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Abstract. We present a newly developed upper-thermocline, open-ocean biogeochemical flux model that is complex and flex-

ible enough to capture open-ocean ecosystem dynamics, but reduced enough to incorporate into highly resolved numerical

simulations and parameter optimization studies with limited additional computational cost. The model, which is derived from

the full 56 state variable Biogeochemical Flux Model (BFM56; Vichi et al. (2007)), follows a biological and chemical func-

tional group approach and allows for the development of critical non-Redfield nutrient ratios. Matter is expressed in units of5

carbon, nitrogen, and phosphate, following techniques used in more complex models. To reduce the overall computational

cost and to focus on upper-thermocline, open-ocean, and non-iron or silicate limited conditions, the reduced model elimi-

nates certain processes, such as benthic, silicate, and iron influences, and parameterizes others, such as the bacterial loop. The

model explicitly tracks 17 state variables, divided into phytoplankton, zooplankton, dissolved organic matter, particulate or-

ganic matter, and nutrient groups. It is correspondingly called the Biogeochemical Flux Model 17 (BFM17). After describing10

BFM17, we couple it with the one-dimensional (1D) Princeton Ocean Model (POM) for validation using observational data

from the Sargasso Sea. Results show good agreement with the observational data and with corresponding results from BFM56,

including the ability to capture the subsurface chlorophyll maximum and bloom intensity. In comparison to previous models

of similar size, BFM17 provides improved correlations between model output and observational data, indicating that signifi-

cant improvements in the reproduction of in situ data can be achieved with a low number of variables, while maintaining the15

functional group approach.

1 Introduction

Biogeochemical (BGC) tracers and their interactions with upper-ocean physical processes, from basin-scale circulations to

millimeter-scale turbulent dissipation, are critical for understanding the role of the ocean in the global carbon cycle. These

interactions cause multi-scale spatial and temporal heterogeneity in tracer distributions (Strass, 1992; Yoder et al., 1992; Jr.20

et al., 2001; Gower et al., 1980; Denman and Abbott, 1994; Strutton et al., 2012; Clayton, 2013; Abraham, 1998; Bees, 1998;

Mahadevan and Archer, 2000; Mahadevan and Campbell, 2002; Levy and Klein, 2015; Powell and Okubo, 1994; Martin et al.,

2002; Mahadevan, 2005; Tzella and Haynes, 2007) that can greatly affect carbon exchange rates between the atmosphere
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and interior ocean, net primary productivity, and carbon export (Lima et al., 2002; Schneider et al., 2007; Hauri et al., 2013;

Behrenfeld, 2014; Barton et al., 2015; Boyd et al., 2016). There are still significant gaps, however, in our understanding of how25

these biophysical interactions develop and evolve, thus limiting our ability to accurately predict critical exchange rates.

Better understanding these interactions requires accurate physical and BGC models that can be coupled together. The exact

equations that describe the physics (e.g., the Navier–Stokes or Boussinesq equations) are often known and physically accurate

solutions can be obtained given sufficient spatial resolution and computational resources. Due to the vast diversity and com-

plexity of ocean ecology, however, even when only considering the lowest trophic levels, accurately modeling BGC processes30

can be quite difficult. Put simply, there are no known first-principles governing equations for ocean biology.

As such, two different approaches to modeling BGC processes are often used when faced with this challenge. The first is to

increase model complexity and include equations for every known BGC process. Often, these models include species functional

types or multiple classes of phytoplankton and/or zooplankton that each serve specific functional roles within the ecosystem,

such as calcifiers or nitrogen fixers. The justification for this approach is that particular phytoplankton and zooplankton groups35

serve as important system feedback pathways, and that without explicit representation of these feedbacks, there is little hope of

accurately representing the target ecosystem (Doney, 1999; Anderson, 2005). In many cases, these models also contain variable

intra- and extra-cellular nutrient ratios, which are important when accounting for different nutrient regimes within the global

ocean and species diversity of non-Redfield nutrient ratio uptake (Dearman et al., 2003).

Although these more complex models are typically highly adaptable and are often able to capture different dynamics than40

those for which they were calibrated (Blackford et al., 2004; Friedrichs et al., 2007), they contain many more parameters than

their simplified counterparts. Moreover, many of the parameters, such as phytoplankton mortality, zooplankton grazing rates,

and bacterial remineralization rates, are inadequately bounded by either observational or experimental data (Denman, 2003).

Because of the increased complexity of such models, it is also often difficult to ascertain which processes are responsible for

the development of a particular event (e.g., a phytoplankton bloom), and so these models can be ill-suited for process studies.45

Lastly, while these highly complex models are regularly used within global Earth System Models (ESMs), they are typically

prohibitively expensive to integrate within high-fidelity, high-resolution physical models at submesoscales, such as those used

to enhance fundamental understanding of subgrid-scale (SGS) physics in ESMs and to assist in the development of new SGS

parameterizations (Roekel et al., 2012; Hamlington et al., 2014; Suzuki and Fox-Kemper, 2015; Smith et al., 2016, 2018).

In broad terms, the second BGC modeling approach is focused on substantially decreasing model complexity and severely50

truncating the number of equations used to describe the dynamics of an ecosystem. Such approaches include the well-known

nutrient-phytoplankton-zooplankton-detritus class of models. These models have significantly fewer unknown parameters and

can be more easily integrated within complex physical models. Their simplicity also enables greater transparency when attempt-

ing to understand the dominant forcing or dynamics underlying a particular event. While they are often capable of reproducing

the overall distributions of chlorophyll, primary production, and nutrients (Anderson, 2005), such simplified models have been55

shown to under-perform at capturing complex ecosystem dynamics, and often struggle in regions of the ocean for which they

were not calibrated (Friedrichs et al., 2007).
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Although both of these general BGC modeling approaches have their respective advantages, particularly given their dif-

ferent objectives, the disconnect between lower-complexity BGC models used in small-scale studies and the more complex

BGC models used in global ESMs poses a problem. In particular, the difficulty in directly comparing the two types of models60

makes the process of “scaling-up” newly developed parameterizations or “downscaling” BGC variables within nested-grid

studies much more challenging. This motivates the need for a new BGC model that is reduced enough to be usable within

high-resolution, high-fidelity physical simulations for process and parameter optimization studies and parameterization devel-

opment, but is still complex enough to capture important ecosystem feedback dynamics, as well as the dynamics of vastly

different ecosystems throughout the ocean, as required by ESMs.65

To begin addressing this need, here we present a new upper-thermocline, open-ocean, 17 state-variable Biogeochemical

Flux Model (BFM17) obtained by reducing the larger 56 state variable Biogeochemical Flux Model (BFM56) developed by

Vichi et al. (2007). Most high-fidelity, high-resolution physical models are capable of integrating 17 additional tracer equations

with limited additional computational cost. Following the approach used in BFM56 (Vichi et al., 2007, 2013), a biological

and chemical functional family (CFF) approach underlies BFM17, permitting variable non-Redfield intra- and extra-cellular70

nutrient ratios, and matter is exchanged in the model through units of carbon, nitrate, and phosphate. Most notably, BFM17

includes a phosphate budget, the importance of which has historically been under-appreciated even though observational data

has indicated its potential importance as a limiting nutrient, particularly in the Atlantic Ocean (Ammerman et al., 2003). To

reduce model complexity, we parameterize certain processes for which field data are lacking, such as bacterial remineralization.

In the present study, we outline, in detail, the formulation of BFM17 and its development from BFM56. We couple BFM1775

to the 1D Princeton Ocean Model (POM) and validate the model for upper-thermocline, open-ocean conditions using observa-

tional data from the Sargasso Sea. We also compare results from BFM17 and the larger BFM56 for the same upper-thermocline,

open-ocean conditions. As a result of the focus on upper-thermocline, open-ocean conditions, further assumptions have been

made in obtaining BFM17 from BFM56, such as the exclusion of any representation for the benthic system and the absence of

limiting nutrients such as iron and silicate.80

It should be noted that the primary focus of the present study is to demonstrate the viability of BFM17 as an accurate

BGC model for high-resolution, high-fidelity simulations of the upper ocean used in process, parameterization, and parameter

optimization studies. This is accomplished here by comparing results from BFM17 to results from observations and BFM56;

as such, here we only consider one open-ocean location (i.e., the Sargasso Sea). Although the model must also be applied at

other locations to determine its general applicability, its ability, demonstrated herein, to reproduce important and difficult key85

behaviors in the Sargasso Sea, such as the initial spring bloom and subsequent subsurface chlorophyll maxima, supports its use

as a process study model. The correspondence between BFM17 and the more general BFM56 also provides confidence that the

reduced model will prove effective at modeling other ocean locations and conditions, and exploring the range of applicability

of BFM17 remains an important direction for future research. We also emphasize that relatively limited calibration of BFM17

parameters has been performed in the present study. Most parameters are set to their values used in the larger BFM56 (Vichi90

et al., 2007, 2013), and optimization of these parameters over a range of ocean conditions is another important direction of

future research, for which BFM17 is ideally suited.
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Finally, we note that other similarly complex BGC models have been calibrated using data from the Sargasso Sea, such

as those developed in Levy et al. (2005), Ayata et al. (2013), Spitz et al. (2001), Doney et al. (1996), Fasham et al. (1990),

Fennel et al. (2001), Hurtt and Armstrong (1996), Hurtt and Armstrong (1999), and Lawson et al. (1996). However, each of95

these models employs less than 10 species and none uses a CFF approach or includes oxygen, a tracer that is historically

difficult to predict. Although some of these models employ data assimilation techniques (e.g., Spitz et al. (2001)) and produce

relatively accurate results, most leave room for improvement. With a minimal increase in the number and complexity of the

model equations, such as those associated with tracking phosphate in addition to carbon and nitrate, and by including both

particulate and dissolved organic nutrient budgets, we postulate that a significant increase in model accuracy and applicability100

can be achieved over previous models of similar complexity. Additionally, with this increase in model complexity, the disparate

gap between the complexity of BGC models used in small- and global-scale studies is reduced, thereby simplifying up- and

down-scaling efforts. This last point is emphasized here by the good agreement between results from BFM17 and BFM56.

In the following, BFM17 is introduced in Section 2, with detailed equations and parameter values provided in Appendix A.

Results from a zero-dimensional (0D) test of BFM17 is provided in Appendix B. In Section 3, BFM17 is coupled to the 1D105

POM physical model. A discussion of the methods used to calibrate and validate the model with observational data collected

in the Sargasso Sea is presented in Section 4. Model results, a skill assessment, a comparison to results from BFM56, and a

brief comparison to other similar BGC models are discussed in Section 5.

2 Biogeochemical Flux Model 17 (BFM17)

The 17 state equation BFM17 is an upper-thermocline, open-ocean BGC model derived from the original 56 state equation110

BFM56 (Vichi et al., 2007, 2013), which is based on the CFF approach. In this approach, functional groups are partitioned into

living organic, non-living organic, and non-living inorganic CFFs, and exchange of matter occurs through constituent units of

carbon, nitrogen, and phosphate. To date, there are no other BGC models with this order of reduced complexity using the CFF

approach, making BFM17 unique and able to accurately reproduce complex ecosystem dynamics.

BFM17 is a pelagic model intended for oligotrophic regions that are not iron or silicate limited, and is obtained from the115

more-complete BFM56 by omitting quantities and processes assumed to be of lesser significance in these regions, subject

to the constraint that variable internal nutrient dynamics are of continued importance. We have developed BFM17 primarily

for use with high-resolution, high-fidelity numerical simulations, including large eddy simulations (LES) used in process,

parameterization, and parameter optimization studies. As such, we do not validate the efficacy of BFM17 as a global BGC

model, and note that it is missing potentially important processes for such an application, which we elaborate on shortly. We120

also note that we compare BFM17 to the original BFM56 in Section 5 to demonstrate that, although it is reduced in complexity,

BFM17 is equally appropriate for use in seasonal process, parameterization, and optimal parameter estimation studies for which

a more complex model such as BFM56 may be too computationally expensive. Nevertheless, given the agreement between the

BFM17 and BFM56 results in Section 5, there is reason to believe that BFM17 may have potential as a global BGC model,

and the examination of the broader applicability of BFM17 is an important direction for future research.125
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In BFM17, the living organic CFF is comprised of single phytoplankton and zooplankton living functional groups (LFGs);

these two groups are the bare minimum needed within a BGC model and already account for six state equations (corresponding

to carbon, nitrogen, and phosphate constituents of both groups). The baseline parameters used in BFM17 are those detailed

in Vichi et al. (2007), and a complete list of the model parameters is provided in Appendix A. Parameters used in the repre-

sentation of phytoplankton loosely correspond to the flagellate LFG in BFM56, while the zooplankton parameters correspond130

to the micro-zooplankton LFG. The only relevant difference with respect to Vichi et al. (2007) is related to the choice of the

phytoplankton specific photosynthetic rate (r(0)P in Table A3 of Appendix A); in this case, the new value was chosen according

to the control laboratory cultures of Fiori et al. (2012).

Within BFM17, we track chlorophyll, dissolved oxygen, phosphate, nitrate, and ammonium, since their distributions and

availability can greatly enhance or hinder important biological and chemical processes. Dissolved oxygen is of particular135

interest, because it is historically difficult to predict using BGC models of any complexity. This is likely due, in part, to missing

physical processes in the mixing parameterizations used in global and column models. This provides motivation for the present

study, since a primary goal in the development of BFM17 is to create a BGC model that can be used in combination with

high-resolution, high-fidelity physical models (e.g., those found in LES) to understand the effects of these physical processes

and how they can be more accurately represented in mixing parameterizations.140

Dissolved and particulate organic matter, each with their own partitions of carbon, nitrogen, and phosphate, are also included

in BFM17 to account for nutrient recycling and carbon export due to particle sinking. Another primary goal of developing

BFM17 is to explore how spatially decoupled (or “patchy”) processes, such as the sinking of organic matter and the subsequent

upwelling of multiple recycled nutrients (not just nitrate) affect the fate and distribution of a phytoplankton bloom.

Lastly, remineralization of nutrients is provided by parameterized bacterial closure terms, thereby reducing complexity while145

still maintaining critical nutrient recycling. The related parameter values (see Table A5 in Appendix A) were chosen according

to Mussap et al. (2016), who carried out sensitivity tests to evaluate the many parameters values found in the literature.

Iron is omitted from BFM17, limiting the applicability of the model in regions where iron components are important, such as

the Southern Ocean and the tropical Pacific. Thus, if used in such regions, at least a fixed concentration of iron may be needed

(although this method has not yet been validated within BFM17). Top-down control of the ecosystem is also not included.150

Instead, a simple constant zooplankton mortality is used, as this is a complicated process and understanding where to add

this closure and where to feed the particulate and dissolved nutrients from this process in a lower-complexity model is not

well understood. However, the addition of a top-down closure term was tested, and no major differences were observed in the

model results. Consequently, it was assumed that the constant mortality term was sufficient for this model, similar to other

models of this complexity (Fasham et al., 1990; Lawson et al., 1996; Clainche et al., 2004). Additionally, the benthic system155

within BFM56 (Mussap et al., 2016) has been removed. It is assumed that within the upper thermocline of the open ocean, the

ecosystem is not substantially influenced by a benthic system and any water-column influences from depth can be taken into

account using boundary conditions (such as those discussed in Section 4). As such, we cannot attest to the accuracy of BFM17

in shelf or coastal regions.
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Table 1. Notation used for the 17 state variables in the BFM17 model, as well as the chemical functional family (CFF), units, description,

and rate equation reference for each state variable. CFFs are divided into living organic (LO), non-living organic (NO), and inorganic (IO)

families.

Symbol CFF Units Description Equation

PC LO mg C m−3 Phytoplankton carbon (A5)

PN LO mmol N m−3 Phytoplankton nitrogen (A6)

PP LO mmol P m−3 Phytoplankton phosphorus (A7)

Pchl LO mg Chl-a m−3 Phytoplankton chlorophyll (A8)

ZC LO mg C m−3 Zooplankton carbon (A31)

ZN LO mmol N m−3 Zooplankton nitrogen (A32)

ZP LO mmol P m−3 Zooplankton phosphorus (A33)

R
(1)
C NO mg C m−3 Dissolved organic carbon (A41)

R
(1)
N NO mmol N m−3 Dissolved organic nitrogen (A42)

R
(1)
P NO mmol P m−3 Dissolved organic phosphorus (A43)

R
(2)
C NO mg C m−3 Particulate organic carbon (A44)

R
(2)
N NO mmol N m−3 Particulate organic nitrogen (A45)

R
(2)
P NO mmol P m−3 Particulate organic phosphorus (A46)

O IO mmol O2 m−3 Dissolved oxygen (A47)

N (1) IO mmol P m−3 Phosphate (A48)

N (2) IO mmol N m−3 Nitrate (A49)

N (3) IO mmol N m−3 Ammonium (A50)

In summary, notable novel attributes of BFM17, in comparison to other models of comparable complexity, are the use of (i)160

CFFs for living organisms, including two LFGs for phytoplankton and zooplankton, (ii) CFFs for both particulate and dissolved

organic matter, (iii) a full nutrient profile (i.e., phosphate, nitrate, and ammonium), and (iv) the tracking of dissolved oxygen.

A summary of the 17 state variables tracked in BFM17 is provided in Table 1, and a schematic of the CFFs and LFGs used in

BFM17, along with their interactions, is shown in Figure 1. The detailed equations comprising BFM17, as well as all associated

parameter values, are presented in Appendix A. Results from an initial 0D test of BFM17 are provided in Appendix B.165

3 Coupled Physical-Biogeochemical Flux Model

As a demonstration of BFM17 for predicting ocean biogeochemistry in oligotrophic pelagic zones, here we couple the model to

a 1D physical mixing parameterization and make comparisons with available observational data in the Sargasso Sea. In order

to focus on the upper-thermocline, open-ocean regime for which BFM17 was developed, the physical model only extends

150 m in depth and diagnostically calculates diffusivity terms based upon prescribed temperature and salinity profiles from170
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Figure 1. Schematic of the 17 state equation BFM17 model. The dissolved organic matter, particulate organic matter, and living organic

matter chemical functional families (CFFs) are each comprised of three chemical constituents (i.e., carbon, nitrogen, and phosphorus). The

living organic CFF is further subdivided into phytoplankton and zooplankton living functional groups (LFGs).

the observations. While a 1D physical model is unlikely to resolve all processes relevant for biogeochemistry in the upper

thermocline, we have made additions, such as large-scale general circulation and mesoscale eddy vertical velocities, as well as

relaxation bottom boundary conditions for nutrient upwelling, to better represent missing processes.

The coupled physical and BGC model is a time-depth model that integrates in time the generic equation for all biological

state variables, denoted Aj , given by175

∂Aj

∂t
=
∂Aj

∂t

∣∣∣∣
bio
−
[
W +WE + v(set)

] ∂Aj

∂z
+

∂

∂z

(
KH

∂Aj

∂z

)
, (1)

where the first term on the right-hand side accounts for sources and sinks within each species due to biological and chemical

reactions, as represented by the equations comprising BFM17, outlined in Appendix A. Although the BFM17 formulation and

model results are the primary focus of the present study, we also perform coupled physical-BGC simulations using BFM56 for

comparison. Equation (1) applies to all 17 state variables in BFM17, as well as to all 56 state variables in BFM56. Consequently,180

the only differences between the biophysical models with BFM17 and BFM56 are the number of state variables being tracked

and the equations used to calculate the biological forcing terms. The specific forms of Eq. (1) for each of the 17 species
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Table 2. Values, units, and descriptions for parameters used in the combined physical–BFM17 model.

Symbol Value Units Description

v(set) -1.00 m d−1 Settling velocity of particulate detritus

W -0.02 – 0 m d−1 Imposed general circulation vertical velocity

WE 0 – 0.1 m d−1 Imposed mesoscale circulation vertical velocity

λO 0.06 m d−1 Relaxation constant for oxygen at bottom

λN(1) 0.06 m d−1 Relaxation constant for phosphate at bottom

λN(2) 0.06 m d−1 Relaxation constant for nitrate at bottom

in BFM17 are discussed in Appendix A, and the specific forms of this equation for each of the 56 species in BFM56 were

previously discussed in Vichi et al. (2007). The parameters used in BFM56 correspond to the values provided in Tables A3–A5

of Appendix A, with the remaining undefined parameters (since BFM56 includes many more model parameters than BFM17)185

based on values from Mussap et al. (2016).

The vertical velocities W and WE in Eq. (1) are the large-scale general circulation and mesoscale eddy vertical velocities,

respectively. The range of values for each of these velocities are included in Table 2 and the corresponding depth profiles are

discussed in Section 4.3. The settling velocity, v(set), in Eq. (1) is only non-zero for the three constituents of particulate organic

matter, and its value is given in Table 2. We assume v(set) = 0 for zooplankton, since zooplankton actively swim and oppose190

their own sinking velocity. Finally, KH in Eq. (1) is the vertical eddy diffusivity term calculated by the model, and is described

in more detail later in this section.

To obtain the complete 1D biophysical model, BFM17 has been coupled with a modification of the three-dimensional

(3D) Princeton Ocean Model (POM) (Blumberg and Mellor, 1987) that considers only the vertical and time dimensions; that

is, the evolution of the system in the (z, t) space. It is well known that the primary calibration dimension in marine ocean195

biogeochemistry is along the vertical direction, as shown in several previous calibration and validation exercises (Vichi et al.,

2003; Triantafyllou et al., 2003; Mussap et al., 2016).

The 1D POM solver (POM-1D) is used to calculate the vertical structure of the two horizontal velocity components, denoted

U and V , the potential temperature, T , salinity, S, density, ρ, turbulent kinetic energy, q2/2, and mixing length scale, `.

In this model adaptation, vertical temperature and salinity profiles are imposed from given climatological monthly profiles, as200

previously done in Mussap et al. (2016) and Bianchi et al. (2005). The model computes only the time evolution of the horizontal

velocity components, the turbulent kinetic energy and the mixing length scale, all of which are used to compute the turbulent

diffusivity term, KH , required in Eq. (1). In this configuration, POM-1D is called “diagnostic” since temperature and salinity

are prescribed. Furthermore, pressure effects are neglected in the density equation and the buoyancy gradients and temperature

are used in place of potential temperature since we consider only the upper water column.205
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In diagnostic mode, POM-1D solves the momentum equations for U and V given by

∂U

∂t
− fV =

∂

∂z

(
KM

∂U

∂z

)
, (2)

∂V

∂t
+ fU =

∂

∂z

(
KM

∂V

∂z

)
, (3)

where f = 2Ωsinφ is the Coriolis force, Ω is the angular velocity of the Earth, and φ is the latitude. The vertical viscosity KM

and diffusivity KH are calculated using the closure hypothesis of Mellor and Yamada (1982) as210

KM = q lSM , (4)

KH = q lSH , (5)

where q is the turbulent velocity and SH and SM are stability functions written as

SM [1− 9A1A2GH ]−SH

[
(18A2

1 + 9A1A2)GH

]
= A1 [1− 3C1− 6A1/B1] , (6)

SH [1− (3A2B2 + 18A1A2)GH ] = A2 [1− 6A1/B1] . (7)215

The coefficients in the above expressions are (A1,B1,A2,B2,C1) = (0.92,16.6,0.74,10.1,0.08), with

GH =
l2

q2
g

ρ0

∂ρ

∂z
, (8)

where ρ0 = 1025 kg m−3, g = 9.81 m s−2. Following Mellor (2001), GH is limited to have a maximum value of 0.028. The

equation of state relating ρ to T and S is nonlinear (Mellor, 1991) and given by

ρ = 999.8 + (6.8× 10−2− 9.1× 10−3T + 1.0× 10−4T 2− 1.1× 10−6T 3 + 6.5× 10−9T 4)T220

+ (0.8− 4.1× 10−3T + 7.6× 10−5T 2− 8.3× 10−7T 3 + 5.4× 10−9T 4)S

+ (−5.7× 10−3 + 1.0× 10−4T − 1.6× 10−6T 2)S1.5 + 4.8× 10−4S2 , (9)

where the polynomial constants have been written only up to the first digit. For a more precise reproduction of these constants,

the reader is referred to Mellor (1991). Finally, the governing equations solved to obtain the turbulence variables q2/2 and `

are225

∂

∂t

(
q2

2

)
=

∂

∂z

[
Kq

∂

∂z

(
q2

2

)]
+KM

[(
∂U

∂z

)2

+

(
∂V

∂z

)2
]

+
g

ρ0
KH

∂ρ

∂z
− q3

B1`
, (10)

∂

∂t

(
q2`
)

=
∂

∂z

[
Kq

∂

∂z

(
q2`
)]

+E1`KM

[(
∂U

∂z

)2

+

(
∂V

∂z

)2
]

+E1`
g

ρ0
KH

∂ρ

∂z
− q3

B1
W̃ , (11)

where Kq = κKH is the vertical diffusivity for turbulence variables, κ= 0.4 is the von Karman constant, and

W̃ =
[
1 +E2`

2/κ2 (1/|z|+ 1/|z−H|)2
]

with (E1,E2) = (1.8,1.33). In Eqs. (10) and (11), the time rate of change of the

turbulence quantities is equal to the diffusion of turbulence (the first term on the right hand side of both equations), the shear230

and buoyancy turbulence production (second and third terms), and the dissipation (the fourth term). This is a second-order
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turbulence closure model that was formulated by Mellor (2001) as a particular case of the Mellor and Yamada (1982) model

for upper ocean mixing.

Boundary conditions for the horizontal velocities U = (U,V ) and the turbulence quantities are

KM
∂U

∂z

∣∣∣
z=0

= τw , (12)235

KM
∂U

∂z

∣∣∣
z=zend

= 0 , (13)(
q2, q2`

)∣∣
z=0

=

(
B

2/3
1

|τw|
Cd

,0

)
, (14)

(q2, q2`)|z=zend = 0 , (15)

where τw = Cd|uw|uw is the surface wind stress, uw is the surface wind vector, Cd is a constant drag coefficient chosen to be

2.5× 10−3, and z = 0 and z = zend denote the locations of the surface and the greatest depth modeled, respectively.240

For all variables except oxygen, surface boundary conditions for the coupled model variable Aj are

KH
∂Aj

∂z

∣∣∣∣
z=0

= 0 . (16)

By contrast, the surface boundary condition for oxygen has the form

KH
∂O

∂z

∣∣∣∣
z=0

= ΦO , (17)

where ΦO is the air-sea interface flux of oxygen computed according to Wanninkhof (1992, 2014). The bottom (i.e., greatest245

depth) boundary conditions for phytoplankton, zooplankton, dissolved organic matter, and particulate organic matter are

KH
∂Aj

∂z

∣∣∣∣
z=zend

= 0 . (18)

This boundary condition was chosen since it allows removal of the scalar quantity Aj through the bottom boundary of the

domain. This can be seen by integrating Eq. (1) over the boundary layer depth using the boundary condition above, giving

∂

∂t

z=0∫
z=zend

Ajdz =
[
W +WE + v(set)

]
Aj |z=zend

, (19)250

where the biological part of Eq. (1) has been neglected and the resulting temporal change in the integrated scalarAj is negative

since |(W +WE)|< |v(set)|, as shown in Table 2. For oxygen, phosphate, and nitrate, the bottom boundary conditions are

KH
∂Aj

∂z

∣∣∣∣
z=zend

= λj

(
Aj |z=zend

−A∗j
)
, (20)

where λj and A∗j are the corresponding relaxation velocity and observed at-bottom boundary climatological field data value,

respectively, of that species. Base values for the relaxation velocities are included in Table 2. Lastly, the bottom boundary255

condition for ammonium is

KH
∂N (3)

∂z

∣∣∣∣
z=zend

= 0 . (21)
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Since observations of ammonium concentration in the observational area are not available, this choice is based on the as-

sumption that the nitrogen diffusive flux from depth to the surface (euphotic) layers occurs mostly in the form of a nitrate

flux, consistent with the concepts of “new” and “regenerated” production, as described by Dugdale and Goering (1967) and260

Mulholland and Lomas (2008).

4 Field Validation and Calibration Data

4.1 Study Site Description

Field data for calibration and validation of BFM17 are taken from the Bermuda Atlantic Time-series Study (BATS) (Steinberg

et al., 2001) and the Bermuda Testbed Mooring (BTM) (Dickey et al., 2001) sites, which are located in the Sargasso Sea265

(31◦40’ N, 64◦10’ W) in the North Atlantic subtropical gyre. Both sites are a part of the US Joint Global Ocean Flux Study

(JGOFS) program. Data has been collected from the BATS site since 1988 and from the BTM site since 1994.

Steinberg et al. (2001) provide an overview of the biogeochemistry in the general BATS and BTM area. Winter mixing

allows nutrients to be brought up into the mixed layer, producing a phytoplankton bloom between January and March (winter

mixed layer depth is typically 150-300 m). As thermal stratification intensifies over the summer months, this nutrient supply270

is cut off (summer mixed layer depth is typically 20 m). At this point, a subsurface chlorophyll maximum is observed near

a depth of 100 m. Stoichiometric ratios of carbon, nitrate, and phosphate are often non-Redfield and, in contrast to many

oligotrophic regimes, phosphate is the dominant limiting nutrient (Fanning, 1992; Michaels et al., 1993; Cavender-Bares et al.,

2001; Steinberg et al., 2001; Ammerman et al., 2003; Martiny et al., 2013; Singh et al., 2015).

4.2 Data Processing275

The region encompassing the BATS and BTM sites is characterized as an open ocean, oligotrophic region that is phosphate

limited. This region has thus been chosen for initial calibration and validation of BFM17 due to the prevalence of oligotrophic

regimes in the open ocean and to demonstrate the ability of BFM17 to capture difficult non-Redfield ratio regimes (which occur

in phosphate-limited regions). The BATS/BTM data have also been collected over many years, providing long time series for

model calibration and validation.280

Data from the BATS/BTM area is used in the present study for two purposes: (i) as initial, boundary, and forcing conditions

for the POM-1D biophysical simulations with BFM17 and BFM56, and (ii) as target fields for validation of the simulations.

In addition to the subsurface BATS data, we also use BTM surface data, such as the 10 m wind speed and PAR. For each

observational quantity, we compute monthly averages over 27 years for the BATS data and 23 years (not continuous) for the

BTM data. Additionally, we interpolate the BATS data to a vertical grid with 1 m resolution. We subsequently smooth the285

interpolated data to maintain a positive buoyancy gradient, thereby eliminating any spurious buoyancy-driven mixing due to

interpolation and averaging.
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Figure 2. Sargasso Sea physical variables, showing climatological monthly averaged (a) temperature, (b) 10 m surface wind speed, (c) surface

PAR, and (d) salinity. Panel (e) shows the mean seasonal general circulation velocity, W , and panel (f) shows the bimonthly maximum value

of the mesoscale eddy velocity WE .

Figure 2 shows the monthly climatological profiles of temperature and salinity from the BATS data (maximum mixed layer

depth from the climatology is approximately 125 m based upon a ∆ 0.02 kg/m3 criteria), as well as the photosynthetically

available radiation (PAR) and 10 m wind speed from the BTM data. Similar processing is also performed on biological vari-290

ables, which largely serve as target fields for the validation of BFM17.

4.3 Inputs to the Physical Model

The physical model computes density from the prescribed temperature and salinity, and surface wind stress from the 10 m

wind speed; temperature, salinity, and wind speed are all provided by the BATS/BTM data. The model also uses this data

in the turbulence closure to compute the turbulent viscosity and diffusivity. This diagnostic approach eliminates any drifts295

in temperature and salinity that might occur due to improper parameterizations of lateral mixing in a 1D model, therefore

providing greater reliability. In addition to the 10 m wind speed, temperature, and salinity, BFM requires monthly varying PAR
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at the surface. For all the monthly mean input data sets, a correction (Killworth, 1995) is applied to the monthly averages to

account for monthly mean errors due to linear interpolation to the model time step.

We imposed both general circulation, W , and mesoscale eddy, WE , vertical velocities in the simulations. The imposed300

vertical profiles of these velocities have been adapted from Bianchi et al. (2005), where the velocities are assumed to be zero

at the surface and reach their maxima near the base of the Ekman layer, which is assumed to be at or below the bottom

boundary of the simulations. The general large-scale upwelling/downwelling circulation, W , is due to Ekman pumping and is

correspondingly given as

W = k̂ ·∇×
(
τw
ρf

)
, (22)305

where k̂ denotes the unit vector in the vertical direction. The monthly average value and sign of the wind stress curl, ∇×τw, for

the general BATS/BTM region was taken from the Scatterometer Climatology of Ocean Winds database (Risien and Chelton,

2008, 2011). The monthly value of W from Eq. (22) is then assumed to be the maximum, occurring at the base of the Ekman

layer, for that particular month. Given the sign of the wind stress curl for the BATS/BTM region, a negative W was calculated,

indicating general downwelling processes in this region. Seasonal profiles of W are shown in Figure 2(e).310

Due to the prevalence of mesoscale eddies within the BATS/BTM region (Hua et al., 1985), which can provide episodic

upwelling of nutrients to the upper water column, we also include an additional positive upwelling vertical velocity, WE ,

which has a timescale of 15 days. The general profile of WE is assumed to be the same as for W , with a value of zero at the

surface and a maximum value at depth. However, there is no linear interpolation between each 15-day period and the maximum

magnitude of WE is randomized between 0 and 0.1 m d−1, as shown in Figure 2(f) for each 15-day period.315

4.4 Initial and Boundary Conditions

Although the BATS/BTM data includes information on many biological variables, initial conditions for only 5 of the 17 species

within BFM17 could be extracted from the data. Similarly to the temperature and salinity, the initial chlorophyll, particulate

organic nitrogen, oxygen, nitrate, and phosphate were interpolated to a mesh with 1 m vertical grid spacing, averaged over the

initial month of January, and smoothed vertically in space to give the initial profiles seen in Figure 3(a). The remaining 12 state320

variable initial conditions were determined either through the adoption of the Redfield ratio C:N:P ≡ 106:16:1 (Redfield et al.,

2005), or assuming a reasonably low initial value. Since the 1D simulations were run to steady state over 10 years, memory of

these initial states was assumed to be lost, with little effect on the results.

For the comparison of BFM17 to BFM56, the initial conditions for the additional state variables were calculated by splitting

the total phytoplankton and zooplankton carbon values into additional phytoplankton and zooplankton groups. The other state325

variables for each group were again calculated using the Redfield ratio. The initial bacteria distribution was defined by setting

the column equal to a constant value.

In both simulations, the bottom boundary conditions for oxygen, nitrate, and phosphate species are based on observed BATS

data. Values are taken at the next closest data point below the bottom boundary (at 150 m) and then averaged over the month.

Figure 3(b) shows the monthly average bottom boundary conditions for each of the three species.330
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Figure 3. Sargasso Sea initial and boundary conditions showing (a) initial profiles of nitrate, phosphate, particulate organic carbon, chloro-

phyll, and oxygen, where each profile, denoted φi(z), is normalized by its depth averaged value, 〈φi〉z , and (b) monthly bottom boundary

conditions for nitrate, phosphate, and oxygen, where each quantity, ϕi(t), is normalized by its annual average value 〈ϕi〉t. The depth and

annual averaged values are shown in parentheses in the legends of each panel. Units are mmol N/m3 for nitrate, mmol P/m3 for phosphate,

mg C/m3 for particulate organic carbon, mg Chl/m3 for chlorophyll, and mmol O/m3 for oxygen.

5 Validation Results

The coupled BFM17-POM1D model was run using the parameter values from Tables 2, A1, and A3-A5, which were decided on

the basis of standard literature values (Vichi et al., 2007, 2003, 2013; Fiori et al., 2012). The simulations were allowed to run out

to steady-state and multi-year monthly means were calculated as functions of depth for chlorophyll, oxygen, nitrate, phosphate,

particulate organic nitrogen (PON), and net primary production (NPP), each of which were measured at the BATS/BTM site.335

The model PON is defined as the sum of nitrogen contained within the phytoplankton, zooplankton, and particulate detritus,

and NPP is defined as the net phytoplankton carbon uptake (or gross primary production) minus phytoplankton respiration.

Figure 4 qualitatively compares the BATS data (top row) with the results of from BFM17 (middle row). The model is able to

capture the initial spring bloom between January and March brought on by physical entrainment of nutrients, the corresponding

peak in net primary production and PON around the same time, and the subsequent subsurface chlorophyll maxima during the340

summer. The predicted oxygen levels are lower than observed values, however, the overall structure predicted by BFM17 is

quite similar to that of the BATS oxygen field. These trends are consistent with the trends seen in the results from BFM56

(bottom row of Figure 4), suggesting that the two models are in generally close agreement. Correlation coefficients between

the two models are 0.85 for chlorophyll, 0.56 for oxygen, 0.99 for nitrate, 0.99 for phosphate, 0.95 for PON, and 0.97 for NPP.

As mentioned previously, oxygen is historically difficult to predict using BGC models of any complexity. It is likely that345

this is due, in part, to inaccuracies in the mixing parameterizations used in POM 1D and other physical models. For example,

BFM17 struggles to accurately predict oxygen, in part, because the second-order mixing scheme of Mellor and Yamada (1982)
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Figure 4. Comparison of target BATS fields (top row) to BFM17 simulation results (middle row) and BFM56 simulation results (bottom row)

for (a,g,m) chlorophyll (mg Chl-a/m3), (b,h,n) oxygen (mmol O/m3), (c,i,o) nitrate (mmol N/m3), (d,j,p) phosphate (mmol P/m3), (e,k,q)

particulate organic nitrogen (PON - mg N/m3), (f,l,r) and net primary production (NPP - mg C/m3/day). Simulation plots are multi-year,

monthly averages of the last 3 years of a 10 year integration.

lacks sufficient resolution of the winter mixing using just the monthly mean temperature and salinity. However, since it is often

not included or presented at all in models of similar complexity to BFM17 (i.e., models reduced enough to reasonably couple

to a high-fidelity, high-resolution physical model), studies that explore this hypothesis have been difficult to undertake. Thus,350

we include oxygen in BFM17 and present our results here to illustrate this exact point, and to lend motivation to developing

and using a model such as BFM17 to study the effects of physical processes missing from mixing parameterizations and how

they can be better represented.

To quantitatively evaluate BFM17, a model skill assessment was performed for each target field. The same skill assessment

was performed for BFM56 to compare the two models. The results are summarized by the Taylor diagram in Figure 5. This355

diagram can be used to assess the extent of misfit between the models and observations by showing the normalized root mean
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Figure 5. Taylor diagram showing the normalized standard deviation, correlation coefficient, and normalized root mean squared differences

between the BFM17 output and the BATS target fields. Observations lie at (1,0). Radial deviations from observations corresponds to the

normalized root mean square error (RMSE), radial deviation from the origin correspond to the normalized standard deviation, and angular

deviations from the vertical axis correspond to the correlation coefficient. BFM17 and BFM56 results are shown as colored circles and

triangles, respectively (chlorophyll = blue, oxygen = orange, nitrate = yellow, phosphate = purple, PON = green, NPP = cyan). Note that

BFM56 nitrate and phosphate data points fall on top of one another (yellow and purple triangles).

square (RMS) errors, normalized standard deviation, and the correlation coefficient between each of the model outputs and the

BATS target fields.

The normalized RMS errors were calculated as εrms/σobs, where εrms is the RMS error between the model and the obser-

vation fields and σobs is the standard deviation of the observation field. The normalized standard deviation was calculated as360

σmod/σobs where σmod is the standard deviation of the model fields. The normalized RMS errors, normalized standard devi-

ation, and the correlation coefficients each give an indication of the relative similarities in amplitude, variations in amplitude,

and structure of each modeled field compared to the BATS target fields, respectively. For each variable, these statistics were

calculated over all months and all depths shown in Figure 4.

The Taylor diagram in Figure 5 shows that BFM17 and BFM56 produce similar results. For most variables, errors in the365

amplitudes are within roughly one standard deviation of the observations. Additionally, the structure of the model fields for

chlorophyll, nitrate, phosphate, PON, and NPP have high correlations with that of the BATS target fields. The correlation

values range from 0.63 for chlorophyll to 0.94 for nitrate in BFM17 and from 0.60 for chlorophyll to 0.93 for phosphate

and nitrate in BFM56. For BFM17, variability in amplitude for nitrate, phosphate, oxygen, and NPP are closest to that of the

corresponding BATS target fields, while the chlorophyll and PON have too much variability. For BFM56, nitrate, phosphate,370
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oxygen, and chlorophyll have similar variability in amplitude to the BATS data, while NPP and PON have too little and too

much variability, respectively.

Table 3 provides a comparison of correlation coefficients and un-normalized RMS errors, calculated with respect to the

observational fields, from BFM17 and BFM56, as well as from other models. Comparisons were only made to models that were

calibrated using the same BATS/BTM data, employed some kind of parameter estimation technique, and reported correlation375

and RMS errors. Ayata et al. (2013) included six biological tracers, while both Fasham et al. (1990) and Spitz et al. (2001)

included seven. The Spitz et al. (2001) study used data assimilation, while the Ayata et al. (2013) and Fasham et al. (1990)

studies used only optimization to determine a select set of parameters. All models used climatological monthly mean forcing

from the BATS region and reported climatological monthly means for their results. Care was taken to ensure that the same

variable definition was compared between all models. Ayata et al. (2013) used a similar 1D physical model as was used here,380

while Spitz et al. (2001) and Fasham et al. (1990) used a time-dependent box model of the upper-ocean mixed layer. As such,

correlations and RMS error values for comparison to Ayata et al. (2013) were computed over the entire domain (Ayata et al.

(2013) calculated their metrics over the top 168 m of their domain). For comparison to Spitz et al. (2001) and Fasham et al.

(1990), correlations and RMS errors were calculated only within the mixed layer (defined as the depth at which the density is

0.02 kg/m3 greater than the surface density) and are shown as separate columns in Table 3.385

Table 3 shows that BFM17 and BFM56 give comparable results, with BFM17 producing similar correlation coefficients and

RMS error values to those from BFM56. The largest differences compared to the BATS data for both BFM17 and BFM56 are

in the oxygen values. The overall slightly better correlation coefficient agreement of BFM17 with the BATS data results from

the adjustment of some model parameters in BFM17 due to the removal of specific phytoplankton and zooplankton species in

favor of general LFGs, and to the parameterization of remineralization using new closure terms that were calibrated to give390

reasonable agreement with the observational data. By contrast, BFM56 was run using the baseline parameter values that were

not adjusted to improve agreement with the observations.

The correlation coefficients and RMS errors for both BFM17 and BFM56 are also comparable with the Ayata et al. (2013)

study for chlorophyll, while out-performing this study for nitrate, PON, and NPP. The Spitz et al. (2001) study, which used

data assimilation and is therefore naturally more likely to perform better, does in fact do so for predictions of chlorophyll and395

nitrate. However, the nitrate correlation values for BFM17 and the Spitz et al. (2001) model are both high, although the latter

model does have a lower RMS error value. As compared to the Spitz et al. (2001) model, BFM17 has higher correlation values

for both PON and NPP, but a larger RMS error for NPP. Lastly, both BFM17 and BFM56 out-perform the Fasham et al. (1990)

study for all fields for both correlation coefficient and RMS error values.

These results show that, with a relatively small increase in the number of biological tracers as compared to similar models,400

BFM17 is generally able to increase correlation coefficient values and decrease RMS error values for each target field in

comparison to similar models. Moreover, BFM17 approaches the accuracy of models that use data assimilation to improve

agreement with the observations, such as the Spitz et al. (2001) model. The extra biological tracers in BFM17, as compared to

the Ayata et al. (2013) and Fasham et al. (1990) models, account for variable intra- and extra-cellular nutrient ratios with the

addition of phosphorus405
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Table 3. Correlation coefficients (and RMS error in parenthesis) between BATS target fields and model data for BFM17, BFM56, and several

example models of similar complexity. The first set of BFM columns is calculated over the entire water column, while the second set (denoted

with “ML Only”) is calculated over the monthly mixed layer depth only (defined as the depth at which the density is 0.02 kg/m3 greater

than the surface density).

Variable BFM17 BFM56 Ayata et al. (2013) BFM17 BFM56 Fasham et al. (1990) Spitz et al. (2001)

(ML Only) (ML Only)

Chlorophyll 0.63 (0.08) 0.60 (0.10) 0.60 (0.06) 0.63 (0.07) 0.60 (0.09) -0.33 (0.34) 0.86 (0.04)

Oxygen 0.37 (31.18) 0.18 (21.84) - 0.29 (29.53) -0.09 (20.22) - -

Nitrate 0.94 (0.22) 0.93 (0.16) 0.80 (0.33) 0.94 (0.22) 0.93 (0.15) 0.87 (0.28) 0.98 (0.05)

Phosphate 0.91 (0.01) 0.93 (0.005) - 0.91 (0.01) 0.93 (0.005) - -

PON 0.85 (0.15) 0.85 (0.11) 0.45 (0.08) 0.86 (0.14) 0.86 (0.10) 0.48 (0.6) 0.76 (0.12)

NPP 0.93 (0.26) 0.87 (0.63) 0.50 (0.14) 0.94 (0.21) 0.89 (0.5) -0.47 (0.021) 0.69 (0.016)

Finally, a key benefit of the chemical functional family approach used by BFM17 is the ability of the model to predict

non-Redfield nutrient ratios. Figure 6 shows the constituent component ratios normalized by the respective Redfield ratios for

BFM17. The figure includes the component ratios of carbon to nitrogen, carbon to phosphorous, and nitrogen to phospho-

rous for phytoplankton, DOM, and POM. Zooplankton nutrient ratios were not included because the parameterization of the

zooplankton relaxes the nutrient ratio back to a constant value. The normalized ratio values are uniform non-unity valued fields.410

Ultimately, Figure 6 shows that BFM17 is able to capture the phosphate-limited dynamics that characterize the BATS/BTM

region (Fanning, 1992; Michaels et al., 1993; Cavender-Bares et al., 2001; Steinberg et al., 2001; Ammerman et al., 2003;

Martiny et al., 2013; Singh et al., 2015). In particular, Figure 6 shows that all results comparing carbon or nitrogen to phos-

phorous for BFM17 produce normalized vales greater than 1, where the normalization is carried out using the Redfield ratio

(i.e., a normalized value greater than 1 indicates that the field is denominator limited). Figure 6 also shows that the ratios are415

not uniform for phytoplankton, DOM, and POM, with the ratios decreasing with depth as a result of the increased availability

of nitrogen and phosphate.

6 Conclusions

In this study, we have presented a new upper-thermocline, open-ocean BGC model that is complex enough to capture open-

ocean ecosystem dynamics within the Sargasso Sea region, yet reduced enough to integrate with a physical model with limited420

additional computational cost. The new model, named the Biogeochemical Flux Model 17 (BFM17) includes 17 state variables

and expands upon more reduced BGC models by incorporating a phosphate equation and by tracking dissolved oxygen, as well

as variable intra- and extra-cellular nutrient ratios. BFM17 was developed primarily for use within high-resolution, high-fidelity

3D physical models, such as LES, for process, parameterization, and parameter optimization studies, applications for which its

more complex counterpart BFM56 would be much too costly.425
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Figure 6. Fields of BFM17 constituent component ratios of carbon to nitrogen (top row), carbon to phosphorous (middle row), and nitrogen

to phosphorous (bottom row) for phytoplankton (first column), dissolved organic detritus (second column), and particulate organic detritus

(third column). Each field is normalized by the respective Redfield ratio.

To calibrate and test the model, it was coupled to the 1D Princeton Ocean Model (POM-1D) and forced using field data

from the Bermuda Atlantic test site area. The full 56 state variable Biogeochemical Flux Model (BFM56) was also run using

the same forcing. Results were compared between the two models and all six of the BATS target fields—chlorophyll, oxygen,

nitrate, phosphate, PON, and NPP—and a model skill assessment was performed, concluding that the BFM17 captures the

subsurface chlorophyll maximum and bloom intensity observed in the BATS data and produces comparable results to BFM56.430

In comparison with similar studies using slightly less complex models, BFM17-POM1D performs on par with, or better than,

those studies.

In the future, a sensitivity study is necessary to assess the most sensitive model parameters, both in BFM17 as well as in the

1D physical model. After identification of these most sensitive model parameters, an optimization can be performed to reduce

discrepancies between the BATS observation biology fields and the corresponding model output fields. Additionally, it would435
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be useful to study the efficacy of using BFM17 in a global context, to reproduce the ecology in other regions of the ocean, and

its sensitivity under various physical forcing scenarios. Finally, BFM17 is now of a size that it can be efficiently integrated in

high-resolution, high-fidelity 3D simulations of the upper ocean, and future work will examine model results in this context.

Appendix A: BFM17 Model Equations

In the following, the detailed equations and their parameter values for each of the 17 state variables that comprise BFM17 are440

outlined. A summary of the 17 state variables is provided in Table 1 and a schematic of the CFFs and LFGs used in BFM17,

along with their interactions, is shown in Figure 1.

A1 Environmental parameters

BFM17 interacts with the environment through temperature and irradiance inputs. Temperature directly affects all physiological

processes and is represented in the model by introducing the non-dimensional parameter f (T )
j defined as445

f
(T )
j =Q

(T−T∗)/T∗

10,j , j = P,Z , (A1)

where T ∗ is a base temperature andQ10,j is a coefficient that may differ for the phytoplankton and zooplankton LFGs, denoted

Pi and Zi, respectively. Here, the subscript i is used to denote different chemical constituents (i.e., C, N, and P) and j is

used to denote different LFGs. Base values used for T ∗ and Q10,j are shown in Table A1. The model additionally employs a

temperature-dependent nitrification parameter f (T )
N , which is defined similarly to Eq. (A1) as450

f
(T )
N =Q

(T−T∗)/T∗

10,N , (A2)

where Q10,N is given in Table A1

In contrast to temperature, irradiance only directly affects phytoplankton, serving as the primary energy source for phyto-

plankton growth and maintenance. Irradiance is a function of the incident solar radiation at the sea surface. Within BFM17, the

Table A1. Symbols, values, units, and descriptions for environmental parameters within the BFM17 pelagic model.

Symbol Value Units Description

Q10,P 2.00 - Phytoplankton Q10 coefficient

Q10,Z 2.00 - Zooplankton Q10 coefficient

Q10,N 2.00 - Nitrification Q10 coefficient

T ∗ 10.0 ◦C Base temperature

cP 0.03 m2 (mg chl)−1 Chlorophyll-specific light absorption coefficient

εPAR 0.40 - Fraction of photosynthetically active radiation

λw 0.0435 m−1 Background attenuation coefficient

cR(2) 0.1× 10−3 m2 (mg C)−1 C-specific attenuation coefficient of particulate detritus
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amount of photosynthetically active radiation (PAR) at any given location z is parameterized according to the Lambert–Beer455

model as

EPAR(z) = εPARQS exp

λwz+

0∫
z

λbio(z′)dz′

 , (A3)

where QS is the short-wave surface irradiance flux, which is typically obtained from real-world measurements of the atmo-

spheric radiative transfer, εPAR is the fraction of PAR within QS , λw is the background light extinction due to water, and λbio

is the light extinction due to suspended biological particles. Values for εPAR and λw are given in Table A1. The extinction460

coefficient due to particulate matter, λbio, is dependent on phytoplankton chlorophyll, Pchl, and particulate detritus, R(2)
C , and

is written as

λbio = cPPchl + cR(2)R
(2)
C , (A4)

where cP and cR(2) are the specific absorption coefficients of phytoplankton chlorophyll and particulate detritus, respectively,

with values given in Table A1.465

A2 Phytoplankton equations

The phytoplankton LFG in BFM17 is part of the living organic CFF and is composed of separate state variables for the

constituents carbon, nitrogen, phosphorous, and chlorophyll, denoted PC, PN, PP, and Pchl respectively (see also Table 1). The

governing equations for the constituent state variables are given by:

1. Phytoplankton functional group in the living organic CFF, carbon constituent (state variable PC):470

∂PC

∂t

∣∣∣∣
bio

=
∂PC

∂t

∣∣∣∣gpp

CO2

− ∂PC

∂t

∣∣∣∣rsp

CO2

− ∂PC

∂t

∣∣∣∣lys

R
(1)
C

− ∂PC

∂t

∣∣∣∣lys

R
(2)
C

− ∂PC

∂t

∣∣∣∣exu

R
(1)
C

− ∂PC

∂t

∣∣∣∣prd

ZC

, (A5)

2. Phytoplankton functional group in the living organic CFF, nitrogen constituent (state variable PN):

∂PN

∂t

∣∣∣∣
bio

= max

[
0,
∂PN

∂t

∣∣∣∣upt

N(2)

+
∂PN

∂t

∣∣∣∣upt

N(3)

]
− ∂PN

∂t

∣∣∣∣lys

R
(1)
N

− ∂PN

∂t

∣∣∣∣lys

R
(2)
N

− ∂PN

∂t

∣∣∣∣prd

ZN

, (A6)

3. Phytoplankton functional group in the living organic CFF, phosphorus constituent (state variable PP):

∂PP

∂t

∣∣∣∣
bio

= max

[
0,
∂PP

∂t

∣∣∣∣upt

N(1)

]
− ∂PP

∂t

∣∣∣∣lys

R
(1)
P

− ∂PP

∂t

∣∣∣∣lys

R
(2)
P

− ∂PP

∂t

∣∣∣∣prd

ZP

, (A7)475

4. Phytoplankton functional group in the living organic CFF, chlorophyll constituent (state variable Pchl):

∂Pchl

∂t

∣∣∣∣
bio

=
∂Pchl

∂t

∣∣∣∣syn

− ∂Pchl

∂t

∣∣∣∣loss

, (A8)
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Table A2. List of abbreviations used to indicate physiological and ecological processes in the equations comprising the BFM17 pelagic

model.

Abbreviation Process

gpp Gross primary production

rsp Respiration

prd Predation

rel Biological release: egestion, excretion, mortality

exu Exudation

upt Uptake

lys Lysis

syn Biochemical synthesis

loss Biochemical loss

nit Nitrification

where the descriptions of each of the source and sink terms are provided in Table A2. The subscript “bio” on the left-hand side

terms indicates that these are the total rate expressions associated with all biological processes.

For the evolution of the phytoplankton carbon constituent given by Eq. (A5), gross primary production depends on the480

non-dimensional regulation factors for temperature and light as well as on the maximum photosynthetic growth rate and the

phytoplankton carbon instantaneous concentration. This then gives

∂PC

∂t

∣∣∣∣gpp

CO2

= r
(0)
P f

(T )
P f

(E)
P PC , (A9)

where r(0)P is the maximum photosynthetic rate for phytoplankton (reported in Table A3) and f (T )
P is the temperature regulation

factor for phytoplankton given by Eq. (A1). The term f
(E)
P is the light regulation factor for phytoplankton, which is defined485

following (Jassby and Platt, 1976) as

f
(E)
P = 1− exp

(
−EPAR

EK

)
, (A10)

where EPAR is defined in Eq. (A3) and EK (the “optimal” irradiance) is given by

EK =

[
r
(0)
P

α
(0)
chl

](
PC

Pchl

)
. (A11)

The parameter α(0)
chl is the maximum light utilization coefficient and is defined in Table A3.490

Phytoplankton respiration is parameterized in Eq. (A5) as the sum of the basal respiration and activity respiration rates,

namely

∂PC

∂t

∣∣∣∣rsp

CO2

= bP f
(T )
P PC + γP

[
∂PC

∂t

∣∣∣∣gpp

CO2

− ∂PC

∂t

∣∣∣∣exu

R
(1)
C

]
, (A12)
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Table A3. Phytoplankton parameters, values, units, and descriptions within the BFM17 pelagic model.

Symbol Value Units Description

r
(0)
P 1.60 d−1 Maximum specific photosynthetic rate

bP 0.05 d−1 Basal specific respiration rate

d
(0)
P 0.05 d−1 Maximum specific nutrient-stress lysis rate

h
(N,P)
P 0.10 - Nutrient stress threshold

βP 0.05 - Excreted fraction of primary production

γP 0.05 - Activity respiration fraction

a
(N)
P 0.025 m3 (mg C)−1 d−1 Specific affinity constant for nitrogen

h
(N)
P 1.50 mmol N-NH4 m−3 Half saturation constant for ammonium uptake

φ
(min)
N 6.87× 10−3 mmolN (mg C)−1 Minimum nitrogen quota

φ
(opt)
N 1.26× 10−2 mmolN (mg C)−1 Optimal nitrogen quota

φ
(max)
N 1.0φ(opt)

N mmolN (mg C)−1 Maximum nitrogen quota

a
(P)
P 2.5× 10−3 m3 (mg C)−1 d−1 Specific affinity constant for phosphorus

φ
(min)
P 4.29× 10−4 mmolP (mg C)−1 Minimum phosphorus quota

φ
(opt)
P 7.86× 10−4 mmolP (mg C)−1 Optimal phosphorus quota

φ
(max)
P 1.0φ(opt)

P mmolP (mg C)−1 Maximum phosphorus quota

α
(0)
chl 1.52× 10−5 mgC (mg chl)−1 (µE)−1 m2 Maximum light utilization coefficient

θ
(0)
chl 0.016 mg chl (mg C)−1 Maximum chlorophyll to carbon quota

where bP is the basal specific respiration rate, γP is the respired fraction of the gross primary production, the gross primary

production term is given by Eq. (A9), and the exudation term is defined below in Eq. (A18). Values and descriptions for bP495

and γP are given in Table A3.

Both phytoplankton exudation and lysis, defined below, depend on a multiple nutrient limitation term f
(N,P)
P . This term allows

for the internal storage of nutrients and depends on the respective nutrient limitation terms for both nitrate and phosphate. It is

given by f (N,P)
P = min

[
f
(N)
P ,f

(P)
P

]
, where

f
(N)
P = min

{
1,max

[
0,
PN/PC−φ(min)

N

φ
(opt)
N −φ(min)

N

]}
, (A13)500

f
(P)
P = min

{
1,max

[
0,
PP/PC−φ(min)

P

φ
(opt)
P −φ(min)

P

]}
. (A14)

The parameters φ(opt)
N and φ(opt)

P are the optimal phytoplankton quotas for nitrogen and phosphorus, respectively, while φ(min)
N

and φ(min)
P are the minimum possible quotas, below which f (N)

P and f (P)
P are zero. Values for each of these parameters are

included in Table A3.
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Phytoplankton lysis includes all mortality due to mechanical, viral, and yeast cell disruption processes, and is partitioned505

between particulate and dissolved detritus. The internal cytoplasm of the cell is released to dissolved detritus, denoted by R(1)
i ,

while structural parts of the cell are released to particulate detritus, denoted by the state variable R(2)
i , where i= C,N,P (see

also Table 1). The resulting lysis terms in Eqs. (A5)–(A7) are then given by

∂Pi

∂t

∣∣∣∣lys

R
(1)
i

=
[
1− ε(N,P)

P

][ h
(N,P)
P

f
(N,P)
P +h

(N,P)
P

d
(0)
P Pi

]
, i= C,N,P , (A15)

∂Pi

∂t

∣∣∣∣lys

R
(2)
i

= ε
(N,P)
P

[
h
(N,P)
P

f
(N,P)
P +h

(N,P)
P

d
(0)
P Pi

]
, i= C,N,P , (A16)510

where h(N,P)
P is the nutrient stress threshold and d(0)P is the maximum specific nutrient-stress lysis rate, both of which are given

in Table A3. The term ε
(N,P)
P is a fraction that ensures nutrients within the structural parts of the cell, which are less degradable,

are always released as particulate detritus. This fraction is determined by the expression

ε
(N,P)
P = min

[
1,
φ
(min)
N

PN/PC
,
φ
(min)
P

PP/PC

]
, (A17)

where φ(min)
N and φ(min)

P are given in Table A3.515

If phytoplankton cannot equilibrate their fixed carbon with sufficient nutrients, this carbon is not assimilated and is instead

released in the form of dissolved carbon, denoted by state variable R(1)
C , in a process known as exudation. The exudation term

in Eq. (A5) is parameterized as

∂PC

∂t

∣∣∣∣exu

R
(1)
C

=
{
βP + (1−βP )

[
1− f (N,P)

P

]} ∂PC

∂t

∣∣∣∣gpp

CO2

, (A18)

where βP is the excreted fraction of gross primary production, defined in Table A3, and the gross primary production term is520

again given by Eq. (A9).

The nutrient uptake of Eqs. (A6) and (A7) combines both the intracellular quota (i.e., Droop) and external concentration (i.e.,

Monod) approaches Baretta-Bekker et al. (1997). The total phytoplankton uptake of nitrogen, represented by the combination

of the two uptake terms in Eq. (A6), is the minimum of a diffusion-dependent uptake rate when internal nutrient quotas are low

and a rate that is based upon balanced growth needs and any excess uptake, namely525

∂PN

∂t

∣∣∣∣upt

N(2,3)

= min

{
a
(N)
P

[
h
(N)
P

h
(N)
P +N (3)

N (2) +N (3)

]
PC , φ

(max)
N GP + νP

[
φ
(max)
N − PN

PC

]
PC

}
, (A19)

where a(N)
P is the specific affinity for nitrogen, h(N)

P is the half saturation constant for ammonium uptake, and φ(max)
N is the

maximum nitrogen quota; base values for these three parameters are given in Table A3. The net primary productivity GP in

Eq. (A19) is given as

GP = max

[
0,
∂PC

∂t

∣∣∣∣gpp

CO2

− ∂PC

∂t

∣∣∣∣exu

R
(1)
C

− ∂PC

∂t

∣∣∣∣rsp

CO2

− ∂PC

∂t

∣∣∣∣lys

R
(1)
C

− ∂PC

∂t

∣∣∣∣lys

R
(2)
C

]
. (A20)530
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The specific uptake rate νP appearing in Eq. (A19) is given by

νP = f
(T)
P r

(0)
P . (A21)

It should be noted that only the sum of the two uptake terms, represented by Eq. (A19), is required in the governing equation

for PN given by Eq. (A6). However, in the governing equations for nitrate and ammonium, denoted N (2) and N (3) (see Table

1) that will be presented later, expressions are required for the individual uptake portions from nitrate and ammonium. When535

the total phytoplankton nitrogen uptake rate from Eq. (A19) is positive, the individual portions from nitrate and ammonium are

determined by

∂PN

∂t

∣∣∣∣upt

N(2)

= εP
∂PN

∂t

∣∣∣∣upt

N(2,3)

, (A22)

∂PN

∂t

∣∣∣∣upt

N(3)

= (1− εP )
∂PN

∂t

∣∣∣∣upt

N(2,3)

, (A23)

where the rates on the right-hand sides are obtained from Eq. (A19), and εP is given as540

εP =
sNN

(2)

N (3) + sNN (2)
. (A24)

The preference for ammonium is defined by the saturation function sN and is given by

sN =
h
(N)
P

h
(N)
P +N (3)

. (A25)

When the phytoplankton nitrogen uptake rate from Eq. (A19) is negative, however, the entire nitrogen uptake goes to the

dissolved organic nitrogen pool, R(1)
N [see Eq. (A42)].545

As with the uptake of nitrogen, phytoplankton uptake of phosphorus in Eq. (A7) is the minimum of a diffusion-dependent

rate and a balanced growth/excess uptake rate. This uptake comes entirely from one pool and the uptake term in Eq. (A7) is

correspondingly given by

∂PP

∂t

∣∣∣∣upt

N(1)

= min
{
a
(P)
P N (1)PC , φ

(max)
P GP + νP

[
φ
(max)
P PC−PP

]}
, (A26)

where a(P)
P is the specific affinity constant for phosphorous and φ(max)

P is the maximum phosphorous quota. Values for both550

parameters are given in Table A3. If the uptake rate is negative, the entire phosphorus uptake goes to the dissolved organic

phosphorus pool, R(1)
P .

Predation of phytoplankton within BFM17 is solely performed by zooplankton, and each of the predation terms appearing

in Eqs. (A5)–(A7) are equal and opposite to the zooplankton predation terms, namely

∂Pi

∂t

∣∣∣∣prd

Zi

=− ∂Zi

∂t

∣∣∣∣prd

Pi

, i= C,N,P . (A27)555

Equations for the zooplankton predation terms are given in the next section.

25



Finally, phytoplankton chlorophyll, denoted Pchl with the rate equation given by Eq. (A8), contributes to the definition of

the optimal irradiance value in Eq. (A11) and of the phytoplankton contribution to the extinction coefficient in Eq. (A4).

The phytoplankton chlorophyll source term in Eq. (A8) is made up of only two terms: chlorophyll synthesis and loss. Net

chlorophyll synthesis is a function of acclimation to light n conditions, availability of nutrients, and turnover rate, and is given560

by

∂Pchl

∂t

∣∣∣∣syn

= ρchl (1− γP )

[
∂PC

∂t

∣∣∣∣gpp

CO2

− ∂PC

∂t

∣∣∣∣exu

R
(1)
C

]
− Pchl

PC

[
∂PC

∂t

∣∣∣∣lys

R
(1)
C

+
∂PC

∂t

∣∣∣∣lys

R
(2)
C

+
∂PC

∂t

∣∣∣∣rsp

CO2

]
, (A28)

where ρchl regulates the amount of chlorophyll in the phytoplankton cell and all other terms in the above expression have been

defined previously. The term ρchl is computed according to a ratio between the realized photosynthetic rate (i.e., gross primary

production) and the maximum potential photosynthesis Geider et al. (1997), and is correspondingly given as565

ρchl = θ
(0)
chl min

{
1,

(1− γP )

α
(0)
chl EPARPchl

[
∂PC

∂t

∣∣∣∣gpp

CO2

− ∂PC

∂t

∣∣∣∣exu

R
(1)
C

]}
, (A29)

where θ(0)chl is the maximum chlorophyll to carbon quota and α(0)
chl is the maximum light utilization coefficient, both of which

can be found in Table A3. Chlorophyll loss in Eq. (A8) is simpler and is just a function of predation, where the amount of

chlorophyll transferred back to the infinite sink is proportional to the carbon predated by zooplankton, giving

∂Pchl

∂t

∣∣∣∣loss

=
Pchl

PC

∂PC

∂t

∣∣∣∣prd

ZC

. (A30)570

A3 Zooplankton equations

The zooplankton LFG group in BFM17 is part of the living organic CFF and is composed of separate state variables for

carbon, nitrogen, and phosphorous, denoted ZC, ZN, and ZP, respectively (see also Table 1). The governing equations for the

constituent state variables are given by:

5. Zooplankton functional group in the living organic CFF, carbon constituent (state variable ZC):575

∂ZC

∂t

∣∣∣∣
bio

=
∂ZC

∂t

∣∣∣∣prd

PC

− ∂ZC

∂t

∣∣∣∣rsp

CO2

− ∂ZC

∂t

∣∣∣∣rel

R
(1)
C

− ∂ZC

∂t

∣∣∣∣rel

R
(2)
C

, (A31)

6. Zooplankton functional group in the living organic CFF, nitrogen constituent (state variable ZN):

∂ZN

∂t

∣∣∣∣
bio

=
∂ZN

∂t

∣∣∣∣prd

PN

− ∂ZN

∂t

∣∣∣∣rel

R
(1)
N

− ∂ZN

∂t

∣∣∣∣rel

R
(2)
N

− ∂ZN

∂t

∣∣∣∣rel

N(3)

, (A32)

7. Zooplankton functional group in the living organic CFF, phosphorus constituent (state variable ZP):

∂ZP

∂t

∣∣∣∣
bio

=
∂ZP

∂t

∣∣∣∣prd

PP

− ∂ZP

∂t

∣∣∣∣rel

R
(1)
P

− ∂ZP

∂t

∣∣∣∣rel

R
(2)
P

− ∂ZP

∂t

∣∣∣∣rel

N(1)

, (A33)580
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Table A4. Zooplankton parameters, values, units, and descriptions within the BFM17 pelagic model.

Symbol Value Unit Description

bZ 0.02 d−1 Basal specific respiration rate

r
(0)
Z 2.00 d−1 Potential specific growth rate

d
(0)
Z 0.25 d−1 Oxygen dependent specific mortality rate

dZ 0.05 d−1 Specific mortality rate

ηZ 0.50 - Assimilation efficiency

βZ 0.25 - Fraction of activity excretion

εC
Z 0.60 - Partition between dissolved and particulate excretion of C

εN
Z 0.72 - Partition between dissolved and particulate excretion of N

εP
Z 0.832 - Partition between dissolved and particulate excretion of P

h
(F )
Z 200.0 mg C m−3 Michaelis constant for total food ingestion

δZ,P 1.00 - Availability of phytoplankton to zooplankton

ν
(P)
Z 1.0 d−1 Specific rate constant for phosphorous excretion

ν
(N)
Z 1.0 d−1 Specific rate constant for nitrogen excretion

ϕ(opt)
P 7.86× 10−4 mmolP (mg C)−1 Optimal phosphorous quota

ϕ(opt)
N 0.0126 mmolN (mg C)−1 Optimal nitrogen quota

where, once more, descriptions of each of the source and sink terms are provided in Table A2.

Zooplankton predation of phytoplankton, which appears as the first term in each of Eqs. (A31)–(A33), primarily depends on

the availability of phytoplankton and their capture efficiency, and is expressed as

∂Zi

∂t

∣∣∣∣prd

Pi

=
Pi

PC

[
f
(T )
Z r

(0)
Z δZ,P

PC

PC +h
(F )
Z

ZC

]
, i= C,N,P , (A34)

where r(0)Z is the potential specific growth rate and h(F )
Z is the Michaelis constant for total food ingestion. These parameters585

and their base values are included in Table A4. Here, f (T )
Z is the temperature regulating factor for zooplankton growth given

by Eq. (A1). The total food availability can be expressed as δZ,PPC, where δZ,P is the prey availability of phytoplankton and

is included in Table A4.

Zooplankton respiration is the sum of active and basal metabolism rates, where active respiration is the cost of nutrient

ingestion, or predation. The resulting respiration rate is given by590

∂ZC

∂t

∣∣∣∣rsp

CO2

= (1− ηZ −βZ)
∂ZC

∂t

∣∣∣∣prd

Pc

+ bZf
(T )
Z ZC , (A35)

where ηZ is the assimilation efficiency, βZ is the excreted fraction uptake, and bZ is the basal specific respiration rate. All three

parameters are included in Table A4.

The biological release terms in Eqs. (A31)–(A33) are the sum of zooplankton excretion, egestion, and mortality. Excretion

and egestion are the portions of ingested nutrients, resulting from predation, that have not been assimilated or used for respira-595
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tion. Zooplankton mortality is parameterized as the sum of a constant mortality rate and an oxygen-dependent regulation factor

given by

f
(O)
Z =

O

O+hO
, (A36)

where O represents the oxygen constituent of the dissolved gas in the inorganic CFF and hO is the half saturation coefficient

for chemical processes given in Table A5. The total biological release is then partitioned into particulate and dissolved organic600

matter, giving

∂Zi

∂t

∣∣∣∣rel

R
(1)
i

= ε
(i)
Z

{
βZ

∂Zi

∂t

∣∣∣∣prd

Pi

+ dZ + d
(0)
Z

[
1− f (O)

Z

]
f
(T )
Z Zi

}
, i= C,N,P , (A37)

∂Zi

∂t

∣∣∣∣rel

R
(2)
i

=
[
1− ε(i)Z

] ∂Zi

∂t

∣∣∣∣rel

R
(1)
i

, i= C,N,P , (A38)

where ε(i)Z is the fraction excreted to the dissolved pool, dZ is the specific mortality rate, and d(0)Z is the oxygen dependent

specific morality rate. Base values for each parameter are given in Table A4.605

The zooplankton also excrete into the nutrient pools of phosphate,N (1), and ammonium,N (3). These effects are represented

by the final terms of Eqs. (A32) and (A33), which are parameterized by

∂ZN

∂t

∣∣∣∣rel

N(3)

= ν
(N)
Z max

[
0,
ZN

ZC
−ϕ(opt)

N

]
ZN , (A39)

∂ZP

∂t

∣∣∣∣rel

N(1)

= ν
(P)
Z max

[
0,
ZP

ZC
−ϕ(opt)

P

]
ZP , (A40)

where ν(N)
Z and ν

(P)
Z are specific rate constants and ϕ(opt)

N and ϕ(opt)
P are the optimal zooplankton quotas for nitrogen and610

phosphorous, respectively. All four parameters are included in Table A4.

A4 Dissolved organic matter equations

The governing equations for the three constituents of dissolved organic matter are given by:

8. Dissolved matter in non-living organic CFF, carbon constituent [state variable R(1)
C ]:

∂R
(1)
C

∂t

∣∣∣∣∣
bio

=
∂PC

∂t

∣∣∣∣lys

R
(1)
C

+
∂PC

∂t

∣∣∣∣exu

R
(1)
C

+
∂ZC

∂t

∣∣∣∣rel

R
(1)
C

−α(sinkC)

R(1) R
(1)
C , (A41)615

9. Dissolved matter in non-living organic CFF, nitrogen constituent [state variable R(1)
N ]:

∂R
(1)
N

∂t

∣∣∣∣∣
bio

=
∂PN

∂t

∣∣∣∣lys

R
(1)
N

+
∂ZN

∂t

∣∣∣∣rel

R
(1)
N
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[
0,
∂PN

∂t

∣∣∣∣upt

N(2)

+
∂PN

∂t

∣∣∣∣upt

N(3)

]
− ζN(3)R

(1)
N , (A42)

10. Dissolved matter in non-living organic CFF, phosphorus constituent [state variable R(1)
P ]:

∂R
(1)
P

∂t

∣∣∣∣∣
bio

=
∂PP

∂t

∣∣∣∣lys

R
(1)
P

+
∂ZP

∂t

∣∣∣∣rel

R
(1)
P

−min

[
0,
∂PP

∂t

∣∣∣∣upt

N(1)

]
− ζN(1)R

(1)
P . (A43)
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Table A5. Values, units, and descriptions for dissolved organic matter, particulate organic matter, and nutrient parameters within the BFM17

pelagic model.

Symbol Value Units Description

α
(sinkC)

R(1) 0.05 d−1 Specific remineralization rate of dissolved carbon

ζN(1) 0.05 d−1 Specific remineralization rate of dissolved phosphorus

ζN(3) 0.05 d−1 Specific remineralization rate of dissolved nitrogen

α
(sinkC)

R(2) 0.1 d−1 Specific remineralization rate of particulate carbon

ξN(1) 0.1 d−1 Specific remineralization rate of particulate phosphorus

ξN(3) 0.1 d−1 Specific remineralization rate of particulate nitrogen

Λ
(nit)
N(3) 0.01 d−1 Specific nitrification rate at 10 ◦C

hO 10.0 mmolO2 m−3 Half saturation for chemical processes

Ω
(O)
C 12.0 mmolO2 mgC−1 Stoichiometric coefficient for oxygen reaction

Ω
(O)
N 2.0 mmolO2 mmolN−1 Stoichiometric coefficient for nitrification reaction

All terms except for the last terms in each of these equations, representing remineralization, have been defined in previous620

sections. Remineralization of dissolved organic matter by bacteria is parameterized within BFM17 as a rate that is proportional

to the local concentration of that dissolved constituent. In Eq. (A41), remineralization is parameterized as α(sinkC)

R(1) R
(1)
C , where

α
(sinkC)

R(1) is a constant that controls the rate at which dissolved carbon is remineralized and returned to the pool of carbon; this

constant is given in Table A5. In Eqs. (A42) and (A43), remineralization is represented by the parameters ζN(3) and ζN(1) ,

which are the specific remineralization rates of dissolved ammonium and phosphate, respectively. These rates are also included625

in Table A5

A5 Particulate organic matter equations

The governing equations for the three constituents of particulate organic matter are given by:

11. Particulate matter in non-living organic CFF, carbon constituent [state variable R(2)
C ]:

∂R
(2)
C

∂t

∣∣∣∣∣
bio

=
∂PC

∂t

∣∣∣∣lys

R
(2)
C

+
∂ZC

∂t

∣∣∣∣rel

R
(2)
C

−α(sinkC)

R(2) R
(2)
C , (A44)630

12. Particulate matter in non-living organic CFF, nitrogen constituent [state variable R(2)
N ]:

∂R
(2)
N

∂t

∣∣∣∣∣
bio

=
∂PN

∂t

∣∣∣∣lys

R
(2)
N

+
∂ZN

∂t

∣∣∣∣rel

R
(2)
N

− ξN(3)R
(2)
N , (A45)
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13. Particulate matter in non-living organic CFF, phosphorus constituent [state variable R(2)
P ]:

∂R
(2)
P

∂t

∣∣∣∣∣
bio

=
∂PP

∂t

∣∣∣∣lys

R
(2)
P

+
∂ZP

∂t

∣∣∣∣rel

R
(2)
P

− ξN(1)R
(2)
P . (A46)

Once again, all terms except for the final remineralization terms in each equation have been defined in previous sections.635

Remineralization of particular organic matter by bacteria is parameterized within BFM17 as a rate that is proportional to

the local concentration of that particulate constituent. In Eq. (A44), remineralization is parameterized by α(sinkC)

R(2) R
(2)
C , where

α
(sinkC)

R(2) is a constant that controls the rate at which the particulate carbon is remineralized. The base value for this constant

is provided in Table A5. The parameters ξN(3) and ξN(1) are the specific remineralization rates of particulate ammonium and

phosphate, respectively. The specific remineralization rates for particulate organic matter are also presented in Table A5.640

A6 Dissolved gas and nutrient equations

The only dissolved gas resolved by BFM17 is oxygen,O, (carbon dioxide is treated as an infinite source/sink) and the dissolved

nutrients in the model are phosphate, N (1), nitrate, N (2), and ammonium, N (3) (see also Table 1). Governing equations for

each of these state variables are given by:

14. Dissolved gas in the inorganic CFF, oxygen constituent (state variable O):645

∂O

∂t

∣∣∣∣
bio

=
∂O

∂t

∣∣∣∣wind

+ Ω
(O)
C

[
∂PC

∂t

∣∣∣∣gpp

CO2

− ∂PC

∂t

∣∣∣∣rsp

CO2

− ∂ZC

∂t

∣∣∣∣rsp

CO2

−α(sinkC)

R(2) R
(2)
C −α

(sinkC)

R(1) R
(1)
C

]

−Ω
(O)
N

∂N (3)

∂t

∣∣∣∣nit

N(2)

, (A47)

15. Dissolved nutrient in the inorganic CFF, phosphate constituent (state variable N (1)):

∂N (1)

∂t

∣∣∣∣
bio

=− ∂PP

∂t

∣∣∣∣upt

N(1)

+ ζN(1)R
(1)
P + ξN(1)R

(2)
P +

∂ZP

∂t

∣∣∣∣rel

N(1)

, (A48)

16. Dissolved nutrient in the inorganic CFF, nitrate constituent (state variable N (2)):650

∂N (2)

∂t

∣∣∣∣
bio

=− ∂PN

∂t

∣∣∣∣upt

N(2)

+
∂N (2)

∂t

∣∣∣∣nit

N(3)

, (A49)

17. Dissolved nutrient in the inorganic CFF, ammonium constituent (state variable N (3)):

∂N (3)

∂t

∣∣∣∣
bio

=− ∂PN

∂t

∣∣∣∣upt

N(3)

+ ζN(3)R
(1)
N + ξN(3)R

(2)
N +

∂ZN

∂t

∣∣∣∣rel

N(3)

− ∂N (3)

∂t

∣∣∣∣nit

N(2)

. (A50)

Aeration of the surface layer by wind, ∂O/∂t|wind, is parameterized as described in Wanninkhof (1992, 2014). In a 0D model

it is a source term for dissolved oxygen and so belongs in Eq. (A47). However, in any model of one dimension or more it655
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should be treated as a surface boundary condition for dissolved oxygen and so belongs in Eq. (17) and should be omitted from

Eq. (A47). The parameters Ω
(O)
C and Ω

(O)
N are stoichiometric coefficients used to convert units of carbon to units of oxygen

and nitrogen, respectively. All terms in the above equations have been defined in previous sections, except for nitrification.

Nitrification is a source term for nitrate and is parameterized as a sink of ammonium and oxygen as

∂N (2)

∂t

∣∣∣∣nit

N(3)

=
∂N (3)

∂t

∣∣∣∣nit

N(2)

= Λ
(nit)
N(3)f

(T )
N f

(O)
Z N (3) , (A51)660

where Λ
(nit)
N(3) is the specific nitrification rate, given in Table A5. The terms f (T )

N and f (O)
Z are defined in Eqs. (A2) and (A36),

respectively.

Appendix B: Zero-Dimensional Test of the BFM17

As a simple test of BFM17 without the influence of any particular physical model, the BGC model was integrated in a 0D

(i.e., time only) test for 10 years using sinusoidal forcing for the temperature (in units of ◦C), salinity (psu), 10 m wind-speed665

(m s−1), and PAR (W m−2) cycles. This forcing is implemented as

F (var)(t) =
[
F (var)

s +F (var)
w

]
− 0.5

[
F (var)

s −F (var)
w

]
cos(tR) , (B1)

where F (var) is the annually varying forcing term, ‘var’ indicates the variable of interest, corresponding to temperature (‘temp’),

salinity (‘sal’), wind speed (‘wind’), and PAR. In Eq. (B1), F (var)
w and F (var)

s are, respectively, the winter and summer ex-

treme values for the forcing term considered, 0≤ t≤ 360 is the time, and R= π/180. The winter and summer values were670

chosen to be similar to those found in the observational data described in Section 4, with [F
(temp)
w ,F

(temp)
s ] = [10◦C,30◦C],

[F
(sal)
w ,F

(sal)
s ] = [37 psu,36.5 psu], [F

(wind)
w ,F

(wind)
s ] = [6 m s−1,2 m s−1], and [F

(PAR)
w ,F

(PAR)
s ] = [10 W m−2,120 W m−2].

Note that, in the 0D framework, the wind forcing does not constrain the biogeochemical dynamics, but does play a role in

oxygen exchange with the atmosphere, defined according to Wanninkhof (1992, 2014).

Initial values for chlorophyll, oxygen, phosphate, and nitrate were taken to be similar to values from the BATS/BTM ob-675

servational data, with Pchl = 0.2 mg Chl-a m−3, O = 230 mmol O2 m−3, N (1) = 0.06 mmol P m−3, and N (2) = 1.0 mmol N

m−3). Phytoplankton carbon was calculated using the maximum chlorophyll to carbon ratio, θ(0)chl in Table A3. Initial values

for zooplankton carbon, dissolved carbon, and particulate organic carbon were assumed to be the same as the phytoplankton

carbon. Ammonium was assumed to have the same initial concentration as phosphate. All other constituents were calculated

using their respective optimal ratios in Tables A3 and A4.680

Figure B1 shows the seasonal cycle of surface chlorophyll, zooplankton carbon, and nitrate over the last 4 years of the

10-year simulation period, indicating that a self-consistent and stable seasonal cycle with reasonable ecosystem values can

be attained by the model, regardless of its coupling to a physical model. Figures B1(a) and (c) also show monthly averaged

values taken from the observational data described in Section 4. Although the agreement between the 0D BFM17 model and

the observations is not perfect, both are qualitatively similar and close in magnitude, providing confidence in the accuracy of685

the model despite the lower fidelity of the 0D test.
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Figure B1. Seasonal cycle of surface (a) chlorophyll, (b) zooplankton carbon, and (c) nitrate from the 0D test of BFM17. Results are shown

for the last 4 years of the 10-year simulation. Panels (a) and (c) show monthly averaged values taken from the observational data described

in Section 4.
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