
Response to RC1 – Ahston Krajnovich 
AR = Authors response 

 

Thank you very much for your constructive review of our manuscript. We have incorporated many 
of your suggested improvements into our manuscript and believe this has significantly improved 
its quality and readability.  

Most importantly, we have added our reasoning behind the choice of prior parameters and our 
reasoning behind choosing a known topology graph as our constraint. Additionally, we have 
revised the mathematical notation throughout the paper to make it consistent and in line with the 
cited literature and have edited so that definitions of technical terms appear before use of them. 
The placement of the figures will be subject to the final paper typesetting done by the journal and 
is thus not final in the current manuscript. We have addressed many of the suggested 
improvements to language, grammar and figure annotations to improve readability.  

Please find all our detailed responses to your comments in the supplementary material, along with 
both the revised and change-tracked manuscript. 

Specific Comments 
Title: Consider rephrasing to avoid the repetitive use of the word “using”. I would 
suggest: “Constraining stochastic 3-D structural geological models with topology information 
using Approximate Bayesian Computation in GemPy 2.1” 

AR: We have changed the title. 

Abstract: As the research is built in the GemPy environment, it would be beneficial to 
highlight it’s usage in the abstract (perhaps at Line 13). 

AR: We now mention GemPy in the abstract to improve clarity. 

Line 129: Sentence requires revision to be accurate about what the likelihood function 
represents in Bayes’ theorem. I suggest: “This updating process relies on the use of 
a likelihood function p(y|theta), representing the conditional probability of the observed 
data y given the prior probability of the underlying parameter theta and the theoretical 
connection to the occurring event.” 

AR: We have incorporated your suggestion into the manuscript to improve clarity for the reader. 

Line 144: You have reversed the conditional probability described by the likelihood function, which 
is: the likelihood for observing the data y, given the model based on uncertain parameters theta. 
 
AR: Thank you for pointing out this error, we have switched that around! 
 
Line 147: This is unclear, as likelihood functions are inherently encoding information 
regarding not just the parameters theta, but also the observations y and the assumed 
theoretical relationship between theta and y. Consider removing or revising. 
 
AR: We have removed the sentence to avoid confusing the reader. 
 
Section 2.3.2: This section requires additional clarification between "observed data" 



and "simulated data". Refer to the treatment of ABC in Gelman et al., 2004 where y 
is the observed data (observed "summary statistic" in ABC) and y-rep is the simulated 
data (simulated "summary statistic" in ABC). The use of y-hat to represent the observed 
summary statistic and y to represent the simulated summary statistic creates additional 
confusion (as the observed data introduced in Bayes’ theorem were defined as y, not 
y-hat). 
 
AR: Thank you for pointing out this mistake. We have changed the notation to be in line with the 
literature and our description of Bayes’ theorem. 
 
Line 156-157: Perhaps add a reference to (Wood and Curtis, 2004)? (Geological prior 
information, and its applications to geoscientific problems) 
 
AR: Added reference to provide the reader with additional literature to understand the issue of 
specifying likelihood functions in geology. 
 
Line 160: Please add an additional clarifying sentence on what the summary statistic 
is in this work rather than the short parenthetical (to avoid confusion with typical 
summary statistics like mean, mode, median etc.). Also, a comment: In the proposed 
(approximate) inference scheme, the new evidence y (or data) is the "summary statistic". 
So, while the definition of the additional term "summary statistic" to describe "y" 
is useful for highlighting the approximate nature of ABC, the equivalency of these two 
terms should be clarified for the reader. 
 
AR: We added additional clarification on what is usually used as summary statistics, and why we 
use topology graphs when comparing geomodels. 
 
“While summary statistics are often measures such as the mean, mode or 
median of a model, they tend to be meaningless in summarizing geomodels. In this 
work we use the geomodel topology graph as a summary statistic of the geomodel 
to provide a meaningful comparison between geomodels.” 
 
Line 162-163: Clarify the 2nd part of the sentence to illustrate that the "observed 
summary statistic y-hat" is static for the entire geomodel ensemble (i.e., the known, 
observed topology graph), while "the summary statistic y" is tied to each individual 
geomodel realization (i.e., a simulated topology graph). 
 
AR: We have fixed the mathematical notation from y to S(y) when referring to the summary 
statistic. We think this fixes the problem of clarity in this sentence. While we keep the observed 
topology graph static in this experiment, this is by no means necessary, as we discuss in the paper. 
We have also improved our discussion of this. 
 
Line 165: Theta-prime has not been introduced. What does it refer to as opposed to theta? I assume 
you are referring to a single draw from the parameter distribution 
theta, but please clarify. When relying on mathematical notations from another work 
(the ones in question here seem to be borrowed from Sadegh and Vrugt, 2014), make 
sure notations are introduced properly. It also helps to also have a “sanity check” to 
make sure that the notation used is not confusing with respect to the broader statistical 
literature (e.g., where the observed data in Bayes theorem are typically represented 
without a ˆ or ’) 
 



AR: Theta has been introduced in the previous section as the model parameter distributions. We 
have added an explanation that theta prime is a sample from these distributions. 
 
Section 2.5: Section could be made much more concise to avoid excessive overlap 
with existing works (seeing as the major contributions of the paper are not focused on 
novel applications of Shannon entropy). 
 
AR: We have cut detailed explanations of the Shannon entropy and refer the reader to the 
relevant literature. 
 
Line 227: How and why were the prior uncertainty ranges chosen? Were they considered 
to be broad, non-informative priors, derived emprically, based on background information 
or simply assumed by the modeler for the sake of simulation? Same question 
should be addressed more directly for the Gulfalks case study as well (Line 249-251), 
where the uncertainties appear to be derived from the referenced work though this is 
not stated definitively. Also, just a comment: I am quite interested to see how incorporating 
structural uncertainty (by way of the methods put forth by Pakyuz-Charrier et al., 
2018a,b, Roberts et al., 2019 or Krajnovich et al., 2020) would influence the geomodel 
topology.. Intuitively, there is a high potential for confounding effects on the range of 
possible geomodel topologies when interface location and interface/fault orientation 
are varied together! 
 
AR: We have added explanation on how we chose the prior parametrization. As this paper 
focusses on developing and showcasing a new methodology for constraining uncertain geomodels 
using topology graphs, prior parametrization has not been a focus of the experiments. We refer 
the reader to other works, as also mentioned by the reviewer. 
 
Line 246: How was the interface uncertainty applied to the surface points? Independently 
at each node, or generally to the set of surface points (so as to retain surface 
shape). From reading into the supplemental codes, it appears that the uncertainty was 
applied to the group of surface points – but this information needs to also be included in 
the text for the typical reader. This also applies to the synthetic model, which appears 
(from the code provided) to have been modeled from similar groups of surface points, 
though this is not clarified in the text. 
 
AR: We have added the missing description on how the interface point uncertainty has been 
applied in both the synthetic and the real-world examples. 
 
Line 251: Tying back to the earlier comments on how prior uncertainty ranges were 
chosen, I believe that “ease of implementation” is somewhat of an inconclusive reasoning. 
The rest of the sentence provides more meaningful perspective but still could 
be expanded upon (e.g., what is “simplified uncertainty modeling” in this context?). 
Please add some more detail. 
 
AR: We have addressed our inconclusive writing and now more clearly describe how the model is 
perturbed and why we chose this approach. 
 
Line 268: A figure representing this most frequent topology graph from simulation (or 
other selected simulated topology graphs) would be quite insightful, especially if accompanied 
by a discussion of their geologic significance (e.g., tying back to points 
made during the introduction (Line 51), did any simulated topology graphs represent a 



compressional rather than extensional tectonic regime?). If length permits of course - 
perhaps if some figures are combined or suggested section lengths reduced, this could 
be added. 
 
AR: This could be beneficial, but we think it would distract the reader from the main message of 
the manuscript: the method itself. Analysing ensembles of topologies for geological setting would 
require either painstaking manual evaluation of every model or require more research into 
defining how extension settings can be detected reliably from topology graphs. This would indeed 
be a very interesting topic, but out of the scope of this research. 
 
Line 287: Since the Jaccard Index used could allow for multiple topologies to be present 
in the final model ensemble (depending on the rejection threshold used), it would be 
beneficial to see some exploration of what these possible model topologies looked like 
(how geologically unrealistic do they get? Are all 675 unused topologies absolutely 
unrealistic?). Including a discussion of this sort would help guide future works investigating 
uncertainty of the applied topology information itself (without requiring reproducing 
the results to show geomodel uncertainty when multiple simulated topologies 
were present in the final ensemble). See also Comment for Line 268. 
 
AR: Please see our answer to the previous comment. 
 
Line 295: In line with the missing clarification regarding the assumption of the observed 
topology graph being known without uncertainty, add some clarification behind 
the reasoning for setting the rejection threshold such that only the applied initial topology 
remains in the probabilistic geomodel ensemble. Was the goal of empirical testing 
of thresholds to find the largest threshold which resulted in only a single model topology 
remaining across the probabilistic geomodel ensemble? 
 
AR: Our aim was indeed to show how to constrain a stochastic geomodel to a topological state --- 
to allow for the reliable simulation of uncertainty within a single topology state (kind-of like a 
single conceptual model). We think that more research into how to identify, and thus compare 
and constrain with, geologically similar geomodels from topology graphs is needed to allow the 
meaningful relaxation of the error threshold. 
 
Line 297: How does simulation time for ABC-REJ compare to simulation time for the standard MC 
approach? 
 
AR: We don’t believe this comparison is very meaningful, as this is highly dependant on the choice 
of error, summary statistic etc. That’s why we chose to only compare the ABC-REJ with the ABC-
SMC – as they are aiming for the same constrained outcome, while the Monte Carlo forward 
 
Line 298: This is a significant improvement in efficiency! Perhaps include a description 
of acceptance rates from each epoch of SMC, or at least a comparison of the final 
acceptance rate at the threshold value of 0.025 in SMC for comparison with the rate 
given for REJ. This information might fit naturally in Figure 12. 
 
AR: We think that acceptance rates for the multiple epochs of the ABC-SMC are difficult to 
compare to the single acceptance rate of ABC-REJ. One could compare the average, or weighted 
average, but we believe that the comparison of overall simulation time is more meaningful in this 
case.  
 



Line 324: If the information applied were non-meaningful (e.g., an incorrect topology 
graph), the geomodel ensemble would likely still exhibit a reduction in entropy due 
simply to the convergence of the model realizations towards the single model topology 
applied. That is, the reduction in uncertainty is arising from the reduction of possible 
model topologies, not necessarily the meaningfulness of the model topology used in 
the ABC algorithm. 
 
AR: We fully agree, which is why we highlight the fact that only a meaningful constraint can lead 
to a meaningful reduction in model uncertainty. 
 
Line 334: It appears that expanding the ABC approach proposed here to incorporate 
multiple observed topology graphs would not be a matter of "easily scaling". Revise to 
clarify that the general ABC framework would definitely allow for this, although it would 
require reparameterizing the current summary statistic and discrepancy measure (distance 
function), and also possibly changing the simulation method (as mentioned in 
Line 357-359). 
 
AR: Incorporating multiple observed topology graphs for comparison in the ABC framework would 
indeed scale easily, as the computational complexity would scale linearly. Thus, a doubling in 
comparisons would double the Jaccard index computation, which by itself is trivial in terms of 
computation cost for such small networks in comparison with the computation cost of generating 
the geomodel in the first place. In the current implementation it would simply requiring looping 
over a set of topologies and computing the Jaccard index and accepting if one of them is below the 
allowed error threshold. 
 
Line 335: This would be a good place to bring up again the implications of using the 
demonstrated ABC approach if there were uncertainty about the observed topology 
graph. 
AR: The uncertainty in observed topology can be addressed via proposing several acceptable 
topologies or by scaling the error threshold. 
 
Line 345: “: : :reducing the parameter dimensionality” – how so? The number of input 
parameter probability distributions is the same in standard MC or in ABC-REJ/SMC. 
The computation efficiency improvements arrive from reducing the number of input 
parameter draws that are run through uncertainty propagation to the 3D geologic model 
space, which in SMC also allows for reducing the size of the uncertainty space (note, 
not the parameter dimensionality) iteratively. 
 
AR: We describe here a trade-off that could be made between uncertain geomodel 
parametrization and probability of subsequently simulated geomodel samples being valid 
geological models. Increasing geomodel complexity generally requires increased geomodel and 
statistical model parametrization – which thus scales the parameter space exponentially (see e.g. 
Betancourt, Michael. "A conceptual introduction to Hamiltonian Monte Carlo” (2017).). This 
increase in parameter space will drastically increase computational time. Thus, a balance generally 
needs to be made between model complexity and model parametrization. Our method could 
allow for lower levels of model parametrization while retaining model complexity by essentially 
filtering topologically wrong samples (which will inherently become more numerous when 
stochastically perturbing an under-parametrized complex geomodel). 
  
Line 370: This was not discussed earlier in Section 3.2 when the acceptance rate 
was initially 0.0059 (0.59%). Does that low acceptance rate warrant reassessing the 



prior input uncertainties used in the probabilistic geomodeling? Should be discussed 
to better frame the current work and guide future work. 
 
AR: It might! It definitely warrants a good look at the prior parametrization. But stochastic 
geomodels have such inherent topological complexity, as minor changes in the location of 
interfaces across a fault can have various effects on model topology. 
 
Figure 4: Consider replacing X & Y with N & E to be more intuitive for geoscientists. 
Applies to all figures of geomodels with labeled axes. 
 
AR: We have chosen non-descript axis labels for these figures as this model is entirely synthetic. 
 
Figure 6: In my opinion, the XZ difference section (and possibly then also XY and YZ 
sections) from Figure 7 could be appended onto Figure 6 for ease of reference. Also, 
what do the overlain crosshairs show? 
 
AR: The lines show the locations of the respective other sections. We have added an explanation 
to the figure description to make this clearer. 
 
Figure 8: Figure does not show (a), (b), (c): : : tags. Also, as mentioned in the comment 
for Line 279, the figure does not show histograms. 
 
AR: We have added subfigure labels a-f and we have removed the outdated reference to 
histograms to only KDEs. 
 
Figure 10: The significant reduction in model entropy indicates the strong dependence 
on the initial topology used - this potential source of bias should be addressed. Please 
discuss the implications of using a rejection threshold which only allows one model 
topology across the entire final ensemble of geomodel realizations. Since the authors 
are operating under this (valid) assumption, it needs to be clearly stated earlier that 
the initial geomodel topology is "known" and treated without uncertainty. See also 
comments regarding Lines 324, 295, 287 and 268. Also, I believe this figure could be 
merged with Figure 11. 
 
AR: We have added explanation of this bias in our elaboration on why we chose to constrain with 
a single topology state in our method description. We hope this clears things up for the reader. 
 
 
Figure 12: Figure needs correction to show Y-axes labels. Perhaps acceptance rates 
per epoch would be useful to add as well, as they are tied to the processing efficiency 
improvement of 10.1x (see comment regarding Line 298). 
 
AR: We have added Y-axes labels and removed then redundant titles. We are not sure how 
acceptance rate would improve would improve the bar chart. We have chosen not to add it to 
keep the figure concise. 



Response to RC2 – Anonymous Reviewer 
AR = Authors response 

 

Thank you very much for your constructive review of our manuscript. We have incorporated many 
of your suggested improvements into our manuscript and believe this has significantly improved 
its quality and readability.  

We have addressed many of the reviewer’s suggestions to improve wording and grammar 
throughout the manuscript. We have mostly removed the term “likelihood-free” from the 
manuscript to not confuse the reader, except where we directly reference literature that uses this 
term. We have elaborated on our choice of prior parametrization, have improved the 
mathematical notation of the statistical methods used so that the reader can more clearly 
differentiate between what our priors are and what our constraint is (i.e. the ABC-equivalent to 
the likelihood). We have not significantly cut the ABC method description, as we believe it will be 
valuable to the geoscientific reader to read about it in the context of geological modeling. 

Please find all our detailed responses to your comments in the supplementary material, along with 
both the revised and change-tracked manuscript. 

General Comments 
The reviewer writes: "ABC (both rejection and SMC) approximates likelihood in the following ways: 
Firstly, exact conformity to the the predictions of the model (theta) is relaxed using a distance 
measure and threshold. Secondly, if the simulation linking cause (theta) to observation (y) is 
stochastic then it uses a finite set of MC realisations instead of an integral over all outcomes of the 
random variables not of interest. Neither of these properties are used in the work presented here.” 
The reviewer confuses us with their statement: We relax exact conformity by using a distance 
measure and threshold (we use the Jaccard index as a distance measure between two topology 
graphs and allow an error threshold). The reviewer further states that “Nothing what separates 
ABC from the traditional Bayesian approaches is used here.”, but then goes on to state that “[…] it is 
ABC only in the most superficial sense”, providing us with a logical contradiction. It would have 
been helpful for us if the reviewer had provided us with literature references to properly 
understand their arguments.  
 
We have mostly removed the use of the term “likelihood-free” when referring to ABC, although 
this is often stated as such in literature. We have also clarified our choice of prior parametrization, 
as we agree that this will help the reader better understand the experiments despite the focus of 
the paper on the method itself.  
 

Specific Comments 
1) Remove claims all of circumventing or simplifying specification of topological knowledge 
due to ABC, these are untrue for the constraint presented here. I have highlighted 
these in the attached annotated pdf along with more detailed comments for each. Lines 
60, 150, 155, 165. 

AR: We have reworded our description of topological knowledge to make it more clear to the 
reader how we acquired it (through interpretation). In the supplement the reviewer writes “ABC is 
not a method for circumventing the subjectivity of specifying priors or likelihoods. It is likelihood-



free only in the sense of a likelihood never being explicitly calculated due to the nature of the 
approximation built into the samplers.”, which we agree with. We hope our changes clarify this to 
the reader, as we never intended to claim that using ABC over conventional Bayesian inference 
makes the method somehow more objective. 

In the supplement the reviewer further notes that “the implicit probability function you use is 
simply the one that assigns uniform probability to all theta within the region where d < iota.”. But as 
we always accept our parameter samples if they generate a model with a summary statistic within 
error, we would think that this does not constitute a uniform probability density function, as the 
area of the curve would be above 1. 

2) Remove all uses of the term ’likelihood-free’. There is no place in this article where 
its use helps clarify how the proposed approach works. Its only effect is as a potential 
source of misinterpretation. To avoid unneeded additional review rounds I am asking 
for complete removal and not fixing its use. 

AR: We have removed the term “likelihood-free” in the manuscript to avoid confusion of the 
reader. It remains in two places where we directly refer to literature that describes Bayesian 
optimization for likelihood-free inference (Gutmann and Corander, 2016) and where we point the 
reader to literature that specifically describes ABC as a “likelihood-free” method (Marin et al, 
2012). Again, it would have been really helpful for us if the reviewer had provided literature 
references for us to understand their issue with this specific term. 

3) Do not refer to the initial connectivity graph as an observation. It is a semi-subjectice 
semi-empirically derived parameter to a subjectively chosen constraint family. Describe 
briefly how it is obtained and what the reasoning behind using the ’initial’ graph was. 

AR: We have referred to the initial topology graph as an observation, as this is the terminology 
used in literature. We understand that this could potentially lead to certain confusion with the 
reader. We have thus added the clarification to the manuscript, that we treat our subjectively 
chosen topology graph as the observation in the terminology of ABC. 

4) I am not asking that you replace ’likelihood’ with ’prior’ when referring to your topological 
constraint. Instead, please state somewhere that you choose to go with this 
label but that it could also be considered a prior or empirical prior and that the application 
of these terms is not always clear cut. State that you are simply treating the 
adjacency graph (y) as an observation. 

AR: We already describe the topology graph (adjacency graph) as an observation --- something the 
reviewer has advised against in their previous comment. 

5) Two topology distance measures are defined in section 2.4 which are never used. 
Since they are never discussed, analysed or compared, they serve no purpose. I 
suggest you remove them to simplify and shorten the already long paper, but feel free 
to ignore this suggestion. 

AR: They are not used, but we think it serves the purpose of helping the reader think about 
different possible approaches to constrain geomodels using graph structures --- which we think 
has value. 

6) Remove the mention of fuzzy sets in section 2.5, it is not relevant. Your posterior is 
probabilistic not fuzzy. It represents degrees of certainty concerning a single underlying 
truth, not degrees of membership to a category. 



AR: We have removed the detailed explanations of information entropy in Section 2.5 and refer 
the reader to the relevant literature instead. Information entropy is used for assessing the prior 
and approximate posterior geomodel grids, not the posterior parameter distributions themselves. 

7) Several sentences need to be reworded for clarity or readability. I have highlighted 
these in the annotated pdf. Please try to address most of them. 

AR: We have reworded many parts of the manuscript given the suggestions by both reviewers. 
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Abstract. Structural geomodeling is a key technology for the visualization and quantification of subsurface systems. Given the

limited data and the resulting necessity for geological interpretation to construct these geomodels, uncertainty is pervasive and

traditionally unquantified. Probabilistic geomodeling allows for the simulation of uncertainties by automatically constructing

geomodels
::::::::
geomodel

:::::::::
ensembles

:
from perturbed input data sampled from probability distributions. But random sampling of

input parameters can lead to construction of geomodels that are unrealistic, either due to modeling artefacts or by not matching5

known information about the regional geology of the modeled system. We present here a method to incorporate geological

information in the form of
::::::
known geomodel topology into stochastic simulations to constrain resulting probabilistic geomodel

ensembles
::::
using

:::
the

::::::::::
open-source

:::::::::::
geomodeling

:::::::
software

:::::::
GemPy. Simulated geomodel realisations are checked against topology

information using a likelihood-free Approximate Bayesian Computation approach,
::
to

:::::
avoid

:::
the

:::::::::::
specification

::
of
::

a
:::::::::
likelihood

:::::::
function. We demonstrate how we can learn our input data parameter (prior) distributions on topology information in two10

experiments: (1) A synthetic geomodel using a rejection sampling scheme (ABC-REJ) to demonstrate the approach; (2) A

geomodel of a subset of the Gullfaks field in the North Sea, comparing both rejection sampling and a Sequential Monte Carlo

sampler (ABC-SMC). We also discuss possible speed-ups of using
:::::::
Possible

::::::::::::
improvements

::
to

:::::::::
processing

:::::
speed

::
of

:::
up

::
to

:::::
10.1x

::
are

:::::::::
discussed,

::::::::
focusing

::
on

:::
the

:::
use

:::
of more advanced sampling techniques to avoid

::
the

:
simulation of unfeasible geomodels in

the first place. Results demonstrate the feasibility to use topology
::
of

:::::
using

::::::::
topology

::::::
graphs as a summary statistic, to restrict15

the generation of model ensembles with additional
:::::::
geomodel

:::::::::
ensembles

:::::
with

::::::
known

:
geological information and to obtain

improved ensembles of probable geomodels
:::::
which

::::::
respect

:::
the

::::::
known

::::::::
topology

::::::::::
information

:::
and

:::::::
exhibits

:::::::
reduced

::::::::::
uncertainty

using stochastic simulation methods.
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1 Introduction

Structural geomodeling is an elemental part of visualizing and quantifying geological systems (Wellmann and Caumon, 2018).

Topology relationships in geological systems (e.g. how layers are connected to each other stratigraphically, or their across-

fault connectivity) are important constraints for fundamental geological processes, such as fluid or heat flow (Thiele et al.,

2016a, b). Each unique interpretation (model) of a geological setting has a specific topologygraph. And as geology is not5

only an experimental
::::::
science, but also an interpretive and historical science (Frodeman, 1995), the deduction of the geomodel

- often from sparse amounts of data – can inherently lead to numerous
:::::::::
potentially

:
valid geological interpretations (Bond

et al., 2007), which themselves can lead to equally numerous topology graphs. This aspect is compounded by the complex

nature of geological systems and interpretation bias
:::::::
imparted

:
by geoscientists in the explicit creation of geomodels (Bond

et al., 2007; Polson and Curtis, 2010; Bond, 2015). It also leads to the creation, and favouring, of specific models that fit10

expectations and prior knowledge (Baddeley et al., 2004), rather than consideration of the full range of possible models.

However, methodologies to create models often focus on the creation of a single deterministic model (Bond et al., 2008) and a

lack of systematically considering
:::
lack

::
of

:::::::::
systematic

:::::::::::
consideration

:::
of data uncertainty (Thore et al., 2002; Tacher et al., 2006;

Bardossy and Fodor, 2013) . These facts call for the development of alternative approaches. The increasing development of

implicit modeling algorithms (Mallet, 2004; Hillier et al., 2014; Laurent et al., 2016) allows for the creation of vast structural15

geomodel ensembles by making use of interpolation functions, which makes the analysis and visualization of uncertainty using

probabilistic simulation approaches possible (Bistacchi et al., 2008; Suzuki et al., 2008; Wellmann et al., 2010; Lindsay et al.,

2012; Wellmann and Regenauer-Lieb, 2012; Wellmann, 2013).

But the
:::
The

:
mathematical nature of implicit modeling, in combination with the use of a probabilistic modeling process,

often leads to geologically unsound model realizations and modeling artifacts. Additionally, the modeling algorithms only take20

a limited set of input data types, e.g. layer interface locations and structural orientation data, which significantly limit
:::::
limits the

amount of geological information that can be included in the modeling process. de la Varga and Wellmann (2016) and Wellmann

et al. (2017) showed how Bayesian inference can be used to reduce uncertainty and modeling artifacts in both synthetic and

real, implicit, structural geomodel ensembles. Their concept uses supplemental geological information (e.g. layer thicknesses or

fault offsets) in the form of likelihood functions to constrain stochastic geomodel ensembles. But the question of how to acquire25

suitable likelihood functions for specific geological systems and diverse types of prior geological knowledge and reasoning

remains. Likelihood functions essentially represent information in a probabilistic mathematical form. This information can

be available numerical data, such as information about the range of possible layer thicknesses in a depositional setting.
:::::
While

:::::::::::
demonstrated

::
in

::::
these

:::::::
specific

:::::
cases,

:::
the

::::::
general

:::::::
question

::
of
::::
how

::
to

:::::::
acquire

::::::
suitable

:::::::::
likelihood

::::::::
functions

::
for

:::::::
specific

:::::::::
geological

::::::
systems

::::
and

::::::
diverse

:::::
types

::
of

::::
prior

:::::::::
geological

:::::::::
knowledge

::::
and

::::::::
reasoning

:::::::
remains.

:
30

But geological
:::::::::
Geological expert knowledge contains much more information that is vital to model creation, such as under-

standing the geological processes that result in the thickening and thinning of sedimentary deposits and their relative spatial

distribution. One key knowledge-based input into geomodeling is the understanding of the kinematic evolution of the rock

units into their present configuration. While kinematic modelling software exists (see Groshong et al., 2012; Brandes and

2



Tanner, 2014, for reviews), it is limited to ‘end-member’ kinematic models’ resulting in geometrical deformations defined by

few parameters, and not taking into account a range of other factors, not least
:
of

::::::
which

:::::
being the mechanics of the different

units (Butler et al., 2018). But we can capture certain kinematics using topology information—for example the across-fault

connectivity of layers, where extensional deformation leads to fundamentally different topological relationships than does

compressional deformation (see Fig. 1).5

We therefore hypothesize that topological information about a geological system can be used as a meaningful constraint for

probabilistic 3-D geomodeling outputs.

But this
:::
This

:
topological information is difficult to incorporate into the mathematical foundations of implicit modeling func-

tions and is highly case-dependant. As the origin of topological information is generally qualitative, obtaining a suitable likeli-

hood function that can be used in a Bayesian inference is considered intractable, apart maybe from time- and cost-consuming10

expert elicitation (Curtis and Wood, 2004). This work tries instead to approximate the (Bayesian) posterior geomodel ensem-

ble that incorporates both the geological input data and the topology information using an Approximate Bayesian Computa-

tion (ABC) approach for a likelihood-free approximation of the posterior
::
to

:::::::::::
approximate

:::
the

:::::::
posterior

:::::::
without

:::::::::
specifying

::
a

::::::::
likelihood

:::::::
function

:::::::
directly.

To test this approach we designed two distinct experiments, one synthetic and one case study:15

1. We construct a synthetic fault model and explore its topological uncertainty. We do this by describing our input data not

as fixed parameters, but as probability distributions. We then use Monte Carlo sampling to obtain input data
:::::::::
realisations

from which geomodels are constructed. We then show how a single topology graph can be used as a summary statistic

in an ABC-rejection scheme to approximate the posterior model ensemble that honours the added information.

2. To test the same ABC approach on a real-world dataset, we apply it to a model extracted from a seismic interpretation20

of the North Sea Gullfaks field. We also explore a more advanced sampling technique to demonstrate possibilities for

reducing the computational costs of the method.
:

In the following section we will give an overview of the applied implicit geomodeling approach, the basic concept of

Bayesian inference and its use in probabilistic geomodeling, as well as the idea
:::::
theory behind Approximate Bayesian Compu-

tation. We further describe how we analyze model topology and use it as a summary statistic. We will then introduce, in detail,25

both the synthetic fault model and the case study, followed by a comprehensive discussion of our findings.

2 Materials and Methods
:::::::::::
Methodology

2.1 Implicit Geomodeling

Several approaches exist for creating structural geomodels, which can be separated into three main categories: (a) interpolation,

(b) kinematic methods and (c) process simulation. The interpolation of surfaces and volumes from spatial data is currently the30

most widely used approach in geosciences, especially manually
:::::::
typically

:::::::::
performed

::::::::
manually

::
by

:::::::::::
geoscientists, which requires

3



Figure 1. Idealized Horst (a) and Graben (b) structures with topology graph overlay, showing the difference in graph structure for different

tectonic settings (modified from Fossen, 2010). The black nodes represent the centroids of the geobodies and the black edges the topology

connections, together building a topology graph.

robust knowledge of the geological setting and extensive amounts of data in order to robustly approximate reality. Additionally,

highly complex structures such as extensive fault networks and repeatedly folded areas are challenging to recreate using current

interpolation methods (Jessell et al., 2014; Wellmann et al., 2016; Laurent et al., 2016).

The open-source, Python-based implicit modeling package GemPy1 (de la Varga et al., 2019) is used here. It is based on

the work of Lajaunie et al. (1997) and Calcagno et al. (2008), and allows the interpolation of geological interface position5

and plane orientation data by using a scalar field method in combination with cokriging (Chilès et al., 2004). For a detailed

overview of the algorithm and the functionality of GemPy, we refer the reader to de la Varga et al. (2019).

2.2 Geological Topology

Topology, referring to “properties of space that are maintained under continuous deformation, such as adjacency, overlap or

separation” (Thiele et al., 2016a; Crossley, 2006), is a highly relevant concept in structural geology, as it provides a useful10

description of the relations between stratigraphic units across layer interfaces, faults or the contact to an intrusive body. Gener-

ally, eight binary topological relationships can exist between three-dimensional objects (Egenhofer, 1990), while a total of 69

relations are possible between simple lines, surfaces and bodies (e.g. surfaces without holes; see Zlatanova, 2000). From these

eight Egenhofer-Herring relationships, meets (i.e. adjacency) is the most relevant one for describing structural and stratigraphic

relationships, such as across-fault connectivity of layers (see Fig. 1). The topology relationships of geological models can be15

represented by an adjacency graph, which represents topological units as individual nodes and their connections by edges

(see Fig. 1). The adjacency topology of geological structures is highly dependent on deformation: compressional deformation

1URL: github.com/cgre-aachen/gempy
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leads to different connectivities in the topology graph than does extensional, but even within the same type of deformation

they can lead to different topologies—as visualized by the Horst and Graben structures in Figure 1. Not only does the type

of deformation have an important influence on the systems topology, but also the quantity—e.g. the fault throw. For an in-

depth introduction and discussion of topology in geology see Thiele et al. (2016a) for the fundamental theory and Thiele et al.

(2016b) and also Pakyuz-Charrier et al. (2019) for the influence of structural uncertainty on geomodel topology.5

2.2.1 Computing geomodel topology

To compute the geomodel topology with the necessary computational efficiency to conduct a feasible stochastic simulation of

realistic geomodels, we implemented a topology algorithm using theano (Theano Development Team et al., 2016) into the

core of GemPy. This enables the topology computation to run alongside the geomodel interpolation on graphical processing

units (GPUs). As theano is a highly optimized linear algebra library, the employed method is mainly focused on utilizing10

matrix operations for the computation of the geomodel topology. When the implicit geomodel is discretized using a regular

grid, it becomes a 3-D matrix of lithology IDs L (Fig. 2a), which we use for the calculation of the geomodel topology. For each

geomodel we also have access to the 3-D boolean matrices Fn for each fault, representing the two sides of the respective fault

by two ascending consecutive integers (Fig. 2b). Given these two input data, we compute the geomodel topology as follows:

1. The lithology matrix L and the summed fault matrices
∑nfault

i=1 Fi, where nfault is the total number of faults in the ge-15

omodel, are combined into a matrix where each lithology in each fault block is represented by its own unique integer,

referred to as the topology labels matrix T (see Fig. 2c):

T = L+nlith

nfault∑
i=1

Fi (1)

with nlith being the total number of lithology IDs in the geomodel.

2. The topology labels matrix T is then shifted twice (forward and backward) along each axis X, Y and Z. The two resulting20

shifted matrices S1 and S2 along each axis are then subtracted from each other to result in a difference matrixD, in which

only the cells along a lithology or fault boundary are non-zero (Fig. 3).

3. The topology labels matrix T is then evaluated at all non-zero cells of D to obtain the two topology labels na,nb of each

topological connection (reffered to as an edge e) in the geobody, which are stored in a set of unique edgesE representing

the geomodels topology. For the example shown in Figure 2 and 3 the abbreviated set isE = {(0,4),(0,5),(0,1), ...,(3,7)}.25

This method of topology calculation works on regular grids, which imposes a strong bias on the result: if the main lithological

and structural features are not aligned with the grid orientation, the resulting topology graph could thus contain (or miss)

connections. For a more detailed discussion on the effects of model discretization see Wellmann and Caumon (2018).

5



(c) Topology labels matrix T(b) Fault matrix F1(a) Lithology matrix L

Figure 2. (a) Lithology matrix L of an example 2D geomodel that consists of four layers and a vertical fault in the center; (b) Fault matrix F

of the geomodel; (c) Topology labels matrix T of the geomodel.

(a) Vertical (b) Horizontal

Figure 3. Vertical (a) and horizontal (b) difference matrix D showing all cells (red) in the shifted matrices S1 and S2 which are next to

the interface between two different layers or of any layers across a fault. The highlighted (yellow) part shows the area in which the implicit

interface must be located.

2.3 Stochastic Modelling Approach

2.3.1 Bayesian Inference

Bayesian inference is fundamentally different to the classical frequentist approach of inference. It treats probabilities as degrees

of certainty of a parameter θ, which is inherently considered to be a random variable itself (Bolstad, 2009; VanderPlas, 2014).

It is based on Bayes’ theorem (Eq. 2), which allows to update
:::::::
updating

::
of

:
a given probability - the prior probability p(θ) of a5

parameter θ - after the occurrence of a connected event (Bolstad, 2009). This updating process relies on the use of a likelihood

function
::::::::
likelihood

:::::::
function

:
p(y|θ), representing the probability distribution

:::::::::
conditional

:::::::::
probability

:
of the observed data y of

the occurring
::::
given

:::
the

:::::
prior

:::::::::
probability

::
of

:::
the

:::::::::
underlying

::::::::
paramter

:
θ
:::
and

:::
the

:::::::::
theoretical

::::::::::
connection

::
of

:::
the

:::::::
occuring event. It is

6



used to condition the prior into the posterior distribution p(θ|y), which represents the degree of certainty over the parameter θ

after
:::::
given the occurrence of the event and its observed data y.

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

(2)

For the use in geomodeling, these parameters can be seen as (de la Varga and Wellmann, 2016; Gelman et al., 2013):

– Model parameters θ: The model-defining parameters (e.g. layer interface positions, dip or fault parameters
:
) used for the5

interpolation of the geomodel), which can be either deterministic (thus be exactly defined and known) or probabilistic.

The latter represent uncertain parameters, which is expressed in the form of probability distributions (e.g. a normal

distribution expressing the uncertainty of the vertical subsurface position of a layer interface);
:
.
:::
We

::::
will

:::
use

::
θ′

:::
as

:::
the

:::::::
notation

::
for

::
a
::::::
sample

::::
from

:::::
these

::::::::
parameter

::::::::::
distribtions.

:

– Observed data y: Represents additional measurements or observations, which should enhance the model definition by10

providing additional information with the goal to reduce model uncertainty or enable the comparison of the model to

reality (e.g. by comparing geophysical potential-field measurements with the according forward simulation on the basis

of a geomodel). In this work we use topology information in the form of a topology adjacency graph as the "observed

data";

– Likelihood functions p(y|θ): These form the relationship between the model parameters θ and the observed data y.15

Essentially, this function describes the likelihood for the
:::::::::
conditional

:::::::::
probability

:::
for

:::::::::
observing

:::
the

::::
data

::
y
:::::

given
::::

the

parameters θfor a given observation y .
:
(e.g. MacKay and Kay, 2003). In the case of structural modeling, this essentially

means that we compute the geomodel from the input parameters θ and compare model predictions (e.g. the thickness of

a certain layer at a certain position
:
,
::
or

:::::::::
topologgy

::::::::
adjacency

::::::
graphs), with additional observed data. The likelihood of the

parameter θ is then encoded in the likelihood function.20

While constructing meaningful likelihood functions for physical properties such as layer thickness or geobody volume from

observed data is straight forward (de la Varga and Wellmann, 2016), we have no proper framework to construct them for

more abstract or "soft data", such as our understanding of the geological setting, or the topology relationships of our layers

across faults or unconformities. For this reason, we chose to pursue a likelihood-free method
:::::
apply

:::::::
methods

:
to estimate our

posterior distributions given abstract geological information
::::::
without

:::::::::
specifying

:
a
:::::::::
likelihood

:::::::
function: Approximate Bayesian25

Computation.

2.3.2 Approximate Bayesian Computation

Geoscientists often have extensive implicit knowledge of the geological settings (e.g. our understanding of the tectonics of a

system), but only a limited amount of this knowledge can be incorporated into the geological interpolation function (Well-

mann and Caumon, 2018). Additionally, it is often difficult to define formal likelihood functions for geological knowledge, as30

required for conventional Bayesian inference methods
::::::::::::::::::::
(Wood and Curtis, 2004). A less formal but valid alternative approach

7



is to approximate the posterior distributions using Approximate Bayesian Computation (ABC) methods. These methodsare
:
,

also referred to as likelihood-free inference methods (Marin et al., 2012), ABC methods
::
by

:::::
some

::::::::::::::::
(Marin et al., 2012)

:
, evaluate

the distance of stochastically generated models to our additional data using one or multiple summary statistics S(e.g. model

topology), instead of a probabilistic likelihood function.
:::::
While

::::::::
summary

::::::::
statistics

:::
are

::::
often

::::::::
measures

::::
such

::
as
:::
the

::::::
mean,

:::::
mode

::
or

::::::
median

::
of
::

a
::::::
model,

::::
they

::::
tend

::
to
:::

be
:::::::::::
meaningless

::
in

:::::::::::
summarizing

::::::::::
geomodels.

::
In

:::
this

:::::
work

:::
we

:::
use

:::
the

:::::::::
geomodel

::::::::
topology5

:::::
graph

::
as

:
a
::::::::
summary

:::::::
statistic

::
of

:::
the

::::::::
geomodel

::
to

:::::::
provide

:
a
::::::::::
meaningful

::::::::::
comparison

:::::::
between

:::::::::
geomodels.

:

To obtain the approximate posterior distribution we need to sample from our prior parameter distributions, plug the values

::::::
samples

::::::
values

:::
θ′

:
into our simulator functions

::::::
function

::
y
:

(our geomodeling software), compute the summary statistic y

:::::::
S(y(θ′))

:
(geomodel topology) and evaluate its distance to our observed summary statistic (data) ŷ

::::
S(y)

:
(e.g. a geomodel

topology graph). The most fundamental sampling scheme for ABC is based on rejection sampling (ABC-REJ; see Algorithm10

1), for which the distance between our simulated data y
::::
y(θ′)

:::
(the

:::::::::
simulated

:::::::::
geomodel) and observed data ŷ

:
y
::::::
(initial

:::::::::
geomodel)

is calculated using a distance function of the summary statistics d
(
S(ŷ),S(y(θ′))

)
:::
their

::::::::
summary

::::::::
statistics

::::::::
(topology

:::::::
graphs)

:::::::::::::::
d
(
S(y),S(y(θ′))

)
. The simulated model is accepted if the distance is below a user-specified error bound ε≥ 0 (Sadegh and

Vrugt, 2014), or else rejected. The accepted samples form the approximate posterior. Thus, this method circumvents the need

to specify a likelihood function for our additional data, while still approximating the posterior distributions incorporating the15

information of both our priors and our additional information (Sunnåker et al., 2013). Within this work we use the Jaccard

index (1− J) as a distance function between topology graphs.

Algorithm 1 ABC-REJ

for i= 0 to N do

while d
(
S(y),S(y(θ′))

)
> ε do

Draw sample θ′ from priors p(θ)

Simulate geomodel y(θ′)

Compute geomodel topology S(y(θ′))

Calculate d
(
S(ŷ),S(y(θ′))

)
::::::::::::::
d
(
S(y),S(y(θ′))

)
end while

end for

A more advanced sampling scheme for ABC is Sequential Monte Carlo sampling (ABC-SMC). In its simplest form it can be

seen as an extension of rejection sampling, by chaining rejection sampling simulations together (each referred to as an epoch).

During the first epoch of rejection sampling, a large error threshold ε1 is used while sampling from the prior distributions p(θ).20

The accepted samples, forming the posterior distributions of the first epoch, form the updated priors of the second epoch by

replacing the priors with the kernel density estimation f̂h(θaccepted) of the posterior samples. Iteratively, with every epoch, the

error threshold ε is reduced to the target value (e.g. ε= 0) to obtain the final posterior sample. Thus, every epoch, the sampler

’learns’ from the previous epoch by adjusting the prior distributions further towards the posterior distributions. As ABC-REJ

tends to suffer from potentially low computational efficiency when using low error thresholds ε, the iterative shrinking paired25

8



with adjustment of the prior distributions can potentially obtain the approximate posterior much more quickly. We apply this

sampling scheme to our Gullfaks case study to show the potential speed-ups.

Algorithm 2 ABC-SMC

for ε in {ε1, ε2, ..., εM} do

for i= 0 to N do

while d
(
S(y),S(y(θ′))

)
> ε do

Draw sample θ′ from priors p(θ)

Simulate geomodel y(θ′)

Compute geomodel topology S(y(θ′))

Calculate d
(
S(ŷ),S(y(θ′))

)
::::::::::::::
d
(
S(y),S(y(θ′))

)
end while

end for

Replace priors p(θ) with KDE f̂h(θaccepted)

end for

2.4 Topology distance functions

To use geomodel topology as a constraint for probabilistic geomodels in an ABC framework, we need a consistent way of

comparing geomodel topologies—i.e. suitable distance functions. We consider here three possible comparison methods:5

1. Presence or abscence of defined connections: As the relational topology information is captured in adjacency graphs,

the most fundamental approach is to check if two relevant nodes n1 and n2 (e.g. representing two regions in the model)

share an edge e= (n1,n2) (are adjacent), and if this edge exists in both models. This is the most simple way of comparing

specific aspects of relational topology between geomodels. This approach can be viewed as a boolean comparison: True

if the given edge exists in both models, False if not. This also enables the direct comparison of i multiple edges, which10

would result in a vector of i boolean statements for each comparison [e1,e2, . . . ,ei].

2. Comparing entire graphs: To compare topology graphs as a whole, Thiele et al. (2016b) describe the use of the Jaccard

index (Jaccard, 1912). It can be used to compare the similarity of sets by creating the ratio of the intersection and union

of two graphs A and B:

J(A,B) =
|A∩B|
|A∪B|

(3)15

For two topology graphs A and B, this means we calculate the ratio of edges (representing connected regions) shared

in both (intersection: A∩B) and their total combined number of edges (union: A∪B). This ratio can be used to effi-

ciently identify all unique topology graphs in a given ensemble, as only an identical pair of graphs results in a Jaccard

index of J(A,B) = 1. A comparison using the Jaccard index yields ratios of integers, thus a discrete comparison. This

9



method also allows specifying a tolerance 0 < ε < 1 for model acceptance, i.e. to accept models within the range

1 − ε ≤ J ≤ 1.

3. Contact area: Comparing the number of actual edge pixels (or voxels), representing the area of the contact Ae between

two geobodies could yield a more granular comparison that allows to take into accounts trends of the contact size. Thus

the ABC error tolerance ε could be used to reject geomodels where certain topological contact areas are above and/or5

below a certain value Ae− εlow ≤ Ae ≤ Ae + εhigh.

::
In

:::
this

:::::
work

:::
we

::::::::::
demonstrate

:::
the

::::::
second

::::::::
approach,

:::
as

:
it
::::::
allows

::
us

::
to

:::::::
directly

:::::::
compare

::::::
entire

::::::::
geomodel

:::::::::
topologies.

:::
We

:::::
have

::::::
chosen

::
to

:::::::
compare

:::
the

::::::::
simulated

::::::
results

::
to

:
a
:::::
single

::::::::
topology

:::::::::
graph—the

:::::
initial

:::::::::
geomodel

::::::::
topology.

::::
This

:::::::
approach

::::
was

:::::::
selected

::
as

:
a
::::
base

::::
case

:::
to

::::::::::
demonstrate

::::
how

:::
the

:::::
large

::::::::
variations

:::
in

::::::::
geomodel

::::::::
topology

::::::::
observed

::
in

:::
the

:::::::::
stochastic

:::::::::
simulation

::
of

:::::
input

:::
data

:::::::::::
uncertainties

::
in

::::::::::
geomodels

::::::::::::::::::::
(see Thiele et al., 2016b)

:::
can

:::
be

::::::::::
constrained

::
to

:
a
::::
base

::::::::
topology

::::
(i.e.

:::::::::
conceptual

:::::::
model).

::::
This10

::
of

:::::
course

:::::::::
reinforces

:::
the

::::
bias

::
of

:::
the

:::::
initial

::::
base

:::::
model

::::
into

:::
the

::::::::::
uncertainty

:::::::::
simulation,

:::
but

::::::
allows

:::
for

::
the

:::::::
reliable

::::::::::
exploration

::
of

:::::::::
uncertainty

::
of

:::
all

:::::::
possible

:::::::::
geomodels

::::::::
honoring

:::
the

:::::::
topology

:::::::::
constraint.

:

2.5 Quantifying Uncertainty using Shannon Entropy

Stochastic simulations yield vast ensembles of geomodel realizations and their variability (and thus uncertainty) needs to

be analyzed and understood. The uncertainty of a single geological entity (e.g. a layer or a fault) can be estimated from its15

frequency of occurrence in each single geomodel voxel. In order to analyze the whole geomodel uncertainty at once, more

sophisticated measures can be applied: the concept of Shannon entropy H can be used in a spatial context to evaluate the

uncertainty of an entire geomodel ensemble at once, as described by Wellmann and Regenauer-Lieb (2012). Their concept is

based on concepts from information theory, derived by Shannon (1948), and further on the concept of fuzziness established

by Zadeh (1965) and De Luca and Termini (1972). If applied to a fuzzy set2 f ∈ [0,1] in a grid, the measure should only be20

0 if every grid cell is either 0 or 1 everywhere (thus the grid having no uncertainty anywhere, meaning we are absolutely

certain about the lithology at this position), and should have its maximum value when f = 0.5 for all grid cells (meaning all

outcomes are equally likely, which represents the highest uncertainty possible: every lithology is equally likely to be present at

this position). The resulting equation is:

Hm =− 1

N

N∑
x=1

[
pm(x) log2

(
pm(x)

)
+
(
1− pm(x)

)
log2

(
1− pm(x)

)]
25

where we denote the fuzzy set f as the probability pm of an outcome m ∈M of a cell x, and Hm being the Shannon entropy

normalized by the total numberof cells N . The average model entropy
::::::
Average

::::::
model

::::::
entropy

:
H can also be evaluated by:

H =− 1

N

N∑
x=1

H(x)

2i.e. a non-binary set with real numbers in-between the two interval boundaries.
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Figure 4. (a) 3D view of the synthetic fault model, with top surfaces of the four lithologies shown and the fault surface in blue; (b) XZ-slice

through the center of the discretized model showing partial input data (for visual brevity) and example standard deviations of prior parameters

used for the stochastic simulation; (c) Model overlaid with its topology graph used as our summary statistic for the ABC.

Which makes the average model entropy
:::::::
collapsed

::::
the

:::::::::
uncertainty

:::
of

:
a
:::::::::
geomodel

::::::::
ensemble

::::
into

:
a
:::::
single

::::::::
number.

:
It
::::

will
:::
be

equal to 0 if all cells x have only one possible outcome (no uncertainty), and reaching its maximum when all outcomes are

equally likely for all cells of the model (maximum uncertainty).

2.6 Experiment Design

2.6.1 Synthetic Fault Model5

As a proof of concept we show how ABC can be used to incorporate geological knowledge and reasoning into an uncertain

synthetic geomodel. This model represents a folded layer cake stratigraphy that is cut by a N-S striking normal fault to represent

an idealised reservoir scenario frequently encountered in the energy industry (see Fig. 4a).

The prior parametrization is schematically visualized in Figure 4b and consists of two different kinds of uncertain param-

eters: (i) vertical location of the layer and fault interfaces and (ii) lateral location of the fault interface, with the specific10

parametrization displayed in Table 1 in the Appendix.
::
As

::::
this

::::
work

:::::::
focuses

::
on

:::::::::
developing

::::
and

:::::::::
describing

:
a
:::::
novel

:::::::::::
methodology

::
for

:::::::::::
constraining

::::::::
uncertain

::::::::::
geomodels,

::::
we

::::
have

:::::::
chosen

:::
the

::::::::::
uncertainty

:::::::::::::
parametrization

:::
of

:::
the

::::::::
synthetic

::::::::
geomdel

:::::::
entirely

::::::::::
subjectively

::
as

::::::
normal

:::::::::::
distributions

:::::::::
increasing

::
in

::::::::::
uncertainty

::::
with

::::::
depth.

::::
The

::::::::::
uncertainty

::
is

::::::
applied

:::
to

::::
each

:::
set

::
of

:::::::
surface

:::::
points

::
to

:::::::
preserve

:::::::
surface

::::::
shape,

::::::::::
individually

::::::
within

::::
each

::
of

:::
the

::::
two

::::
fault

:::::::
blocks.

::::::
Proper

::::
prior

:::::::::::::
parametrization

:::
of

::::::::
uncertain

:::::::::
geomodels

::
is

:
a
::::
vital

::::::
branch

:::
of

:::::::
research

::
on

:::
its

::::
own

:::::::::::::::::::::::::::::::::::::::::::
(e.g. Pakyuz-Charrier, 2018; Krajnovich et al., 2020)

:::
and

:::
out

:::
of

:::
the

:::::
scope15

::
of

:::
this

:::::
work.

:

Two separate simulations were run for this experiment so we can see how topology can constrain an uncertain geomodel

compared to the Monte Carlo simulation of uncertainties
::::
input

:::::::::
parameter

:::::::::::
uncertainties

:::::
alone:

11



(a) 3-D geomodel surface view (b) Discretized XZ-Section with Topology Graph

Tarbert Ness Etive

Block A
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Figure 5. (a) 3D view of the Gullfaks geomodel used as mean prior model in our case study; (b) XZ-section through the discretized geomodel

with overlaid topology
:::::::::::
ovservtopology graph showing the inter- and intra-fault block relations of geobodies.

1. A Monte Carlo simulation of the prior parameters to evaluate the uncertainty in the resulting geomodel ensemble con-

sisting of 2000 generated models. This represents our ’base case’ uncertainty without any
:::::::::
topological

:
constraints.

2. An Approximate Bayesian Computation using the initial model topology graph (see Fig. 4c) to represent our geological

knowledge. We are employing a rejection sampling scheme (ABC-REJ) with an error tolerance of ε= 0 to obtain 500

generated posterior models. Thus, the resulting posterior geomodel ensemble will contain only samples with matching5

topology graphs.

2.6.2 Case Study: The Gullfaks Field

To demonstrate the applicability of the method to real datasets we apply it to a model of part of the Gullfaks Field, located in

the northern North Sea. The field is located in the western part of the Viking Graben, and consists of the NNE-SSW-trending

10-25 km wide Gullfaks fault block (Fossen and Hesthammer, 1998). For a detailed overview of the regional and structural10

geology we refer to Fossen and Rørnes (1996); Fossen and Hesthammer (1998); Fossen et al. (2000); Schaaf and Bond (2019).

For the experiment, we constructed a base geomodel (Fig. 5a) founded in an interpretation of the training data set provided

with the seismic interpretation software Petrel™. We have chosen a relatively simple subset of the interpretation, containing 2

faults, three horizon tops Tarbert (red), Ness (purple) and Etive (green), and the Base Cretaceous Unconformity (BCU, yellow).

To create the geomodel, we exported the corresponding seismic interpretation data from Petrel and imported them into Python.15

The surface interpretations were then decimated down to 510 surface points and 187 surface orientations, via a target reduction

of 80 % per fault block or surface using the VTK-based decimation functionality of pyvista (Sullivan and Kaszynski, 2019),

to retain the best possible surface shape while allowing fast implicit geomodel construction times in GemPy.

The prior parametrization consists of two different kinds of uncertain parameters: (i) vertical location of the layer interfaces

for within each fault block; (ii) the lateral location of the fault interfaces. This parametrization is similar to the synthetic fault20

model (all specifications are listed in Table 2 in the Appendix)
:
,
:::
and

:::
all

::::
sets

::
of

:::::::
surface

:::::
points

::::::
within

:::::
each

::::::::
individual

:::::
fault

::::
block

:::::
were

::::::::
perturbed

:::::::
together

::
to

:::::
retain

:::::::
surface

:::::
shape. This parametrization was chosen due to its ease of implementation and

to demonstrate how simplified uncertainty modeling
::
to

::::::::::
demonstrate

::::
how

:::::
even

:
a
::::
few

::::::::
uncertain

:::::::::
parameters

:::
in

::
an

::::::::::
uncertainty
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::::::::
modeling

::::::::
workflow can lead to highly uncertain results, especially regarding the topology graphs of the resulting geomodel

ensembles in real-world geomodels. We then conducted a sensitivity study of the topological spread with respect to the geo-

model resolution. This allowed us to determine the appropriate geomodel resolution necessary for our experiment. Next, we

performed three separate simulations to compare different approaches:

1. A Monte Carlo simulation of the prior uncertainty for 1000 samples, to evaluate the spatial uncertainty and the topo-5

logical spread of the resulting geomodel ensemble. This serves as our ’base case’ uncertainty for comparison with the

following two simulations.

2. An ABC-REJ simulation using the initial geomodel topology graph (see Fig. 5b) to represent our geological knowledge.

We used an error threshold of ε= 0.025 for 1000 accepted posterior samples, as the threshold was small enough to

constrain the posterior topology spread to the initial geomodel topology graph.10

3. An ABC-SMC simulation using the same initial geomodel topology graph. We ran six SMC epochs using ε values of

0.3, 0.2, 0.1, 0.075, 0.05 and 0.025. Each epoch was run for 1000 accepted posterior samples.

3 Results

3.1 Synthetic Fault Model

Simulating the uncertainties encoded in the prior parameterization resulted in 100 unique model topologies within the geomodel15

ensemble of 2000 models, with 18 topology graphs occurring at least ten times and the most frequent 14 making up 90 % of

geomodel ensemble topologies. It is also notable that the most frequent topology graph (29.5 %) is not the initial (mean

prior) topology graph (15.6 %), but rather represents models where the Shale layer (green) of the foot wall shares an across-

fault connection with the Sandstone 2 layer (red) of the hanging wall. The uncertainty of the prior geomodel ensemble is

visualized in Figure 6a-c in XZ-, YZ- and XY-sections as Shannon entropy, as described in the methodology. All three sections20

through the model show clearly the uncertainty of the layer interface position and highest uncertainty around the fault surface.

In comparison, applying a single topology graph as a summary statistics to the simulation using ABC leads to significantly

reduced uncertainty throughout the geomodel ensemble (see Fig. 6d-f), with average geomodel ensemble entropy being reduced

from Hprior = 0.44 down to Hposterior = 0.31, a drop in geomodel uncertainty of nearly 30 %. Visualizing the entropy

difference between the prior and the posterior geomodel ensembles shows the highest reduction in entropy for the two inner25

layer interfaces (see Fig. 7), and not around the fault surface. As expected, constraining the simulation using a single topology

graph with an error of ε= 0 collapses the number of geomodel ensemble topologies from 100 down to 1.

Figure 8 plots histograms and their
:::
the kernel density estimations (KDE) of the input parameter distributions of prior (grey)

and posterior (coloured) samples. The strongest change in mean from prior to posterior distributions occurred for the vertical

interface location perturbance priors of Sandstone 2 (red), Shale (green) and Sandstone 1 (brown; see Fig. 8), with the first30

shifted to higher mean z-values and the latter two shifted deeper by −72 m and −53 m, respectively. Additionally, the initially
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Figure 6. Shannon entropy slices in the XZ- (left), YX- (center) and XY-plane of the prior (top
:
,
:::
a-c) and posterior (bottom

:
,
:::
d-f) geomodel

ensemble.
::
The

:::::
white

::::
lines

::::
show

:::
the

::::::
location

::
of

::::::::
respective

::::
other

:::::::::::
cross-sections.

normally distributed prior of Sandstone 1 shows a strong negative skewness of −0.61 in the posterior distribution. Standard

deviation for the Siltstone and Shale interface distributions was reduced by roughly 32 % and 40 % respectively. The prior and

posterior distributions for the lateral and vertical fault parameter uncertainties show no significant difference (e and f).

3.2 Case Study: The Gullfaks Field

Forward simulation of the prior uncertainties of the Gullfaks geomodel resulted in 676 unique geomodel topologies within5

a 1000-model ensemble, with 116 unique topologies occurring more than once. Again, the most frequent topology graph is

not the initial (mean prior) topology graph. The uncertainty of a XZ-section of the forward ensemble is visualized in Figure

10a using Shannon entropy. The section illustrates the general trend of uncertainty throughout the forward simulation: we

observe highest uncertainty surrounding the two faults in the geomodel, especially around the eastern fault. The area also

shows increased uncertainty due to the interaction of layer interfaces, the fault and the vertical vicinity of the BCU.10

Applying the initial topology graph as a constraining summary statistics using ABC with rejection sampling (ABC-REJ)

using a threshold of ε= 0.025 (chosen empirically), results in much reduced uncertainty, as exemplified by the entropy section

14
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Figure 7. XY-Section of entropy difference between the forward simulated entropy and the approximate posterior entropy. The plot highlights

areas where the entropy was reduced (blue), increased (red) and kept constant (white).
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Figure 8. Prior (grey) and posterior (color) kernel density estimations for the different stochastic model parameters for our synthetic fault

model.

shown in Figure 10b. At this threshold, the approximate posterior geomodel ensemble contains only the applied initial topology

graph. Using rejection sampling with such a strict threshold resulted in a very low acceptance rate of 0.0059
:
of

::::
only

:::::::
0.59 %

::
of

::::::::
simulated

:::::::::
geomodels, which required about 40 hours of simulation time to obtain 1000 posterior samples2. In contrast, using

2The experiment was run on consumer-grade hardware and leveraging GPU computation: Intel Core i5-8600K @ 3.60GHz, Nvidia GeForce RTX 2070

8GB GDDR6, 16 GB DDR4 RAM @ 2133MHz.
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a Sequential Monte Carlo sampling scheme (ABC-SMC) required only 3.96 hours to obtain the same number of posterior

samples at the same threshold—a speed-up of 10.1. This includes the five sampling epochs using ε= {0.3,0.2,0.1,0.075,0.05}
with 1000 accepted samples each, used to sequentially adapt the priors.

Figure 12a shows the number of unique topologies for forward simulations and each threshold of the ABC-SMC. As we iter-

atively lower the acceptable threshold during the SMC simulation, the simulated and accepted topologies iteratively converge5

towards the topology graph we used as our prior geological knowledge. The average geomodel ensemble entropy H̄ is also

iteratively decreasing from 0.233 for the forward simulation down to 0.112 at ε= 0.025 (see Fig. 12b), showing how fixing

a probabilistic geomodel to a single topology graph can significantly reduce, or rather significantly constrain, the simulated

uncertainty.

Figure 9 shows how the ABC-SMC simulation iteratively affects the probability distributions of selected probabilistic ge-10

omodel parameters with decreasing thresholds ε. Each row shows the consecutive epochs of the ABC-SMC simulation and

corresponds to a specific ε. Each column describes a different stochastic parameter in the stochastic model. By applying the

initial topology graph of the geomodel as our summary statistics, we can directly see here how the parameter distribution for

the BCU (Fig. 9a) shifts its mean µ by 47.4 m upwards and reduces its standard deviation σ by 35.8 % to accommodate our

geological knowledge about the geomodel topology. We can observe this effect in the entropy section of the posterior geomodel15

ensemble as well (Fig. 10b). In Figure 11, we show the difference in entropy between the prior and approximate posterior ge-

omodel ensemble shown in Figure 10, where areas with decreasing entropy values are shown in blue, increasing values in red.

We observe here how the BCU moves upward and increases the entropy there, while lowering entropy in the lithologies below.

The parameter distributions for Tarbert B (Fig. 9b, red) and Etive B (Fig. 9c, green) show similar behaviour: shifted mean and

reduced standard deviation to accommodate the topology information. We see a much stronger reduction in standard deviation20

for the two faults (Fig. 9d,e): 80.4 % and 80.0 % for Fault A and Fault B, respectively. This is also shown as the strongest

reduction in entropy in Figure 11.

4 Discussion

We showed how topology information, as an encoding for important aspects of geological knowledge and reasoning, can be

included in probabilistic geomodeling methods in a Bayesian framework. The simulation experiments for our two case studies25

demonstrated that we are able to approximate posterior distributions to obtain probabilistic geomodel ensembles that honour

both our prior parameter knowledge and qualitative geological knowledge. If the applied topological information is meaningful,

then the constrained stochastic geomodel ensemble will see a meaningful reduction in uncertainty, and will subsequently

allow for more precise model-based estimates and decision-making (Stamm et al., 2019). More importantly, the (approximate)

Bayesian approach requires the explicit statement of the geological knowledge (here the topology information) used in the30

probabilistic geomodel, increasing the transparency of assumptions made during the geomodeling process and any subsequent

decisions.
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Figure 9. Prior (grey) and posterior (colored) kernel density estimations for selected model parameters (a-e) for the 6 epochs (each row repre-

sents an epoch) of the ABC-SMC simulation of the Gullfaks case study, showing how the simulation iteratively approaches the approximate

posterior distribution, which shows the possible parameter uncertainty given our topological information. Mean µ and standard deviation σ

shown for the first and last epochs.

With our approach, we directly address a scientific challenge raised in recent work by Thiele et al. (2016b), that known

topological relationships are frequently not honoured during the probabilistic modeling process, thus potentially invalidating

large parts of the resulting geomodel ensemble. Injecting topology information into a Bayesian approach allows us to obtain

topologically valid, and hence geologically reasonable, geomodel ensembles. And, although we have only used simple topology

information within this study, the demonstrated ABC approach allows to easily scale the amount of topology information used:5

from simple True-False comparisons of single topology graphs to the use of a whole range of topology graphs and relationships.

:
If
::
a
:::
set

::
of

:::::::::
acceptable

:::::::::
topologies

::
is

::::
used,

::::
one

:::::
could

:::
for

:::::::
example

::::::
accept

:
a
::::::::
simulated

::::::
model

::
if

:
it
:::::::
matches

::
at
:::::
least

:::
one

::::::
within

:::
the

::::
error

::::::::
tolerance.

:

The work of Pakyuz-Charrier et al. (2019) shows how clustering of probabilistic geomodel topologies can be used to dif-

ferentiate between different modes of topologies. Their approach compares geomodel topologies by describing them as half-10
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Figure 10. (a) Section of the entropy block of the forward simulation for the prior uncertainty (HT = 0.223); (b) Section of the entropy

block of the final epoch (ε= 0.025) of the ABC-SMC simulation (HT = 0.113).
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Figure 11. XZ-Section of entropy difference between the forward simulated entropy and the approximate posterior entropy H (ε= 0.025).

The plot highlights areas where the entropy was reduced (blue), increased (red) and kept constant (white).

vectorized adjacency matrices, resulting in a binary string that can be compared using the Hamming distance (Hamming, 1950).

It could be considered as a different distance metric in the ABC approach presented in this work to constrain the simulated

probabilistic geomodel. And, while their work focuses on the analysis of existing probabilistic geomodel ensembles, our ap-

proach focuses on learning probabilistic geomodels on topology information while reducing the number of required iterations

through use of advanced sampling techniques.5

As more complex geomodels strongly increase the required parametrization to accurately describe the model domain in a

probabilistic framework, constraining them with topological information could help keep this parametrization at computation-

ally feasible levels by reducing the parameter dimensionality, while still obtaining meaningful geomodels (e.g. free of modeling

artefacts caused by random perturbations of the limited input data). This would not work using an inefficient rejection sampling

scheme (e.g. ABC-REJ), but would rather require the use of "adaptive" sampling algorithms to efficiently explore the posterior10
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Figure 12. (a) Number of unique topologies within the geomodel ensembles of each SMC epoch, showing the iterative reduction in topolog-

ical uncertainty throughout the SMC simulation; (b) Average geomodel entropy of the ensembles for each epoch, showing how the reduction

of topological uncertainty shown in (a) affects the total geomodel uncertainty.

parameter space without wasting too much computing power on rejected models (e.g. ABC-SMC). In our Gullfaks case study,

we have not only shown the efficacy of the method on a real-world example, but demonstrated the stark increase in computa-

tional efficiency when using advanced sampling techniques. The SMC sampler used in our work requires manual setting of the

acceptance thresholds, which directly influence the algorithm’s efficiency in acquiring samples of the approximate posterior

distribution. Adaptive SMC methods automatically tune acceptance thresholds to increase sampling efficiency on-the-fly to5

minimize computation time and avoid manual (subjective) selection of thresholds (Del Moral et al., 2012).

Sadegh and Vrugt (2014) describe a more complex ABC algorithm based on Differential Evolution Adaptive Metropolis

(DREAM-ABC) and demonstrate its much higher efficiency in approximating the posterior. It might be of particular interest

for the approximate inference of complex structural geomodels with topology constraints, as it has shown promise to very

efficiently explore high-dimensional (read: large amount of prior parameters) and multi-modal parameter spaces. When using10

multiple topology graphs (which are discrete) in an ABC framework, the posterior parameter space may potentially become

multi-modal, which poses significant challenges for traditional Markov Chain-based samplers (Feroz and Hobson, 2008).

The approach by Sadegh and Vrugt (2014) is based on combining multiple Markov chains, which natively supports parallel

computing and would thus allow for a high scalability of the approach to complex, computationally intensive geomodels.

Alternatively, Bayesian Optimization for likelihood-free inference (BOLFI; Gutmann and Corander, 2016) could be worth15

considering for complex structural geomodels. The method abstracts the simulator/implicit function into a statistical surrogate

model between the priors and the summary statistics and then attempts to minimize their distance, with the potential to signifi-

cantly reduce the number of needed computations of the geomodel. Overall, the spatial and discrete nature of geomodels and

the use of discrete summary statistics poses unique challenges to sampling algorithms, requiring further research to identify

algorithms that can confidently converge and minimize the high computational cost of probabilistic 3-D geomodels.20
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The method demonstrated the effect of topology information on geomodel uncertainty—showing how well the parametriza-

tion of a probabilistic geomodel fits our geological assumptions. The acceptance rates during sampling could potentially be

used as a proxy for the validity of our assumptions: low acceptance rates could reveal a bad fit between our model and our added

geological knowledge and reasoning. Using entropy-difference plots, the effect of geological assumptions on the
::::::::
geomodel un-

certainty can be analysed spatially, e.g. how it reduces (or increases)
:::::::
changes around faults and other structures in the geomodel5

or other summary statistics of the geomodel, such as the gross rock volume of a potential reservoir across all fault blocks (or

compartments) of interest
:::::::
ensemble.

Summary

– We have shown how to use Approximate Bayesian Computation to constrain probabilistic geomodels so that the approx-

imate posterior incorporates
:::::
known

:
topology information.10

– The method enables additional geological knowledge and reasoning to be explicitly encoded and incorporated into

probabilistic geomodel ensembles, potentially increasing transparency of the modeling assumptions.

– As opposed to standard MC with rejection, the implemented SMC approach makes the use of ABC feasible in realistic

settings. Further research into using more advanced sampling schemes could provide additional speed-ups in obtaining

the posterior geomodel ensemble, which is especially relevant for computationally more expensive complex geomodels15

with large parametrizations.

Table 1. Distribution parameters for prior parametrization of the synthetic fault model.

Name Distribution µ [m] σ [m]

Sandstone_2_Z Normal 0 50

Siltstone_Z Normal 0 70

Shale_Z Normal 0 90

Sandstone_1_Z Normal 0 110

Main_Fault_X Normal 0 60

Main_Fault_Z Normal 0 60
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Table 2. Distribution parameters for prior parametrization of the Gullfaks case study.

Name Distribution µ [m] σ [m]

BCU Z Normal 0 43.3

fault3 X Normal 0 90.9

fault4 X Normal 0 90.5

tarbert A Z Normal 0 46.5

tarbert B Z Normal 0 45.5

tarbert C Z Normal 0 44.2

ness A Z Normal 0 48.6

ness B Z Normal 0 46.7

ness C Z Normal 0 45.1

etive A Z Normal 0 50.9

etive B Z Normal 0 48.1

etive C Z Normal 0 46.3
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