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Abstract. Integrated assessment models (IAMs) project future anthropogenic emissions which can be used as input for 

climate models. However, the full list of climate-relevant emissions is lengthy and most IAMs do not model all of them. 10 

Here we present Silicone, an open-source Python package which infers anthropogenic emissions of unmodelled species 

based on other reported emissions projections. For example, it can infer nitrous oxide emissions in one scenario based on 

carbon dioxide emissions from that scenario plus the relationship between nitrous oxide and carbon dioxide emissions found 

in other scenarios. Silicone’s infilling capability broadens the range of IAMs available for exploring projections of future 

climate change and forms part of the open-source pipeline for assessments of the climate implications of IAM scenarios, led 15 

by the Integrated Assessment Modelling Consortium (IAMC). This paper presents a variety of infilling options and outlines 

their suitability for different cases are discussed. We recommend certain infilling techniques as good defaults, but emphasise 

that considering the specifics of the model being infilled will produce better results. We demonstrate the package’s utility 

with three examples: infilling all required gases for a pathway with data for only one emission species, splitting up a Kyoto 

emissions total into separate gases and complementing a set of idealised emissions curves to provide a complete, consistent 20 

emissions portfolio. The code and notebooks explaining details of the package and how to use it are available on GitHub 

(https://github.com/GranthamImperial/silicone). The repository with this paper’s examples and uses of the code to 

complement existing research is available at https://github.com/GranthamImperial/silicone_examples. 

 

<Note to reviewers: the version of Silicone in the bibliography is not the finalised version v1.0.0 to allow for 25 

corrections before a v1.0.0 release.> 

https://github.com/GranthamImperial/silicone
https://github.com/GranthamImperial/silicone_examples
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1. Introduction 

1.1. General context and problem setting  

Integrated assessment models (IAMs) are scientific modelling tools that integrate knowledge from different academic 

disciplines with the aim to explore and inform policy decisions (Clarke et al., 2014; Rogelj et al., 2018a; Weyant, 2017). 30 

They are widely used in climate change research to combine insights from energy, economy, agricultural, and natural 

sciences, with the aim of creating scenarios that explore how societal decisions can affect projected greenhouse gases and 

other emissions, as well as their related climate outcomes (Clarke et al., 2014; Huppmann et al., 2018; Riahi et al., 2017; 

Rogelj et al., 2018b).  

However, IAMs do not always exhaustively represent all possible processes or sources of climate-relevant emissions. Thus, 35 

many IAM scenarios lack projections for some climate forcers, be it specific greenhouse gas emissions or aerosol precursors. 

A complete set of these climate forcers is required to accurately estimate the overall climatic effects of a given scenario 

(Meinshausen et al., 2011; Smith et al., 2018), as a large number of supposedly minor emissions may collectively exert a 

significant radiative forcing (Meinshausen et al., 2017; O’Neill et al., 2016).  

Scenarios that only report a limited set of greenhouse gases or climate forcers thus must be complemented by estimated 40 

evolutions of missing emissions derived without further economic analysis. We term this estimation ‘infilling’. If no infilling 

is attempted, the unevaluated emissions would effectively be considered zero, which would clearly create systematic biases 

and potential artefacts in the projected temperatures. Depending on the radiative forcing of the species in question, this bias 

may be positive or negative, so infilling with zeros would not necessarily be a conservative choice. Most earlier studies 

overcame this problem in one of two ways: with expert-based ad-hoc decisions on how to adequately fill-in missing species 45 

(Schaeffer et al., 2015); or by assuming that a pathway will occur at the same quantile for each set of emissions in a 

particular year, although the quantile can vary over time (Gütschow et al., 2018; Meinshausen et al., 2006; Nabel et al., 

2011). However, the former clearly does not scale easily to larger databases (because making ad-hoc decisions for a 

thousand scenarios requires a significant time input), and the latter approach, termed the “Equal quantile walk” (EQW), 

ignores trade-offs and specific relationships between emission species resulting from how competing technologies, 50 

behaviours and industrial practices result in different emissions. A few alternative approaches have been used recently: for 

instance, using the pathway with the smallest mean-squared distance over all time was used in (Robiou du Pont and 

Meinshausen, 2018). This works well for large databases containing similar paths, but is less reliable for smaller databases or 

for paths with an unusual behaviour over time. A more sophisticated “Generalized Quantile Walk” technique can capture the 

effect of trade-offs and was recently introduced in section 3.8.1 in (Teske et al., 2019), involving quantile regression between 55 

a lead variable (fossil CO2 emissions) and other gases for every individual year. Unfortunately, the implementation there did 

not consistently guarantee that higher quantiles resulted in higher emissions, and has not been followed up with any peer-
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reviewed work that does so. A tool for infilling was provided with (Rogelj et al., 2014) using a cubic spline between specific 

points in a small database, however this type of infiller behaves chaotically when applied to large databases incorporating 

many different models. It was also coded in Excel, limiting the ease of open-source development.  60 

Here we present a new toolbox of methods to address these recurring infilling challenges in the climatic assessment of 

socioeconomic emissions scenarios. The toolbox introduces new approaches as well as building on and combining previous 

approaches. The codebase is a significant improvement compared to existing options in terms of flexibility, applicability, 

reproducibility and versatility. 

1.2. The aim of Silicone 65 

Silicone is a Python package designed to enable users to expand scenario projections of a limited set of climate forcers to a 

broader set required for a sensible climate assessment. In essence, its methods are grounded in a comparison of the co-

evolution of anthropogenic emissions in scenarios that are readily available in the literature (Huppmann et al., 2018; Riahi et 

al., 2017; Rogelj et al., 2018b). Silicone aims to provide IAM teams that do not represent all individual climate forcers with 

robust methods to complement their model output and facilitate a climatic assessment of their work. Furthermore, Silicone 70 

also aims to provide geoscience researchers with a tool to easily develop stylized, yet internally consistent future emission 

pathways of the most important climate forcers. It can also estimate or calculate missing emissions from particular sectors. 

Notebooks describing how to use these tools are available on the accompanying GitHub repository (Lamboll et al., 2020b) 

and the formal documentation is available at (Lamboll et al., 2020a). Additional examples of using Silicone for the specific 

situations outlined below are included in a separate GitHub repository (Lamboll, 2020). The package is open-source and 75 

intended to allow groups to write their own infilling methods if desired. Users and collaborators are encouraged to add any 

such developments to the codebase via GitHub.  

Silicone is compatible with a suite of Python tools that make up the IAM climate assessment pipeline developed under the 

umbrella of the Integrated Assessment Modelling Consortium (IAMC). The compatibility with these tools allows us to load, 

manipulate and save files using a common file format. The pipeline is based around the pyam package (Gidden and 80 

Huppmann, 2019), specifically its IamDataFrame class, which Silicone makes extensive use of. Pyam dataframes easily 

convert from and to widely-used pandas dataframes, which pyam and Silicone also use internally (McKinney, 2011). The 

pipeline also includes tools to harmonise (i.e., correct projection made in the past to match now-known emissions) (aneris, 

(Gidden et al., 2018a) before infilling and to pass the complete projections to climate simulators. The estimation of climatic 

impact is performed by OpenSCM, (Nicholls et al., 2020), which is compatible with the data structure of the pipeline. This 85 

pipeline is being developed in support of the IAM community and the IAM scenario assessment for the forthcoming Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6) in particular.  
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This paper is structured as follows: the Methods section presents an overview of the different infiller methods, then goes 

through the infiller techniques in precise and mathematical detail. In Results, we present our analysis of emissions 

projections in the SR1.5 database. This includes correlation statistics of the database, and how well Silicone reproduces 90 

aspects of it from the rest. We use this to draw conclusions on the implications for using Silicone on unknown data. In Use 

Cases, we present three examples of using Silicone for infilling a pathway with limited information, splitting up an aggregate 

basket of emissions and infilling stylised emissions trajectories. We end with a summary of our paper.  

2. Methods 

Silicone takes a database that contains data for at least two emissions species (this database is referred to as the ‘infiller’ 95 

database) and derives a relationship between these timeseries. It then applies that relationship to a second database (the 

‘target’ database), which does not have any data for one of the emissions species in the infiller database. For example, based 

on an infiller database of CO2 and N2O emissions, Silicone could then derive N2O emissions compatible with the CO2 

emissions in a less complete target database. In all cases, the infillers will perform best if the target data comes from a 

scenario that is socioeconomically similar to scenarios found in the infiller database. The performance of most crunchers can 100 

be improved by filtering out scenarios that are known to assume radically different characteristics like population number 

before infilling, provided that comparable emissions statistics can be found in the remaining database. 

Silicone offers a range of tools that apply methods for doing this infilling which are appropriate in different circumstances, 

depending on the amount of complete data and how much we know about the narrative behind our emissions. These tools are 

referred to as ‘crunchers’. Each of these crunchers takes a ‘lead variable’, found in both the infiller and target databases, and 105 

uses it to infer the value of a ‘follower variable’, found only in the infiller database (hence missing in the target database). 

There are also several tools for easily infilling multiple variables, called ‘multiple infillers’. These may have multiple 

follower or lead variables.  

2.1. Methods overview 

2.1.1. Cruncher guide 110 

There are currently seven types of cruncher. These are outlined in Table 1 below. A flow chart to guide the choice is shown 

in Figure 1. There is also a series of notebooks with examples of how to use them all in the main GitHub repository (Lamboll 

et al., 2020b).  



5 

 

 

 

2.1.2. Multiple Infiller and Aggregation Tools Guide 

Multiple infillers are for cases where there are relationships between multiple lead or follower values that need to be 115 

considered at the same time. They allow less tailored approaches to infilling but can ensure that the infilling is faster or more 

consistent than infilling each of the variables separately. These are outlined in Table 2.  

2.2. Mathematical detail 

Notebooks presenting benefits and risks of each cruncher type can be found in the Silicone GitHub (Lamboll et al., 2020b) 

and may be useful to have as examples when analysing the work below, as well as demonstrating how to use them.  120 

There are two main classes of infillers: those based on the ratios between two emission pathways and those based on the 

absolute emission values in the infiller database. If the results are to be harmonised, then harmonising both the infiller and 

target data before infilling is required for improved consistency (otherwise infilling depends on outdated data). Absolute 

value infilling techniques preserve harmonisation, however ratio-based approaches do not necessarily, and may need 

harmonisation again afterwards.  125 

 

The ratio-based approaches are better for cases where the lead values to be infilled are outside the range in the infiller 

database and we expect the emissions to scale with each other. For instance, if we are infilling one incomplete combustion 

product based on another, or splitting up aggregated emissions into their components. However, care needs to be taken when 

infilling emissions that are non-negative using a lead value that may be of any sign, e.g. CO2 emissions. In that case, the ratio 130 

method might produce values for the target emissions that are unsupported by any available evidence. Singular behaviour 

may also be encountered when the lead data is close to zero in the infiller database. The different crunchers present different 

ways to estimate the ratio to use.  

The absolute value-based techniques infill with values derived from the absolute data found in the infiller database, or linear 

combinations of them. This means that they will always return values within the range spanned by the infiller database. This 135 

is most appropriate for processes where we have a greater number of cases, preferably with both larger and smaller lead 

emissions in the infiller database or where we expect the follower emissions to be strongly bounded rather than increasing in 

line with other variables. They may be considered more stable and more conservative. The quantile rolling windows (QRW) 

cruncher can be used in either ratio or absolute (non-ratio) mode, the absolute mode being the default.  

As one final detail, we discuss the data model which is assumed by Silicone. Silicone is built around the pyam package 140 

(Gidden and Huppmann, 2019). As a result, it assumes that all input data is provided in a particular structure. The structure 

includes the model which created the timeseries, the scenario with which the timeseries is associated (e.g. a high BECS 1.5 

degree scenario), the region the emissions occurs in and the unit of the data (full details available at https://pyam-

iamc.readthedocs.io/en/stable/data.html). Accordingly, Silicone is able to work on specific subsets of models (e.g. only the 

https://pyam-iamc.readthedocs.io/en/stable/data.html
https://pyam-iamc.readthedocs.io/en/stable/data.html
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MESSAGE model) or subsets of scenarios (e.g. all SSP1-like scenarios). We therefore follow the pyam convention and refer 145 

to a “model/scenario combination” to mean a single projected world, that in some contexts might be called a “scenario”.  

Pyam dataframes assign values to variables as a function of different models, scenarios, regions and times. All methods work 

on databases with only a single region at a time, although the region can be different between the infiller and target 

databases.  

2.2.1. Ratio infilling methods 150 

These methods all firstly estimate the ratio of the lead variable to the follower variable. In all cases, we first determine the 

ratios, written as 𝑅(𝑡) at time 𝑡. Once these have been calculated, the follower value in the target database, 𝐸𝑓(𝑡), is valued 

as 

𝐸𝑓(𝑡) = 𝑅(𝑡)𝐸𝑙(𝑡),  (1) 

where 𝐸𝑙(𝑡) is the lead value in the target database.  155 

Constant ratio and latest time ratio crunchers 

‘Constant ratio’ and ‘latest time ratio’ methods both use the same ratio for all infill times, 𝑅(𝑡) = 𝑅. With the ‘constant 

ratio’ method, the ratio must be given as an input parameter. The ‘latest time ratio’ method uses the ratio between the mean 

follower data in the infiller database (we denote this database with lower-case, 𝑒𝑓) and the value of the lead variable in the 

target data (𝐸𝑙), both values evaluated at the latest time for which there exists follower data in the infiller database, 𝑡𝑙𝑎𝑠𝑡 . The 160 

mean is taken over all infiller data at that time. This is designed for the case where we have estimates only up until some 

time, after which it stops – for instance, if we have no projections for some new HFC emissions, but have historic 

measurements for recent years. This gives us the equation 

𝑅 =  
〈𝑒𝑓(𝑡𝑙𝑎𝑠𝑡)〉

𝐸𝑙(𝑡𝑙𝑎𝑠𝑡)
,  (2) 

 where the angular brackets mean taking the (algebraic) mean with equal weighting for all estimates (typically historical 165 

estimates) at that time, and with a lower case, 𝑒𝑓(𝑡) represents the follower values in the database at time 𝑡. This ensures that 

at 𝑡𝑙𝑎𝑠𝑡 , all infilled data will fulfil 

𝐸𝑓(𝑡𝑙𝑎𝑠𝑡) = 𝑅. 𝐸𝑙(𝑡𝑙𝑎𝑠𝑡) =  〈𝑒𝑓(𝑡𝑙𝑎𝑠𝑡)〉.  

Time-dependent ratio cruncher 

The ‘time-dependent ratio’ is appropriate for when there is some data in the infiller database for all times, and allows the 170 

ratio to vary with time. The ratio used is 
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𝑅(𝑡) =  
〈𝑒𝑓(𝑡)〉

〈𝑒𝑙(𝑡)〉
.  (3) 

 Optionally, the averaging can be taken only over model/scenario cases where the sign of the lead variable is the same in 

both the infiller and target case – this will guarantee that the infilled value takes the same sign as that of follower values in 

the database. It will produce an error if there is no data with the required sign. This cruncher has a useful conservativity 175 

property (with or without the sign restriction): if in every scenario averaged over, the emissions of several substances sum to 

another substance, e.g. if 𝑒1 = 𝑒2 + 𝑒3, then 〈𝑒1〉 = 〈𝑒2〉 + 〈𝑒3〉. It then follows that  

1 =
〈𝑒2〉

〈𝑒1〉
+

〈𝑒3〉

〈𝑒1〉
,  (4) 

the right-hand side of which we can identify as the two 𝑅(𝑡) values of using formula (3) twice for different followers. This 

means when the aggregate is the lead and the components are followers, the sum of the two ratios is one, so we can use this 180 

infiller to break an aggregate value into components and know that the total is conserved. This relationship generalises to any 

number of components, still holds when emissions can be negative, and is irrespective of whether the averaging includes all 

values or only those where the lead has a particular sign.  

This cruncher is the foundation for the ‘decompose collection with time-dependent ratio’ multiple infiller. This relies on all 

scenarios having values for all of these variables, so misses out cases which do not have one of the constituents or only 185 

reports at some of the required times, unless the override option “only_consistent_cases” is set to False. It always constructs 

a new, consistent version of the aggregate variable in case different modellers used different conversion factors in the infiller 

database.  

Quantile rolling windows cruncher 

The ‘quantile rolling window’ method may be applied in ratio mode, in which case we calculate 𝑅(𝑡) by first calculating the 190 

ratio for each scenario, 

𝑟𝑠(𝑡) =
𝑒𝑓(𝑡)

𝑒𝑙(𝑡)
,  (5) 

then following the calculation in the absolute value section, using this instead of  𝑒𝑙. This method finds quantiles of the ratio 

in the infiller database at set points along the range of lead values in the infiller database.  

2.2.2. Absolute value infilling methods 195 

RMS closest cruncher 

The ‘RMS closest’ cruncher filters the infiller database for models with data at all the times found in the target data. It then 

ranks models and scenarios by the root mean squared (RMS) difference between the lead data in the infiller and target 

database, with the average being taken over all timeslices. It returns the follower data from the scenario/model combination 



8 

 

 

 

with the smallest RMS difference: the formula is 𝐸𝑓(𝑡) = 𝑒𝑓,𝑖(𝑡), where the subscript i refers to the model/scenario case that 200 

minimises 

∑ (𝐸𝑙(𝑡) − 𝑒𝑓,𝑖(𝑡))
2

.𝑡  (6) 

 In the case of a draw, the value that occurs earlier in the infiller database will be used. This is the only infiller that is not 

time-independent, i.e. changing the value of the lead at one time may result in different outputs at other times. 

Linear interpolation 205 

The ‘linear interpolation’ method constructs an (unsmoothed) linear interpolator function between all lead and follower 

points in the infiller database at a given point in time. It is similar in concept to the cubic spline interpolator used in (Rogelj 

et al., 2014). The equation for our case is 

𝐸𝑓(𝑡) = +,  (7) 

where subscript < or > signs indicate the model/scenario combination with lead values immediately below or above the 210 

target lead value at that time. If multiple points have exactly the same lead value, the average follow value is used. The 

follower value returned is then the interpolated value for the target lead. The ‘Interpolate specified scenarios and models’ 

cruncher filters for scenarios and models that match a given text string before performing the same action of the linear 

interpolation cruncher.  

Quantile rolling windows cruncher 215 

The ‘quantile rolling windows’ cruncher, applied with the default option ‘use_ratio=False’, infills the values based on 

interpolating between the required quantile of the follower variable. This is calculated at fixed points across the range of lead 

values in the infiller database for each time. The process is identical to the above discussion where ‘use_ratio’ is True, except 

using the actual follower values instead of the ratios between lead and follow. It is inspired by the Generalized Quantile 

Walk approach in section 3.8.1 of (Meinshausen and Dooley, 2019). An illustration of the idea behind this cruncher is shown 220 

in Figure 2. For each time in the infiller database, it splits the range of lead values into 𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠 points (defaults to 10) with 

values 𝑒𝑝, including the highest and lowest values. For each window, the weightings of each point are given as 

𝑤𝑝(𝑒𝑙(𝑖)) = 1/(1 + (
(𝑒𝑝 − 𝑒𝑙(𝑖))

𝑑𝑙
⁄ )

2

),  (8) 

 where 𝑑𝑙 is the decay length, which defaults to half the separation between 𝑒𝑝, and i the label for which model/scenario we 

are investigating. Increasing the decay length will reduce the weight difference between points, so the rolling window 225 

becomes wider and more even, with the limit case of calculating quantile q of all data for large 𝑑𝑙. Amongst other things, this 

is a clear improvement over the Generalized Quantile Walk approach, as the latter uses equal weights within a fixed window 
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of a certain fraction of the infiller database’s lead values in a certain year. These values are then normalised so that ∑ 𝑤𝑝 = 1 

and sorted into ascending order by 𝑒𝑓. The follow value at quantile 𝑞, evaluated at lead point 𝑒𝑙(𝑗), is where the quantile 

equals the sum of weights of all smaller 𝑒𝑓 plus half the weight of 𝑒𝑓(𝑗) itself. Note that we sum over smaller follower 230 

values, but the weighting is determined by the lead values: 

𝑞(𝑒𝑙(𝑗)) = ∑ 𝑤𝑝(𝑒𝑙(𝑖))𝑒𝑓(𝑖)<𝑒𝑓(𝑗) +
𝑤𝑝(𝑒𝑙(𝑗))

2
.  (9) 

 Quantiles between these are evaluated by linearly interpolating this relationship. We are usually interested in the case where 

𝑞 = 0.5. To infill a point at 𝐸𝑙 , we interpolate between the known points 𝑒𝑝 . Quantile crossing is not possible in this 

framework because at any given evaluation point higher quantiles cannot have lower values, and only linear fits between 235 

these points are used.  

Equal quantile walk 

The equal quantile walk calculates the quantile of the lead value at each time (Meinshausen et al., 2006). This is zero for 

values below the database minimum, one for those above the database maximum and the fraction of infiller data smaller or 

equal to this value otherwise. We interpolate between neighbouring values in the infiller data to find the fraction that would 240 

match the target value exactly. We then apply the same logic to calculate the appropriate value for the derived quantile of the 

follower data. 

3. Results 

3.1. Rank Correlations 

The infilling method is important. However, equally important is the choice of lead variable. The best choice is where there 245 

is a causal link between the lead and follower variable, particularly if there is a clear understanding of the implications of this 

link for the relative behaviour of the two variables, for instance black carbon and carbon monoxide are both produced by 

incomplete combustion. In most cases, there is no such certainty, and the best choice is then to find the lead variable with the 

best predictive power. We estimate this by the Spearman’s rank correlation coefficient, a measurement of the monotonicity 

of the relationship between the two variables. In cases where this value is low, we anticipate the need for higher effort to 250 

select relevant cases from the infilling database. We use the data from the IPCC Special Report on Global Warming of 1.5 oC 

(Huppmann et al., 2018) as our database of scenarios and compare the correlations between the different variables. The 

Silicone package has a function in the statistics section called ‘calc_all_emissions_correlations’, which will produce tables of 

both the Spearman (rank) and Pearson correlation coefficients, calculated separately for each year requested and also the 
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time-averaged magnitude of the correlations. Since there is no reason to expect the relationships between variables to be 255 

linear, we will focus on the rank correlation in this analysis. We also plotted the relationships between CO2 and all other 

variables (using the plotting function in the Silicone examples github) to check that there were no obvious cases of a non-

monotonic relationship. All the crunchers work just as well with negative trends as with positive, so the sign of the 

correlations is not relevant for considering goodness of fit. Using this tool, we can calculate the decadal-averaged magnitude 

of the rank correlation coefficient, found in Table 3. We also calculate the variation of this value with time, and in cases 260 

where this exceeds 0.03 (chosen to highlight only extreme cases), colour the cells blue. This is to indicate cases where more 

care needs to be taken to ensure that values are representative for the times of interest.   

The immediate observation from the study of absolute rank correlations is that there is no clear, overall best infiller gas. CH4 

has a slightly higher average than other emissions and is reported by most models. CO2 is reported by all models and has the 

second highest correlation, however this is somewhat inflated by having two of its constituents listed separately (AFOLU 265 

and Energy and Industrial processes, a similar concern can be raised about F-gases). Generally, CO2 and CH4 are therefore 

the best choices for a ‘default lead variable’. However, there are some specific cases where the correlations are low, and 

much better choices could be made.  

There is a cluster of emissions species, specifically black carbon, organic carbon and carbon monoxide, that correlate well 

with each other but less well with other emission pathways. Physically, these relate to incomplete burning, and are best 270 

infilled using each other. The F-gases, SF6, hydrofluorocarbons (HFCs), and perfluorinated compounds (PFCs) also 

primarily relate to each other. Many models report F-gas emissions as a basket. Infilling these should best be done by 

splitting the F-gas basket into its constituents. Otherwise the default infillers, CO2 and CH4, should do reasonably.  

3.2. Reconstructing data 

The choice of cruncher to use in different situations will depend on the expectations about the specific emissions in question. 275 

However, in cases where there are no clear expectations, it is good to have a default. In this section we assess to which 

degree the cruncher reproduces the follower data from one model and scenario given the lead data from that case and all data 

from all the other model/scenario combinations in the SR1.5 database. We try this with both CH4 and CO2 as our lead 

variables. We use the crunchers that are designed for use on complete datasets with only default settings: QRW (default 

settings mean in absolute mode and for the 0.5 quantile), RMS closest, EQW, time-dependent ratio and linear interpolation. 280 

Interpolate selected model behaves identically to linear interpolation with default settings and is not treated separately here. 

We perform the infilling for each model/scenario combination, for each decade from 2020 to 2100, and report the root mean 

squared difference between the original value and the infilled value, normalised by the standard deviation in the follower 

value in the database at that time (𝜎), i.e. 〈√〈(
𝐸𝑓,𝑖𝑛𝑓−𝐸𝑓,𝑎𝑐𝑡

𝜎
)

2
〉𝑖〉𝑑𝑒𝑐𝑎𝑑𝑒 , with the subscript text 𝑖𝑛𝑓 indicating that the value is 
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infilled, 𝑎𝑐𝑡 indicating actual and 𝑖/𝑑𝑒𝑐𝑎𝑑𝑒 indicating averaging over model/scenario cases or decades. These results are 285 

found in tables 4 and 5. Given the definition of standard deviations, values larger than one would indicate that this infiller is 

worse than simply using the mean value in the database.  

We see with this fairly large infiller database that for both CO2 and CH4 the approach that generates follower pathways most 

similar to those removed from the initial scenarios (i.e. the smallest errors) is the RMS technique, with the QRW technique 

being the next smallest. Linear interpolation without smoothing is expected to produce a noisy fit when given a large infiller 290 

dataset, so its performance is unsurprisingly worse. The Equal Quantile Walk (EQW) performs similarly poorly, due to 

effectively ignoring the relationship between the lead and follower data. The time-dependent ratio method is worst of all – its 

errors are potentially unbounded and for CO2 the average error far exceeds one. To determine the appropriate statistics to 

apply on the errors, we first perform a Shapiro-Wilk test to detect any non-Gaussian aspect for the error distribution (details 

can be found in the “statistics_for_paper” notebook of the examples github repository). This indicated that the distributions 295 

are statistically significantly non-Gaussian, for several crunchers when analysed separately and most clearly as an aggregate. 

We will therefore use non-parametric tests where possible. The small differences in rank between CH4 and CO2 manifest in 

slightly lower values for CH4. Performing a Wilcoxon’s t-test on the results indicates that this result is statistically significant 

for the data as a whole (relative t-test t-statistic 376, p = 0.00007), although when considering each of the crunchers 

individually, only the RMS closest and time-dependent ratio crunchers are significantly better with CH4 than CO2 (p-values 300 

for time dependent ratio = 0.012, QRW = 0.48, RMS Closest = 0.041, linear interpolation = 0.060, EQW = 0.39). We 

therefore conclude that using either CO2 or CH4 as the default will produce the most reasonable results when using one 

infiller species, with CH4 performing slightly better, while also generally having a slightly lower availability of data.  

We perform similar pairwise Wilcoxon t-tests on the results of different crunchers, and find that the ordering of mean errors, 

(RMS closest < QRW < Linear interpolation ≈ EQW < Time dependent ratio) are all statistically robust. The p-values are < 305 

0.01 for almost all pairs except linear interpolation and EQW, which are much greater than 0.1, whether the comparison uses 

CO2 or CH4 lead data, or all data combined. The one exception to this is time-dependent ratio and EQW for CH4, which has 

only p=0.028, though the values for other combinations still have p < 0.01.  

We stress that this does not always mean that the RMS closest technique is the best default, as it makes the assumption that 

the pathway being infilled is similar to a whole pathway found in the database. The advantage of the quantile rolling 310 

windows technique is its choice of conservativity – e.g. that it tends to produce values more towards the median value if the 

default 0.5 quantile is used – and time-independence, whereas RMS closest is better at reconstructing the data and has better 

consistency over time. Linear interpolation, EQW and time-dependent ratio are best used in cases where there is a large 

degree of knowledge about the expected relationship between variables.  
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4. Use cases 315 

Data in the Silicone examples package relies on the IAMC ‘pyam’ open-source software data structure (Gidden and 

Huppmann, 2019) and fits into the IAMC scenario assessment pipeline prepared in support of the IPCC AR6 literature 

assessment.  

As part of the pipeline, emissions projections are also harmonised, i.e. modified to be consistent with known historical 

emissions in a smooth way (Gidden et al., 2018a). The Silicone process is assumed to be part of the IAMC pipeline after 320 

harmonisation, as the harmonisation process will potentially differently affect the target and infiller data, resulting in 

inconsistencies. All infiller options except latest time ratio are designed such that if both the data being infilled (the ‘target 

data’) and the data drawn on for infilling (‘infiller data’) are harmonised, the result must also be harmonised, so there is no 

need for harmonisation again after infilling. (Latest time ratio only preserves the harmonisation of the last timepoint in the 

infiller database.) The infilled results can then be run via climate models, most easily via the OpenSCM package (Nicholls et 325 

al., 2020).  

We now demonstrate several uses of the package for specific purposes. The notebooks demonstrating the steps for these 

calculations can be found in the Silicone_examples GitHub repository (Lamboll, 2020), along with several other use-cases.  

4.1.1. Infilling the IMAGE model POEM scenario B 

To demonstrate the uses of this package alone, we will apply the methods directly using unharmonised data in the SR1.5 330 

repository (Huppmann et al., 2019) to infill the emission pathways of the POEM scenario B from the AR5 database (Clarke 

et al., 2014). The POEM scenarios only report CO2 from certain sources and are thus an excellent use case. The crunchers 

are all used via the multiple infiller, “infill_all_required_emissions_for_openscm”. No active decisions are taken except to 

use the SSP2 scenarios from the MESSAGE model for the specified model interpolation. The choice of SSP2 in this case is 

ultimately arbitrary but supported by to the POEM scenario B being fairly middle-of-the-road and usually fitting in the SSP2 335 

range. The choice of MESSAGE model is because this is the marker model for SSP2 (Riahi et al., 2017). Other POEM 

scenarios would need different ranges of scenarios for infilling. 

We see from Figure 3 that the linear interpolation model (without filtering the database) provides a chaotic pathway, due to 

its value being determined only by the two points either side of it in the database, which changes semi-randomly with time 

and should not be used here. Although the interpolate specified model approach is also determined by only a few 340 

model/scenario pairs because there is only data from a small number of related scenarios, the pathway is smoother and more 

consistent. The EQW pathway assumes a strong, direct relationship between CO2 and CH4 emissions which the other 

crunchers do not uphold at early times, although this would disappear if the data were harmonised. The other cruncher 

results are all fairly similar and look consistent. The RMS closest pathway is consistent by construction (and precisely 

overlines a point in the original database). The quantile rolling windows result also looks consistent and tends to move closer 345 
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to dense clouds of values in the infiller database. In deciding which is the best infiller to use, the RMS closest result is more 

consistent over time but more arbitrary in its selection of the pathway, while quantile rolling windows is more conservative 

in the sense of giving results closer to the median behaviour of the whole data set.  

4.1.2. Splitting up a Kyoto Greenhouse Gases path 

The Silicone package has features that can split a basket of gases into its constituents. In this example we take data from the 350 

Climate Action Tracker (CAT) website (https://climateactiontracker.org/) (Climate Action Tracker, n.d.), which reports 

projected global emissions in terms of Kyoto gas totals. While it is possible to use this to infill all other values directly as 

above, the subcategories of Kyoto gas will not necessarily add up to the Kyoto gas total, one of the multiple infillers 

designed for this use is preferable. The symmetric way to divide the basket into its constituent parts (CO2, CH4, N2O and F-

gases), is using the ‘decompose collection with time-dependent ratio’ multiple infiller, which uses a ratio-based technique to 355 

ensure conservation of the total amounts. Alternatively, the ‘split collection with remainder’ multiple infiller can estimate the 

fractions of CH4, N2O and F-gases, then assign the remainder to CO2. F-gases could be further subdivided using similar 

methods.  

As can be seen in Figure 5, the curves that result from decompose collection are generally smooth, in spite of being 

separately calculated at each timepoint. It is important to ensure that the number of scenarios reported at each time are 360 

consistent.  In the SR1.5 database, some scenarios only report values at decadal intervals, whereas others use five-year 

intervals. We interpolated all models to five-year intervals to give consistent representation. In the CH4 and F-gases, the 

lowest orange line is clearly seen to rise discontinuously after 2060. This is the last point before the Kyoto total goes 

negative. To ensure that the sign of the constituents is correct, the formula only considers data from SR1.5 paths where the 

Kyoto total has the same sign as in the data being infilled. In this way, emissions that are unlikely to go negative like CH4 are 365 

ensured positive, however their magnitude increases the more negative the aggregate is.  

For this reason, the ‘split collection with remainder’ method produces more robust results with sign changes in the lead 

variable. This technique can use any cruncher, usually RMS closest or (probably non-ratio) quantile rolling windows to infill 

the positive values and then allow the value that may be negative (CO2) to make up the rest. This produces the results seen in 

Figure 6. Here behaviour of all curves is fairly smooth, with no obvious features around zero-crossing points and no negative 370 

values except in CO2, as expected.  

4.1.3. Stylised trajectories 

Another use of this software is to infill simple, stylised trajectories generated to explore a wide range of possibilities without 

detailed economic modelling. For example, Sanderson et al. (Sanderson et al., 2016) suggest simple formulae whereby one 

may construct emissions trajectories characterised by a few free variables – in this case, based on rates of transition between 375 

https://climateactiontracker.org/
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the RCP pathways and a long-term emissions value. They present general formulae for generating plausible total CO2 

pathways with several free variables. Silicone provides an alternative means of complementing such results – instead of 

specifying the functional forms of all emissions, you can have a few key emissions prescribed and infill the remainder using 

scenarios with similarities to the desired narrative. A notebook can be found in the Silicone examples github detailing the 

calculations and demonstrating this usage, titled “Infill_stylised_path.ipynb” (Lamboll, 2020), using data from (Riahi et al., 380 

2011; van Vuuren et al., 2011). It shows that curves with different values in some of the parameters, termed 𝐸∞ and 𝜏, can be 

complemented using a number of techniques. Here we highlight the method of interpolating results from any of the SSP 

scenarios as implemented by variants of the MESSAGE model. As the different SSPs have different narratives, this allows 

the user to decide what narrative is relevant to the infilling, rather than adding more arbitrary values (Gidden et al., 2018b). 

An example of this output can be found in Figure 7. 385 

5. Summary 

In this paper we have outlined the features of the open-source Silicone package. This provides tools for complementing 

emissions pathways with other climate-relevant emissions through relationships found in the scenario literature. The package 

features several scripts for analysing data to establish the relationships between the variables in the complete infiller 

database, to establish the best variables to use when infilling. The values of the follower data are estimated using objects 390 

called crunchers. Notebooks describing the use of the crunchers are included in a GitHub repository 

(https://github.com/GranthamImperial/silicone), which also contains full documentation. In addition, a flowchart for guiding 

the choice of cruncher for a given situation is included in the text. The results of Spearman’s rank correlations and applying 

the crunchers to the SR1.5 database implied that the best default lead variables are CH4 and CO2, and that the best default 

cruncher is the root mean squared closest cruncher, followed by the quantile rolling windows cruncher. Both of these 395 

crunchers perform significantly better at reconstructing known pathways compared to the commonly used equal quantile 

walk technique, although this and many other crunchers are included in the package for specific situations where they are 

more appropriate. Using several examples and use-cases of different infilling techniques, this paper has demonstrated that 

Silicone can easily be used to allow a broader range of IAMs to make reasonable climate assessments.  

Bibliography 400 

Clarke, L., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., Hourcade, J.-C., Krey, V., Kriegler, E., 

Löschel, A., McCollum, D., Paltsev, S., Rose, S., Shukla, P. R., Tavoni, M., Zwaan, B. van der and Vuuren, D. van: 

Assessing Transformation Pathways, in Climate Change 2014: Mitigation of Climate Change. Contribution of Working 

Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by O. Edenhofer, R. 

https://github.com/GranthamImperial/silicone


15 

 

 

 

Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, 405 

J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, and J. C. Minx, pp. 413–510, Cambridge University Press., 2014. 

Climate Action Tracker: Climate Action Tracker, [online] Available from: https://climateactiontracker.org/ (Accessed 9 July 

2020), n.d. 

Gidden, M. J. and Huppmann, D.: pyam: a Python Package for the Analysis and Visualization of Models of the Interaction 

of Climate, Human, and Environmental Systems, J. Open Source Softw., doi:10.21105/joss.01095, 2019. 410 

Gidden, M. J., Fujimori, S., van den Berg, M., Klein, D., Smith, S. J., van Vuuren, D. P. and Riahi, K.: A methodology and 

implementation of automated emissions harmonization for use in Integrated Assessment Models, Environ. Model. Softw., 

105, 187–200, doi:10.1016/j.envsoft.2018.04.002, 2018a. 

Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., Van Vuuren, D. P., Van Den Berg, M., Feng, 

L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, 415 

R., Horing, J., Popp, A., Stehfest, E. and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios 

for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 

doi:10.5194/gmd-2018-266, 2018b. 

Gütschow, J., Jeffery, M. L., Schaeffer, M. and Hare, B.: Extending Near-Term Emissions Scenarios to Assess Warming 

Implications of Paris Agreement NDCs, Earth’s Futur., 6(9), 1242–1259, doi:10.1002/2017EF000781, 2018. 420 

Huppmann, D., Rogelj, J., Kriegler, E., Krey, V. and Riahi, K.: A new scenario resource for integrated 1.5 °C research, Nat. 

Clim. Chang., 8(12), 1027–1030, doi:10.1038/s41558-018-0317-4, 2018. 

Huppmann, D., Kriegler, E., Krey, V., Riahi, K., Rogelj, J., Calvin, K., Humpenoeder, F., Popp, A., Rose, S. K., Weyant, J., 

Bauer, N., Bertram, C., Bosetti, V., Doelman, J., Drouet, L., Emmerling, J., Frank, S., Fujimori, S., Gernaat, D., Grubler, A., 

Guivarch, C., Haigh, M., Holz, C., Iyer, G., Kato, E., Keramidas, K., Kitous, A., Leblanc, F., Liu, J.-Y., Löffler, K., Luderer, 425 

G., Marcucci, A., McCollum, D., Mima, S., Sands, R. D., Sano, F., Strefler, J., Tsutsui, J., Vuuren, D. Van, Vrontisi, Z., 

Wise, M. and Zhang, R.: IAMC 1.5°C Scenario Explorer and Data hosted by IIASA, Integr. Assess. Model. Consort. Int. 

Inst. Appl. Syst. Anal., doi:10.5281/zenodo.3363345, 2019. 

Lamboll, R. D.: Silicone examples github, , doi:10.5281/zenodo.3987940, 2020. 

Lamboll, R. D., Nicholls, Z. and Kikstra, J.: Silicone documentation, [online] Available from: 430 

https://silicone.readthedocs.io/en/latest/index.html (Accessed 11 May 2020a), 2020. 

Lamboll, R. D., Nicholls, Z. and Kikstra, J.: Silicone github, , doi:10.5281/zenodo.3822259, 2020b. 

McKinney, W.: pandas: a Foundational Python Library for Data Analysis and Statistics, Python High Perform. Sci. Comput., 

2011. 

Meinshausen, M. and Dooley, K.: Mitigation scenarios for non-energy GHG, in Achieving the Paris Climate Agreement 435 

Goals: Global and Regional 100% Renewable Energy Scenarios with Non-Energy GHG Pathways for +1.5C and +2C, pp. 



16 

 

 

 

79–91, Springer International Publishing., 2019. 

Meinshausen, M., Hare, B., Wigley, T. M. L., Van Vuuren, D., Den Elzen, M. G. J. and Swart, R.: Multi-gas emissions 

pathways to meet climate targets, Clim. Change, 75(1–2), 151–194, doi:10.1007/s10584-005-9013-2, 2006. 

Meinshausen, M., Raper, S. C. B. and Wigley, T. M. L.: Emulating coupled atmosphere-ocean and carbon cycle models with 440 

a simpler model, MAGICC6-Part 1: Model description and calibration, Atmos. Chem. Phys, 11, 1417–1456, 

doi:10.5194/acp-11-1417-2011, 2011. 

Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., 

Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., 

Lunder, C. R., O’Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J. and 445 

Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10(5), 2057–2116, 

doi:10.5194/gmd-10-2057-2017, 2017. 

Nabel, J. E. M. S., Rogelj, J., Chen, C. M., Markmann, K., Gutzmann, D. J. H. and Meinshausen, M.: Decision support for 

international climate policy - The PRIMAP emission module, Environ. Model. Softw., doi:10.1016/j.envsoft.2011.08.004, 

2011. 450 

Nicholls, Z., Gieseke, R., Lewis, J. and Willner, S.: OpenSCM: Unified access to simple climate models, [online] Available 

from: https://github.com/openscm/openscm (Accessed 6 April 2020), 2020. 

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque , J.-

F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K. and Sanderson, B. M.: The Scenario Model Intercomparison Project 

(ScenarioMIP) for CMIP6, Geosci. Model Dev., 9(9), 3461–3482, doi:10.5194/gmd-9-3461-2016, 2016. 455 

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N. and Rafaj, P.: RCP 8.5-A 

scenario of comparatively high greenhouse gas emissions, Clim. Change, doi:10.1007/s10584-011-0149-y, 2011. 

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., 

Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., 

Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, 460 

T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., 

Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A. and Tavoni, M.: The Shared 

Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Glob. 

Environ. Chang., 42, 153–168, doi:10.1016/j.gloenvcha.2016.05.009, 2017. 

Robiou du Pont, Y. and Meinshausen, M.: Warming assessment of the bottom-up Paris Agreement emissions pledges, Nat. 465 

Commun., 9(1), 1–10, doi:10.1038/s41467-018-07223-9, 2018. 

Rogelj, J., Rao, S., McCollum, D. L., Pachauri, S., Klimont, Z., Krey, V. and Riahi, K.: Air-pollution emission ranges 

consistent with the representative concentration pathways, Nat. Clim. Chang., doi:10.1038/nclimate2178, 2014. 



17 

 

 

 

Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., 

Mundaca, L., Séférian, R. and Vilariño, M. V.: Mitigation pathways compatible with 1.5°C in the context of sustainable 470 

development, edited by G. Flato, J. Fuglestvedt, R. Mrabet, and R. Schaeffer, Glob. Warm. 1.5 °C an IPCC Spec. Rep. 

impacts Glob. Warm. 1.5 °C above pre-industrial levels Relat. Glob. Greenh. gas Emiss. pathways, Context Strength. Glob. 

response to Threat Clim. Chang, 93–174 [online] Available from: http://www.ipcc.ch/report/sr15/, 2018a. 

Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., 

Marangoni, G., Krey, V., Kriegler, E., Riahi, K., Van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., 475 

Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E. and Tavoni, M.: Scenarios towards limiting global mean temperature 

increase below 1.5 °c, Nat. Clim. Chang., 8(4), 325–332, doi:10.1038/s41558-018-0091-3, 2018b. 

Sanderson, B. M., O’Neill, B. C. and Tebaldi, C.: What would it take to achieve the Paris temperature targets?, Geophys. 

Res. Lett., 43(13), 7133–7142, doi:10.1002/2016GL069563, 2016. 

Schaeffer, M., Gohar, L., Kriegler, E., Lowe, J., Riahi, K. and van Vuuren, D.: Mid- and long-term climate projections for 480 

fragmented and delayed-action scenarios, Technol. Forecast. Soc. Change, 90(PA), 257–268, 

doi:10.1016/j.techfore.2013.09.013, 2015. 

Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar, R. J., Passerello, G. A. and Regayre, L. A.: FAIR v1.3: A simple 

emissions-based impulse response and carbon cycle model, Geosci. Model Dev., 11(6), 2273–2297, doi:10.5194/gmd-11-

2273-2018, 2018. 485 

Teske, S., Pregger, T., Simon, S., Naegler, T., Pagenkopf, J., van den Adel, B., Meinshausen, M., Dooley, K., Briggs, C., 

Dominish, E., Giurco, D., Florin, N., Morris, T. and Nagrath, K.: Methodology, in Achieving the Paris Climate Agreement 

Goals, pp. 25–78, Springer International Publishing, Cham., 2019. 

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., 

Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J. and Rose, S. K.: The representative 490 

concentration pathways: An overview, Clim. Change, 109(1), 5–31, doi:10.1007/s10584-011-0148-z, 2011. 

Weyant, J.: Some contributions of integrated assessment models of global climate change, Rev. Environ. Econ. Policy, 

11(1), 115–137, doi:10.1093/reep/rew018, 2017. 

 

Author contributions 495 

JR initiated the research based on earlier work by MM. RDL led the code development and the mathematical translation of 

infiller methods. RDL and ZRJN wrote the code, JSK assisted reviewing it. JR and MM conceived infilling techniques and 

use cases. RDL wrote the manuscript, all authors gave comments and contributed to the final version.  



18 

 

 

 

Code availability 

The Silicone code in this paper is available from the main github repository (Lamboll et al., 2020b). Code used to analyse the 500 

output of Silicone is available in a second github repository (Lamboll 2020). 

Acknowledgements 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant 

agreement No 820829 (CONSTRAIN). We thank Nicholai Meinshausen for useful statistics discussions.  

 505 

 

Table 1: A guide to crunchers. Names followed by asterisks use a ratio-based approach, i.e. they find a multiplicative factor and 

then multiply the target lead by this value. These crunchers do not preserve harmonisation. If the asterisk is in brackets, a ratio-

based approach is optional. Otherwise, techniques all return linear combinations of values seen in the infiller database. 

Name Description Use case Pitfalls 

Constant ratio* Multiplies the lead variable 

by a constant (not fitted to 

any data) 

Used when no information 

about the follower variable 

is available in any 

database. Mainly used for 

infilling with zeros. 

Has no basis in the data – only 

used as a last resort in cases of 

complete uncertainty.  

Latest time 

ratio* 

Multiplies the lead variable 

by a constant fitted to a single 

(latest) timepoint in the 

infiller data.  

Used when no data is 

available for most times, 

this generalises from the 

latest information we have, 

e.g. if only historic data is 

available. 

No reason to assume that the 

relationship between emissions 

holds for all time. No 

restriction on signs of follower 

gas, so potential sign errors 

when the lead (but not 

follower) emissions may 

become negative. Sensitive to 

emissions trajectories with a 

high coefficient of variation.  

Time 

dependent 

ratio* 

Multiplies the lead variable 

by the ratio of the averages of 

the lead and follower data in 

the infiller database. (Note: 

this ratio is not the same as 

the average of the ratios and 

is more stable to inclusion of 

extreme ratios.) Optionally 

calculates this using only 

values with the same sign of 

lead emissions.  

Used when two emissions 

should track each other, or 

one represents a portion of 

the other.  

Allows arbitrarily high 

emissions. Can behave 

unexpectedly if emissions 

change sign, and an error is 

produced if emissions with this 

sign are not seen at the same 

time in the infiller database.  

RMS closest Finds the most similar 

pathway in the infiller 

database and uses those 

values. Most similar means 

smallest root mean squared 

Used when behaviour at 

one time should strongly 

determine behaviour at 

another and continuity is 

needed between times. The 

A small change in the target 

data at a single timestep can 

result in large changes in 

output at every timestep. All 

the results returned are found 
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difference between the lead 

values of infiller pathways 

and target pathway averaged 

over all times.  

only cruncher that does not 

treat each time separately. 

exactly in the infiller database, 

so if that database is small, the 

same values are returned in 

many cases. Results more 

extreme than found in the 

infiller database all return the 

same value. 

Linear 

interpolation / 

Interpolate 

specified 

scenarios and 

models 

At each time, linearly 

interpolates between the 

follower values at the two 

nearest lead values, taking 

averages where multiple 

points have identical lead 

values.  Interpolate specified 

scenarios and models filters 

the infiller database before 

applying the same technique. 

Used for infilling where 

we have a small number of 

comparable 

models/scenarios. The 

required filtering gives 

control over the narrative 

used for infilling.  

A small change in the target 

data can result in a large 

change in the output at the 

same timestep because 

pathways in the infiller 

database can be very different 

in follower variables for nearly 

identical values of the lead 

variable. For similar reasons, 

results can vary erratically 

between timesteps for large 

infiller datasets. Results more 

extreme than those found in 

the infiller database all return 

the same value. 

Quantile rolling 

windows 

(QRW)/time-

dependent 

quantile rolling 

windows (*) 

At each time, applies a 

1/(1+(lead variable 

difference)^2) weighting to 

datapoints at equally spaced 

points across the infiller lead. 

Then calculates a specified 

quantile (usually the median) 

for the infiller follower value 

at these points. Can also be 

used in ratio mode, in which 

case the ratio between lead 

and follower in the infiller 

database is treated as above. 

Time-dependent QRW allows 

the quantile to be different at 

different times (but is 

computationally slower).  

Can choose options to give 

more smoothing (less 

noise) or more localised 

behaviour (shows trends 

better) Allows the option 

to generate a distribution 

of outputs, not just a single 

optimum. Can add to the 

narrative through time-

dependence. Ratio mode 

allows better infilling 

outside the range of the 

infiller data.  

Using with any quantile larger 

than 0.5 will result in all 

emissions being higher, even if 

the lead and follower 

emissions anticorrelate. 

Results more extreme than 

found in the infiller database 

all return the same value, 

unless in ratio mode. In ratio 

mode, sign changes in the lead 

variable can result in follower 

emissions being assigned 

undesired negative values.  

Equal quantile 

walk (EQW) 

Calculates the quantile of the 

infiller database 

corresponding to the lead 

value in each individual year. 

Returns that quantile in that 

year of the follow value from 

the same database.  

Conceptually simple, used 

by previous work.   

Assumes all variables are 

monotonically increasing 

together. Results more extreme 

than those found in the infiller 

database all return the same 

value. 

 510 
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Table 2: Guide to aggregation tools and multiple infillers. Names followed by asterisks use a ratio-based approach, i.e. they find a 

multiplicative factor and then multiply the target lead by this value, if the asterisk is in brackets there are ratio-a. 

Name Description Use case Pitfalls 

Aggregation tools 

Aggregate to 

composite 

values 

Requires only the target 

database. Adds together 

known values to construct a 

consistent output (with 

optional weighting). 

Infilling aggregate values 

(e.g. Kyoto gas totals) or 

finding remainders given 

aggregates and values for 

the other components.  

Requires all information to be 

known already – no statistical 

inference, just adding.  

Multiple infillers 

Decompose 

collection with 

time-

dependent 

ratio* 

Constructs a consistent 

version of the aggregate in 

the infiller database. Breaks 

a known quantity down into 

components, estimated by 

the time-dependent ratio 

method.  

Breaking down aggregate 

values into their 

components, assuming all 

should be treated similarly.  

Infiller scenarios which do not 

have values for all components at 

all times are ignored. Ignores the 

aggregate if the infiller database 

has inconsistency between that 

and the sum of reported 

components. Assumes direct 

proportionality between 

components and sum, which is 

problematic around sign changes.   

Split 

collection with 

remainder 

emissions 

Breaks an aggregate 

emission into most of its 

separate components, with 

one emission type making 

up the remainder of the 

emissions.  

Breaking down aggregate 

values into their 

component when one 

emission type is much 

larger than the others, or 

may be either positive or 

negative 

The remainder emission is not 

constrained, nor as precisely 

estimated as the other values.  

Infill all 

required 

values (*) 

Uses the same lead variable 

and cruncher to infill any 

gaps in emissions data. 

For infilling scattered, 

minor gaps in a largely 

sound database.  

Low confidence in the results 

being accurate as the method 

does not consider the specific 

characteristics of the data.  
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Table 3. Absolute values of Spearman’s Rank correlation between emissions, averaged over the start of decades from 2020 to 2100. We use the following 

abbreviations: BC as black carbon, VOC as volatile organic compounds, AFOLU as Agriculture, Forestry and Other Land Use; and En & IP as as 

energy and industrial processes. “CO2|” represents subtypes of CO2. We also calculate the average of these rows, with or without the CO2 and subtypes. 515 
Cells are bold and yellow if the value in them is > 0.7 and are blue if the variance of the rank correlation between years exceeds 0.03. There is no overlap 

between these categories.  

Variable BC CH4 CO CO2 
CO2|AF

OLU 

CO2|E

n & IP 

F- 

Gases 
HFC N2O NH3 NOx OC PFC SF6 Sulf VOC 

BC  0.47 0.75 0.46 0.37 0.42 0.23 0.10 0.40 0.40 0.58 0.73 0.41 0.20 0.48 0.45 

CH4   0.32 0.74 0.49 0.73 0.64 0.58 0.86 0.34 0.58 0.30 0.66 0.41 0.65 0.24 

CO     0.36 0.38 0.32 0.06 0.16 0.29 0.35 0.48 0.78 0.05 0.17 0.36 0.68 

CO2     0.54 0.96 0.60 0.57 0.54 0.30 0.61 0.24 0.35 0.22 0.69 0.37 

CO2| 

AFOLU       0.36 0.27 0.40 0.53 0.36 0.33 0.34 0.23 0.21 0.31 0.20 

CO2| En 

& IP       0.58 0.51 0.50 0.25 0.61 0.17 0.32 0.18 0.69 0.36 

F-Gases         0.91 0.57 0.19 0.50 0.10 0.90 0.77 0.60 0.12 

HFC         0.46 0.11 0.30 0.14 0.71 0.68 0.36 0.23 

N2O           0.44 0.46 0.30 0.65 0.40 0.49 0.17 

NH3           0.23 0.39 0.10 0.05 0.23 0.25 

NOx             0.22 0.53 0.26 0.76 0.39 

OC             0.20 0.11 0.19 0.41 

PFC               0.77 0.46 0.16 

SF6               0.26 0.24 

Sulfur                 0.46 

VOC                  

Average 0.43 0.53 0.37 0.50 0.36 0.46 0.47 0.42 0.47 0.27 0.46 0.31 0.43 0.33 0.47 0.32 

Average, 

no CO2 0.43 0.50 0.37 0.46 0.34 0.43 0.47 0.40 0.46 0.26 0.44 0.32 0.47 0.36 0.44 0.32 

# 

scenario

s 

389 412 353 414 412 414 368 108 411 345 363 363 180 191 412 345 
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Table 4: Root mean squared error in reconstructing known data using different crunchers, with CO2 as the lead variable, 520 
normalised by the standard deviation at that time. 

Species 

Time dependent 

ratio QRW RMS  Closest Linear Interpolation EQW 

BC 1.763 0.734 0.668 1.021 0.921 

CH4 0.774 0.460 0.392 0.520 0.500 

CO 2.236 0.804 0.764 1.049 1.006 

F-gases 0.576 0.537 0.485 0.619 0.603 

HFC 0.618 0.559 0.512 0.606 0.581 

N2O 1.566 0.645 0.535 0.797 0.786 

NH3 1.681 0.781 0.676 1.076 1.060 

NOx 1.538 0.662 0.606 0.826 0.771 

OC 2.062 0.792 0.706 1.069 1.112 

PFC 0.649 0.576 0.441 0.600 0.764 

SF6 0.754 0.653 0.499 0.762 0.809 

Sulfur 0.819 0.570 0.494 0.658 0.637 

VOC 2.223 0.812 0.708 1.056 1.007 

Mean 1.328 0.660 0.576 0.820 0.812 

 

 
Table 5: Root mean squared error in reconstructing known data using different crunchers, with CH4 as the lead variable, 

normalised by the standard deviation at that time. 525 

Species 
Time dependent 

ratio QRW RMS  Closest Linear Interpolation EQW 

BC 1.082 0.729 0.657 0.971 0.875 

CO 1.410 0.798 0.642 1.017 1.018 

CO2 0.626 0.468 0.448 0.541 0.483 

F-gases 0.659 0.565 0.506 0.657 0.664 

HFC 0.697 0.593 0.471 0.669 0.649 

N2O 0.719 0.457 0.364 0.497 0.441 

NH3 1.134 0.756 0.533 0.958 1.048 

NOx 0.919 0.680 0.625 0.823 0.758 

OC 1.318 0.777 0.584 0.972 0.989 

PFC 0.592 0.546 0.312 0.550 0.702 

SF6 0.703 0.633 0.502 0.768 0.799 

Sulfur 0.610 0.580 0.508 0.627 0.644 

VOC 1.398 0.802 0.618 0.972 1.038 
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Mean 0.913 0.645 0.521 0.771 0.778 

 
 

Figure 1: Flow chart suggesting how to choose the cruncher (peach oblongs) or multiple infiller (yellow oblongs) to use 

when infilling.  

530 
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Figure 2: Schematic of how the quantile rolling windows cruncher determines the follow value to use. a) Example 

relationships between lead (CO2) and follow (CH4) variables over time. b) A number of rolling windows centers (here 5, by 

default 10) are drawn and a weighting function constructed for each window. It has a continuous distribution, rather than a 

discrete cutoff, hence the name. c) A relationship between the sum of the weights and the follow value is established and the 

follow value at the desired quantile is returned.  535 
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Figure 3: Left: The POEM scenario B projection for CO2 from Energy and Industrial Applications data. The fine lines represent 

the different timeseries in the SR1.5 database used to perform the infilling and are not included in the legend for clarity. Right: 

The results of interpolating this data using five different crunchers. The interpolate specified model approach used the MESSAGE 540 
model and only choses scenarios based on SSP2 pathways. 

 

 

Figure 4: The Climate Action Tracker (CAT) Kyoto gas totals (thick lines) compared with the portfolio of values in the SR1.5 

database (thin lines).  545 
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Figure 5: The CAT Kyoto gas baskets decomposed into their components, using the decompose collection multiple infiller.  

 

Figure 6: Kyoto gases, decomposed by first infilling the non-negative emissions using the (non-ratio) quantile rolling windows, 550 
then infilling the CO2 using infill composite values.  
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Figure 7: Illustration of using the interpolate specified scenario cruncher to infill a series of stylised trajectories (solid lines), 

characterised by two different parameters (𝝉 and 𝑬∞), defined in (Sanderson et al., 2016). The first column compares the total CO2 555 
calculated for the stylised trajectories to the values of the MESSAGE model for a given group of SSP scenarios (dotted lines). 

These are our lead values in each case. The second column shows the range of follow values for that SSP. The third column shows 

the resultant AFOLU (Agriculture, Forestry and Other Land Use) trajectories that emerge from using the Interpolate Specified 

Scenario infiller.  

 560 
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