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Abstract. Structural geomodeling is a key technology for the visualization and quantification of subsurface systems. Given the

limited data and the resulting necessity for geological interpretation to construct these geomodels, uncertainty is pervasive and

traditionally unquantified. Probabilistic geomodeling allows for the simulation of uncertainties by automatically constructing

geomodel ensembles from perturbed input data sampled from probability distributions. But random sampling of input pa-

rameters can lead to construction of geomodels that are unrealistic, either due to modeling artefacts or by not matching known5

information about the regional geology of the modeled system. We present here a method to incorporate geological information

in the form of known geomodel topology into stochastic simulations to constrain resulting probabilistic geomodel ensembles

using the open-source geomodeling software GemPy. Simulated geomodel realisations are checked against topology informa-

tion using Approximate Bayesian Computation approach, to avoid the specification of a likelihood function. We demonstrate

how we can infer the posterior distributions of the model parameters using topology information in two experiments: (1) A10

synthetic geomodel using a rejection sampling scheme (ABC-REJ) to demonstrate the approach; (2) A geomodel of a subset

of the Gullfaks field in the North Sea, comparing both rejection sampling and a Sequential Monte Carlo sampler (ABC-SMC).

Possible improvements to processing speed of up to 10.1x are discussed, focusing on the use of more advanced sampling

techniques to avoid the simulation of unfeasible geomodels in the first place. Results demonstrate the feasibility of using topol-

ogy graphs as a summary statistic, to restrict the generation of geomodel ensembles with known geological information and15

to obtain improved ensembles of probable geomodels which respect the known topology information and exhibits reduced

uncertainty using stochastic simulation methods.

Copyright statement. TEXT

1 Introduction

Structural geomodeling is an elemental part of visualizing and quantifying geological systems (Wellmann and Caumon, 2018).20

Topology relationships in geological systems (e.g. how layers are connected to each other stratigraphically, or their across-
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fault connectivity) are important constraints for fundamental geological processes, such as fluid or heat flow (Thiele et al.,

2016a, b). Each unique interpretation (model) of a geological setting has a specific topology. And as geology is not only

an experimental science, but also an interpretive and historical science (Frodeman, 1995), the deduction of the geomodel

- often from sparse amounts of data – can inherently lead to numerous potentially valid geological interpretations (Bond

et al., 2007), which themselves can lead to equally numerous topology graphs. This aspect is compounded by the complex5

nature of geological systems and interpretation bias imparted by geoscientists in the explicit creation of geomodels (Bond

et al., 2007; Polson and Curtis, 2010; Bond, 2015). It also leads to the creation, and favouring, of specific models that fit

expectations and prior knowledge (Baddeley et al., 2004), rather than consideration of the full range of possible models.

However, methodologies to create models often focus on the creation of a single deterministic model (Bond et al., 2008) and

lack of systematic consideration of data uncertainty (Thore et al., 2002; Tacher et al., 2006; Bardossy and Fodor, 2013) . These10

facts call for the development of alternative approaches. The increasing development of implicit modeling algorithms (Mallet,

2004; Hillier et al., 2014; Laurent et al., 2016) allows for the creation of vast structural geomodel ensembles by making use

of interpolation functions, which makes the analysis and visualization of uncertainty using probabilistic simulation approaches

possible (Bistacchi et al., 2008; Suzuki et al., 2008; Wellmann et al., 2010; Lindsay et al., 2012; Wellmann and Regenauer-Lieb,

2012; Wellmann, 2013).15

The mathematical nature of implicit modeling, in combination with the use of a probabilistic modeling process, often leads

to geologically unsound model realizations and modeling artifacts. Additionally, the modeling algorithms only take a limited

set of input data types, e.g. layer interface locations and structural orientation data, which significantly limits the amount of

geological information that can be included in the modeling process. de la Varga and Wellmann (2016) and Wellmann et al.

(2017) showed how Bayesian inference can be used to reduce uncertainty and modeling artifacts in both synthetic and real,20

implicit, structural geomodel ensembles. Their concept uses supplemental geological information (e.g. layer thicknesses or

fault offsets) in the form of likelihood functions to constrain stochastic geomodel ensembles. In other words, by conditioning

the probability of model parameters to some additional data, we are able to increase the overall information of the probabilistic

model. Additional data can be, for example, a range of possible layer thicknesses in a depositional setting, geophysics or

arguably geological knowledge in the form of valid geometrical configurations.25

While the overall idea has been demonstrated in some specific cases, the general question of how to define suitable like-

lihood functions for specific type of observations—given a specific geological systems and diverse types of prior geological

knowledge—still remains.

Geological expert knowledge contains much more information that is vital to model creation, such as understanding the

geological processes that result in the thickening and thinning of sedimentary deposits and their relative spatial distribution.30

One key knowledge-based input into geomodeling is the understanding of the kinematic evolution of the rock units into their

present configuration. While kinematic modelling software exists (see Groshong et al., 2012; Brandes and Tanner, 2014, for

reviews), it is limited to ‘end-member’ kinematic models’ resulting in geometrical deformations defined by few parameters,

and not taking into account a range of other factors, not least of which being the mechanics of the different units (Butler et al.,

2018). But we can capture certain kinematics using topology information—for example the across-fault connectivity of layers,35
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where extensional deformation leads to fundamentally different topological relationships than does compressional deformation

(see Fig. 1).

We therefore hypothesize that topological information about a geological system can be used as a meaningful constraint for

probabilistic 3-D geomodeling outputs.

This topological information is difficult to incorporate into the mathematical foundations of implicit modeling functions and5

is highly case-dependant.

As the origin of topological information is generally qualitative. For this reason, choosing a likelihood function, trying to

connote any probabilistic meaning to the comparison of topological graphs, does not seem to enhance the inference (Curtis

and Wood, 2004). This work, favouring model simplicity, adopts an Approximate Bayesian Computation (ABC) approach to

compute the posterior using a distance function instead of a likelihood function.10

To test this approach we designed two distinct experiments, one synthetic and one case study:

1. We construct a synthetic fault model and explore its topological uncertainty. We do this by describing our input data not

as fixed parameters, but as probability distributions. We then use Monte Carlo sampling to obtain input data realisations

from which geomodels are constructed. We then show how a single topology graph can be used as a summary statistic

in an ABC-rejection scheme to approximate the posterior model ensemble that honours the added information.15

2. To test the same ABC approach on a real-world dataset, we apply it to a model extracted from a seismic interpretation

of the North Sea Gullfaks field. We also explore a more advanced sampling technique to demonstrate possibilities for

reducing the computational costs of the method.

In the following section we will give an overview of the applied implicit geomodeling approach, the basic concept of

Bayesian inference and its use in probabilistic geomodeling, as well as the theory behind Approximate Bayesian Computation.20

We further describe how we analyze model topology and use it as a summary statistic. We will then introduce, in detail, both

the synthetic fault model and the case study, followed by a comprehensive discussion of our findings.

2 Methodology

2.1 Implicit Geomodeling

Several approaches exist for creating structural geomodels, which can be separated into three main categories: (a) interpolation,25

(b) kinematic methods and (c) process simulation. The interpolation of surfaces and volumes from spatial data is currently the

most widely used approach in geosciences, typically performed manually by geoscientists, which requires robust knowledge

of the geological setting and extensive amounts of data in order to robustly approximate reality. Additionally, highly complex

structures such as extensive fault networks and repeatedly folded areas are challenging to recreate using current interpolation

methods (Jessell et al., 2014; Wellmann et al., 2016; Laurent et al., 2016).30
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Figure 1. Idealized Horst (a) and Graben (b) structures with topology graph overlay, showing the difference in graph structure for different

tectonic settings (modified from Fossen, 2010). The black nodes represent the centroids of the geobodies and the black edges the topology

connections, together building a topology graph.

The open-source, Python-based implicit modeling package GemPy1 (de la Varga et al., 2019) is used here. It is based on

the work of Lajaunie et al. (1997) and Calcagno et al. (2008), and allows the interpolation of geological interface position

and plane orientation data by using a scalar field method in combination with cokriging (Chilès et al., 2004). For a detailed

overview of the algorithm and the functionality of GemPy, we refer the reader to de la Varga et al. (2019).

2.2 Geological Topology5

Topology, referring to “properties of space that are maintained under continuous deformation, such as adjacency, overlap or

separation” (Thiele et al., 2016a; Crossley, 2006), is a highly relevant concept in structural geology, as it provides a useful

description of the relations between stratigraphic units across layer interfaces, faults or the contact to an intrusive body. Gener-

ally, eight binary topological relationships can exist between three-dimensional objects (Egenhofer, 1990), while a total of 69

relations are possible between simple lines, surfaces and bodies (e.g. surfaces without holes; see Zlatanova, 2000). From these10

eight Egenhofer-Herring relationships, meets (i.e. adjacency) is the most relevant one for describing structural and stratigraphic

relationships, such as across-fault connectivity of layers (see Fig. 1). The topology relationships of geological models can be

represented by an adjacency graph, which represents topological units as individual nodes and their connections by edges

(see Fig. 1). The adjacency topology of geological structures is highly dependent on deformation: compressional deformation

leads to different connectivities in the topology graph than does extensional, but even within the same type of deformation15

they can lead to different topologies—as visualized by the Horst and Graben structures in Figure 1. Not only does the type

of deformation have an important influence on the systems topology, but also the quantity—e.g. the fault throw. For an in-

1URL: github.com/cgre-aachen/gempy
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depth introduction and discussion of topology in geology see Thiele et al. (2016a) for the fundamental theory and Thiele et al.

(2016b) and also Pakyuz-Charrier et al. (2019) for the influence of structural uncertainty on geomodel topology.

2.2.1 Computing geomodel topology

To compute the geomodel topology with the necessary computational efficiency to conduct a feasible stochastic simulation of

realistic geomodels, we implemented a topology algorithm using theano (Theano Development Team et al., 2016) into the5

core of GemPy. This enables the topology computation to run alongside the geomodel interpolation on graphical processing

units (GPUs). As theano is a highly optimized linear algebra library, the employed method is mainly focused on utilizing

matrix operations for the computation of the geomodel topology. When the implicit geomodel is discretized using a regular

grid, it becomes a 3-D matrix of lithology IDs L (Fig. 2a), which we use for the calculation of the geomodel topology. For each

geomodel we also have access to the 3-D boolean matrices Fn for each fault, representing the two sides of the respective fault10

by two ascending consecutive integers (Fig. 2b). Given these two input data, we compute the geomodel topology as follows:

1. The lithology matrix L and the summed fault matrices
∑nfault

i=1 Fi, where nfault is the total number of faults in the ge-

omodel, are combined into a matrix where each lithology in each fault block is represented by its own unique integer,

referred to as the topology labels matrix T (see Fig. 2c):

T = L+nlith

nfault∑
i=1

Fi (1)15

with nlith being the total number of lithology IDs in the geomodel.

2. The topology labels matrix T is then shifted twice (forward and backward) along each axis X, Y and Z. The two resulting

shifted matrices S1 and S2 along each axis are then subtracted from each other to result in a difference matrixD, in which

only the cells along a lithology or fault boundary are non-zero (Fig. 3).

3. The topology labels matrix T is then evaluated at all non-zero cells of D to obtain the two topology labels na,nb of each20

topological connection (reffered to as an edge e) in the geobody, which are stored in a set of unique edgesE representing

the geomodels topology. For the example shown in Figure 2 and 3 the abbreviated set isE = {(0,4),(0,5),(0,1), ...,(3,7)}.

This method of topology calculation works on regular grids, which imposes a strong bias on the result: if the main lithological

and structural features are not aligned with the grid orientation, the resulting topology graph could thus contain (or miss)

connections. For a more detailed discussion on the effects of model discretization see Wellmann and Caumon (2018).25

2.3 Stochastic Modelling Approach

2.3.1 Bayesian Inference

Bayesian inference is fundamentally different to the classical frequentist approach of inference. It treats probabilities as degrees

of certainty of a parameter θ, which is inherently considered to be a random variable itself (Bolstad, 2009; VanderPlas, 2014).
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(c) Topology labels matrix T(b) Fault matrix F1(a) Lithology matrix L

Figure 2. (a) Lithology matrix L of an example 2D geomodel that consists of four layers and a vertical fault in the center; (b) Fault matrix F

of the geomodel; (c) Topology labels matrix T of the geomodel.

(a) Vertical (b) Horizontal

Figure 3. Vertical (a) and horizontal (b) difference matrix D showing all cells (red) in the shifted matrices S1 and S2 which are next to

the interface between two different layers or of any layers across a fault. The highlighted (yellow) part shows the area in which the implicit

interface must be located.

It is based on Bayes’ theorem (Eq. 2), which allows updating of a given probability - the prior probability p(θ) of a parameter

θ - after the occurrence of a connected event (Bolstad, 2009). This updating process relies on the use of a likelihood function

p(y|θ), representing the conditional probability of the observed data y given the prior probability of the underlying paramter

θ and the theoretical connection of the occuring event. It is used to condition the prior into the posterior distribution p(θ|y),

which represents the degree of certainty over the parameter θ given the occurrence of the event and its observed data y.5

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

(2)

Despite the classical naming convention of Bayes’ equation terms—i.e. prior and observed data—we do not see Bayes’ equa-

tion as a strict separation between subjective knowledge and data (Gelman and Hennig, 2017), but as a way to combine
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conditional probabilities (Koller et al., 2009; Nearing and Gupta, 2018). For the use in geomodeling, the terms of Eq. 2 can be

seen as (de la Varga and Wellmann, 2016; Gelman et al., 2013):

– Model parameters θ: The model-defining parameters (e.g. layer interface positions, dip or fault parameters) used for the

interpolation of the geomodel, which can be either deterministic (thus be exactly defined and known) or probabilistic.

The latter represent uncertain parameters, which is expressed in the form of probability distributions (e.g. a normal5

distribution expressing the uncertainty of the vertical subsurface position of a layer interface). We will use θ′ as the

notation for a sample from these parameter distribtions.

– Observed data y: Represents additional measurements or any other source of data, which should enhance the model

definition by providing additional information with the goal to reduce model uncertainty or enable the comparison of

the model to reality (e.g. by comparing geophysical potential-field measurements with the according forward simulation10

on the basis of a geomodel). In this work we use topology information in the form of a topology adjacency graph as the

"observed data". Notice that when the words "observation" or "observe data" are used in the context of a probabilistic

model, we refer to this mathematical term y instead to the literal semantic meaning of the words.

– Likelihood functions p(y|θ): These form the relationship between the model parameters θ and the observed data y.

Essentially, this function describes the conditional probability for observing the data y given the parameters θ. (e.g.15

MacKay and Kay, 2003). In the case of structural modeling, this essentially means that we compute the geomodel from

the input parameters θ and compare model predictions (e.g. the thickness of a certain layer at a certain position, or

topology adjacency graphs), with additional observed data.

While constructing meaningful likelihood functions for physical properties such as layer thickness or geobody volume from

observed data is straight forward (de la Varga and Wellmann, 2016), we have no proper framework to construct them for more20

abstract or "soft data", such as our understanding of the geological setting, or the topology relationships of our layers across

faults or unconformities. For this reason, we chose to apply methods to estimate our posterior distributions given abstract

geological information without specifying a likelihood function: Approximate Bayesian Computation.

2.3.2 Approximate Bayesian Computation

Geoscientists often have extensive implicit knowledge of the geological settings (e.g. our understanding of the tectonics of a25

system), but only a limited amount of this knowledge can be incorporated into the geological interpolation function (Well-

mann and Caumon, 2018). Additionally, it is often difficult to define formal likelihood functions for geological knowledge, as

required for conventional Bayesian inference methods (Wood and Curtis, 2004). A less formal but valid alternative approach

is to approximate the posterior distributions using Approximate Bayesian Computation (ABC) methods. These methods, also

referred to as likelihood-free inference methods by some (Marin et al., 2012), evaluate the distance of stochastically generated30

models to our additional data using one or multiple summary statistics S, instead of a probabilistic likelihood function. While

summary statistics are often measures such as the mean, mode or median of a model, they tend to be insufficient in summarizing
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geomodels. In this work we use the geomodel topology graph as a summary statistic of the geomodel to provide a meaningful

comparison between geomodels.

To obtain the approximate posterior distribution we need to sample from our prior parameter distributions, plug the sam-

ples values θ′ into our simulator function y (our geomodeling software), compute the summary statistic S(y(θ′)) (geomodel

topology) and evaluate its distance to our observed summary statistic (data) S(y) (e.g. a geomodel topology graph). The most5

fundamental sampling scheme for ABC is based on rejection sampling (ABC-REJ; see Algorithm 1), for which the distance be-

tween our simulated data y(θ′) (the simulated geomodel) and observed data y (initial geomodel) is calculated using a distance

function of their summary statistics (topology graphs) d
(
S(y),S(y(θ′))

)
. The simulated model is accepted if the distance is be-

low a user-specified error bound ε≥ 0 (Sadegh and Vrugt, 2014), or else rejected. The accepted samples form the approximate

posterior. Thus, this method circumvents the need to specify a likelihood function for our additional data, while still approx-10

imating the posterior distributions incorporating the information of both our priors and our additional information (Sunnåker

et al., 2013). Within this work we use the Jaccard index (1− J) as a distance function between topology graphs.

Algorithm 1 ABC-REJ

for i= 0 to N do

while d
(
S(y),S(y(θ′))

)
> ε do

Draw sample θ′ from priors p(θ)

Simulate geomodel y(θ′)

Compute geomodel topology S(y(θ′))

Calculate d
(
S(y),S(y(θ′))

)
end while

end for

A more advanced sampling scheme for ABC is Sequential Monte Carlo sampling (ABC-SMC). In its simplest form it can be

seen as an extension of rejection sampling, by chaining rejection sampling simulations together (each referred to as an epoch).

During the first epoch of rejection sampling, a large error threshold ε1 is used while sampling from the prior distributions p(θ).15

The accepted samples, forming the posterior distributions of the first epoch, form the updated priors of the second epoch by

replacing the priors with the kernel density estimation f̂h(θaccepted) of the posterior samples. Iteratively, with every epoch, the

error threshold ε is reduced to the target value (e.g. ε= 0) to obtain the final posterior sample. Thus, every epoch, the sampler

’learns’ from the previous epoch by adjusting the prior distributions further towards the posterior distributions. As ABC-REJ

tends to suffer from potentially low computational efficiency when using low error thresholds ε, the iterative shrinking paired20

with adjustment of the prior distributions can potentially obtain the approximate posterior much more quickly. We apply this

sampling scheme to our Gullfaks case study to show the potential speed-ups.
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Algorithm 2 ABC-SMC

for ε in {ε1, ε2, ..., εM} do

for i= 0 to N do

while d
(
S(y),S(y(θ′))

)
> ε do

Draw sample θ′ from priors p(θ)

Simulate geomodel y(θ′)

Compute geomodel topology S(y(θ′))

Calculate d
(
S(y),S(y(θ′))

)
end while

end for

Replace priors p(θ) with KDE f̂h(θaccepted)

end for

2.4 Topology distance functions

To use geomodel topology as a constraint for probabilistic geomodels in an ABC framework, we need a consistent way of

comparing geomodel topologies—i.e. suitable distance functions. We consider here three possible comparison methods:

1. Presence or abscence of defined connections: As the relational topology information is captured in adjacency graphs,

the most fundamental approach is to check if two relevant nodes n1 and n2 (e.g. representing two regions in the model)5

share an edge e= (n1,n2) (are adjacent), and if this edge exists in both models. This is the most simple way of comparing

specific aspects of relational topology between geomodels. This approach can be viewed as a boolean comparison: True

if the given edge exists in both models, False if not. This also enables the direct comparison of i multiple edges, which

would result in a vector of i boolean statements for each comparison [e1,e2, . . . ,ei].

2. Comparing entire graphs: To compare topology graphs as a whole, Thiele et al. (2016b) describe the use of the Jaccard10

index (Jaccard, 1912). It can be used to compare the similarity of sets by creating the ratio of the intersection and union

of two graphs A and B:

J(A,B) =
|A∩B|
|A∪B|

(3)

For two topology graphs A and B, this means we calculate the ratio of edges (representing connected regions) shared

in both (intersection: A∩B) and their total combined number of edges (union: A∪B). This ratio can be used to effi-15

ciently identify all unique topology graphs in a given ensemble, as only an identical pair of graphs results in a Jaccard

index of J(A,B) = 1. A comparison using the Jaccard index yields ratios of integers, thus a discrete comparison. This

method also allows specifying a tolerance 0 < ε < 1 for model acceptance, i.e. to accept models within the range

1 − ε ≤ J ≤ 1.
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3. Contact area: Comparing the number of actual edge pixels (or voxels), representing the area of the contact Ae between

two geobodies could yield a more granular comparison that allows to take into accounts trends of the contact size. Thus

the ABC error tolerance ε could be used to reject geomodels where certain topological contact areas are above and/or

below a certain value Ae− εlow ≤ Ae ≤ Ae + εhigh.

In this work we demonstrate the second approach, as it allows us to directly compare entire geomodel topologies. We have5

chosen to compare the simulated results to a single topology graph—the initial geomodel topology. This approach was selected

as a base case to demonstrate how the large variations in geomodel topology observed in the stochastic simulation of input

data uncertainties in geomodels (see Thiele et al., 2016b) can be constrained to a base topology (i.e. conceptual model). This

of course reinforces the bias of the initial base model into the uncertainty simulation, but allows for the reliable exploration of

uncertainty of all possible geomodels honoring the topology constraint.10

2.5 Quantifying Uncertainty using Shannon Entropy

Stochastic simulations yield vast ensembles of geomodel realizations and their variability (and thus uncertainty) needs to

be analyzed and understood. The uncertainty of a single geological entity (e.g. a layer or a fault) can be estimated from its

frequency of occurrence in each single geomodel voxel. In order to analyze the whole geomodel uncertainty at once, more

sophisticated measures can be applied: the concept of Shannon entropy H can be used in a spatial context to evaluate the15

uncertainty of an entire geomodel ensemble at once, as described by Wellmann and Regenauer-Lieb (2012). Average model

entropy H collapses the uncertainty of a geomodel ensemble into a single number. It will be equal to 0 if all cells x have only

one possible outcome (no uncertainty), and reaching its maximum when all outcomes are equally likely for all cells of the

model (maximum uncertainty).

2.6 Experiment Design20

2.6.1 Synthetic Fault Model

As a proof of concept we show how ABC can be used to incorporate geological knowledge and reasoning into an uncertain

synthetic geomodel. This model represents a folded layer cake stratigraphy that is cut by a N-S striking normal fault to represent

an idealised reservoir scenario frequently encountered in the energy industry (see Fig. 4a).

The prior parametrization is schematically visualized in Figure 4b and consists of two different kinds of uncertain param-25

eters: (i) vertical location of the layer and fault interfaces and (ii) lateral location of the fault interface, with the specific

parametrization displayed in Table 1 in the Appendix. As this work focuses on developing and describing a novel methodology

for constraining uncertain geomodels, we have chosen the uncertainty parametrization of the synthetic geomdel entirely sub-

jectively as normal distributions increasing in uncertainty with depth. The uncertainty is applied to each set of surface points to

preserve surface shape, individually within each of the two fault blocks. Proper prior parametrization of uncertain geomodels30

is a vital branch of research on its own (e.g. Pakyuz-Charrier, 2018; Krajnovich et al., 2020) and out of the scope of this work.
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Figure 4. (a) 3D view of the synthetic fault model, with top surfaces of the four lithologies shown and the fault surface in blue; (b) XZ-slice

through the center of the discretized model showing partial input data (for visual brevity) and example standard deviations of prior parameters

used for the stochastic simulation; (c) Model overlaid with its topology graph used as our summary statistic for the ABC.

Two separate simulations were run for this experiment so we can see how topology can constrain an uncertain geomodel

compared to the Monte Carlo simulation of input parameter uncertainties alone:

1. A Monte Carlo simulation of the prior parameters to evaluate the uncertainty in the resulting geomodel ensemble con-

sisting of 2000 generated models. This represents our ’base case’ uncertainty without any topological constraints. It is

important to notice that this simulation it is only uncertainty propagation and does not entail any type of inference.5

2. An Approximate Bayesian Computation using the initial model topology graph (see Fig. 4c) to represent our geological

knowledge. This graph is extracted from the initial geological model which has been manually built by an expert. The

assumption is that this topological graph encapsulates some of the geological knowledge used during its construction

by an expert and thus, geometrical configurations more similar to this graph can be considered more likely. This graph

would be treated from this point on as a "observation" y due to its use as a constraint within the probabilistic model.10

We are employing a rejection sampling scheme (ABC-REJ) with an error tolerance of ε= 0 to obtain 500 generated

posterior models. The resulting posterior geomodel ensemble will contain only samples with matching topology graphs.

2.6.2 Case Study: The Gullfaks Field

To demonstrate the applicability of the method to real datasets we apply it to a model of part of the Gullfaks Field, located in

the northern North Sea. The field is located in the western part of the Viking Graben, and consists of the NNE-SSW-trending15

10-25 km wide Gullfaks fault block (Fossen and Hesthammer, 1998). For a detailed overview of the regional and structural

geology we refer to Fossen and Rørnes (1996); Fossen and Hesthammer (1998); Fossen et al. (2000); Schaaf and Bond (2019).

For the experiment, we constructed a base geomodel (Fig. 5a) founded in an interpretation of the training data set provided

with the seismic interpretation software Petrel™. We have chosen a relatively simple subset of the interpretation, containing 2
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(a) 3-D geomodel surface view (b) Discretized XZ-Section with Topology Graph

Tarbert Ness Etive

Block A
Block B

Block
C

BCU

Figure 5. (a) 3D view of the Gullfaks geomodel used as mean prior model in our case study; (b) XZ-section through the discretized geomodel

with overlaid observed topology graph showing the inter- and intra-fault block relations of geobodies.

faults, three horizon tops Tarbert (red), Ness (purple) and Etive (green), and the Base Cretaceous Unconformity (BCU, yellow).

To create the geomodel, we exported the corresponding seismic interpretation data from Petrel and imported them into Python.

The surface interpretations were then decimated down to 510 surface points and 187 surface orientations, via a target reduction

of 80 % per fault block or surface using the VTK-based decimation functionality of pyvista (Sullivan and Kaszynski, 2019),

to retain the best possible surface shape while allowing fast implicit geomodel construction times in GemPy.5

The prior parametrization consists of two different kinds of uncertain parameters: (i) vertical location of the layer interfaces

for within each fault block; (ii) the lateral location of the fault interfaces. This parametrization is similar to the synthetic fault

model (all specifications are listed in Table 2 in the Appendix), and all sets of surface points within each individual fault block

were perturbed together to retain surface shape. This parametrization was chosen to demonstrate how even a few uncertain

parameters in an uncertainty modeling workflow can lead to highly uncertain results, especially regarding the topology graphs10

of the resulting geomodel ensembles in real-world geomodels. We then conducted a sensitivity study of the topological spread

with respect to the geomodel resolution. This allowed us to determine the appropriate geomodel resolution necessary for our

experiment. Next, we performed three separate simulations to compare different approaches:

1. A Monte Carlo simulation of the prior uncertainty for 1000 samples, to evaluate the spatial uncertainty and the topo-

logical spread of the resulting geomodel ensemble. This serves as our ’base case’ uncertainty for comparison with the15

following two simulations.

2. An ABC-REJ simulation using the initial geomodel topology graph (see Fig. 5b) to represent our geological knowledge.

We used an error threshold of ε= 0.025 for 1000 accepted posterior samples, as the threshold was small enough to

constrain the posterior topology spread to the initial geomodel topology graph.

3. An ABC-SMC simulation using the same initial geomodel topology graph. We ran six SMC epochs using ε values of20

0.3, 0.2, 0.1, 0.075, 0.05 and 0.025. Each epoch was run for 1000 accepted posterior samples.
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3 Results

3.1 Synthetic Fault Model

Simulating the uncertainties encoded in the prior parameterization resulted in 100 unique model topologies within the geomodel

ensemble of 2000 models, with 18 topology graphs occurring at least ten times and the most frequent 14 making up 90 % of

geomodel ensemble topologies. It is also notable that the most frequent topology graph (29.5 %) is not the initial (mean5

prior) topology graph (15.6 %), but rather represents models where the Shale layer (green) of the foot wall shares an across-

fault connection with the Sandstone 2 layer (red) of the hanging wall. The uncertainty of the prior geomodel ensemble is

visualized in Figure 6a-c in XZ-, YZ- and XY-sections as Shannon entropy, as described in the methodology. All three sections

through the model show clearly the uncertainty of the layer interface position and highest uncertainty around the fault surface.

In comparison, applying a single topology graph as a summary statistics to the simulation using ABC leads to significantly10

reduced uncertainty throughout the geomodel ensemble (see Fig. 6d-f), with average geomodel ensemble entropy being reduced

from Hprior = 0.44 down to Hposterior = 0.31, a drop in geomodel uncertainty of nearly 30 %. Visualizing the entropy

difference between the prior and the posterior geomodel ensembles shows the highest reduction in entropy for the two inner

layer interfaces (see Fig. 7), and not around the fault surface. As expected, constraining the simulation using a single topology

graph with an error of ε= 0 collapses the number of geomodel ensemble topologies from 100 down to 1.15

Figure 8 plots the kernel density estimations (KDE) of the input parameter distributions of prior (grey) and posterior

(coloured) samples. The strongest change in mean from prior to posterior distributions occurred for the vertical interface

location perturbance priors of Sandstone 2 (red), Shale (green) and Sandstone 1 (brown; see Fig. 8), with the first shifted to

higher mean z-values and the latter two shifted deeper by −72 m and −53 m, respectively. Additionally, the initially normally

distributed prior of Sandstone 1 shows a strong negative skewness of −0.61 in the posterior distribution. Standard deviation20

for the Siltstone and Shale interface distributions was reduced by roughly 32 % and 40 % respectively. The prior and posterior

distributions for the lateral and vertical fault parameter uncertainties show no significant difference (e and f).

3.2 Case Study: The Gullfaks Field

Forward simulation of the prior uncertainties of the Gullfaks geomodel resulted in 676 unique geomodel topologies within

a 1000-model ensemble, with 116 unique topologies occurring more than once. Again, the most frequent topology graph is25

not the initial (mean prior) topology graph. The uncertainty of a XZ-section of the forward ensemble is visualized in Figure

10a using Shannon entropy. The section illustrates the general trend of uncertainty throughout the forward simulation: we

observe highest uncertainty surrounding the two faults in the geomodel, especially around the eastern fault. The area also

shows increased uncertainty due to the interaction of layer interfaces, the fault and the vertical vicinity of the BCU.

The initial topology graph is used as a constraining summary statistics using ABC with rejection sampling (ABC-REJ) using30

a threshold of ε= 0.025. The absolute threshold value will be directly proportional to the sensitivity of the model geometry

with respect the stochastic parameters. This prevents the selection of a value independent of the actual geological model under
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Figure 6. Shannon entropy slices in the XZ- (left), YX- (center) and XY-plane of the prior (top, a-c) and posterior (bottom, d-f) geomodel

ensemble. The white lines show the location of respective other cross-sections.

study. In this case study, the value of ε has been chosen empirically by performing several predictive simulations. Results were

evaluated based on their correspondence to the geological setting.

Results reduced uncertainty, as exemplified by the entropy section shown in Figure 10b. At this threshold, the approximate

posterior geomodel ensemble contains only the applied initial topology graph. Using rejection sampling with such a strict

threshold resulted in a very low acceptance of only 0.59 % of simulated geomodels, which required about 40 hours of simulation5

time to obtain 1000 posterior samples2. In contrast, using a Sequential Monte Carlo sampling scheme (ABC-SMC) required

only 3.96 hours to obtain the same number of posterior samples at the same threshold—a speed-up of 10.1. This includes the

five sampling epochs using ε= {0.3,0.2,0.1,0.075,0.05} with 1000 accepted samples each, used to sequentially adapt the

priors.

Figure 12a shows the number of unique topologies for forward simulations and each threshold of the ABC-SMC. As we iter-10

atively lower the acceptable threshold during the SMC simulation, the simulated and accepted topologies iteratively converge

2The experiment was run on consumer-grade hardware and leveraging GPU computation: Intel Core i5-8600K @ 3.60GHz, Nvidia GeForce RTX 2070

8GB GDDR6, 16 GB DDR4 RAM @ 2133MHz.
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Figure 7. XY-Section of entropy difference between the forward simulated entropy and the approximate posterior entropy. The plot highlights

areas where the entropy was reduced (blue), increased (red) and kept constant (white).
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Figure 8. Prior (grey) and posterior (color) kernel density estimations for the different stochastic model parameters for our synthetic fault

model.

towards the topology graph we used as our prior geological knowledge. The average geomodel ensemble entropy H̄ is also

iteratively decreasing from 0.233 for the forward simulation down to 0.112 at ε= 0.025 (see Fig. 12b), showing how fixing

a probabilistic geomodel to a single topology graph can significantly reduce, or rather significantly constrain, the simulated

uncertainty.
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Figure 9 shows how the ABC-SMC simulation iteratively affects the probability distributions of selected probabilistic ge-

omodel parameters with decreasing thresholds ε. Each row shows the consecutive epochs of the ABC-SMC simulation and

corresponds to a specific ε. Each column describes a different stochastic parameter in the stochastic model. By applying the

initial topology graph of the geomodel as our summary statistics, we can directly see here how the parameter distribution for

the BCU (Fig. 9a) shifts its mean µ by 47.4 m upwards and reduces its standard deviation σ by 35.8 % to accommodate our5

geological knowledge about the geomodel topology. We can observe this effect in the entropy section of the posterior geomodel

ensemble as well (Fig. 10b). In Figure 11, we show the difference in entropy between the prior and approximate posterior ge-

omodel ensemble shown in Figure 10, where areas with decreasing entropy values are shown in blue, increasing values in red.

We observe here how the BCU moves upward and increases the entropy there, while lowering entropy in the lithologies below.

The parameter distributions for Tarbert B (Fig. 9b, red) and Etive B (Fig. 9c, green) show similar behaviour: shifted mean and10

reduced standard deviation to accommodate the topology information. We see a much stronger reduction in standard deviation

for the two faults (Fig. 9d,e): 80.4 % and 80.0 % for Fault A and Fault B, respectively. This is also shown as the strongest

reduction in entropy in Figure 11.

4 Discussion

We showed how topology information, as an encoding for important aspects of geological knowledge and reasoning, can be15

included in probabilistic geomodeling methods in a Bayesian framework. The simulation experiments for our two case studies

demonstrated that we are able to approximate posterior distributions to obtain probabilistic geomodel ensembles that honour

both our prior parameter knowledge and qualitative geological knowledge. If the applied topological information is meaningful,

then the constrained stochastic geomodel ensemble will see a meaningful reduction in uncertainty, and will subsequently

allow for more precise model-based estimates and decision-making (Stamm et al., 2019). More importantly, the (approximate)20

Bayesian approach requires the explicit statement of the geological knowledge (here the topology information) used in the

probabilistic geomodel, increasing the transparency of assumptions made during the geomodeling process and any subsequent

decisions.

With our approach, we directly address a scientific challenge raised in recent work by Thiele et al. (2016b), that known

topological relationships are frequently not honoured during the probabilistic modeling process, thus potentially invalidating25

large parts of the resulting geomodel ensemble. Injecting topology information into a Bayesian approach allows us to obtain

topologically valid, and hence geologically reasonable, geomodel ensembles. And, although we have only used simple topology

information within this study, the demonstrated ABC approach allows to easily scale the amount of topology information used:

from simple True-False comparisons of single topology graphs to the use of a whole range of topology graphs and relationships.

If a set of acceptable topologies is used, one could for example accept a simulated model if it matches at least one within the30

error tolerance.

The work of Pakyuz-Charrier et al. (2019) shows how clustering of probabilistic geomodel topologies can be used to dif-

ferentiate between different modes of topologies. Their approach compares geomodel topologies by describing them as half-
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Figure 9. Prior (grey) and posterior (colored) kernel density estimations for selected model parameters (a-e) for the 6 epochs (each row repre-

sents an epoch) of the ABC-SMC simulation of the Gullfaks case study, showing how the simulation iteratively approaches the approximate

posterior distribution, which shows the possible parameter uncertainty given our topological information. Mean µ and standard deviation σ

shown for the first and last epochs.

vectorized adjacency matrices, resulting in a binary string that can be compared using the Hamming distance (Hamming,

1950). It could be considered as a different distance metric in the ABC approach presented in this work to constrain the simu-

lated probabilistic geomodel. And, while their work focuses on the analysis of existing probabilistic geomodel ensembles, our

approach focuses on learning probabilistic geomodels on topology information.

As more complex geomodels strongly increase the required parametrization to accurately describe the model domain in a5

probabilistic framework, constraining them with topological information could help keep this parametrization at computation-

ally feasible levels by reducing the parameter dimensionality, while still obtaining meaningful geomodels (e.g. free of modeling

artefacts caused by random perturbations of the limited input data). This would not work using an inefficient rejection sampling

scheme (e.g. ABC-REJ), but would rather require the use of "adaptive" sampling algorithms to efficiently explore the posterior

parameter space without wasting too much computing power on rejected models (e.g. ABC-SMC). In our Gullfaks case study,10
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Figure 10. (a) Section of the entropy block of the forward simulation for the prior uncertainty (HT = 0.223); (b) Section of the entropy

block of the final epoch (ε= 0.025) of the ABC-SMC simulation (HT = 0.113).
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Figure 11. XZ-Section of entropy difference between the forward simulated entropy and the approximate posterior entropy H (ε= 0.025).

The plot highlights areas where the entropy was reduced (blue), increased (red) and kept constant (white).

we have not only shown the efficacy of the method on a real-world example, but demonstrated the stark increase in computa-

tional efficiency when using advanced sampling techniques. The SMC sampler used in our work requires manual setting of the

acceptance thresholds, which directly influence the algorithm’s efficiency in acquiring samples of the approximate posterior

distribution. Adaptive SMC methods automatically tune acceptance thresholds to increase sampling efficiency on-the-fly to

minimize computation time and avoid manual (subjective) selection of thresholds (Del Moral et al., 2012).5

Sadegh and Vrugt (2014) describe a more complex ABC algorithm based on Differential Evolution Adaptive Metropolis

(DREAM-ABC) and demonstrate its much higher efficiency in approximating the posterior. It might be of particular interest

for the approximate inference of complex structural geomodels with topology constraints, as it has shown promise to very

efficiently explore high-dimensional (read: large amount of prior parameters) and multi-modal parameter spaces. When using

multiple topology graphs (which are discrete) in an ABC framework, the posterior parameter space may potentially become10
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Figure 12. (a) Number of unique topologies within the geomodel ensembles of each SMC epoch, showing the iterative reduction in topolog-

ical uncertainty throughout the SMC simulation; (b) Average geomodel entropy of the ensembles for each epoch, showing how the reduction

of topological uncertainty shown in (a) affects the total geomodel uncertainty.

multi-modal, which poses significant challenges for traditional Markov Chain-based samplers (Feroz and Hobson, 2008).

The approach by Sadegh and Vrugt (2014) is based on combining multiple Markov chains, which natively supports parallel

computing and would thus allow for a high scalability of the approach to complex, computationally intensive geomodels.

Alternatively, Bayesian Optimization for likelihood-free inference (BOLFI; Gutmann and Corander, 2016) could be worth

considering for complex structural geomodels. The method abstracts the simulator/implicit function into a statistical surrogate5

model between the priors and the summary statistics and then attempts to minimize their distance, with the potential to signifi-

cantly reduce the number of needed computations of the geomodel. Overall, the spatial and discrete nature of geomodels and

the use of discrete summary statistics poses unique challenges to sampling algorithms, requiring further research to identify

algorithms that can confidently converge and minimize the high computational cost of probabilistic 3-D geomodels.

The method demonstrated the effect of topology information on geomodel uncertainty—showing how well the parametriza-10

tion of a probabilistic geomodel fits our geological assumptions. The acceptance rates during sampling could potentially be

used as a proxy for the validity of our assumptions: low acceptance rates could reveal a bad fit between our model and our

added geological knowledge and reasoning. Using entropy-difference plots, the effect of geological assumptions on geomodel

uncertainty can be analysed spatially, e.g. how it changes around faults and other structures in the geomodel ensemble.

Summary15

– We have shown how to use Approximate Bayesian Computation to constrain probabilistic geomodels so that the approx-

imate posterior incorporates known topology information.

– The method enables additional geological knowledge and reasoning to be explicitly encoded and incorporated into

probabilistic geomodel ensembles, potentially increasing transparency of the modeling assumptions.
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– As opposed to standard MC with rejection, the implemented SMC approach makes the use of ABC feasible in realistic

settings. Further research into using more advanced sampling schemes could provide additional speed-ups in obtaining

the posterior geomodel ensemble, which is especially relevant for computationally more expensive complex geomodels

with large parametrizations.

Table 1. Distribution parameters for prior parametrization of the synthetic fault model.

Name Distribution µ [m] σ [m]

Sandstone_2_Z Normal 0 50

Siltstone_Z Normal 0 70

Shale_Z Normal 0 90

Sandstone_1_Z Normal 0 110

Main_Fault_X Normal 0 60

Main_Fault_Z Normal 0 60

Table 2. Distribution parameters for prior parametrization of the Gullfaks case study.

Name Distribution µ [m] σ [m]

BCU Z Normal 0 43.3

fault3 X Normal 0 90.9

fault4 X Normal 0 90.5

tarbert A Z Normal 0 46.5

tarbert B Z Normal 0 45.5

tarbert C Z Normal 0 44.2

ness A Z Normal 0 48.6

ness B Z Normal 0 46.7

ness C Z Normal 0 45.1

etive A Z Normal 0 50.9

etive B Z Normal 0 48.1

etive C Z Normal 0 46.3
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