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Changes in response to reviewer 1:  

Response to overview comments 

• It could be helpful for users to briefly mention the package infrastructure used by silicone and if and how it is 

connected to the other packages in the IAMC toolbox (e.g. data transfer using a common csv format, or by API calls 

to other packages) 5 

o We have expanded the section discussing the pipeline to mention data transfer. The section now reads:  

▪ The pipeline is based around the pyam package (Gidden and Huppmann, 2019), specifically its 

IamDataFrame class, which Silicone makes extensive use of. Pyam dataframes easily convert 

from and to widely-used pandas dataframes, which pyam and Silicone also use internally 

(McKinney, 2011). The pipeline also includes tools to harmonise (i.e., correct projection made in 10 

the past to match now-known emissions) (aneris, (Gidden et al., 2018a) before infilling and to 

pass the complete projections to climate simulators. The estimation of climatic impact is 

performed by OpenSCM, 

• For me an overview over the processing steps would be great. 

o We describe all the processing steps in the Methods section. Other than getting the data into pyam form 15 

and harmonising it (if desired) there aren’t any other pre-processing steps needed. We’ve added a 

description describing the interaction between silicone and the harmonisation process in the mathematical 

detail section. Is there something else you would like to see discussed? 

▪ If the results are to be harmonised, then harmonising both the infiller and target data before 

infilling is required for improved consistency (otherwise infilling depends on outdated data). 20 

Absolute value infilling techniques preserve harmonisation, however ratio-based approaches do 

not necessarily, and may need harmonisation again afterwards.  

• It would be good to have more structure in explaining the different crunchers and infilliers (e.g. paragraph headings 

for each cruncher) The paper will also be used as a reference for silicone and then it’s good to easily find 

information on a specific issue. The information on crunchers and infillers is somehow scattered through the 25 

document with bits in the methods section (text and tables) and some aspects in the results section. 

▪ [Sub-subheadings have been added to the sections detailing the crunchers] 

▪ [The rank correlations analysis has been added to the results section. Although not formally a 

result of silicone, this hopefully provides a clearer separation of model description and data.] 

• The overview tables are a good idea, but they should be placed in the methods section for the print version of the 30 

paper. 

o We agree, but have no control over typesetting – tables were requested to be at the end of the document at 

this stage. Hopefully the editors will take note!  

• It is a bit unclear how robust the results are and how much work is needed to check them before using the results. It 

is mentioned in some places, especially the tables, that incomplete databases can influence results. For easy use of 35 

the package it would be great if the user is warned in these cases. As one purpose of the package is to fill those gaps 

it would be a problem if the results are unknowingly influenced by the gaps. Maybe you could add a short section 

on limitations which gives an overview over such possible problems and references the tables for details. See also 

comments on lines 99-103 and lines 130-133. 

o The code has now been updated so that the default behaviour is to ignore inconsistent data (e.g. scenarios 40 

missing values at one time). There is also now a warning when infilling negative lead emissions with the 

time-dependent ratio. 
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▪ [The text for “time-dependent ratio” and “decompose collection with time-dependent” ratio has 

been changed significantly to reflect this.] “This relies on all scenarios having values for all of 

these variables, so misses out cases which do not have one of the constituents or only reports at 45 

some of the required times, unless the override option “only_consistent_cases” is set to False.” 

• The gas basket splitting functionality seems to be not fully developed. The package has the potential to replace 
the EQW and it’s update used by assessments like the Climate Action Tracker, but in it’s current state it can not 
yet do that. It would be great if using QRW or EQW with a KyotoGHG constraint was possible for all gases. Could 
you add information if/how this can be added e.g. as a multiple infiller or a scaling postprocessing step? This 50 

would make the package very useful for the climate policy assessment community. 
o Since writing the first draft we made another multiple infiller that does exactly this. We have now included 

details of it in the paper. Note that one of the gases is infilled by the conservation condition 

▪ [“Split collection with remainder emissions” entry added to multiple infiller table and flow chart, 

described the process of infilling differently for breaking up the aggregate values into their 55 

components] 

• RMS closest: please consider referencing the paper "Warming assessment of the bottom-up Paris Agreement 

emissions pledges" (YR du Pont, M. Meinshausen. Nature Communications, 2018) where a similar method has 

been used 

o Good suggestion. Included as follows: 60 

▪ The alternative approach of inputting the whole pathway with the smallest mean-squared distance 

over all time was used in (Robiou du Pont & Meinshausen, 2018). This works well for large 

databases containing similar paths, but is less useful for smaller databases or for paths with an 

unusual behaviour over time. 

• It is very useful that the authors test the correlation between the different variables. The Spearman’s rank 65 

correlation coefficient does not detect nonmonotonic relationships which can be modeled by the Quantile Rolling 

Window method. Have you tried other methods to detect correlations (e.g. the Hoeffding Dependence Coefficient). 

o As mentioned in the previous correspondence, we have tried only methods that would also not detect non-

monotonic trends. Correlations for all variables with CH4 and CO2 were also plotted and inspected by eye 

for three times and no clear nonmonotonicity was seen, however.  70 

▪ We also plotted the relationships between CO2 and all other variables (using the plotting function 

in the Silicone examples github) to check that there were no obvious cases of a non-monotonic 

relationship. 

• • Did you investigate non-emissions lead variables? 

o No, although the mathematics should work identically. We now point out using economic indicators as a 75 

potentially use-case for ratio infillers, although strictly speaking it’s not “infilling” if this data is used (it’s 

just a very basic IAM).  

• Have you used the method on other emissions databases (AR5DB, SSPDB, ...). Is this easily possible or does the 

package need a structure only present in the SR15DB? 

o As described below, we now apply Silicone techniques to infill a model/scenario from AR5. It is also 80 

being applied to AR6. Given that all these listed databases use the IAMC format (more or less), they are 

easily handled by pyam and hence Silicone. The only pinch point for using other databases is getting the 

data in the pyam structure. Many databases are in pyam or pyam-compliant structures, so following on 

from the point below we now show infilling a scenario from such a source.  

• Finally a more political comment. Why do you feature a fossil fuel companie’s scenario in a climate change paper 85 

(Shell sky scenario)? This helps their greenwashing attempts. Please provide the scientific explanation for using this 

scenario. 

o This was originally referenced because that scenario is claimed to be Paris-compliant and was also one the 

industry scenarios included in the IPCC SR1.5 pathway assessment. However, it is our contention that this 
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depends on the way that the scenario is infilled. However since to demonstrate this point would require 90 

careful data handling, harmonisation and running of a climate simulator to show convincingly we will 

leave that discussion for elsewhere.  

▪ [The Sky model infilling has been replaced by POEM scenario B infilling from AR5. Text and 

images have been updated to show this.] 

 95 

Detailed comments – note that line counts are drastically different now 

• Abstract: I think it would be good to mention some of the most important use cases and infilling options in the 
abstract. 

o Good idea, we have added a sentence 
▪ We demonstrate the package’s utility with three examples: infilling all required gases for a 100 

pathway with data for only one emission species, splitting up a Kyoto emissions total into 

separate gases and complementing a set of idealised emissions curves to provide a complete, 

consistent emissions portfolio.  
• Line 70: It would be helpful for the reader to have short description of the structure of the paper at the end of the 

introduction. 105 

o Good idea 

▪ This paper is structured as follows: the Methods section presents an overview of the different 

infiller methods, then goes through the infiller techniques in precise and mathematical detail. In 

Results, we present our analysis of emissions projections in the SR1.5 database. This includes 

correlation statistics of the database, and how well Silicone reproduces aspects of it from the rest. 110 

We use this to draw conclusions on the implications for using Silicone on unknown data. In Use 

Cases, we present three examples of using Silicone for infilling a pathway with limited 

information, splitting up an aggregate basket of emissions and infilling stylised emissions 

trajectories. We end with a summary of our paper. 

• • Line 83: Please give an overview over the infilling process at the beginning of the methods overview section or by 115 

expanding the introduction of the methods section (i.e. what are the steps in the process). 

o This is now included, if you mean this in a philosophical sense. We also now discuss elsewhere the 

protocol for harmonisation. If you mean in terms of which commands to use in what order, that seems best 

learnt from code examples, found in the notebooks.  

▪ Silicone offers a range of tools that apply methods for doing this infilling which are appropriate in 120 

different circumstances, depending on the amount of complete data and how much we know 

about the narrative behind our emissions. These tools are referred to as ‘crunchers’. Each of these 

crunchers takes a ‘lead variable’, found in both the infiller and target databases, and uses it to 

infer the value of a ‘follower variable’, found only in the infiller database (hence missing in the 

target database). There are also several tools for easily infilling multiple variables, called 125 

‘multiple infillers’. These may have multiple follower or lead variables. 

▪ If the results are to be harmonised, then harmonising both the infiller and target data before 

infilling is required for improved consistency (otherwise infilling depends on outdated data). 

Absolute value infilling techniques preserve harmonisation, however ratio-based approaches do 

not necessarily, and may need harmonisation again afterwards. 130 

• Lines 99-103: Does the code have any flags to control behavior in these cases? Does it warn if this occurs or is it up 

to the user to control the results? 

o A warning is now reported for ratio methods with negative target leads, although it is up to the user to 

determine if the use is acceptable or not.  



4 

 

 

 

• Line 119: Where do the estimates averaged over come from? Different historical estimates for the same year, or 135 

different years as well? Is it possible to use trends of the last years with data or averages over the last years? If only 

single last historical data points are used (which is what I understand from table 1) the method is very sensitive to 

annual fluctuations in emissions data. Thus trending or averaging is needed for robust results that do not drastically 

change by using one additional year with data that has unusual emissions due to e.g. extreme weather or crises 

(financial, COVID-19, local crises, ...). 140 

o The estimates are not averaged over any period. The vast majority (in our case all) of projected emissions 

trajectories data reported by integrated assessment models is available at 5 or 10 year intervals. Such data 

points therefore aim to represent systemic changes rather than (sub-)annual effects. Still, in the case of 

emissions that fluctuate strongly over time, this infiller should be regarded as less reliable. In the 

manuscript, we describe the potential use case of this infiller, and we now have added this pitfall in Table 145 

1.   

• Line 123: I assume "cases" refers to scenarios and scenarios where the sign for the lead variable does not coincide 

with the infillee are taken out of the average for both lead and follower variable? Maybe revise language to clarify 

that. A more general point: it’s a nice way to avoid numerical problems at transitions to negative emissions. 

However, when working on small scenario databases and / or with high temporal resolutions you might run into 150 

problems with availability of scenarios that use the same time period for the transition to negative emissions as the 

infillee scenario. What do you do in those cases? Does the algorithm allow for a fallback option or does it just fail? 

o You assume correctly (rephrased for clarity now). In this case, the infiller hard fails. The user should 

decide explicitly whether to use the sign-independent version or another infiller.  

▪ It will produce an error if there is no data with the required sign. 155 

• Lines 130-133: As a lot of scenario databases are not fully consistent regarding data completeness (and sometimes 

sector definitions) it is dangerous to not automatically check for completeness or at least have an optional filter that 

removes incomplete scenarios. 

o This is indeed somewhat dangerous. We have now changed how this works so that by default, data that 

lacks either some of the constituent variables or only reports at some of the required times is removed 160 

before infilling.  

▪ This cruncher is the foundation for the ‘decompose collection with time-dependent ratio’ multiple 

infiller. It relies on all scenarios having values for all of these variables, so misses out cases which 

do not have one of the constituents or only reports at some of the required times, unless the 

override option “only_consistent_cases” is set to False. It always constructs a new, consistent 165 

version of the aggregate variable in case different modellers used different conversion factors in 

the infiller database. 

• Lines 138: Does "with all the same times" mean data availability for the same points in time? The use of "times" 

seems unusual and is not intuitive to understand for me. 

o It does, rephrased 170 

▪ The ‘RMS closest’ cruncher filters the infiller database for models with data at all the times found 

in the infillee data. 

• Line 142: Line 140 states that the average is taken over all points in time, yet line 142 states that "the value of the 

lead at one time impacts the whole timeline". That sounds contradictory to me. Can you explain? Also, adding a 

formula would help. 175 

o Rephrased, formula added 

▪ The ‘RMS closest’ cruncher filters the infiller database for models with data at all the times found 

in the infillee data. It then ranks models and scenarios by the root mean squared (RMS) difference 

between the lead data in the infiller and infillee database, with the average being taken over all 

timeslices. It returns the follower data from the scenario/model combination with the smallest 180 

RMS difference: the formula is 𝐸𝑓(𝑡) = 𝑒𝑓,𝑖(𝑡), where the subscript i refers to the model/scenario 
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case that minimises ∑ (𝐸𝑙(𝑡) − 𝑒𝑙,𝑖(𝑡))
2

𝑡 . In the case of a draw, the value that occurs earlier in the 

infiller database will be used. This is the only cruncher that is not time-independent, i.e. changing 

the value of the lead at one time may result in different outputs at other times. 

 185 

• [Many comments about QRW] If I understand correctly, the windows are not windows with clear boundaries but 

created by the weighting functions. I think the phrasing "Five windows are drawn" is a bit misleading because to me 

it suggests that the data-points are binned. However, my understanding is that you actually create a smooth 

distribution from each discrete data point such that at every lead emissions level chosen to calculate a quantile you 

have all data follower emissions 190 

data-points available, just weighted by the weighting function. 

o Mostly correct, one other possible misconception is that we default to 10 windows, 5 was just chosen for 

illustrative reasons.  

▪ A number of rolling windows centers (here 5, by default 10) are drawn and a weighting function 

constructed for each window. It has a continuous distribution, rather than a discrete cutoff, hence 195 

the name. 

• Please introduce an index for the data points used for the analysis. 
▪ [We have significantly changed the notation for the formulae to do this.] 

• why do you use the approach of in-terpolating between only 5 points. When calculating the quantiles each time 
you use the method, you could just calculate them for the exact value of the lead emissions. If you pre-calculate 200 

the quantiles and use a lookup table to fill emissions (as done in the old EQW), you could use a higher resolution 
than just 5 points. I get the impression that you kept some aspects of the Generalized Quantile Walk that are no 
longer necessary with your improved method, because you don’t have the binning. 

o The five points we have used are mainly for plotting clarity. It is up to the user how many points they 
wish to use and they could use arbitrarily high numbers of points (we default to 10 because, in practice, 205 

there is little variation at higher resolution than this). Another reason for using fewer pointsis 
computational simplicity – calculating a quantile at each point is O(N) in the infiller database, so doing so 
for each point in the infillee database can get time-consuming for larger infillee databases.  

• Line 149: Maybe add "for each time step" to clarify that the operation is carried out at each time step individually. 

This information could also be added in the description of the process in the following lines.  210 

▪ We have added “for each time.“ 

• Line 149: If I understand correctly you don’t interpolate between quantiles, but  between follower emissions 

associated to a given quantile at given lead emission values. If that’s correct, please rephrase the sentence. 

o That was indeed not the interpolation we were trying to talk about here 

▪ infills the values based on interpolating between the quantiles of the follower variable. 215 

• Line 155: There is an additional full stop. 

▪ [At some points, the whole text of the caption was used rather than just a reference. This has been 

deleted] 

• Line 162: The formula uses ri as sum index, but neither ri nor rp are introduced in the text. (I assume ri are the lead 

emission data points in the scenario database ordered by the associated follower value and rp is the highest one to 220 

be taken into account at quantile q (so should it not be rq instead of rp?))  

▪  [Significantly rewritten in accordance with the above]   

▪ 𝑞(𝑒𝑙(𝑗)) = ∑ 𝑤𝑝(𝑒𝑙(𝑖))𝑒𝑓(𝑖)<𝑒𝑓(𝑗) +
𝑤𝑝(𝑒𝑙(𝑗))

2
. 

• Line 181: Why did you choose 0.03? 

o To select only extreme cases. 225 
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▪ We also calculate the variation of this value with time, and in cases where this exceeds 0.03 

(chosen to highlight only extreme cases), 

• Line 215: Did you analyze if the RMS closest cruncher chooses scenarios coming from the same model or study 

such that chosen pathways are very similar? 

o We didn’t in detail, however they typically this won’t happen as the same model will have a large spread 230 

in well-modelled variables between the scenarios by construction (there’s little point in repeating yourself). 

By definition, the RMS closest cruncher will choose similar pathways in terms of trend. 

• Line 252: The sentence starting with "that" is incomplete. 

o Again, a figure-caption error 

▪ [deleted] 235 

• Line 256: Does the EQW use interpolation between quantiles and smoothing before calculation of the quantiles? 

o We have added have a section explaining this properly, as follows 

▪ The equal quantile walk calculates the quantile of the lead value at each time. This 0 for values 

below the database minimum, 1 for those above the database maximum and the fraction of infiller 

data smaller or equal to this value otherwise. We interpolate between neighbouring values in the 240 

infiller data to avoid rounding errors. 

• Lines 259-262: Did you test the influence of the weighting function on the conservativeness of the QRW cruncher. I 

assume that in the extreme case of constant weighting functions this would always return the median of the scenario 

database. So the smoothing through the weighting function has to be used carefully. 

o We did, you are correct.  245 

▪  Increasing the decay length will reduce the weight difference between points, so the rolling 

window becomes wider and more even, with the limit case of calculating quantile q of all data for 

large 𝑑𝑙. 

• Line 275: See also comment on line 123. How many scenarios are left when restricting to scenarios with same sign. 

This will especially be problematic for extreme stylized scenarios with early negative emissions. 250 

o Indeed, see comments above.  

• Line 279: a similar approach has been taken in "Warming assessment of the bottom-up Paris Agreement emissions 

pledges" (YR du Pont, M. Meinshausen. Nature Communications, 2018) 

▪ [Reference added] 

 255 

Comments on testing the examples repository 

 

• There are problems with directory names. The input data directory in the repository is called "input", while in the 

code is is referenced as "Input" with upper case "I". This leads to the code failing on unix systems.  

▪ [Fixed] 260 

• Splitting up basket: The notebook fails in cell 7,line 8 with: "TypeError: convert_unit() missing 1 required 

positional argument: ’to’"" 

o This problem should not happen with the latest version of silicone, do you still find it?  

• Stylized Path: the legend of the plot resulting from cell 9 shows 4 cases of MESSAGE scenarios, yet in the plot 

only two can be distinguished. Is that correct? 265 

o Correct, 𝐸∞ does not appear in this formula so two of these lines are identical.  
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• Is it possible to store calculated quantiles for the QRW and EQW method to increase calculation speed by using a 

lookup table?  

o The quantiles for QRW are calculated at the point of generating the infiller, so several different target 

databases can be infilled efficiently in this way, but it doesn’t speed up our use case here. More lookup 270 

tables are possible in principal but this would not demonstrate the use of this toolkit in practice though. We 

could add such functionality in future but we don’t believe it is necessary to illustrate the tool in this paper 

(pull requests and issues at the github repository are most welcome). We have reduced the computational 

load of the new POEM infilling notebook relative to the Shell notebook by removing most of the variables, 

which were never plotted or explored anyway.  275 

 

Comments on tables and figures 

• Table1: latest time ratio: see comment on line 119. Please explain what re-harmonizing means in this context. 
▪ [Comment has been removed here] 

• Table1: Time dependent ratio: when using the optional filtering for same  sign, how do you ensure that there is a 280 

sufficient number of scenarios available? 
o We raise an error if there are none of the correct sign, It’s not clear that there’s a “sufficient number” 

required above 1. There will now be a warning thrown if the target data is negative, irrespective of the 
number of negative infiller scenarios.  

• Table 1: Linear interpolation: Is it possible to use scenario binning here to not select two very similar pathways 285 

(e.g. same model and storyline with small parameter variation)? I think this could be made more stable by using 
more than two scenarios, but the problem will not vanish. Can you give an example, where using this cruncher 
makes sense? 

o This cruncher is only intended for use on a very limited number of scenarios. We tend to want cases 
where the scenarios have similar model and storylines. This then ensures that the infilled result is 290 

compatible with those storylines. E.g. my model assumes a SSP5 world and is comparable to these groups 
of scenarios with high biomass burning – I want to infill the amount of BC corresponding to this much 
CO2. We also now mention that this is very similar to a previously developed interpolator that used cubic 
spline interpolation, which is fairly similar in the limit of a large database. This specific cruncher in 
Silicone was recently used in the paper Current and future global climate impacts resulting from COVID-295 

19 https://www.nature.com/articles/s41558-020-0883-0 
▪ A tool for infilling was provided with (Rogelj et al., 2014) using a cubic spline between specific 

points in a small database, however this type of infiller behaves chaotically when applied to large 

databases incorporating many different models. It was also coded in Excel, limiting the ease of 

open-source development. 300 

• Table1: EQW: Does the EQW cruncher use smoothing through a weighting function when calculating the 
quantiles? 

o EQW is smooth but does not have a weighting function 
▪ [Section on EQW added elsewhere] 

• Tables 1 and 2: please repeat the table header after a page break 305 

o Good suggestion. This would be a matter for typesetters. Tables do not behave properly with track 

changes so we will not attempt to do this by hand here 

• Fig 2b: there are some artifacts around the subfigures (partly visible plot boundaries?) 

▪ [hopefully fixed now] 

• Fig 3: The spike in the linear interpolation pathway shows that this cruncher is very problematic. 310 

https://www.nature.com/articles/s41558-020-0883-0
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o Correct and intentional. This is partly alleviated in the current version, but we do not recommend using 

linear interpolation without filtering the data down carefully, as is described in the text.  

▪ We see from Figure 3 that the linear interpolation model (without filtering the database) provides 

a chaotic pathway, due to its value being determined only by the two points either side of it in the 

database, which changes semi-randomly with time and should not be used here. 315 

• Figs 4-6: please add a legend 

▪ Added legends to the figures.  

 

 

Changes in response to reviewer 2:  320 

Changes made 

1a. In most parts of the manuscript and in the source code the specified aim is to complete missing emissions in future 

scenarios produced by IAMs. However, in some sections of the manuscript, other aims are indicated (e.g. complete stylised 

scenarios, fill missing sectoral data, use historical estimates, aggregate regional data(?)) which I found confusing sometimes. 

One solution could be to remove these hints of other applications and use the (IAM/stylized) future scenarios as the aim and 325 

example throughout the paper. Additional applications could then be outlined in a discussions section (in a bit more detail). 

o To reduce the confusion, we have removed the reference to aggregating regional data entirely and have 

rephrased the section around historic estimates and sector emissions. Since one of the crunchers (last time 

ratio) is specifically designed to deal with the case of historic emissions, it is still discussed there. We 

mention regions in the context of structure as follows: “Pyam dataframes assign values to variables as a 330 

function of different models, scenarios, regions and times. All methods work on databases with only a 

single region at a time, although the region can be different between the infiller and target databases.” 

1b. With respect to the main aim I would have expected use cases showing the completion of several variables of different 

IAM scenarios. 

• As mentioned in the separate discussion piece submitted previously, we are somewhat confused by this comment – 335 

the first “use case” provides a case where a scenario (now a different scenario) has many variables completed, the 

second and third cases complete variables from multiple scenarios. There is also a github repository consisting only 

of examples of use (some of which are mentioned in this paper, some not – note that the Sky scenario example in 

the text has changed now) and a “notebook” section to the main github talking through the general principles of 

applying these techniques. Could you clarify if there is something else you would like to see added, and whether 340 

you really want this included in the paper itself? (We are essentially treating the examples github as a living and 

evolving Supplementary Info, although the archived version is always available from Zenodo.) 

2. I would recommend to rework parts of the abstract and of the introduction in order to better cover the content/ set the 

scene for the rest of the manuscript (e.g. add info about rank correlation, tests/ use cases). 

Formatted: Heading 1
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o We now mention the use-cases in the abstract and have an outline of the manuscript in the introduction. “A 345 

variety of infilling options are outlined and their suitability for different cases are discussed. We 

recommend certain infilling techniques as the good defaults, but emphasise that considering the specifics 

of the model being infilled will produce better results. We demonstrate the package’s utility with three 

examples: infilling all required gases for a pathway with data for only one emission species, splitting up a 

Kyoto emissions total into separate gases and complementing a set of idealised emissions curves to provide 350 

a complete, consistent emissions portfolio.” 

3. Literature: it is rather difficult for me to imagine that there are no other somewhat comparable tools around and that so far 

missing emissions were usually set to zero or only somehow unsystematically filled following ‘ad hoc’ decisions (as stated 

in the introduction). For completeness it would be nice if the authors could dig some more into the literature and check how 

climate models so far got the required input from IAMs? One example for a tool covering a similar purpose in maybe a 355 

slightly different but connected setting is the tool used in Gütschow et al. (2016) and du Pont et al. (2016) which is described 

in Nabel et al. (2011). Some of the co-authors have been involved in these papers. 

• As discussed with Robert Gieseke in previous correspondance, some specific papers you mention do not strictly do 

infilling – they use non-emissions economic data to perform the analysis, whereas we deem ‘infilling’ to be when 

no such data is available.  360 

o We have changed the tense of the sentence to clarify that explicitly setting these values to zero is rare, 

although very often done implicitly by ignoring the variable altogether. In explicit cases, the Equal 

Quantile Walk is used. We now mention Nabel et al as an example of using this but note that there is no 

general tool for this so we think our open-source codebase provides a significant step forward in terms of 

reducing duplicated effort. We also now highlight the use of a RMS-closest technique by Robiou du Pont 365 

& Meinshausen, 2018. The text now reads:  

o “Most earlier studies overcame this problem in one of two ways: with expert-based ad-hoc decisions on 

how to adequately fill-in missing species (Schaeffer et al., 2015); or by assuming that a pathway will occur 

at the same quantile for each set of emissions in a particular year, although the quantile can vary over time 

(Gütschow et al., 2018; Meinshausen et al., 2006; Nabel et al., 2011). However, the former clearly does not 370 

scale easily to larger databases (because making ad-hoc decisions for a thousand scenarios requires a 

significant time input), and the latter approach, termed the “Equal quantile walk” (EQW), ignores trade-

offs and specific relationships between emission species resulting from how competing technologies, 

behaviours and industrial practices result in different emissions. A few alternative approaches have been 

used recently: for instance, using the pathway with the smallest mean-squared distance over all time was 375 

used in (Robiou du Pont and Meinshausen, 2018). This works well for large databases containing similar 

paths, but is less reliable for smaller databases or for paths with an unusual behaviour over time. A more 

sophisticated “Generalized Quantile Walk” technique can capture the effect of trade-offs and was recently 

introduced in section 3.8.1 in (Teske et al., 2019), involving quantile regression between a lead variable 

(fossil CO2 emissions) and other gases for every individual year. Unfortunately, the implementation there 380 

did not consistently guarantee that higher quantiles resulted in higher emissions, and has not been followed 

up with any peer-reviewed work that does so. A tool for infilling was provided with (Rogelj et al., 2014) 

using a cubic spline between specific points in a small database, however this type of infiller behaves 

chaotically when applied to large databases incorporating many different models. It was also coded in 

Excel, limiting the ease of open-source development.” 385 
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4. While reading I sometimes got confused by different terms and I found parts of the 
manuscript a bit sketchy or difficult to read. More specific: 
a) There are several changes in terminology among different (sub-) sections (e.g. “lead 
variable”, “lead gas” “inputs or outputs” (l.89), and timeseries; and a sudden switch to 
model and scenario in 2.2.2 where 2.2.1 only had the more general term database; 390 

but also small things as the change from CH4 in section 1 and 2 to methane starting 
section 3). I think for the reader it would be helpful to stick to a certain terminology 
throughout the manuscript. 

• References to “lead/follower gas” have been changed to “lead/follower variable”.  Inputs is now generally 
removed where it is equivalent to “infiller”, see below. Timeseries refers to any data that changes over time and is 395 

used to refer to any of the above – it is a data structure, not a description of the data meaning. 
o A short paragraph explaining what model/scenario combinations are has been added before 2.2.1: “As 

one final detail, we discuss the data model which is assumed by Silicone. Silicone is built around the pyam 
package (Gidden and Huppmann, 2019). As a result, it assumes that all input data is provided in a 
particular structure. The structure includes the model which created the timeseries, the scenario with 400 

which the timeseries is associated (e.g. a high BECS 1.5 degree scenario), the region the emissions occurs 
in and the unit of the data (full details available at https://pyam-
iamc.readthedocs.io/en/stable/data.html). Accordingly, Silicone is able to work on specific subsets of 
models (e.g. only the MESSAGE model) or subsets of scenarios (e.g. all SSP1-like scenarios). We therefore 
follow the pyam convention and refer to a “model/scenario combination” to mean a single projected 405 

world, that in some contexts might be called a “scenario”.” 
b) The terms infiller and infilly are very difficult to distinguish in quick reading and I 
think it would help a lot when choosing less similar terms – How about source and 
sink/target, or infiller and target, or infiller and silicon-filled, or comparable. 

o Infiller and target seems like a good combination, now used throughout.  410 

c) In subsection 2.2.2, a bit out of the sudden, several scenarios and models seem to 
be presupposed, while at the beginning of section 2 only “a database that contains data 
for at least two emission species” is kind of officially introduced. Maybe it would help to 
directly introduce the use of different models/IAMs and their scenarios at the beginning 
of section 2 such that the usage of different timeseries (2.2) and different models and 415 

scenarios (2.2.2) is less out of the sudden. An alternative could be a consistent use of 
the more general terms of “timeseries of different lead variables in the infiller database” 
depending on the main aim of the paper (see also point 1). 

o Change made  as described in 4a), introducing the structure of pyam dataframes.  
d) Please consider to better structure 2.2.1 and 2.2.2 (e.g. print algorithm names in 420 

bold or in italics, with separated paragraphs for the different algorithms or /and as lists 
(e.g. latex ‘description’ or the like)). 

o Sub-subtitles now used, in bold.  
e) Equations are throughout embedded in the text (see also point 5). 

o Key equations now in “display” mode.  425 

5. Since the different algorithms for the completion of emission timeseries are the main scientific contribution of the paper 
I would appreciate if the equations could be 
clearly separated from the text (i.e. introduced as separated numbered equations) and, 
furthermore, if more equations would be added (see also specific comments below). In 
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my opinion this could increase readability (4e) and reproducibility. Ideally it could also help to better understand how cases 430 

of several lead variable pathways are treated in the different algorithms. 
o As above. Important equations are numbered for external reference and we have added several 

equations for clarity.  
6. Test and use cases only show the usage of absolute value based algorithms, which 
I find unfortunate and a bit incomplete given the share of the method section dedicated 435 

to the ratio based algorithms. How about at least including examples using the time 
dependent ratio method? 

o One of the ways of splitting the Kyoto gas totals is the “decompose collection with time-dependent ratio”, 

which is a wrapper calling the ratio-based method several times. We have modified the text to make this 

clearer that this such an example.  440 

7. Please check the format of your references in the text (e.g. l.28, l.59, l.60, l.68, : : : ) 
o  This has been corrected. 

 
 
Specific comments/questions 445 

l.1 Why Silicone? 

• Our package fills what some would call gaps in emissions scenarios. Silicone is a caulking agent used to fill in gaps 

in tiling and was the first thing one of the developers thought of when we searched for a name. We are happy to add 

an explanation in the text if you feel it is necessary.  
l.16 Transition. E.g. “In this paper: : :” 450 

o “This paper presents a variety of infilling options and outlines their suitability for different cases are 

discussed. We recommend certain infilling techniques as the good defaults, but emphasise that considering 

the specifics of the model being infilled will produce better results. We demonstrate the package’s utility 

with three examples: infilling all required gases for a pathway with data for only one emission species, 

splitting up a Kyoto emissions total into separate gases and complementing a set of idealised emissions 455 

curves to provide a complete, consistent emissions portfolio.” 
l.16 Please consider to add more information here about the content of the paper 

• Detail added, as above 
l.33 : : : exert : : : between? Please check language 

o Changed to “as a large number of supposedly minor emissions may collectively exert a significant 460 

radiative forcing.” 
l.36 Is there an example reference/study where filling with zeros has been applied? 

• Implicitly, this is done by every study where any of the F-gases are ignored (e.g. every IAM in the SR1.5 database 
ignores NF3). However, studies don’t tend to list the gases they ignore.  

o “If no infilling is attempted, the unevaluated emissions would effectively be considered zero, which would 465 

clearly create systematic biases and potential artefacts in the projected temperatures.” 
l.41 I do not understand “does not scale easily” 

o Added “However, the former clearly does not scale easily to larger databases (because making ad-hoc 

decisions for a thousand scenarios requires a significant time input)” 
l.45 There is no 3.8.1 in this reference (reference currently points to Chapter 4, if you 470 

target 3.8.1 consider citing Teske et al.) 
o Corrected as advised 

l.60 Please specify what “this” refers to 
o Now “Silicone” 

l.64 “suite of tools” are these all python tools? 475 
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o Indeed, “Python” added 
l.66 Are there more than these two? Else consider to add “and/as well as” before “harmonise...” 

• The pipeline can be considered to include the OpenSCM part, although this isn’t strictly developed by the IAMC, 
it’s therefore a little fuzzy.  

o “This pipeline includes tools to manipulate and plot IAM data (pyam, (Gidden & Huppmann, 2019)) and 480 

harmonise mismatches in historical emissions (aneris, (Gidden, Fujimori, et al., 2018)). The estimation of 

climatic impact is performed by OpenSCM, managed by the OpenSCM community (Nicholls, Gieseke, 

Lewis, & Willner, 2020), which is compatible with the data structure of the pipeline.” 
l.67 Consider deleting “, managed by the OpenSCM community” 

• As above, we have revised the sentence slightly according to this comment, while the text still makes clear that 485 

this is not part of the IAMC 
l.82 several? Three/two: : : 

• Currently 4 (one due to an update from the original paper draft), more may well emerge. One is arguably an 
“aggregation tool” rather than a “multiple infiller”. We maintain ambiguity for this reason 

l.85 Maybe change to “Currently, there are ...”? 490 

o “Currently” added 
l.98 Consider rephrasing e.g. “... and where emissions are expected to scale with each 
other ...” 

o Rephrased, this discussion is moved to the next paragraph. “The ratio-based approaches are better for 

cases where the lead values to be infilled are outside the range in the infiller database and we expect the 495 

emissions to scale with each other.” 
l.98 What do you mean with “regional data” and “aggregate data”? If you refer to 
regions as subset of global data then this is the first time that a spatial reference is 
given and I wonder if it would be appropriate to introduce this more formally earlier in 
the manuscript? 500 

o Reference to regional data has been removed as discussed above. A reference to “splitting up an 

aggregate basket of emissions” mentioned above, this case now changed to “splitting up aggregated 

emissions into their components“ 
l.100 Consider to give an example? CO2 uptake? 

o Added “, e.g. CO2 emissions” 505 

l.106 What do you mean with similar – similar magnitudes? 
o Indeed, clarified to “, preferably with both larger and smaller lead emissions in the infiller database” 

l.111 “estimate the ratios” – if not to be predefined: : : 
o Now “determine” 

l.112 “follower value in infillee database” -> “in the ...” 510 

o Added as requested 
l.112 Please consider to visually separate (and number) the equations. 

o Change made for all significant equations 
l.114 “each different timeseries” -> different regarding what - do you mean different 
follower variables? 515 

o Sentence removed.  
l.116 mean regarding what - time or different sources (models, scenarios?) 

o Sources, clarified to “The ‘latest time ratio’ method uses the ratio between the mean follower data in the 

infiller database (we denote this database with lower-case, 𝑒𝑓) and the value of the lead variable in the 

target data (𝐸𝑙)” 520 
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l.117 what does “both” refer to? 
o Both means follow and target lead. Now “both values” 

l.119 what do you mean with “all estimates”? Different sources (models, scenarios)? 
o Yes, specification of “at that time” added 

l.120 why historical? Couldn’t this also be different scenarios from different IAMs? 525 

• It can, it’s simply that this is the most common use-case (we are yet to see a case where all IAMs model a gas up 
to a given point then all stop thereafter whilst continuing to model other gases).  

l.120 "and the lower case ef (t) represents the follower values in the database at time t.” -> "and the lower case ef (tlast) 
represents the follower values in the database.”? 

o Rephrased as requested, the distinction being between E and e. 530 

l.125 the infillee lead is not part of the formula – is this the El(t) from l.113? 
o Yes, it will be used to multiply the ratio.  

l. 125-133: Maybe consider to restructure? You could start with the context, i.e. the algorithm 
name, and then add the explanation, e.g.: “The decompose collection multiple 
infiller is based on: : : relying on the useful property of : : :” 535 

o Significantly restructured and added more equations as explanation 
l.134-137: Equation for R(t)? 

• We explain that this follows the logic below instead, it would be tedious to write out here again with one symbol 
different. The whole passage has been rewritten.  

l.142 I did not understand this sentence 540 

o Rephrased to “This is the only infiller that is not time-independent, i.e. changing the value of the lead at 

one time may result in different outputs at other times.” 
l.143-145: Equation for Ef? 

o We have added it.  
l.151 There is no 3.8.1 in that reference (reference currently points to Chapter 4, if you 545 

target 3.8.1 consider citing Teske et al.) 
o Well spotted, resolved as above 

l.152 There seems to be a lost copy of the figure caption in the text. (Either just delete 
or maybe rephrase to steps with complete sentences) 

o Indeed, deleted 550 

l.155-165 Equation for Ef? 

• This would be illegibly long and complex without a great deal of separately defined objects. The whole section has 
been rewritten however.  

l.163 Maybe Ef not El? 

• The weights are associated with e_f, the ordering is associated with e_l. This has been rewritten, as noted above.  555 

l.166 What about the KyotoGHGs as one basket? 

• Could be considered (and can be calculated by the code in the examples github repository if you’re interested), 
but interpreting it is complicated by the fact that 

• 0) calculating the Kyoto GHGs as a single basket only makes sense if all relevant Kyoto gases are reported, which 
isn’t often the case (if it were Silicone’s domain of applicability would be severely reduced) 560 

• 1) there are several possible metrics for this, on top of which the values stored in the IIASA database for a given 
metric do not entirely equal the values calculated from their components. Sometimes this is due to the 
incompleteness issue, other times there appear to have been rounding errors or method disputes in the process.  

• 2) it naturally correlates very well with its primary components CO2 and methane without really signifying 
anything, further complicating the averages analysis.  565 
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l.169 Maybe give an example for two such variables? 
o Added “for instance black carbon and carbon monoxide are both produced by incomplete combustion” 

l.185 Consider explicitly listing the two constituents 

• OK, it is  somewhat long-winded to spell out the acronyms here, so we simply use them and hope those unfamiliar 
with them will look at the table 570 

o “(AFOLU and Energy and Industrial processes, a similar concern can be raised about F-gases)” 
l.186 Which are “these two” – CO2 and CH4?! 

o Yes, spelt out now. “CO2 and CH4” 
l.188 you write that BC, CO and OC “correlate poorly with others, however, from the 
table it seems that they do not correlate less well with others than other gasses, the 575 

main difference is that they correlate very well with each other. 
o Clarified: “that correlate well with each other but less well with other emission pathways” 

l.190 maybe aggregate F-gas emissions / F-gasses as a basket? 
o As a basket added to the analysis 

l.191 up to here always “CH4” 580 

o Changed to always be CH4 
l.198 consider deleting “and find similar results” 

o Ok 
l.199 “we choose four” – which are basically all?    

o Following from the point below, this now reads: “We use the crunchers that are designed for use on 585 

complete datasets with only default settings: QRW (default settings mean in absolute mode and for the 0.5 

quantile), RMS closest, EQW, time-dependent ratio and linear interpolation. Interpolate selected model 

behaves identically to linear interpolation with default settings and is not treated separately here.” 
l.199 But even if there are errors, wouldn’t it be interesting to see what happens? I 
would appreciate if you could also show results for the ‘time dependent ratio’ algorithm 590 

o We now show the results from using the time-dependent ratio too, and slightly change our normalisation 
to make the comparison with “just use the mean” clearer. In several cases it does indeed give values 
worse than 1 (i.e. using the mean). A complicating consequence of this new normalisation and higher 
possible values is a strong skewing of the results and non-normal distribution of the errors. We therefore 
also substitute the Wilcoxon t-test for the student t-test in all cases. The statistics are all robust to this 595 

and it has no impact on our conclusions, although all of the p-values are slightly different now. 
References to Time-dependent ratio have also been added to the conclusion here.  

l.201-202 Equation? 

o The (new) equation has been added: “i.e. 〈√〈(
𝐸𝑓,𝑖𝑛𝑓−𝐸𝑓,𝑎𝑐𝑡

𝜎
)

2

〉𝑖〉𝑑𝑒𝑐𝑎𝑑𝑒, with the subscript text 𝑖𝑛𝑓 

indicating that the value is infilled, 𝑎𝑐𝑡 indicating actual and 𝑖/𝑑𝑒𝑐𝑎𝑑𝑒 indicating averaging over 600 

model/scenario cases or decades.” 
l.203 “both cases” – CO2 and CH4? 

o Indeed, clarified 
l.203 “non-CO2 pathways” – but CO2 is derived with CH4 -> maybe replace by “emission 
pathways” 605 

o We have replaced this with “follower pathways”  
l.204 I would rephrase this, if QRW would be fairly similar all four would be? 

o Rephrased as “the next smallest” 
l.208 What do you conclude from the non-Gaussian distribution test? 
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o Originally we concluded that we could use the Student’s t-test. With the new normalisation and data, we 610 

now fail this test so use the Wilcoxon t-test. The qualitative conclusions are as before.   
l.212 “either of CO2 or CH4” 

o Corrected to “either CO2 or CH4” 
l.214 capital T for Table 3 

o Corrected 615 

l.225 Add Silicon -> "Data in the Silicon package“ 
o Clarified to “in the Silicone examples package”, the main Silicone package is not dependent on any fixed 

data source. (Other data sources are used by the examples package, but are also included in it.) 
l.238 treatment of regions has not been introduced, maybe explain better or consider 
deletion? 620 

o Regions are now mentioned above, but not here, as described above.  
l.243 “this database” – which? The SR1.5 repository? 

o This whole section has changed, the data here now comes from a different (named) database, AR5.  
l.249-252: Again a lost copy of a figure caption 

o Deleted 625 

l.285-287 “free variables” are mentioned twice but are not further explained? 
o They are not tremendously relevant to the discussion here, but this has been changed to “in this case, 

based on rates of transition between the RCP pathways and a long-term emissions value” 
l.287-288 I do not understand this sentence 

o Changed to “Silicone provides an alternative means of complementing such results – instead of specifying 630 

the functional forms of all emissions, you can have a few key emissions prescribed and infill the remainder 

using scenarios with similarities to the desired narrative.” 
l.300 consider deleting “of which there are many” or maybe replace by “several options” 
or the like 

o Removed 635 

Table2: Please explain the asterisk again in this figure caption 
o Added “Names followed by asterisks use a ratio-based approach, i.e. they find a multiplicative factor and 

then multiply the target lead by this value, if the asterisk is in brackets there are ratio-based options.” 
Table3: Consider to change the colouring – to me the yellow/orange highlighting gives 
a ‘positive’ impression. Maybe you could colour the cells with bold numbers in green 640 

and those which are currently yellow in red? 
o The table has been recoloured. We have avoided using green and red for colourblindness reasons, but 

yellow for strong correlation and blue for high time-variability should perform the same roles.  
 

 645 

 

Silicone v1.0.0: an open-source Python package for inferring missing 

emissions data for climate change research 

Formatted: Normal
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Abstract. Integrated assessment models (IAMs) project future anthropogenic emissions which can be used as for input into 655 

for climate models. However, the full list of climate-relevant emissions is lengthy and most IAMs do not model all of them. 

Here we present sSilicone, an open-source Python package which infers anthropogenic emissions of missing unmodelled 

species based on other known reported emissions projections. For example, it can infer nitrous oxide emissions in one 

scenario based on carbon dioxide emissions from that scenario plus the relationship between nitrous oxide and carbon 

dioxide emissions found in other scenarios. ThisSilicone’s infilling capability broadens the range of IAMs available for 660 

exploring projections of future climate change. Silicone and forms part of the open-source pipeline for assessments of the 

climate implications of IAM scenarios, led by the Integrated Assessment Modelling consortium Consortium (IAMC). This 

paper presents  Aa variety of infilling options are outlined and outlines their suitability for different cases are discussed. We 

recommend certain infilling techniques as good defaults, but emphasise that considering the specifics of the model being 

infilled will produce better results. We demonstrate the package’s utility with three examples: to infilling all required gases 665 

for a pathway with data for only for one emission species, to splitting up a Kyoto emissions total into separate gases and to 

complementing a set of idealised emissions curves to provide a complete, consistent emissions portfolio. The code and 

notebooks explaining details of the package and how to use it are available from theon GitHub repository, 

(https://github.com/GranthamImperial/silicone). There is an additional repository showing with this paper’s examples and 

uses of the code to complement existing research is available at https://github.com/GranthamImperial/silicone_examples. 670 

 

<Note to reviewers: the version of Silicone in the bibliography is not the finalised version v1.0.0 to allow for 

corrections before a v1.0.0 release.> 

1. Introduction 

1.1. General context and problem setting  675 

Integrated assessment models (IAMs) are scientific modelling tools that integrate knowledge from different academic 

disciplines with the aim to explore and inform policy decisions (Clarke et al., 2014; Rogelj et al., 2018a; Weyant, 2017). 

https://github.com/GranthamImperial/silicone
https://github.com/GranthamImperial/silicone_examples
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They are widely used in climate change research to combine insights from energy, economy, agricultural, and natural 

sciences, with the aim to createof creating scenarios that explore how societal decisions can affect projected greenhouse 

gases and other emissions, as well as their related climate outcomes (Clarke et al., 2014; Huppmann et al., 2018; Riahi et al., 680 

2017; Rogelj et al., 2018b).  

However, IAMs do not always exhaustively represent all possible processes or sources of climate-relevant emissions. Thus, 

many IAM scenarios lack projections for some climate forcers, be it specific greenhouse gas emissions or aerosol precursors. 

A complete set of these climate forcers is required to accurately estimate the overall climatic effects of a given scenario 

(Meinshausen et al., 2011; Smith et al., 2018), as a large number of supposedly minor emissions may collectively exert a 685 

significant radiative forcing between them (Meinshausen et al., 2017; O’Neill et al., 2016).  

Scenarios that only report a limited set of greenhouse gases or climate forcers thus must be complemented by estimated 

evolutions of missing emissions derived without further economic analysis. We term this estimation ‘infill ing’. If no infilling 

is attempted, the unevaluated emissions would  are effectively be infilled withconsidered zeros, which wouilld clearly create 

systematic biases and potential artefacts in the projected temperatures. Depending on the radiative forcing of the species in 690 

question, this bias may be positive or negative, so infilling with zeros would not necessarily be a conservative choice. Most 

earlier studies overcame this problem in one of two ways: with expert-based ad-hoc decisions on how to adequately fill-in 

missing species (Schaeffer et al., 2015); or by assuming that a pathway will occur at the same quantile for each set of 

emissions in a particular year, although the quantile can vary over time (Gütschow et al., 2018; Meinshausen et al., 2006; 

Nabel et al., 2011). However, the former clearly does not scale easily to larger databases (because making ad-hoc decisions 695 

for a thousand scenarios requires a significant time input), and the latter approach, termed the “Equal quantile walk” (EQW), 

ignores trade-offs and specific relationships between emission species resulting from how competing technologies, 

behaviours and industrial practices result in different emissions. A few alternative approaches have been used recently: for 

instance, using the pathway with the smallest mean-squared distance over all time was used in (Robiou du Pont and 

Meinshausen, 2018). This works well for large databases containing similar paths, but is less reliable for smaller databases or 700 

for paths with an unusual behaviour over time. A more sophisticated “Generalized Quantile Walk” technique can capture the 

effect of trade-offs and was recently introduced in section 3.8.1 in (Teske et al., 2019), involving quantile regression between 

a lead variable (fossil CO2CO2 emissions) and other gases for every individual year. Unfortunately, the implementation there 

did not consistently guarantee that higher quantiles resulted in higher emissions, and has not been followed up with any peer-

reviewed work that does so. A tool for infilling was provided with (Rogelj et al., 2014) using a cubic spline between specific 705 

points in a small database, however this type of infiller behaves chaotically when applied to large databases incorporating 

many different models. It was also coded in Excel, limiting the ease of open-source development.  

Here we present a new toolbox of methods to address these recurring infilling challenges in the climatic assessment of 

socioeconomic emissions scenarios. The toolbox introduces new approaches as well as building on and combining  previous 
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approaches. The codebase is a significant improvement on compared to existing optionsIt significantly improves the 710 

codebase in terms of flexibility, applicability, reproducibility and versatility. 

1.2. The aim of Silicone 

Silicone is a Python package designed to enable users to expand scenario projections of a limited set of climate forcers to a  

full broader set required for a sensiblen accurate climateic assessment. In essence, its methods are grounded in a comparison 

of the co-evolution of anthropogenic emissions in scenarios that are readily available in the literature (Huppmann et al., 715 

2018; Riahi et al., 2017; Rogelj et al., 2018b). Silicone aims to provide IAM teams that do not represent all individual 

climate forcers with robust methods to complement their model output and facilitate a climatic assessment of their work. 

Furthermore, Silicone also aims to provide geoscience researchers with a tool to easily develop stylized, yet internally 

consistent future emission pathways of the most important climate forcers. It can also estimate or calculate missing 

emissions from particular sectoral datasectors. Notebooks describing how to use these tools are available on the 720 

accompanying GitHub repository (Lamboll et al., 2020b) and the formal documentation is available at (Lamboll et al., 

2020a). Additional examples of using this Silicone for the specific situations outlined below are included in a separate 

GitHub repository (Lamboll, 2020). The package is open-source and intended to allow groups to write their own infilling 

methods if desired. Users and collaborators are invited to submit their code for review by the teamencouraged to add any 

such developments to the codebase via on GitHub.  725 

Silicone is compatible with a suite of Python tools that make up the IAM climate assessment pipeline developed under the 

umbrella of the Integrated Assessment Modelling Consortium (IAMC). The compatibility with these tools allows us to load, 

manipulate and save files using a common file format. Thise pipeline is based around the pyam package (Gidden and 

Huppmann, 2019), specifically its IamDataFrame class, which Silicone makes extensive use of. Pyam dataframes easily 

convert from and to widely-used pandas dataframes, which pyam and Silicone also use internally (McKinney, 2011). The 730 

pipeline also includes tools to manipulate and plot IAM data (pyam, (Gidden & Huppmann, 2019)), to harmonise (i.e., 

correct projection made in the past to match now-known emissions) (aneris, (Gidden et al., 2018a)) before infilling and to 

pass the complete projections to climate simulators. The estimation of climatic impact is performed by OpenSCM, managed 

by the OpenSCM community (Nicholls et al., 2020), which is compatible with the data structure of the pipeline. This 

pipeline is being developed in support of the IAM community and the IAM scenario assessment for the forthcoming Sixth 735 

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6) in particular.  

This paper is structured as follows: the Methods sections presents an overview of the different infiller methods, then goes 

through the infiller techniques in precise and mathematical detail. In Results, we present our analysis of emissions 

projections in the SR1.5 database. This includes correlation statistics of the database, and how well Silicone reproduces 

aspects of it from the rest. We use this to draw conclusions on the implications for using Silicone on unknown data. In Use 740 
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Cases, we present three examples of using Silicone for infilling a pathway with limited information, splitting up an aggregate 

basket of emissions and infilling stylised emissions trajectories. We end with a summary of our paper.  

2. Methods 

Silicone takes a database that contains data for at least two emissions species (this database is referred to as the ‘infiller’ 

database) and derives a relationship between these timeseries. It then applies that relationship to a second database (the 745 

‘infilleetarget’ database), which does not have any data for one of the emissions species in the infiller database. For example, 

based on an infiller database of CO2 and N2O emissions, Ssilicone could then derive N2O emissions compatible with the CO2 

emissions in a less complete infilleetarget data base. In all cases, the infillers will perform best if the target data comes from 

a scenario that is socioeconomically similar to scenarios found in the infiller database. The performance of most crunchers 

can be improved by filtering out scenarios that are known to assume radically different characteristics like population 750 

number before infilling, provided that comparable emissions statistics can be found in the remaining database. 

Silicone offers a range of tools that apply methods for doing this infilling which are appropriate in different circumstances , 

depending on the amount of input complete data and how much we know about the narrative behind our emissions. These 

tools are referred to as ‘crunchers’. Each of these crunchers takes a ‘lead variable’, found in both the infiller and 

infilleetarget databases, and uses it to infer the value of a ‘follower variable’, found only in the infiller database (hence 755 

missing in the infilleetarget database). There are also several tools for easily infilling multiple variables, called ‘multiple 

infillers’. These may have multiple follower or lead variables.  

2.1. Methods overview 

2.1.1. Cruncher guide 

There are currently seven types of cruncher. These are outlined in Table 1 below. A flow chart to guide the choice is shown 760 

in Figure 1Figure 1Figure 1. There is also a series of notebooks with examples of how to use them all in the main GitHub 

repository (Lamboll et al., 2020b).  

2.1.2. Multiple Infiller and Aggregation Tools Guide 

Multiple infillers are for cases where there are relationships between multiple lead or follower values for inputs or outputs 

values that need to be considered at the same time. They allow less tailored approaches to infilling but can ensure that the 765 

infilling is faster or more consistent than infilling each of the variables separately. These are outlined in Table 2.  
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2.2. Mathematical detail 

Notebooks presenting benefits and risks of each cruncher type can be found in the sSilicone GitHub (Lamboll et al., 2020b) 

and may be useful to have as examples when analysing the work below, as well as demonstrating how to use them.  

There are two main classes of infillers: those based on the ratios between two emission pathways and those based on the 770 

absolute emission values in the infiller database. If the results are to be harmonised, then harmonising both the infiller and 

target data before infilling is required for improved consistency (otherwise infilling depends on outdated data). Absolute 

value infilling techniques preserve harmonisation, however ratio-based approaches do not necessarily, and may need 

harmonisation again afterwards.  

 775 

The ratio-based approaches are better for cases where the lead values to be infilled are outside the range in the infiller 

database and we expect the emissions to scale together with each other. For instance, if we are infilling one incomplete 

combustion product regional data from aggregate databased on another, or splitting up aggregated emissions into their 

components gases. However, care needs to be taken when infilling emissions that are non-negative using a lead value that 

may be of any sign, e.g. CO2 emissions. In that case, the ratio method might produce values for the infilleetarget emissions 780 

that are unsupported by any available evidence. Singular behaviour may also be encountered when the average lead data is 

close to zero in the infiller database. The different crunchers present different ways to estimate the ratio to use.  

The absolute value-based techniques infill with values derived from the absolute data found in the infiller database, or linear 

combinations of them. This means that they will always return values within the range spanned by the infiller database. This 

is most appropriate for processes where we have a larger greater number of cases, preferably with both larger and smaller 785 

similar lead emissions in the infiller database or where we expect the follower emissions to be strongly bounded rather than 

increasing in line with other variables. They may be considered more stable and more conservative. The quantile rolling 

windows (QRW) cruncher can be used in either ratio or absolute (non-ratio) mode, the absolute mode being the default.  

As one final detail, we discuss the data model which is assumed by Silicone. Silicone is built around the pyam package   

(Gidden and Huppmann, 2019). As a result, it assumes that all input data is provided in a particular structure. The structure 790 

includes the model which created the timeseries, the scenario with which the timeseries is associated (e.g. a high BECS 1.5 

degree scenario), the region the emissions occurs in and the unit of the data (full details available at https://pyam-

iamc.readthedocs.io/en/stable/data.html). Accordingly, Silicone is able to work on specific subsets of models (e.g. only the 

MESSAGE model) or subsets of scenarios (e.g. all SSP1-like scenarios). We therefore follow the pyam convention and refer 

to a “model/scenario combination” to mean a single projected world, that in some contexts might be called a “scenario”.  795 

Pyam dataframes assign values to variables as a function of different models, scenarios, regions and times. All methods work 

on databases with only a single region at a time, although the region can be different between the infiller and target 

databases.  
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2.2.1. Ratio infilling methods 

These methods all firstly estimate the ratio of the lead gas variable to the follower gas variable. In all cases, we first 800 

determine estimate the ratios, written as 𝑅(𝑡)  at time 𝑡 . Once these have been calculated, the follower value in the 

infilleetarget database, 𝐸𝑓(𝑡), is valued as 

 

𝐸𝑓(𝑡) = 𝑅(𝑡)𝐸𝑙(𝑡),  (1) 

, where 𝐸𝑙(𝑡) is the lead value in the infilleetarget database.  805 

Constant ratio and latest time ratio crunchers 

‘Constant ratio’ and ‘latest time ratio’ methods both use the same ratio for all infill times, 𝑅(𝑡) = 𝑅. The ratios may still be 

different for each different timeseries in the infillee database. With the ‘constant ratio’ method, the ratio must be given as an 

input parameter. The ‘latest time ratio’ method uses the ratio between the mean follower data in the infiller database (we 

denote this database with lower-case, 𝑒𝑓) and the value of the lead variable in the infilleetarget data (𝐸𝑙 ), both values 810 

evaluated at the latest time for which there exists follower data in the infiller database, 𝑡𝑙𝑎𝑠𝑡 . The mean is taken over all 

infiller data at that time. This is designed for the case where we have estimates only up until some timeassumes that we have 

historic data up until sometime, after which it stops – for instance, if we have no projections for some new HFC emissions, 

but have historic measurements for recent years. This gives us the equation 

 815 

𝑅 =  
〈𝑒𝑓(𝑡𝑙𝑎𝑠𝑡)〉

𝐸𝑙(𝑡𝑙𝑎𝑠𝑡)
,  (2) 

, where the angular brackets mean taking the (algebraic) mean with equal weighting for all estimates (typically historical 

estimates) at that time, and the with a lower case, 𝑒𝑓(𝑡) represents the follower values in the database at time 𝑡. This ensures 

that at 𝑡𝑙𝑎𝑠𝑡 , all infilled data will infillfulfil 

 820 

𝐸𝑓(𝑡𝑙𝑎𝑠𝑡) = 𝑅. 𝐸𝑙(𝑡𝑙𝑎𝑠𝑡) =  〈𝑒𝑓(𝑡𝑙𝑎𝑠𝑡)〉.   

.  

Time-dependent ratio cruncher 

The ‘time-dependent ratio’ is appropriate for method relies when there is on having some data in the infiller database for all 

times, and allows the ratio to vary with time. For this The ratio used we useis 825 
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𝑅(𝑡) =  
〈𝑒𝑓(𝑡)〉

〈𝑒𝑙(𝑡)〉
.  (3) 

. Optionally, the averaging can be taken only over model/scenario cases where the sign of the lead variable is the same in 

both the infiller and infilleetarget case – this will guarantee that the infilled value takes the same sign as that of follower 

values in the database. It will produce an error if there is no data with the required sign. This cruncher has a A useful 830 

conservativity property of this relation (with or without the sign restriction): is that if in every scenario averaged over, the 

emissions of several substances sum to another substance, e.g. if 𝑒1 = 𝑒2 + 𝑒3, then 〈𝑒1〉 = 〈𝑒2〉 + 〈𝑒3〉. It then follows that  

and so 

 

1 =
〈𝑒2〉

〈𝑒1〉
+

〈𝑒3〉

〈𝑒1〉
,  (4) 835 

the right-hand side of which we can identify as the two 𝑅(𝑡) values of using formula (3) twice for different followers. . This 

means when the aggregate is the lead and the components are followers, the sum of the two ratios is one, so we can use this 

infiller to break an aggregate value into components and know that the total is conserved. This relationship generalises to any 

number of components, still holds when emissions can be negative, and is irrespective of whether the averaging includes all 

values or only those where the lead has a particular sign.  840 

This cruncher is the foundation for the ‘decompose collection with time-dependent ratio’ multiple infiller. ItThis does 

however reliesy on all scenarios having values for all of these variables, so misses out cases which do not have one of the 

constituents or only reports at some of the required times, unless the override option “only_consistent_cases” is set to False. 

It always constructs a new, consistent version of the aggregate variable in case different modellers used different conversion 

factorsthere is an inconsistency or absent data in the infiller database. This is not performed by the cruncher, so missing or 845 

inconsistent data can potentially distort results here.  

Quantile rolling windows cruncher 

The ‘quantile rolling window’ method may be applied in ratio mode, in which case we calculate 𝑅(𝑡) by first calculating the 

ratio for each scenario, 

 850 

𝑟𝑠(𝑡) =
𝑒𝑓(𝑡)

𝑒𝑙(𝑡)
,  (5) 

then following the calculation in the absolute value section, using this instead of  𝑒𝑙. . This method finds quantiles of the ratio 

in the infiller database at set points along the range of lead values in the infiller database. It is more fully described below in 

the absolute value section.  
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2.2.2. Absolute value infilling methods 855 

2.2.2. RMS closest cruncher 

The ‘RMS closest’ cruncher filters the infiller database for models with data at all the same times found inas the 

infilleetarget data. It then ranks models and scenarios by the root mean squared (RMS) difference between the lead data in 

the infiller and infilleetarget database, with the average being taken over all timeslices. It returns the follower data from the 

scenario/model combination with the smallest RMS difference: the formula is 𝐸𝑓(𝑡) = 𝑒𝑓,𝑖(𝑡), where the subscript i refers to 860 

the model/scenario case that minimises 

∑ (𝐸𝑙(𝑡) − 𝑒𝑓,𝑖(𝑡))
2

.𝑡  (6) 

. In the case of a draw, the value that occurs earlier in the infiller database will be used. . IThist is the only infiller that is not 

time-independent, i.e. changing the value of the lead at one time may result in different outputs at impacts the whole 

timelineother times. 865 

Linear interpolation 

The ‘linear interpolation’ method constructs an (unsmoothed) linear interpolator function between all lead and follower 

points in the infiller database at a given point in time. It is similar in concept to the cubic spline interpolator used in (Rogelj 

et al., 2014). The equation for our case is 

𝐸𝑓(𝑡) = max 𝑒𝑓<(𝑡) + min(𝐸𝑙(𝑡) − 𝑒𝑙<(𝑡)) (
𝑒𝑓>(𝑡) − 𝑒𝑓<(𝑡)

𝑒𝑙>(𝑡) − 𝑒𝑙<(𝑡)⁄ ),  (7) 870 

where subscript < or > signs indicate the model/scenario combination with lead values immediately below or above the 

target lead value at that time. If multiple points have exactly the same lead value, the average follow value is used. The 

follower value returned is then the interpolated value for the infilleetarget lead. The ‘Interpolate specified scenarios and 

models’ cruncher filters for scenarios and models that match a given text string before performing the same action of the 

linear interpolation cruncher.  875 

Quantile rolling windows cruncher 

 

The ‘quantile rolling windows’ cruncher, applied with the default option ‘use_ratio=False’, infills the values based on 

interpolating between the required quantile of the follower variable. This is s calculated at fixed points across the range of 

lead values in the infiller database for each time. This The process is identical to the above discussion where ‘use_ratio’ is 880 

=True, except using the actual follower values instead of the ratios between lead and follow. It is inspired by the Generalized 

Quantile Walk approach in section 3.8.1 of (Meinshausen and Dooley, 2019). An illustration of the idea behind this cruncher 
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is shown in Figure 2: Schematic of how the quantile rolling window cruncher determines the follow value to use. a) Example 

relationships between lead (CO2) and follow (CH4) variables over time. b) Five windows are drawn and a weighting function 

constructed for each window. c) A relationship between the sum of the weights and the follow value is established and the 885 

follow value at the desired quantile is returned.  Figure 2. For each time in the infiller database, it splits the range of lead 

values into 𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠 points (defaults to 10) with values  𝑒𝑝, including the highest and lowest values. For each window, the 

weightings of each point are given as 

  

𝑤𝑝(𝑒𝑙(𝑖)) = 1/(1 + (
(𝑒𝑝 − 𝑒𝑙(𝑖))

𝑑𝑙
⁄ )

2

),  (8) 890 

, where 𝑑𝑙 is the decay length, which defaults to half the separation between 𝑒𝑝, and i the label for which model/scenario we 

are investigating. Increasing the decay length will reduce the weight difference between points, so the rolling window 

becomes wider and more even, with the limit case of calculating quantile q of all data for large 𝑑𝑙. Amongst other things, this 

is a clear improvement over the Generalized Quantile Walk approach, as the latter uses equal weights within a fixed window 

of a certain fraction of the infiller database’s lead values in a certain year. These values are then normalised so that ∑ 𝑤𝑝 = 1 895 

and sorted into ascending order by 𝑒𝑓. The follow value  at quantile 𝑞, evaluated at lead point 𝑒𝑙𝑝(𝑗), is where the quantile 

equals the sum of weights of all smaller 𝑒𝑓  plus half the weight of 𝑒𝑓(𝑗) itself. Note that we sum over smaller follower 

values, but the weighting is determined by the lead values: 

, 

𝑞(𝑒𝑙(𝑗)) = ∑ 𝑤𝑝(𝑒𝑟𝑙𝑖(𝑖))𝑒𝑟𝑓𝑖(𝑖)<𝑟𝑝𝑒𝑓(𝑗) +
𝑤𝑝(𝑟𝑒𝑙𝑝(𝑗))

2
.  (9) 900 

. Quantiles between these these known points are evaluated by linearly interpolating this relationship. We are usually 

interested in the case where 𝑞 = 0.5. To infill a point at 𝐸𝑙 , we interpolate between the known points 𝑒𝑝. Quantile crossing is 

not possible in this framework because at any given evaluation point higher quantiles cannot have lower values, and only 

linear fits between these points are used.  

Equal quantile walk 905 

The equal quantile walk calculates the quantile of the lead value at each time (Meinshausen et al., 2006). This is zero for 

values below the database minimum, one for those above the database maximum and the fraction of infiller data smaller or 

equal to this value otherwise. We interpolate between neighbouring values in the infiller data to find the fraction that would 

match the target value exactly. We then apply the same logic to calculate the appropriate value for the derived quantile of the 

follower data. 910 
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3. Results 

3.3.1. Rank Correlations 

The infilling method is important. However, equally important is the choice of lead variable. The best choice is where there 

is a causal link between the lead and follower variable, particularly if there is a clear understanding of the implications of this 

link for the relative behaviour of the two variables, for instance black carbon and carbon monoxide are both produced by 915 

incomplete combustion. In most cases, there is no such certainty, and the best choice is then to find the lead variable with the 

best predictive power. We estimate this by the Spearman’s rank correlation coefficient, a measurement of the monotonicity 

of the relationship between the two variables. In cases where this value is low, we anticipate the need for higher effort to 

select relevant cases from the infilling database. We use the data from the IPCC Special Report on Global Warming of 1.5 oC 

(Huppmann et al., 2018) as our database of scenarios and compare the correlations between the different variables. The 920 

Silicone package has a function in the statistics section called ‘calc_all_emissions_correlations’, which will produce tables of 

both the Spearman (rank) and Pearson correlation coefficients, calculated separately for each year requested and also the 

time-averaged magnitude of the correlations. Since there is no reason to expect the relationships between variables to be 

linear, we will focus on the rank correlation in this analysis. We also plotted the relationships between CO2 and all other 

variables (using the plotting function in the Silicone examples github) to check that there were no obvious cases of a non-925 

monotonic relationship. All the crunchers work just as well with negative trends as with positive, so the sign of the 

correlations is not relevant for considering goodness of fit. Using this tool, we can calculate the decadal-averaged magnitude 

of the rank correlation coefficient, found in Table 3.  We also calculate the variation of this value with time, and in cases 

where this exceeds 0.03 (chosen to highlight only extreme cases), colour the cells orangeblue. This is to indicate cases where 

more care needs to be taken to ensure that values are representative for the times of interest.   930 

The immediate observation from the study of absolute rank correlations is that there is no clear, overall best infiller gas.  CH4 

has a slightly higher average than other emissions and is reported by most models. CO2 is reported by all models and has the 

second highest correlation, however this is somewhat inflated by having two of its constituents listed separately (AFOLU 

and Energy and Industrial processes, a similar concern can be raised about F-gases). Generally, these two CO2 and 

CH4therefore are therefore the best choices for a ‘default lead variable’. However, there are some specific cases where the 935 

correlations are low, and much better choices could be made.  

There is a cluster of values emissions species, specifically black carbon, organic carbon and carbon monoxideBC, CO, and 

OC, that correlate poorly well with each other but less well with other emission pathways. Physically, these relate to 

incomplete burning, and are best infilled using each other. The F-gases, SF6, hydrofluorocarbons (HFCs), and perfluorinated 

compounds (PFCs) also primarily relate to each other. Fortunately, mMany models report F-gas emissions as a basket, so . 940 
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infilling Infilling these should best be done by splitting the F-gas basket into its constituents. Otherwise the default infillers, 

CO2 and CH4methane, should do reasonably.  

4. Results 

4.1.3.2. Reconstructing data 

The choice of cruncher to use in different situations will depend on the expectations about the specific emissions in questio n. 945 

However, in cases where there are no clear expectations, it is good to have a default. In this section we assess to which 

degree the cruncher reproduces the follower data from one model and scenario given the lead data from that case and all data 

from all the other model/scenario combinations in the SR1.5 database. We try this with both CH4methane and CO2 as our 

lead variables and find similar results. Since we have no reason to believe that the answers will always scale with these 

variables (and ratio-based infillers have potentially unbounded errors), wWe use the crunchers that are designed for use on 950 

complete datasets with only default settingschoose four absolute-value infillers as our options: QRW (using only default 

settings mean, so in absolute mode and for the 50th0.5 quantile), RMS closest, EQW, time-dependent ratio and linear 

interpolation. Interpolate selected model behaves identically to linear interpolation with default settings and is not treated 

separately here. We perform the infilling for each model/scenario combination, for each decade from 2020 to 2100, and 

report the root mean squared difference between the original value and the infilled value, normalised by the standard 955 

deviation the total variation in the follower value in the database at that time (𝜎), i.e. 〈√〈(
𝐸𝑓,𝑖𝑛𝑓−𝐸𝑓,𝑎𝑐𝑡

𝜎
)

2

〉𝑖〉𝑑𝑒𝑐𝑎𝑑𝑒 , with the 

subscript text 𝑖𝑛𝑓  indicating that the value is infilled, 𝑎𝑐𝑡  indicating actual and 𝑖/𝑑𝑒𝑐𝑎𝑑𝑒  indicating averaging over 

model/scenario cases or decades. These results are found in tables 4 and 5. Given the definition of standard deviations, 

values larger than one would indicate that this infiller is worse than simply using the mean value in the database. .  

We see that with this fairly large infiller database that in both for both CO2 and CH4cases with this fairly large infiller 960 

database, the approach that generates non-CO2 follower pathways most similar to those removed from the initial scenarios 

(i.e. the smallest errors) is the RMS technique, with and that the the QRW technique being is the next smallestfairly similar. 

Linear interpolation without smoothing is expected to produce a noisy fit when given a large input infiller dataset, so its 

performance is unsurprisingly worse. The Equal Quantile Walk (EQW) performs similarly poorly, due to effectively 

ignoring the relationship between the lead and follower data. The time-dependent ratio method is worst of all – its errors are 965 

potentially unbounded and for CO2 the average error far exceeds one. To determine the appropriate statistics to apply on the 

errors, we first perform Aa Shapiro-Wilks test to detect any non-Gaussian aspect for the error distribution (details can be 

found in the “statistics_for_paper” notebook of the examples github repository). This indicateds that neither CO2 nor the 

distributionsmethane are statistically significantly non-Gaussian in distribution, for several crunchers either when analysed 

separately when analysed separately and most clearly for each cruncher or as an aggregate. We will therefore use non-970 
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parametric tests where possible. The small differences in rank between CH4methane and CO2 manifest in slightly lower 

values for CH4methane. Performing a student’s Wilcoxon’s t-test on the results indicates that this result is statistically 

significant for the data as a whole (relative t-test t-statistic 3763.4, p = 0.000070013), although when considering each of the 

crunchers individually, only the RMS closest and time-dependent ratio crunchers isare significantly better with CH4methane 

than CO2 (p-values for time dependent ratio = 0.012, QRW = 0.3348, RMS Closest = 0.009841, linear interpolation = 975 

0.07860, EQW = 0.379). We therefore conclude that using either CO2 or CH4 as the default will produce the most reasonable 

results when using one infiller species, with this slight preference for using CH4methane performing slightly better, while 

also generally having a as our default infiller counteracted by the slightly lower availability of data (412 cases rather than 

414, as seen in tTable 3).  

We perform similar pairwise Wilcoxon t-tests on the results of different crunchers, and find that the ordering of mean errors, 980 

(RMS closest < QRW < Linear interpolation ≈ EQW < Time dependent ratio) are all statistically robust. The p-values are < 

0.0011 for almost all pairs except linear interpolation and EQW, which are much greater than 0.1, whether the comparison 

uses CO2 lead data, or CH4methane lead data, or both all data combined for all cases. The one exception to this is time-

dependent ratio and EQW for CH4, which has only p=0.028, though the values for other combinations still have p < 0.01.  

We stress that this does not always mean that the RMS closest technique is the best default, as it makes the assumption that 985 

the pathway being infilled is similar to a whole pathway found in the database. The advantage of the quantile rolling 

windows technique is its choice of conservativity – e.g. that it tends to produce values more towards the median value if the 

default 0.5 quantile is used – and time-independence, whereas RMS closest is better at reconstructing the data and has better 

consistency over time. Linear interpolation,  and EQW and time-dependent ratio are best used in cases where there is a large 

degree of knowledge about the expected relationship between variables.  990 

4.2.4. Use cases 

Data in the Silicone examples package relies on the IAM Consortium (IAMC) ‘pyam’ open-source software data structure 

(Gidden and Huppmann, 2019) and fits into the IAMC scenario assessment pipeline prepared in support of the IPCC AR6 

literature assessment.  

As part of the pipeline, emissions projections are also harmonised, i.e. modified to be consistent with known historical 995 

emissions in a smooth way (Gidden et al., 2018a). The Silicone process is assumed to be part of the IAMC pipeline after 

harmonisation, as the harmonisation process will potentially differently affect the infilled target and infiller data, resulting in 

inconsistencies. All infiller options except latest time ratio are designed such that if both the data being infilled (the 

‘infilleetarget data’) and the data drawn on for infilling (‘infiller data’) are harmonised, the result must also be harmonised, 

so there is no need for harmonisation again after infilling. (Latest time ratio only preserves the harmonisation of the last 1000 
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timepoint in the infiller database.) The infilled results can then be run via climate models, most easily via the OpenSCM 

package (Nicholls et al., 2020).  

We now demonstrate several uses of the package for specific purposes. The notebooks demonstrating the steps for these 

calculations can be found in the S”silicone_examples” GitHub repository (Lamboll, 2020), along with several other use-

cases. All methods work on databases with only a single region at a time, although the region can be different between the 1005 

infiller and infillee databases. In our case, we always use global data.  

4.2.1.4.1.1. Infilling the Shell IMAGE model POEM Sky scenario B 

To demonstrate the uses of this package alone, we will apply the methods directly using unharmonised data in the SR1.5 

repository (Huppmann et al., 2019) to infill the emission pathways of the POEM scenario B Sky scenario from the AR5 

database (Clarke et al., 2014)by the Shell World Energy Model (which is also found in this database). The Sky POEM 1010 

scenarios only reports CO2 from certain sources a limited set of greenhouse gases and is are thus an excellent use case. The 

crunchers are all used via the multiple infiller, “infill_all_required_emissions_for_openscm”. No active decisions are taken 

except to use the SSP25 scenarios from the REMIND-MAgPIE 1.5 MESSAGE model for the specified model interpolation. 

The choice of SSP25 in this case is ultimately arbitrary but supported by is due to the Sky POEM scenario B being fairly 

middle-of-the-road and usually fitting in thisthe SSP2 range. involving similar assumptions of high-industry, high-1015 

development, high energy demand and high fossil fuel use..  The choice of MESSAGE model is because this is the marker 

model for SSP2that scenario (Riahi et al., 2017). Other POEM scenarios would need different ranges of scenarios for 

infilling. 

We see from Figure 3 Figure 3: Left: The Shell Sky model CO2 from Industry and Industrial Applications data. The fine 

lines represent the different timeseries in the SR1.5 database used to perform the infilling and are not included in the legend 1020 

for clarity. Right: The results of interpolating this data using four different crunchers. The interpolate specified model 

approach used the REMIND-MAgPIE 1.5 model and only choses scenarios based on SSP5 pathways.  that the linear 

interpolation model (without filtering the database) provides a chaotic pathway, due to its value being determined only by 

the two points either side of it in the database, which changes semi-randomly with time and should not be used here. 

Although the interpolate specified model approach is also determined by only a few model/scenario pairs because there is 1025 

only data from a small number of related scenarios, the pathway is smoother and more consistent. The EQW pathway 

assumes a strong, direct relationship between looks somewhat jagged, due to the density of pathways around the Shell sky 

model. This means that small differences in CO2 emissions can result in reasonably large changes in quantile and hence 

infilled  CO2 and CH4methane emissions which the other crunchers do not uphold at early times, although this would 

disappear if the data were harmonised. The other cruncher results are all fairly similar and look consistent. The RMS closest 1030 

pathway is consistent by construction (and precisely overlines a point in the original database). The quantile rolling windows 
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result also looks consistent and tends to move is noticeably closer to the dense clouds of values in the infiller databasearound 

200 Mt CH4 than other crunchers, which ignore data that is not highly similar in some way. In deciding which is the best 

infiller to use, Tthe RMS closest result is more consistent over time but more arbitrary in its selection of the pathway, while 

quantile rolling windows is more conservative in the sense of giving results closer to the median behaviour of the whole data 1035 

set.   

4.1.2. Splitting up a Kyoto Greenhouse Gases path 

The Ssilicone package has features that can split a basket of gases into its constituents. In this example we take data from the 

Climate Action Tracker (CAT) website (https://climateactiontracker.org/) (Climate Action Tracker, n.d.), which reports 

projected global emissions in terms of Kyoto gas totals (Jeffery et al., 2018). While it is possible to use this to infill all other 1040 

values directly as above, the subcategories of Kyoto gas will not necessarily add up to the Kyoto gas total, one of the 

multiple infillers designed for this use is preferable. so a preferable method is The symmetric way to divide the basket into 

its constituent parts (CO2, CH4, N2O and F-gases), is using the first using the ‘decompose collection with time-dependent 

ratio’ multiple infiller, which uses a ratio-based technique to ensure conservation of the total amounts. Alternatively, the 

‘split collection with remainder’ multiple infiller then infill the remaining gases using other techniques as beforecan estimate 1045 

the fractions of CH4, N2O and F-gases, then assign the remainder to CO2. F-gases could be further subdivided using similar 

methods.  

As can be seen in Figure 5, the curves that result from decompose collection are generally smooth, in spite of being 

separately calculated at each timepoint. It is important to ensure that the number of scenarios reported at each time are 

consistent.  In the SR1.5 database, some scenarios only report values at decadal intervals, whereas others use five-year 1050 

intervals. We interpolated all models to five-year intervals to give consistent representation. In the CH4 and F-gases, the 

lowest orange line is clearly seen to rise discontinuously after 2060. This is the last point before the Kyoto total goes 

negative. To ensure that the sign of the constituents is correct, the formula only considers data from SR1.5 paths where the 

Kyoto total has the same sign as in the data being infilled. In this way, emissions that are unlikely to go negative like 

CH4methane are ensured positive, however their magnitude increases the more negative the aggregate is.  1055 

For this reason, the ‘split collection with remainder’ method produces more robust results with sign changes in the lead 

variable. An alternative way to infill, which is preferable in this case where we know that only one of the emissions will go 

negative,This technique can use is to use any cruncher, usually RMS closest or (probably non-ratio) quantile rolling 

windows to infill the positive values and then allow the value that may be negative (CO2) to make up the rest. This produces 

the results seen in Figure 6. Here behaviour of all curves is fairly smooth, with no obvious features around zero-crossing 1060 

points and no negative values except in CO2, as expected.  
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4.2.2.4.1.3. Stylised trajectories 

Another use of this software is to infill simple, stylised trajectories generated to explore a wide range of possibilities without 

detailed economic modelling. For example, Sanderson et al. (Sanderson et al., 2016) suggest simple formulae whereby one 

may construct emissions trajectories characterised by a few free variables – in this case, based on rates of transitioning 1065 

between the RCP pathways and a long-term emissions value. They present general formulae for generating plausible total 

CO2 pathways with several free variables. Silicone provides an alternative means of complementing such results – instead of 

specifying the functional forms of all emissions, you can have a few key emissions prescribed and by infill the remaindering 

using scenarios with similarities to the desired narrative, removing the need for more numerical free parameters between 

formulae. A notebook can be found in the Ssilicone examples github detailing the calculations and demonstrating this usage, 1070 

titled “Infill_stylised_path.ipynb” (Lamboll, 2020), using data from (Riahi et al., 2011; van Vuuren et al., 2011). It shows 

that curves with different values in some of the parameters, termed 𝐸∞ and 𝜏, can be complemented using a number of 

techniques. Here we highlight the method of interpolating results from any of the SSP scenarios as implemented by variants 

of the MESSAGE models. As the different SSPs models scenarios have different narratives, this allows the user to decide 

what narrative is relevant to the infilling, rather than adding more arbitrary values (Gidden et al., 2018b). An example of this 1075 

output can be found in Figure 7. 

5. Summary 

In this paper we have outlined the features of the open-source Silicone package. This provides tools for complementing 

emissions pathways with other climate-relevant emissions through relationships found in the scenario literature. The package 

features several scripts for analysing data to establish the relationships between the variables in the complete infiller 1080 

database, to establish the best variables to use when infilling. The values of the follower data are estimated using objects 

called crunchers, of which there are many. Notebooks describing the use of the crunchers are included in the a GitHub 

repository (https://github.com/GranthamImperial/silicone), which also contains full documentation, and. In addition, a 

flowchart for choosing the bestguiding the choice of cruncher for your a given situation is included in the text. The results of 

Spearman’s rank correlations and applying the crunchers to the SR1.5 database implied that, in cases of complete ignorance, 1085 

the best default guess at lead variables are CH4methane and CO2, and that the best default cruncher is the root mean squared 

closest cruncher, followed by the quantile rolling windows cruncher. Both of these crunchers perform significantly better at 

reconstructing known pathways compared to the currently-commonly used equal quantile walk technique, although this and 

many other crunchers are included in the package for specific situations where they are more appropriatesituationally 

specific usageconvenience. Using several examples and use-cases of different Several use-cases of the infilling techniques, 1090 

https://github.com/GranthamImperial/silicone
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this paper has  are demonstrated that Silicone can easily be used to allow a broader range of IAMs to make reasonable 

climate assessments.  
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Table 1: A guide to crunchers. Names followed by asterisks use a ratio-based approach, i.e. they find a multiplicative factor and 1200 
then multiply the infilleetarget lead by this value. These crunchers do not preserve harmonisation. If the asterisk is in brackets, a 

ratio-based approach is optional. Otherwise, techniques all return linear combinations of values seen in the infiller database. 

Name Description Use case Pitfalls 

Constant ratio* Multiplies the lead variable 

by a constant (not fitted to 

any data) 

Used when no information 

about the follower variable 

is available in any 

database. Mainly used for 

infilling with zeros. 

Has no basis in the data – only 

used as a last resort in cases of 

complete uncertainty.  

Latest time 

ratio* 

Multiplies the lead variable 

by a constant fitted to a single 

(latest) timepoint in the 

infiller data.  

Used when no data is 

available for most times, 

this generalises from the 

latest information we have, 

e.g. if only historic data is 

available. 

No reason to assume that the 

relationship between emissions 

holds for all time. No 

restriction on signs of follower 

gas, so potential sign errors 

when the lead (but not 

follower) emissions may 

become negative. Sensitive to 

emissions trajectories with a 

high coefficient of variation. 
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Emissions may need re-

harmonising.  

Time 

dependent 

ratio* 

Multiplies the lead variable 

by the ratio of the averages of 

the lead and follower data in 

the infiller database. (Note: 

this ratio is not the same as 

the average of the ratios and 

is more stable to inclusion of 

extreme ratios.) Optionally 

calculates this using only 

values with the same sign of 

lead gas emissions.  

Used when two emissions 

should track each other, or 

one represents a portion of 

the other.  

Allows arbitrarily high 

emissions. Can behave 

unexpectedly if emissions 

change sign, and an error is 

produced particularly if 

emissions with this sign are not 

seen at the same time in the 

infiller database.  

RMS closest Finds the most similar 

pathway in the infiller 

database and uses those 

values. Most similar means 

smallest root mean squared 

difference between the lead 

values of infiller pathways 

and infilleetarget pathway 

averaged over all times.  

Used when behaviour at 

one time should strongly 

determine behaviour at 

another and continuity is 

needed between times. The 

only cruncher that does not 

treat each time separately. 

A small change in the input 

target data at a single timestep 

can result in large changes in 

output at every timestep. All 

the results returned are found 

exactly in the infiller database, 

so if that database is small, the 

same values are returned in 

many cases. Results more 

extreme than found in the 

infiller database all return the 

same value. 

Linear 

interpolation / 

Interpolate 

specified 

scenarios and 

models 

At each time, linearly 

interpolates between the 

follower values at the two 

nearest lead values, taking 

averages where multiple 

points have identical lead 

values.  Interpolate specified 

scenarios and models filters 

the input infiller database 

before applying the same 

technique. 

Used for infilling where 

we have a small number of 

comparable 

models/scenarios. The 

required filtering gives 

control over the narrative 

used for infilling.  

A small change in the input 

target data can result in a large 

change in the output at the 

same timestep because 

pathways in the infiller 

database can be very different 

in follower variables for nearly 

identical values of the lead 

variable. For similar reasons, 

results can vary erratically 

between timesteps for large 

infiller datasets. Results more 

extreme than those found in 

the infiller database all return 

the same value. 

Quantile rolling 

windows 

(QRW)/time-

dependent 

quantile rolling 

windows (*) 

At each time, applies a 

1/(1+(lead variable 

difference)^2) weighting to 

datapoints at equally spaced 

points across the infiller lead. 

Then calculates a specified 

quantile (usually the median) 

for the infiller follower value 

Can choose options to give 

more smoothing (less 

noise) or more localised 

behaviour (shows trends 

better) Allows the option 

to generate a distribution 

of outputs, not just a single 

optimum. Can add to the 

Using with any quantile larger 

than 0.5 will result in all 

emissions being higher, even if 

the lead and follower 

emissions anticorrelate. 

Results more extreme than 

found in the infiller database 

all return the same value, 
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at these points. Can also be 

used in ratio mode, in which 

case the ratio between lead 

and follower in the infiller 

database is treated as above. 

Time-dependent QRW allows 

the quantile to be different at 

different times (but is 

computationally slower).  

narrative through time-

dependence. Ratio mode 

allows better infilling 

outside the range of the 

input infiller data.  

unless in ratio mode. In ratio 

mode, sign changes in the lead 

variable can result in follower 

emissions being assigned 

undesired negative values.  

Equal quantile 

walk (EQW) 

Calculates the quantile of the 

infiller database 

corresponding to the lead 

value in each individual year. 

Returns that quantile in that 

year of the follow value from 

the same database.  

Conceptually simple, used 

by previous work.   

Assumes all variables are 

monotonically increasing 

together. Results more extreme 

than those found in the infiller 

database all return the same 

value. 

 

Table 2: Guide to aggregation tools and multiple infillers. Names followed by asterisks use a ratio-based approach, i.e. they find a 

multiplicative factor and then multiply the target lead by this value, if the asterisk is in brackets there are ratio-a. 1205 

Name Description Use case Pitfalls 

Aggregation tools 

Aggregate to 

composite 

values 

Requires only the 

infilleetarget database. Adds 

together known values to 

construct a consistent output 

(with optional weighting). 

Infilling aggregate values 

(e.g. Kyoto gas totals) or 

finding remainders given 

aggregates and values for 

the other components.  

Requires all information to be 

known already – no statistical 

inference, just adding.  

Multiple infillers 

Decompose 

collection with 

time-

dependent 

ratio* 

Constructs a consistent 

version of the aggregate in 

the infiller database. Breaks 

a known quantity down into 

components, estimated by 

the time-dependent ratio 

method.  

Breaking down aggregate 

values into their 

components, assuming all 

should be treated similarly.  

Requires all iInfiller scenarios 

which do not have to have values 

for all components at all times 

are ignored. Ignores the 

aggregate if the infiller database 

has inconsistency between that 

and the sum of reported 

components. , Assumes direct 

proportionality between 

components and sum, which is 

problematic around sign changes. 

otherwise ratios will be distorted. 

Any contributions to the 

aggregate values not quantified 

in the infiller database are 

ignored.  

Split 

collection with 

remainder 

Breaks an aggregate 

emission into most of its 

separate components, with 

Breaking down aggregate 

values into their 

component when one 

The remainder emission is not 

constrained, nor as precisely 

estimated as the other values.  

Formatted Table

Formatted Table

Formatted Table
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emissions one emission type making 

up the remainder of the 

emissions.  

emission type is much 

larger than the others, or 

may be either positive or 

negative 

Infill all 

required 

values (*) 

Uses the same lead variable 

and cruncher to infill any 

gaps in emissions data. 

For infilling scattered, 

minor gaps in a largely 

sound database.  

Low confidence in the results 

being accurate as the method 

does not consider the specific 

characteristics of the data.  
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Table 3. Absolute values of Spearman’s Rank correlation between emissions, averaged over the start of decades from 2020 to 2100. We use the following 

abbreviations: BC as black carbon, VOC as volatile organic compounds, AFOLU as Agriculture, Forestry and Other Land Use; and En & IP as as 

energy and industrial processes. “CO2|” represents subtypes of CO2. We also calculate the average of these rows, with or without the CO2 and subtypes. 

Cells are bold and yellow if the value in them is > 0.7 and are bluecoloured orange if the variance of the rank correlation between years exceeds 0.03. 1210 
There is no overlap between these categories.  

variable BC 
C

H4 
CO CO2 

CO2

| 

AF

OL

U 

CO2|En & 

IP 
F- gases 

H

F

C 

N2

O 
NH3 NOx OC PFC SF6 

Sulfu

r 

VO

C 

BC 

 

0.

47 0.75 0.46 0.37 0.42 0.23 

0.

1

0 

0.4

0 0.40 0.58 0.73 0.41 0.20 0.48 

0.4

5 

CH4 

  0.32 0.74 0.49 0.73 0.64 

0.

5

8 

0.8

6 0.34 0.58 0.30 0.66 0.41 0.65 

0.2

4 

CO 

   0.36 0.38 0.32 0.06 

0.

1

6 

0.2

9 0.35 0.48 0.78 0.05 0.17 0.36 

0.6

8 

CO2 

    0.54 0.96 0.60 

0.

5

7 

0.5

4 0.30 0.61 0.24 0.35 0.22 0.69 

0.3

7 

CO2| 

AFOLU 
     0.36 0.27 

0.

4

0 

0.5

3 0.36 0.33 0.34 0.23 0.21 0.31 

0.2

0 

CO2| 

Energy 

& IP       0.58 

0.

5

1 

0.5

0 0.25 0.61 0.17 0.32 0.18 0.69 

0.3

6 

F-gases 

       

0.

9

1 

0.5

7 0.19 0.50 0.10 0.90 0.77 0.60 

0.1

2 

HFC 
        

0.4

6 0.11 0.30 0.14 0.71 0.68 0.36 

0.2

3 

N2O 
         0.44 0.46 0.30 0.65 0.40 0.49 

0.1

7 

NH3 
          0.23 0.39 0.10 0.05 0.23 

0.2

5 

NOx            0.22 0.53 0.26 0.76 0.3
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OC 
            0.20 0.11 0.19 

0.4

1 

PFC 
             0.77 0.46 

0.1

6 

SF6 
              0.26 

0.2

4 

Sulfur 
               

0.4

6 

Average 

0.4

3 

0.

53 0.37 0.50 0.36 0.46 0.47 

0.

4

2 

0.4

7 0.27 0.46 0.31 0.43 0.33 0.47 

0.3

2 

Average

, no CO2 

0.4

3 

0.

50 0.37 0.46 0.34 0.43 0.47 

0.

4

0 

0.4

6 0.26 0.44 0.32 0.47 0.36 0.44 

0.3

2 

# 

scenario

s 

389 
41

2 
353 414 412 414 368 

1

0

8 

411 345 363 363 180 191 412 345 

Variable BC CH4 CO CO2 
CO2|AF

OLU 

CO2|E

n & IP 

F- 

Gases 
HFC N2O NH3 NOx OC PFC SF6 Sulf VOC 

BC  0.47 0.75 0.46 0.37 0.42 0.23 0.10 0.40 0.40 0.58 0.73 0.41 0.20 0.48 0.45 

CH4   0.32 0.74 0.49 0.73 0.64 0.58 0.86 0.34 0.58 0.30 0.66 0.41 0.65 0.24 

CO     0.36 0.38 0.32 0.06 0.16 0.29 0.35 0.48 0.78 0.05 0.17 0.36 0.68 

CO2     0.54 0.96 0.60 0.57 0.54 0.30 0.61 0.24 0.35 0.22 0.69 0.37 

CO2| 

AFOLU       0.36 0.27 0.40 0.53 0.36 0.33 0.34 0.23 0.21 0.31 0.20 

CO2| En 

& IP       0.58 0.51 0.50 0.25 0.61 0.17 0.32 0.18 0.69 0.36 

F-Gases         0.91 0.57 0.19 0.50 0.10 0.90 0.77 0.60 0.12 

HFC         0.46 0.11 0.30 0.14 0.71 0.68 0.36 0.23 

N2O           0.44 0.46 0.30 0.65 0.40 0.49 0.17 

NH3           0.23 0.39 0.10 0.05 0.23 0.25 

NOx             0.22 0.53 0.26 0.76 0.39 

OC             0.20 0.11 0.19 0.41 

PFC               0.77 0.46 0.16 
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SF6               0.26 0.24 

Sulfur                 0.46 

VOC                  

Average 0.43 0.53 0.37 0.50 0.36 0.46 0.47 0.42 0.47 0.27 0.46 0.31 0.43 0.33 0.47 0.32 

Average, 

no CO2 0.43 0.50 0.37 0.46 0.34 0.43 0.47 0.40 0.46 0.26 0.44 0.32 0.47 0.36 0.44 0.32 

# 

scenario

s 

389 412 353 414 412 414 368 108 411 345 363 363 180 191 412 345 
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Table 4: Root mean squared error in reconstructing known data using different crunchers, with CO2 as the lead variable, 1215 
normalised by the standard deviation at that time. 

Species 

Time dependent 

ratioQRW QRWRMS closest 

RMS  ClosestLinear 

interpolation 

Linear 

InterpolationEQW EQW 

BC 1.7630.129 0.7340.119 0.6680.177 1.0210.161 0.921 

CH4 0.7740.086 0.4600.073 0.3920.097 0.5200.094 0.500 

CO 2.2360.140 0.8040.133 0.7640.182 1.0490.175 1.006 

F-gases 0.5760.106 0.5370.095 0.4850.125 0.6190.118 0.603 

HFC 0.6180.152 0.5590.140 0.5120.165 0.6060.159 0.581 

N2O 1.5660.110 0.6450.091 0.5350.136 0.7970.134 0.786 

NH3 1.6810.175 0.7810.151 0.6760.240 1.0760.240 1.060 

NOx 1.5380.104 0.6620.095 0.6060.132 0.8260.121 0.771 

OC 2.0620.144 0.7920.129 0.7060.196 1.0690.202 1.112 

PFC 0.6490.132 0.5760.101 0.4410.120 0.6000.163 0.764 

SF6 0.7540.166 0.6530.126 0.4990.196 0.7620.207 0.809 

Sulfur 0.8190.094 0.5700.081 0.4940.108 0.6580.104 0.637 

VOC 2.2230.167 0.8120.144 0.7080.213 1.0560.208 1.007 

Mean 1.3280.131 0.6600.114 0.5760.161 0.8200.161 0.812 

 

 
Table 5: Root mean squared error in reconstructing known data using different crunchers, with CH4methane as the lead variable, 

normalised by the standard deviation at that time. 1220 

Species 
Time dependent 

ratioQRW QRWRMS closest 

RMS  ClosestLinear 

interpolation 

Linear 

InterpolationEQW EQW 

BC 1.0820.128 0.7290.115 0.6570.168 0.9710.155 0.875 

CO 1.4100.139 0.7980.112 0.6420.177 1.0170.177 1.018 

CO2 0.6260.087 0.4680.083 0.4480.104 0.5410.089 0.483 

F-gases 0.6590.112 0.5650.099 0.5060.132 0.6570.129 0.664 

HFC 0.6970.163 0.5930.129 0.4710.182 0.6690.178 0.649 

N2O 0.7190.078 0.4570.062 0.3640.085 0.4970.075 0.441 

NH3 1.1340.170 0.7560.119 0.5330.213 0.9580.239 1.048 

NOx 0.9190.107 0.6800.099 0.6250.131 0.8230.119 0.758 

OC 1.3180.142 0.7770.107 0.5840.178 0.9720.180 0.989 

PFC 0.5920.122 0.5460.066 0.3120.108 0.5500.154 0.702 

SF6 0.7030.161 0.6330.127 0.5020.197 0.7680.203 0.799 

Sulfur 0.6100.096 0.5800.084 0.5080.104 0.6270.106 0.644 

VOC 1.3980.165 0.8020.126 0.6180.195 0.9720.214 1.038 
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Mean 0.9130.128 0.6450.102 0.5210.152 0.7710.155 0.778 
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Figure 1: Flow chart suggesting how to choose the cruncher (peach oblongs) or multiple infiller (yellow oblongs) to use when 

infilling.  
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Figure 2: Schematic of how the quantile rolling windows cruncher determines the follow value to use. a) Example relationships 

between lead (CO2) and follow (CH4) variables over time. b) A number Five of rolling windows centers (here 5, by default 10) are 

drawn and a weighting function constructed for each window. It has a continuous distribution, rather than a discrete cutoff, hence 1230 
the name. c) A relationship between the sum of the weights and the follow value is established and the follow value at the desired 

quantile is returned.   
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 1235 

Figure 3: Left: The Shell Sky model POEM scenario B projection for CO2 from Energy and Industrial Applications data. The fine 

lines represent the different timeseries in the SR1.5 database used to perform the infilling and are not included in the legend for 

clarity. Right: The results of interpolating this data using four five different crunchers. The interpolate specified model approach 

used the MESSAGE model and only choses scenarios based on SSP2 pathways.the REMIND-MAgPIE 1.5 model and only choses 

scenarios based on SSP5 pathways.  1240 
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Figure 4: The Climate Action Tracker (CAT) Kyoto gas totals (thick lines) compared with the portfolio of values in the SR1.5 

database (thin lines).  1245 

 

 

 

Figure 5: The CAT Kyoto gas baskets decomposed into their components, using the decompose collection multiple infiller.  
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Figure 6: Kyoto gases, decomposed by first infilling the non-negative emissions using the (non-ratio) quantile rolling windows, 

then infilling the CO2 using infill composite values.  
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Figure 7: Illustration of using the interpolate specified scenario cruncher to infill a series of stylised trajectories (solid lines), 

characterised by two different parameters (𝝉 and 𝑬∞), defined in (Sanderson et al., 2016). The first column compares the total CO2 
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calculated for the stylised trajectories to the values of the MESSAGE model for a given group of SSP scenarios (dotted lines). 1260 
These are our lead values in each case. The second column shows the range of follow values for that SSP. The third column shows 

the resultant AFOLU (Agriculture, Forestry and Other Land Use) trajectories that emerge from using the Interpolate Specified 

Scenario infiller.  
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