the infillee database. 

With the ‘constant ratio’ method, the ratio must be given as an input parameter. The ‘latest time ratio’ method uses the ratio 115 

between the mean follower data in the infiller database (we denote this database with lower-case, 𝑒𝑓) and the value of lead 
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variable in the infillee data (𝐸𝑙), both evaluated at the latest time for which there exists follower data in the infiller database, 

𝑡𝑙𝑎𝑠𝑡 . This assumes that we have historic data up until sometime, after which it stops. This gives us the equation 𝑅 =

 
〈𝑒𝑓(𝑡𝑙𝑎𝑠𝑡)〉

𝐸𝑙(𝑡𝑙𝑎𝑠𝑡)
, where the angular brackets mean taking the (algebraic) mean with equal weighting for all estimates (typically 

historical estimates) and the lower case 𝑒𝑓(𝑡) represents the follower values in the database at time 𝑡. This ensures that at 120 

𝑡𝑙𝑎𝑠𝑡 , all infilled data will infill 𝐸𝑓(𝑡𝑙𝑎𝑠𝑡) = 〈𝑒𝑓(𝑡𝑙𝑎𝑠𝑡)〉.  

The ‘time-dependent ratio’ method relies on having data in the infiller database for all times, and allows the ratio to vary 

with time. For this we use 𝑅(𝑡) =  
〈𝑒𝑓(𝑡)〉

〈𝑒𝑙(𝑡)〉
. Optionally, the averaging can be taken only over cases where the sign of the lead 

variable is the same in both the infiller and infillee case – this will guarantee that the infilled value takes the same sign as that 

of follower values in the database. A useful property of this relation is that if in every scenario averaged over, the emissions 125 

of several substances sum to another substance, e.g. if 𝑒1 = 𝑒2 + 𝑒3, then 〈𝑒1〉 = 〈𝑒2〉 + 〈𝑒3〉 and so 1 =
〈𝑒2〉

〈𝑒1〉
+

〈𝑒3〉

〈𝑒1〉
 . This 

means when the aggregate is the lead and the components are follows, the sum of the two ratios is one, so we can use this 

infiller to break an aggregate value into components and know that the total is conserved. This relationship generalises to any 

number of components, still holds when emissions can be negative, and is irrespective of whether the averaging includes all 

values or only those where the lead has a particular sign. This is the foundation for the ‘decompose collection’ multiple 130 

infiller. It does however rely on all scenarios having values for all of these variables, so constructs a new version of the 

aggregate variable in case there is an inconsistency or absent data in the infiller database. This is not performed by the 

cruncher, so missing or inconsistent data can potentially distort results here.  

The ‘quantile rolling window’ method may be applied in ratio mode, in which case we calculate 𝑅(𝑡) by calculating the ratio 

for each scenario, 𝑟𝑠(𝑡) = 𝑒𝑓(𝑡)/𝑒𝑙(𝑡). This method finds quantiles of the ratio in the infiller database at set points along the 135 

range of lead values in the infiller database. It is more fully described below in the absolute value section.  

2.2.2. Absolute value infilling methods 

The ‘RMS closest’ cruncher filters the infiller database for models with all the same times as the infillee data. It then ranks 

models and scenarios by the root mean squared (RMS) difference between the lead data in the infiller and infillee database, 

with the average being taken over all times. It returns the follower data from the scenario/model combination with the 140 

smallest RMS difference. In the case of a draw, the value that occurs earlier in the infiller database will be used. It is the only 

infiller that is not time-independent, i.e. the value of the lead at one time impacts the whole timeline. 

The ‘linear interpolation’ method constructs an (unsmoothed) linear interpolator function between all lead and follower 

points in the infiller database at a given point in time. If multiple points have exactly the same lead value, the average follow 

value is used. The follower value returned is then the interpolated value for the infillee lead. The ‘Interpolate specified 145 
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scenarios and models’ cruncher filters for scenarios and models that match a given text string before performing the same 

action of the linear interpolation cruncher.  

The ‘quantile rolling windows’ cruncher, applied with the default option ‘use_ratio=False’, infills the values based on 

interpolating between quantiles calculated at fixed points across the range of lead values in the infiller database. This is 

identical to the above discussion where use_ratio=True, except using the actual follower values instead of the ratios between 150 

lead and follow. It is inspired by the Generalized Quantile Walk approach in section 3.8.1 of (Meinshausen & Dooley, 2019). 

An illustration of the idea behind this cruncher is shown in Figure 2: Schematic of how the quantile rolling window cruncher 

determines the follow value to use. a) Example relationships between lead (CO2) and follow (CH4) variables over time. b) 

Five windows are drawn and a weighting function constructed for each window. c) A relationship between the sum of the 

weights and the follow value is established and the follow value at the desired quantile is returned. . For each time in the 155 

infiller database, it splits the range of lead values into 𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠 points with values  𝑒𝑝, including the highest and lowest 

values. For each window, the weightings of each point are given as  𝑤𝑝(𝑒𝑙) = 1/(1 + (
(𝑒𝑝 − 𝑒𝑙)

𝑑𝑙
⁄ )

2

), where 𝑑𝑙 is the 

decay length, which defaults to half the separation between 𝑒𝑝. Amongst other things, this is a clear improvement over the 

Generalized Quantile Walk approach, as the latter uses equal weights within a fixed window of a certain fraction of the 

infiller database’s lead values in a certain year. These values are then normalised so that ∑ 𝑤𝑝 = 1 and sorted into ascending 160 

order by 𝑒𝑓. The follow value  at quantile 𝑞, evaluated at lead point 𝑒𝑝, is where the quantile equals the sum of weights of all 

smaller 𝑒𝑓 plus half the weight of 𝑒𝑓 itself, 𝑞 = ∑ 𝑤𝑝(𝑟𝑖)𝑟𝑖<𝑟𝑝
+

𝑤𝑝(𝑟𝑝)

2
. Quantiles between these known points are evaluated 

by linearly interpolating this relationship. To infill a point at 𝐸𝑙 , we interpolate between the known points 𝑒𝑝 . Quantile 

crossing is not possible in this framework because at any given evaluation point higher quantiles cannot have lower values, 

and only linear fits between these points are used.  165 

3. Rank Correlations 

The infilling method is important. However, equally important is the choice of lead variable. The best choice is where there 

is a causal link between the lead and follower variable, particularly if there is a clear understanding of the implications of this 

link for the relative behaviour of the two variables. In most cases, there is no such certainty, and the best choice is then to 

find the lead variable with the best predictive power. We estimate this by the Spearman’s rank correlation coefficient, a 170 

measurement of the monotonicity of the relationship between the two variables. In cases where this value is low, we 

anticipate the need for higher effort to select relevant cases from the infilling database. We use the data from the IPCC 

Special Report on Global Warming of 1.5 oC (Huppmann et al., 2018) as our database of scenarios and compare the 
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correlations between the different variables. The Silicone package has a function in the statistics section called 

‘calc_all_emissions_correlations’, which will produce tables of both the Spearman (rank) and Pearson correlation 175 

coefficients, calculated separately for each year requested and also the time-averaged magnitude of the correlations. Since 

there is no reason to expect the relationships between variables to be linear, we will focus on the rank correlation in this 

analysis. All the crunchers work just as well with negative trends as with positive, so the sign of the correlations is not 

relevant for considering goodness of fit. Using this tool, we can calculate the decadal-averaged magnitude of the rank 

correlation coefficient, found in Table 3.  We also calculate the variation of this value with time, and in cases where this 180 

exceeds 0.03, colour the cells orange. This is to indicate cases where more care needs to be taken to ensure that values are 

representative for the times of interest.   

The immediate observation from the study of absolute rank correlations is that there is no clear, overall best infiller gas. CH4 

has a slightly higher average than other emissions and is reported by most models. CO2 is reported by all models and has the 

second highest correlation, however this is somewhat inflated by having two of its constituents listed separately (a similar 185 

concern can be raised about F-gases). Generally these two therefore are the best choices for a ‘default lead variable’. 

However there are some specific cases where the correlations are low, and much better choices could be made.  

There is a cluster of values BC, CO, and OC, that correlate poorly with other emission pathways. Physically, these relate to 

incomplete burning, and are best infilled using each other. The F-gases, SF6, HFCs, and PFCs also primarily relate to each 

other. Fortunately many models report F-gas emissions, so infilling these should best be done by splitting the F-gas basket 190 

into its constituents. Otherwise the default infillers, CO2 and methane, should do reasonably.  

4. Results 

4.1. Reconstructing data 

The choice of cruncher to use in different situations will depend on the expectations about the specific emissions in question. 

However, in cases where there are no clear expectations, it is good to have a default. In this section we assess to which 195 

degree the cruncher reproduces the follower data from one model and scenario given the lead data from that case and all data 

from all the other model/scenario combinations in the SR1.5 database. We try this with both methane and CO2 as our lead 

variables and find similar results. Since we have no reason to believe that the answers will always scale with these variables 

(and ratio-based infillers have potentially unbounded errors), we choose four absolute-value infillers as our options: QRW 

(using only default settings, so in absolute mode), RMS closest, EQW and linear interpolation. We perform the infilling for 200 

each model/scenario combination, for each decade from 2020 to 2100, and report the root mean squared difference between 

the original value and the infilled value, normalised by the total variation in the follower value in the database at that time.  

https://doi.org/10.5194/gmd-2020-138
Preprint. Discussion started: 28 May 2020
c© Author(s) 2020. CC BY 4.0 License.



8 

 

 

 

We see that in both cases with this fairly large infiller database, the approach that generates non-CO2 pathways most similar 

to those removed from the initial scenarios is the RMS technique, and that the QRW technique is fairly similar. Linear 

interpolation is expected to produce a noisy fit when given a large input dataset, so its performance is unsurprisingly worse. 205 

The Equal Quantile Walk (EQW) performs similarly poorly, due to effectively ignoring the relationship between the lead 

and follower data. A Shapiro-Wilks test indicates that neither CO2 nor methane are statistically significantly non-Gaussian in 

distribution, either when analysed separately for each cruncher or as an aggregate. The small differences in rank between 

methane and CO2 manifest in slightly lower values for methane. Performing a student’s t-test on the results indicates that this 

result is statistically significant for the data as a whole (relative t-test t-statistic 3.4, p = 0.0013), although when considering 210 

each of the crunchers individually, only the RMS closest cruncher is significantly better with methane than CO2 (p-values for 

QRW = 0.33, RMS Closest = 0.0098, linear interpolation = 0.078, EQW = 0.37). We therefore conclude that using either as 

the default will produce reasonable results, with this slight preference for using methane as our default infiller counteracted 

by the slightly lower availability of data (412 cases rather than 414, as seen in table 3).  

We perform similar pairwise t-tests on the results of different crunchers, and find that the ordering of mean errors, (RMS 215 

closest < QRW < Linear interpolation ≈ EQW) are all statistically robust. The p-values are < 0.001 for all pairs except linear 

interpolation and EQW, which are much greater than 0.1, whether the comparison uses CO2 lead data, or methane lead data, 

or both data combined for all cases. We stress that this does not always mean that the RMS closest technique is the best 

default, as it makes the assumption that the pathway being infilled is similar to a whole pathway found in the database. The 

advantage of the quantile rolling windows technique is its conservativity – that it tends to produce values more towards the 220 

median value – and time-independence, whereas RMS closest is better at reconstructing the data and has better consistency 

over time. Linear interpolation and EQW are best used in cases where there is a large degree of knowledge about the 

expected relationship between variables.  

4.2. Use cases 

Data in the package relies on the IAM Consortium (IAMC) ‘pyam’ open-source software data structure (Gidden & 225 

Huppmann, 2019) and fits into the IAMC scenario assessment pipeline prepared in support of the IPCC literature 

assessment.  

As part of the pipeline, emissions projections are also harmonised, i.e. modified to be consistent with known historical 

emissions in a smooth way (Gidden, Fujimori, et al., 2018). The Silicone process is assumed to be part of the IAMC pipeline 

after harmonisation, as the harmonisation process will potentially differently affect the infilled and infiller data, resulting in 230 

inconsistencies. All infiller options except latest time ratio are designed such that if both the data being infilled (the ‘infillee 

data’) and the data drawn on for infilling (‘infiller data’) are harmonised, the result must also be harmonised, so there is no 

need for harmonisation again after infilling. (Latest time ratio only preserves the harmonisation of the last timepoint in the 
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infiller database.) The infilled results can then be run via climate models, most easily via the OpenSCM package (Nicholls, 

Gieseke, et al., 2020).  235 

We now demonstrate several uses of the package for specific purposes. The notebooks demonstrating the steps for these 

calculations can be found in the ”silicone_examples” GitHub repository (Lamboll, 2020). All methods work on databases 

with only a single region at a time, although the region can be different between the infiller and infillee databases. In our 

case, we always use global data.  

4.2.1. Infilling the Shell Sky scenario 240 

To demonstrate the uses of this package alone, we will apply the methods directly using unharmonised data in the SR1.5 

repository (Huppmann et al., 2019; IPCC, 2018) to infill the emission pathways of the Sky scenario by the Shell World 

Energy Model (which is also found in this database). The Sky scenario only reports a limited set of greenhouse gases and is 

thus an excellent use case. The crunchers are all used via the multiple infiller, “infill_all_required_emissions_for_openscm”. 

No active decisions are taken except to use the SSP5 scenarios from the REMIND-MAgPIE 1.5 model for the specified 245 

model interpolation. The choice of SSP5 is due to the Sky scenario involving similar assumptions of high-industry, high-

development, high energy demand and high fossil fuel use.  The choice of model is because this is the marker model for that 

scenario (Riahi et al., 2017).  

We see from Figure 3: Left: The Shell Sky model CO2 from Industry and Industrial Applications data. The fine lines 

represent the different timeseries in the SR1.5 database used to perform the infilling and are not included in the legend for 250 

clarity. Right: The results of interpolating this data using four different crunchers. The interpolate specified model approach 

used the REMIND-MAgPIE 1.5 model and only choses scenarios based on SSP5 pathways.  that the linear interpolation 

model (without filtering the database) provides a chaotic pathway, due to its value being determined only by the two points 

either side of it in the database, which changes randomly with time. Although the interpolate specified model approach is 

also determined by only a few model/scenario pairs because there is only data from a small number of related scenarios, the 255 

pathway is smoother and more consistent. The EQW pathway looks somewhat jagged, due to the density of pathways around 

the Shell sky model. This means that small differences in CO2 emissions can result in reasonably large changes in quantile 

and hence infilled methane emissions. The RMS closest pathway is consistent by construction (and precisely overlines a 

point in the original database). The quantile rolling windows result also looks consistent and is noticeably closer to the dense 

cloud of values around 200 Mt CH4 than other crunchers, which ignore data that is not highly similar in some way. The RMS 260 

closest result is more consistent over time but more arbitrary in its selection of the pathway, while quantile rolling window is 

more conservative in the sense of giving results closer to the median behaviour of the whole data set.  
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Splitting up a Kyoto Greenhouse Gases path 

The silicone package has features that can split a basket of gases into its constituents. In this example we take data from the 

Climate Action Tracker (CAT) website, which reports projected global emissions in terms of Kyoto gas totals (Jeffery, 265 

Guetschow, Gieseke, & Gebel, 2018). While it is possible to use this to infill all other values directly as above, the 

subcategories of Kyoto gas will not necessarily add up to the Kyoto gas total, so a preferable method is to divide the basket 

into its constituent parts (CO2, CH4, N2O and F-gases), first using the ‘decompose collection’ multiple infiller, then infill the 

remaining gases using other techniques as before. F-gases could be further subdivided using similar methods.  

As can be seen in Figure 5, the curves that result from decompose collection are generally smooth, in spite of being 270 

separately calculated at each timepoint. It is important to ensure that the number of scenarios reported at each time are 

consistent.  In the SR1.5 database, some scenarios only report values at decadal intervals, whereas others use five-year 

intervals. We interpolated all models to five-year intervals to give consistent representation. In the CH4 and F-gases, the 

lowest orange line is clearly seen to rise discontinuously after 2060. This is the last point before the Kyoto total goes 

negative. To ensure that the sign of the constituents is correct, the formula only considers data from SR1.5 paths where the 275 

Kyoto total has the same sign as in the data being infilled. In this way, emissions that are unlikely to go negative like 

methane are ensured positive, however their magnitude increases the more negative the aggregate is. An alternative way to 

infill, which is preferable in this case where we know that only one of the emissions will go negative, is to use RMS closest 

or (non-ratio) quantile rolling windows to infill the positive values and then allow the value that may be negative (CO2) to 

make up the rest. This produces the results seen in Figure 6. Here behaviour of all curves is fairly smooth, with no obvious 280 

features around zero-crossing points and no negative values except in CO2, as expected.  

4.2.2. Stylised trajectories 

Another use of this software is to infill simple, stylised trajectories generated to explore a wide range of possibilities without 

detailed economic modelling. For example, Sanderson et al. (Sanderson, O’Neill, & Tebaldi, 2016) suggest simple formulae 

whereby one may construct emissions trajectories characterised by a few free variables – in this case, based on transitioning 285 

between the RCP pathways. They present general formulae for generating plausible total CO2 pathways with several free 

variables. Silicone provides an alternative means of complementing such results by infilling using scenarios with similarities 

to the desired narrative, removing the need for more numerical free parameters between formulae. A notebook can be found 

in the silicone examples github detailing the calculations and demonstrating this usage, titled “Infill_stylised_path.ipynb” 

(Lamboll, 2020), using data from (Nicholls, Meinshausen, et al., 2020). It shows that curves with different values in some of 290 

the parameters, termed 𝐸∞ and 𝜏, can be complemented using a number of techniques. Here we highlight the method of 

interpolating results from any of the SSP scenarios as implemented by the MESSAGE models. As the different SSP models 
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have different narratives, this allows the user to decide what narrative is relevant to the infilling, rather than adding more 

arbitrary values (Gidden, Riahi, et al., 2018). An example of this output can be found in Figure 7. 

5. Summary 295 

In this paper we have outlined the features of the open-source Silicone package. This provides tools for complementing 

emissions pathways with other climate-relevant emissions through relationships found in the scenario literature. The package 

features several scripts for analysing data to establish the relationships between the variables in the complete infiller 

database, to establish the best variables to use when infilling. The values of the follower data are estimated using objects 

called crunchers, of which there are many. Notebooks describing the use of the crunchers are included in the GitHub 300 

repository, which also contains full documentation, and a flowchart for choosing the best cruncher for your situation is 

included in the text. The results of Spearman’s rank correlations implied that, in cases of complete ignorance, the best guess 

at lead variables are methane and CO2, and that the best default cruncher is the root mean squared closest cruncher, followed 

by the quantile rolling windows cruncher. Both of these perform significantly better at reconstructing known pathways 

compared to the currently-used equal quantile walk technique, although this and many other crunchers are included in the 305 

package for situationally specific usage. Several use-cases of the infilling techniques are demonstrated.  
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 385 

Table 1: A guide to crunchers. Names followed by asterisks use a ratio-based approach, i.e. they find a multiplicative factor and 

then multiply the infillee lead by this value. If the asterisk is in brackets, a ratio-based approach is optional. Otherwise, techniques 

all return linear combinations of values seen in the infiller database. 

Name Description Use case Pitfalls 

Constant ratio* Multiplies the lead variable 

by a constant (not fitted to 

any data) 

Used when no information 

about the follower variable 

is available in any 

database. Mainly used for 

infilling with zeros. 

Has no basis in the data – only 

used as a last resort in cases of 

complete uncertainty.  

Latest time 

ratio* 

Multiplies the lead variable 

by a constant fitted to a single 

(latest) timepoint in the 

infiller data.  

Used when no data is 

available for most times, 

this generalises from the 

latest information we have, 

e.g. if only historic data is 

available. 

No reason to assume that the 

relationship between emissions 

holds for all time. No 

restriction on signs of follower 

gas, so potential sign errors 

when the lead (but not 

follower) emissions may 

become negative. Emissions 

may need re-harmonising.  

Time 

dependent 

ratio* 

Multiplies the lead variable 

by the ratio of the averages of 

the lead and follower data in 

the infiller database. (Note: 

this ratio is not the same as 

the average of the ratios and 

is more stable to inclusion of 

extreme ratios.) Optionally 

calculates this using only 

values with the same sign of 

lead gas emissions.  

Used when two emissions 

should track each other, or 

one represents a portion of 

the other.  

Allows arbitrarily high 

emissions. Can behave 

unexpectedly if emissions 

change sign, particularly if 

emissions with this sign are not 

seen at the same time in the 

infiller database.  

RMS closest Finds the most similar 

pathway in the infiller 

database and uses those 

values. Most similar means 

smallest root mean squared 

difference between the lead 

values of infiller pathways 

and infillee pathway 

averaged over all times.  

Used when behaviour at 

one time should strongly 

determine behaviour at 

another and continuity is 

needed between times. The 

only cruncher that does not 

treat each time separately. 

A small change in the input at 

a single timestep can result in 

large changes in output at 

every timestep. All the results 

returned are found exactly in 

the infiller database, so if that 

database is small, the same 

values are returned in many 

cases. Results more extreme 

than found in the infiller 

database all return the same 

value. 
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Linear 

interpolation / 

Interpolate 

specified 

scenarios and 

models 

At each time, linearly 

interpolates between the 

follower values at the two 

nearest lead values, taking 

averages where multiple 

points have identical lead 

values.  Interpolate specified 

scenarios and models filters 

the input database before 

applying the same technique 

Used for infilling where 

we have a small number of 

comparable 

models/scenarios.  

A small change in the input 

can result in a large change in 

the output at the same timestep 

because pathways in the 

infiller database can be very 

different in follower variables 

for nearly identical values of 

the lead variable. For similar 

reasons, results can vary 

erratically between timesteps 

for large infiller datasets. 

Results more extreme than 

those found in the infiller 

database all return the same 

value. 

Quantile rolling 

window 

(QRW)/time-

dependent 

quantile rolling 

window (*) 

At each time, applies a 

1/(1+(lead variable 

difference)^2) weighting to 

datapoints at equally spaced 

points across the infiller lead. 

Then calculates a specified 

quantile (usually the median) 

for the infiller follower value 

at these points. Can also be 

used in ratio mode, in which 

case the ratio between lead 

and follower in the infiller 

database is treated as above. 

Time-dependent QRW allows 

the quantile to be different at 

different times (but is 

computationally slower).  

Can choose options to give 

more smoothing (less 

noise) or more localised 

behaviour (shows trends 

better) Allows the option 

to generate a distribution 

of outputs, not just a single 

optimum. Can add to the 

narrative through time-

dependence. Ratio mode 

allows better infilling 

outside the range of the 

input data.  

Using with any quantile larger 

than 0.5 will result in all 

emissions being higher, even if 

the lead and follower 

emissions anticorrelate. 

Results more extreme than 

found in the infiller database 

all return the same value, 

unless in ratio mode. In ratio 

mode, sign changes in the lead 

variable can result in follower 

emissions being assigned 

undesired negative values.  

Equal quantile 

walk (EQW) 

Calculates the quantile of the 

infiller database 

corresponding to the lead 

value in each individual year. 

Returns that quantile in that 

year of the follow value from 

the same database.  

Conceptually simple, used 

by previous work.   

Assumes all variables are 

monotonically increasing 

together. Results more extreme 

than those found in the infiller 

database all return the same 

value. 

 

Table 2: Guide to aggregation tools and multiple infillers.  390 

Name Description Use case Pitfalls 

Aggregation tools 

Aggregate to 

composite 

values 

Requires only the infillee 

database. Adds together 

known values to construct a 

Infilling aggregate values 

(e.g. Kyoto gas totals) 

Requires all information to be 

known already – no statistical 

inference, just adding.  
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consistent output (with 

optional weighting). 

Multiple infillers 

Decompose 

collection* 

Constructs a consistent 

version of the aggregate in the 

infiller database. Breaks a 

known quantity down into 

components, estimated by the 

time-dependent ratio method.  

Breaking down aggregate 

values into their 

components.  

Requires all infiller scenarios 

to have all components, 

otherwise ratios will be 

distorted. Any contributions to 

the aggregate values not 

quantified in the infiller 

database are ignored.  

Infill all 

required 

values (*) 

Uses the same lead variable 

and cruncher to infill any gaps 

in emissions data. 

For infilling scattered, 

minor gaps in a largely 

sound database.  

Low confidence in the results 

being accurate as the method 

does not consider the specific 

characteristics of the data.  
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Table 3. Absolute values of Spearman’s Rank correlation between emissions, averaged over the start of decades from 2020 to 2100. We use the following 

abbreviations: BC as black carbon, VOC as volatile organic compounds, AFOLU as Agriculture, Forestry and Other Land Use; and En & IP as as 

energy and industrial processes. “CO2|” represents subtypes of CO2. We also calculate the average of these rows, with or without the CO2 and subtypes. 

Cells are bold if the value in them is > 0.7 and are coloured orange if the variance of the rank correlation between years exceeds 0.03. 395 

variable BC CH4 CO CO2 

CO2| 

AFO

LU 

CO2|En 

& IP 

F- 

gases 
HFC N2O NH3 NOx OC PFC SF6 

Sulf

ur 

VO

C 

BC  0.47 0.75 0.46 0.37 0.42 0.23 0.10 0.40 0.40 0.58 0.73 0.41 0.20 0.48 0.45 

CH4   0.32 0.74 0.49 0.73 0.64 0.58 0.86 0.34 0.58 0.30 0.66 0.41 0.65 0.24 

CO    0.36 0.38 0.32 0.06 0.16 0.29 0.35 0.48 0.78 0.05 0.17 0.36 0.68 

CO2     0.54 0.96 0.60 0.57 0.54 0.30 0.61 0.24 0.35 0.22 0.69 0.37 

CO2| 

AFOLU      0.36 0.27 0.40 0.53 0.36 0.33 0.34 0.23 0.21 0.31 0.20 

CO2| 

Energy & 

IP       0.58 0.51 0.50 0.25 0.61 0.17 0.32 0.18 0.69 0.36 

F-gases        0.91 0.57 0.19 0.50 0.10 0.90 0.77 0.60 0.12 

HFC         0.46 0.11 0.30 0.14 0.71 0.68 0.36 0.23 

N2O          0.44 0.46 0.30 0.65 0.40 0.49 0.17 

NH3           0.23 0.39 0.10 0.05 0.23 0.25 

NOx            0.22 0.53 0.26 0.76 0.39 

OC             0.20 0.11 0.19 0.41 

PFC              0.77 0.46 0.16 

SF6               0.26 0.24 

Sulfur                0.46 

Average 0.43 0.53 0.37 0.50 0.36 0.46 0.47 0.42 0.47 0.27 0.46 0.31 0.43 0.33 0.47 0.32 

Average, 

no CO2 0.43 0.50 0.37 0.46 0.34 0.43 0.47 0.40 0.46 0.26 0.44 0.32 0.47 0.36 0.44 0.32 

# scenarios 389 412 353 414 412 414 368 108 411 345 363 363 180 191 412 345 
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Table 4: Root mean squared error in reconstructing known data using different crunchers, with CO2 as the lead variable. 

Species QRW RMS closest Linear interpolation EQW 

BC 0.129 0.119 0.177 0.161 

CH4 0.086 0.073 0.097 0.094 

CO 0.140 0.133 0.182 0.175 

F-gases 0.106 0.095 0.125 0.118 

HFC 0.152 0.140 0.165 0.159 

N2O 0.110 0.091 0.136 0.134 

NH3 0.175 0.151 0.240 0.240 

NOx 0.104 0.095 0.132 0.121 

OC 0.144 0.129 0.196 0.202 

PFC 0.132 0.101 0.120 0.163 

SF6 0.166 0.126 0.196 0.207 

Sulfur 0.094 0.081 0.108 0.104 

VOC 0.167 0.144 0.213 0.208 

Mean 0.131 0.114 0.161 0.161 

 

 400 
Table 5: Root mean squared error in reconstructing known data using different crunchers, with methane as the lead variable 

 QRW RMS closest Linear interpolation EQW 

BC 0.128 0.115 0.168 0.155 

CO 0.139 0.112 0.177 0.177 

CO2 0.087 0.083 0.104 0.089 

F-gases 0.112 0.099 0.132 0.129 

HFC 0.163 0.129 0.182 0.178 

N2O 0.078 0.062 0.085 0.075 

NH3 0.170 0.119 0.213 0.239 

NOx 0.107 0.099 0.131 0.119 

OC 0.142 0.107 0.178 0.180 

PFC 0.122 0.066 0.108 0.154 

SF6 0.161 0.127 0.197 0.203 

Sulfur 0.096 0.084 0.104 0.106 

VOC 0.165 0.126 0.195 0.214 

Mean 0.128 0.102 0.152 0.155 
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Figure 1: Flow chart suggesting how to choose the cruncher (peach oblongs) or multiple infiller (yellow oblongs) to use when 

infilling.  405 

 

no also need to specify 

a cruncher (peach 

box) 

Data before set time yes 

yes, infill 

one part 

yes 
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difference of known 
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Have data for whole 
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Use constant ratio Use last time ratio Breaking aggregate data 

into parts?  
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rolling windows 
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Start 
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Figure 2: Schematic of how the quantile rolling window cruncher determines the follow value to use. a) Example relationships 

between lead (CO2) and follow (CH4) variables over time. b) Five windows are drawn and a weighting function constructed for 

each window. c) A relationship between the sum of the weights and the follow value is established and the follow value at the 

desired quantile is returned.  410 

 

 

Figure 3: Left: The Shell Sky model CO2 from Industry and Industrial Applications data. The fine lines represent the different 

timeseries in the SR1.5 database used to perform the infilling and are not included in the legend for clarity. Right: The results of 
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interpolating this data using four different crunchers. The interpolate specified model approach used the REMIND-MAgPIE 1.5 415 
model and only choses scenarios based on SSP5 pathways.  

 

 

Figure 4: The Climate Action Tracker (CAT) Kyoto gas totals (thick lines) compared with the portfolio of values in the SR1.5 

database (thin lines).  420 
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Figure 5: The CAT Kyoto gas baskets decomposed into their components, using the decompose collection multiple infiller. 

 

 425 

Figure 6: Kyoto gases, decomposed by first infilling the non-negative emissions using the (non-ratio) quantile rolling windows, 

then infilling the CO2 using infill composite values.  
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Figure 7: Illustration of using the interpolate specified scenario cruncher to infill a series of stylised trajectories (solid lines), 430 
characterised by two different parameters (𝝉 and 𝑬∞), defined in (Sanderson et al., 2016). The first column compares the total CO2 

calculated for the stylised trajectories to the values of the MESSAGE model for a given group of SSP scenarios (dotted lines). 

These are our lead values in each case. The second column shows the range of follow values for that SSP. The third column shows 

the resultant AFOLU (Agriculture, Forestry and Other Land Use) trajectories that emerge from using the Interpolate Specified 

Scenario infiller.  435 
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