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Abstract. Monitoring the evolution of the snowpack properties in mountainous areas is crucial for avalanche hazard forecast-

ing and water resources management. In-situ and remotely sensed observations provide precious information on the snowpack

but usually offer a limited spatio-temporal coverage of bulk or surface variables only. In particular, visible-near infrared (VIS-

NIR) reflectance observations can inform on the snowpack surface properties but are limited by terrain shading and clouds.

Snowpack modelling enables to estimate any physical variable, virtually anywhere, but is affected by large errors and uncer-5

tainties. Data assimilation offers a way to combine both sources of information, and to propagate information from observed

areas to non observed areas. Here, we present CrocO, (Crocus-Observations) an ensemble data assimilation system able to

ingest any snowpack observation (applied as a first step to the height of snow (HS) and VIS-NIR reflectances) in a spatialised

geometry. CrocO uses an ensemble of snowpack simulations to represent modelling uncertainties, and a Particle Filter (PF)

to reduce them. The PF is known to collapse when assimilating a too large number of observations. Two variants of the PF10

were specifically implemented to ensure that observations information is propagated in space while tackling this issue. The

global algorithm ingests all available observations with an iterative inflation of observation errors, while the klocal algorithm

is a localised approach performing a selection of the observations to assimilate based on background correlation patterns. Ex-

periments are carried out in a twin experiment setup, with synthetic observations of HS and VIS-NIR reflectances available

in only a 1/6th of the simulation domain. Results show that compared against runs without assimilation, analyses exhibit an15

average improvement of snow water equivalent Continuous Rank Probability Score (CRPS) of 60% when assimilating HS with

a 40-member ensemble, and an average 20% CRPS improvement when assimilating reflectance with a 160-member ensem-

ble. Significant improvements are also obtained outside the observation domain. These promising results open a way for the

assimilation of real observations of reflectance, or of any snowpack observations in a spatialised context.
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1 Introduction

Seasonal snowpack is a key element of mountainous areas. Monitoring the evolution of its physical properties is essential to

forecast avalanche hazard (Morin et al., 2020), rain-on-snow related floods (Pomeroy et al., 2016; Würzer et al., 2016) and

to monitor water resources (Mankin et al., 2015). Observations alone are too scarce to monitor snowpack conditions. In-situ

observations provide precise observations of several key variables, but they lack spatial representativeness and have a poor25

spatial coverage. Remote sensing of snowpack variables such as the height of snow (HS, (m)), snow water equivalent (SWE,

(kg m−2)), visible-near infrared (VIS-NIR) reflectance, or surface temperature, provide comprehensive information over large

areas but usually have a limited temporal resolution on a small set of variables. Furthermore, these observations are usually

available in fractions of simulation domains only, even for space-borne data (Davaze et al., 2018; Veyssière et al., 2019; Shaw

et al., 2019). For instance, snowpack VIS-NIR reflectances from moderate resolution (250-500 m) satellites such as MODIS30

or Sentinel-3 can help constraining the snowpack surface properties (Dozier et al., 2009). However, in the areas covered by

clouds, forests, or concerned by high sub-pixel variability (ridges, roughness, fractional snow cover) and shadows, satellite

retrievals are less accurate (Masson et al., 2018; Lamare et al., in prep, 2020), and data should be filtered out (Cluzet et al.,

2020).

35

Snowpack models of different complexity offer an exhaustive spatial and temporal coverage (Krinner et al., 2018). They

are applied within several spatial configurations, including collection of points, regular or irregular grids (Morin et al., 2020).

In this paper, "spatialised" refers indistinctly to any of these configurations. Only detailed snowpack models enable to assess

avalanche hazard and monitor water resources alike (Morin et al., 2020), but they suffer from considerable errors and uncer-

tainties (Essery et al., 2013; Lafaysse et al., 2017), limiting their use. In that context, combining remote sensing observations40

with models through data assimilation is an appealing solution (Largeron et al., submitted, 2020). It enables to optimally com-

bine the spatial and temporal coverage of snowpack models with the available information from observations. Assimilation

of optical reflectance could reduce modelled SWE errors by up to a factor of two (Charrois et al., 2016), and preliminary

studies showed its potential for spatialised assimilation (Cluzet et al., 2020). Assimilation of HS is very efficient in reducing

modelled SWE errors (Margulis et al., 2019). However, the limited spatial coverage of observations is stressing the need for45

data assimilation algorithms able to spread the snowpack observations information into the non-observed areas (Winstral et al.,

2019; Cantet et al., 2019; Largeron et al., submitted, 2020).

The Particle Filter with Sequential Importance Resampling (PF, Gordon et al., 1993; Van Leeuwen, 2009) is a Bayesian

ensemble data assimilation technique well suited to snowpack modelling (Magnusson et al., 2017). This sequential algorithm50

relies on an ensemble of model runs (particles) to represent the forecast uncertainty. At each observation date, the prior (or

background) composed of the particles is evaluated against the observations. The PF posterior (or analysis) is built by replicat-

ing the particles that are nearest to the observation (with respect to the observation error) and discarding the others.

The PF could be used in a spatialised context to spread observations information as suggested by Largeron et al. (submitted,
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2020) and Winstral et al. (2019). This is not straightforward because of the PF degeneracy, i.e. the required number of particles55

scales exponentially with the number of observations (Bengtsson et al., 2008; Snyder et al., 2008). This issue is a severe draw-

back when considering applications of the PF on large domains with a reasonable number of particles (Stigter et al., 2017).

Several solutions exist to tackle the PF degeneracy. A first approach is to inflate the observation errors in the PF. The tolerance

of the PF is increased, leading to more particles being replicated. This approach is based on the fact that observation error

statistics are usually poorly known and underestimated. It can also be used as a safeguard to prevent the PF to degenerate on60

specific dates, when observations are not compatible with the ensemble. PF inflation was successfully implemented in point

scale simulations of the snowpack (Larue et al., 2018). When dealing with a large number of observations, inflation might lead

to degeneracy or null analysis (posterior equal to the prior). In this work, we generalize over space the inflation of Larue et al.

(2018), trying to ingest all the observations into a single analysis over the domain, in a so-called global approach.

PF localisation is a more widespread alternative, tackling degeneracy by reducing the number of observations simultaneously65

assimilated by the PF (Poterjoy, 2016; Poterjoy and Anderson, 2016; Penny and Miyoshi, 2016; Poterjoy et al., 2019, italic

notations are taken from the review of Farchi and Bocquet, 2018). In this method, the simulation domain is divided into blocks

where different PF analyses are performed considering a local subset of observations (domain) based on a localisation radius.

It makes it possible to constrain the model in locations that are not directly observed, but with nearby observations. The un-

derlying hypothesis of localisation is that model points are independent beyond a certain distance, i.e. constraining one point70

with the observation from a too distant point would be meaningless, and likely degrade the analysis performance (Houtekamer

and Mitchell, 1998). However, in the case of small simulation domains or modelled systems driven by large-scale coherent

causalities, large scale correlations (relative to the domain size) may be physically sound, and defining a localisation radius

may be a difficult task. In order to face this issue, we developed a new localisation approach called the k-localisation, where

localisation domains are based on background correlation patterns.75

These developments were implemented into CrocO (Crocus-Observations) an ensemble data assimilation system able to se-

quentially assimilate snowpack observations with a PF in a spatialised context. CrocO can be implemented in any geome-

try, (e.g. within a distributed (gridded) framework or any irregular spatial discretisation). Here, we apply CrocO in a semi-

distributed framework, which is a conceptual spatialised geometry, operationally used by Météo-France for avalanche hazard

forecasting (Lafaysse et al., 2013; Morin et al., 2020). This framework is similar to many topographic-based discretisation80

in hydrological models (e.g. Clark et al., 2015). This setup enables to account for the snowpack variability induced by the

topography at the scale of a mountain range, through meteorological conditions (elevation controls the air temperature and

precipitation phase) and the snowpack radiative budget (also dependent on the aspect and slope angle) (Durand et al., 1993).

CrocO uses an ensemble of stochastic perturbations of SAFRAN meteorological analysis (Durand et al., 1993; Charrois et al.,

2016) to force ESCROC (Ensemble System CROCus, Lafaysse et al. (2017)), the multi-physical version of Crocus snowpack85

model (Vionnet et al., 2012). The ensemble setup accounts for the major sources of uncertainties in snowpack modelling

(Raleigh et al., 2015) and was formerly described and evaluated in the semi-distributed geometry by Cluzet et al. (2020).

Inflation and k-localisation were implemented into CrocO. Here, we present CrocO and evaluate how it addresses the issues

of reflectance observation sparseness and PF degeneracy in the context of snowpack modelling. This problem is divided into
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two scientific questions: (1) Is CrocO PF able to efficiently spread the information from sparse observations in space without90

degenerating ? (2) Is the spatial information content of reflectance valuable for snowpack models ? We assess these questions

by evaluating the performance of CrocO to model the SWE when assimilating synthetic observations of HS and reflectance

covering only a portion of the domain.

Section 2 presents the CrocO system, i.e. the ensemble modelling system and the PF algorithms. Section 3 introduces the

evaluation methodology. Following Sec. 4 assesses the performance of CrocO and Sec. 5 discusses the results. Finally, Sec. 695

provides perspectives and research directions.

2 Material and methods

2.1 Modelling geometry

Simulations are performed in the semi-distributed geometry. Mountain ranges such as the Alps are discretized into so-called

massifs of about 1000 km2 to account for regional variability of meteorological conditions. Within each massif, topographic-100

induced variability is taken into account by running the model into a fixed set of topographic classes, e.g. by 300 m elevation

bands, for 0o, 20o and 40o slopes and 8 aspects (see Fig. 1). This set enables to reproduce the main features of snowpack

variability (e.g. Mary et al., 2013).

In this study, we focus on the Grandes Rousses, a single massif in the central French Alps. This area of about 500 km2 is

represented by Npts = 187 independent topographic classes (see Fig. 1). In the following, specific topographic classes are105

denoted as follows: elevation_aspect_slope, e.g. 1800_N_40 stands for a 40o slope, with a northern aspect at 1800 m.a.s.l.

2.2 CrocO Ensemble data assimilation setup

The ensemble data assimilation workflow of CrocO is represented in Fig. 2. In the following, only a short description of the

system and its elements is provided. More details on the ensemble modelling setup are available in Cluzet et al. (2020).

110

2.2.1 Ensemble of snowpack models

Crocus is a detailed snowpack model, enabling to represent the snowpack coupling with the ground and atmosphere in the ISBA

land surface model (Interaction Soil-Biosphere-Atmosphere). It is embedded within the SURFEX_v8.1 modelling platform

(SURFace Externalisée, Masson et al. (2013)). The TARTES optical scheme (Libois et al., 2013, 2015) represents VIS-NIR

spectral radiative transfer within the snowpack, driven by snow metamorphism (Carmagnola et al., 2014) and Light Absorbing115

Particles (LAP (gg−1
snow)) deposition fluxes (Tuzet et al., 2017). Moreover, TARTES computes the snowpack reflectance with

a high spectral resolution, making the model directly comparable to the observations. This way, TARTES is both a physical

component of Crocus and an observation operator.

ESCROC (Ensemble System CROCus, Lafaysse et al., 2017) multi-physical ensemble version of Crocus is used to account
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for snowpack modelling uncertainties. A random draw among 1944 ESCROC multi-physics configurations was performed and120

used in all the simulations and denoted (Mi)0<i≤Ne
, Ne being the ensemble size (e.g. 40 or 160 members, see Fig. 2). These

configurations are considered equiprobable before any data assimilation.

2.2.2 Ensemble of meteorological forcings

Meteorological forcings are taken from SAFRAN (Durand et al., 1993) reanalysis, where forecasts from the ARPEGE Numer-125

ical Weather Prediction (NWP) model are downscaled and adjusted with surface observations within the massif area. They are

combined with MOCAGE LAP fluxes (Josse et al., 2004) interpolated at Col du Lautaret (2058 m.a.s.l, inside the Grandes-

Rousses) to constitute the reference forcing dataset. Before the beginning of the simulation, spatially homogeneous stochastic

perturbations are applied to this forcing to generate an ensemble of forcings (Fi)0<i≤Ne
as described in Cluzet et al. (2020).

Each forcing Fi is associated with the corresponding Mi ESCROC configuration and this relation is fixed during the whole130

simulation.

2.2.3 The Particle Filter in CrocO

The PF is applied sequentially at each observation date on the background state vectors (soil and snowpack state variables,

denoted BG on Fig. 2). Its analysis is an ensemble of initial conditions used to propagate the model forward. The algorithm135

is implemented into SODA (SURFEX Offline Data Assimilation, Albergel et al. (2017)), the data assimilation module of

SURFEX_v8.1, enabling a continuous execution sequence between ensemble propagation and analysis, as depicted in Fig. 2.

2.3 The Particle Filter equations

At a given observation date, we consider a set of observed variables available at several locations, totalling Ny different

observations.140

– Each member x̂i
b of the background state X̂b is projected into the observation space using the observation operator h.

In our case, h is just an orthogonal projection on the Ny observations since HS and reflectance are diagnosed within

Crocus (see Sec. 2.2.1). The projection xi
b = hx̂i

b = (xik)0<k≤Ny
, corresponds to the modelled values at each observed

variable/point.

– these Ny observations are collected in the vector y = (yk)0<k≤Ny
. The associated observation error covariance matrix145

R (Eq. 1) is supposed diagonal (e.g. observation errors are assumed independent):

R = diag(σ2
k,0< k ≤Ny) (1)

Where σ2
k stands for the observation error variance of observation k and depends only on the type of variable of obser-

vation yk (e.g. HS or reflectance).
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The PF analysis usually works in two steps.150

– (1) computing the particle weights wi as the normalised observation likelihood for each particle (Eq. 2):

wi =
e−

1
2 (y−xi

b)T R−1(y−xi
b)

∑Ne

k=1 e
− 1

2 (y−xk
b )T R−1(y−xk

b )
(2)

– (2) resampling the particles based on their weights to build the analysis vector X̂a. Here, we apply the PF resampling

from Kitagawa (1996) which returns s = (si)0<i≤Ne , (si ∈ [1..Ne]) a sorted vector with duplications, representing the

particles to replicate.155

A sample reordering step was added for numerical optimisation with no expected incidence on the PF behaviour (see in

Appendix A2 for more details).

Two simple variants of this algorithm can be identified in a spatialised context:

– global approach: perform one analysis over the domain, putting all the available observations in y.

– rlocal approach: perform one analysis per model point, assimilating only local observations, if any. This corresponds to160

a localised PF with block and domain size of 1.

2.3.1 Particle Filter degeneracy

Degeneracy occurs when only a small fraction of the particles have non-negligible weights, resulting in a sample s where only

a few different indices are present. It can be diagnosed from the weights using the effective sample size Neff (Liu and Chen,

1995; Doucet et al., 2001):165

Neff =
1

∑Ne

i=1(wi)2
(3)

With a degenerate sample, Neff & 1, and with innocuous analysis (all particles are replicated) Neff =Ne.

A first approach to mitigate degeneracy is to use inflation. This method iteratively inflates R values until the sample population

is large enough. Here, we develop a variant from Larue et al. (2018) method, which was not explicitly relying on Neff (Eq. 3) .

Consider applying an inflation factor 1
α to R, (0< α≤ 1, α= 1 being the value for no inflation), and update Neff (Eqs. 2 and170

3): Neff is naturally a decreasing function of α (the more we inflate R the more different particles will be replicated). The idea

of our method is to ensure that Neff exceeds a target value, N∗
eff. If Neff <N∗

eff (degenerate case), we reduce α (inflate) until

Neff =N∗
eff using Alg. 1. In the following, inflation is used in the global and rlocal PF (see Sec. 2.2.3).

The core of Alg. 1 is an hybrid bisection-secant method to find the zero of f : α 7→Neff(α)−N∗
eff in [0,1]. It is inspired on175

rtsafe algorithm (Vetterling et al., 1992). The guess function computes a new guess α2 to minimize f. Note that in the unlikely

case where Alg. 1 does not converge, all the particles are replicated.
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Algorithm 1 Weighting algorithm with inflation.

Input: xi,y,R,N∗
eff

Output: wi

1: α← 1

2: R← 1
α
R

3: wi←weights(xi,y,R) (Eq. 2)

4: Neff←eff_weights(wi) (Eq. 3)

5: if Neff <N∗
eff then

6: α1← 0

7: Neff1 ←Ne

8: cond← True

9: i← 0

10: while cond do

11: α2←guess(α1,α,Neff1 ,Neff,N
∗
eff)

12: R← 1
α2

R

13: wi2←weights(xi,y,R) (Eq. 2)

14: Neff2 ←eff_weights(wi2) (Eq. 3)

15: if |Neff2 −N∗
eff|< ε then

16: cond← False

17: α← α2

18: wi← wi2

19: else

20: α← α1

21: α1← α2

22: Neff←Neff1

23: Neff1 ←Neff2

24: end if

25: i← i+1

26: if i=maxiter then

27: print "failed to converge, duplicating all particles"

28: wi← 1
Ne

29: end if

30: end while

31: end if
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2.3.2 k-localisation

In the k-localisation algorithm, degeneracy is mitigated by reducing the number of observations simultaneously assimilated.180

The PF analysis is applied to each simulation point sequentially. In order to build the analysis at point n, background corre-

lations Bv are computed for each variable v (e.g HS or reflectance) between n and all the observed points. In a first step, all

observations from points exhibiting significant background correlations (see below select_k_biggest function) are used. If the

PF degenerates, the number of observations is progressively decreased until degeneracy is mitigated. As earlier, degeneracy is

considered mitigated when Neff ≥N∗
eff. This way, we ensure that a maximal number of observations has been ingested by the185

PF without degenerating.

In case of degeneracy, the observation point displaying the lowest correlation is ruled out. The PF weights are computed (Eq.

2), and a new effective sample size is derived (Eq. 3). While the target sample size is not exceeded, this selection proceeds

iteratively. The notation k in "k-localisation" refers to the number k of retained observations of each variable. This approach

is similar to EnKF localisation algorithm where the localisation domain is based on background correlations (Hamill et al.,190

2001).

The detailed k-localisation algorithm is described in Alg. 2, where:

– The select_k_biggest method returns for each variable, the domain dv , of up to k observed points (named p) that are the

most correlated (in absolute value) with n, and match the following criteria:

– in x̂i
v , there are at least 10% of members defined in both points (reflectance is not defined when there is no snow)195

– |Bv(n,p)|> 0.3: correlations are significant.

– d is the collection of the domains dv

– extract_points extracts d from y,xi and R.

2.3.3 Particle Filter and reflectance observations

Assimilating reflectance with the PF requires some adaptations. Snow reflectance is a bounded variable (0-1) and is not defined200

in the absence of snow. For this reason, reflectances of snow-free members and observations were set to 0.2 (snow-free ground

reflectance value in Crocus) in the PF Eq. 2 (Sec. 2.2.3).

3 Evaluation strategy

Our strategy is to assess the performance of the analysis by means of twin experiments, i.e. using synthetic observations. The

assimilation run is compared to an identical run without assimilation (openloop run). Synthetic observations are extracted from205

a model run and assimilated. These observations allow to mimic real observations with a perfect knowledge of the true state.

Analysis and openloop experiments can therefore be compared with this true state anywhere, for any variable. It allows in a
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Algorithm 2 k-localisation algorithm

Input: xi, y, B, R, N∗
eff

Output: (wi
n)0<n≤Ne

1: for n= 1 to Npts do

2: k← kmax {try to ingest all available observations.}

3: cond← True

4: while cond and k > 0 do

5: for v = 1 to Nv do

6: dv ← select_k_biggest(n,k,Bv ,xi
v , y)

7: end for

8: yk,x
i
k,Rk← extract_points(y, xi,R, d)

9: win← weights(xi
k,yk,Rk) (Eq. 2)

10: Neff← eff_weights(win) (Eq. 3)

11: if Neff ≥N∗
eff then

12: cond← False

13: end if

14: k← k− 1

15: end while

16: if k = 1 then

17: win← inflation(xi
k,yk,Rk, N∗

eff)

18: end if

19: end for

first step to get rid of the error and bias issues inherent to real observations (Cluzet et al., 2020), a reason why we did not add

any noise to the synthetic observations as commonly done in twin experiments (Lahoz and Menard, 2010). This way, we can

focus on the two following questions (see Sec. 1):210

– Is CrocO PF able to efficiently spread the information from sparse observations into space without degenerating ?

– Is spatial information content of reflectance a valuable source of information for snowpack models ?

In order to disentangle these questions, we run baseline experiments assimilating synthetic observations of HS which is strongly

linked with SWE (Margulis et al., 2019). These experiments are used to evaluate the PF algorithms efficiency, and as a baseline

for synthetic reflectance assimilation experiments evaluating the information content of reflectance.215

Three different algorithms are evaluated: the global algorithm (with inflation), the rlocal algorithm (with inflation) and the

k-localized algorithm klocal.

9
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3.1 Experiments

3.1.1 Twin experiments setup220

In our twin experiment setup, an openloop ensemble is used as a reference and to generate synthetic observations. Openloop

simulations are carried out with CrocO for 4 consecutive winters (2013-2017) in the Grandes-Rousses (see Sec. 2.1), with

160 members. For each year, the integral of SWE over time and space is computed from each member, and members corre-

sponding to the 20th, 40th, 60th and 80th percentiles of the ensemble are extracted to be used as synthetic observations (denoted

year_ppercentile e.g. 2014_p80). Before any assimilation experiment, the openloop member (Fi−Mi couple in Fig. 2) used225

as true state is withdrawn and replaced by a new random member.

The spatial coverage of synthetic observations was reduced, mimicking a typical reflectance mask. Synthetic observations were

only available above an assumed constant tree line at 1800 m (see Fig. 1), and not available in steep slopes (over 20o) and in

northern aspects (shadows, considering a daily satellite pass around 10-11:00 UTC.), for the whole snow season. As a result, in

this case, only 35 (over 187) topographic classes are observed. Observation date were chosen corresponding to clear-sky days230

with a MODIS overpass, resulting in an approximately weekly frequency (e.g. Revuelto et al. (2018); Cluzet et al. (2020)).

Considering reflectance, a minimal set of two different bands is used, corresponding to MODIS sensor band 4 (555 nm) and 5

(1240 nm) (Charrois et al., 2016). Observation error variances is set to 1.0× 10−2m2 for HS and 5.6× 10−4 and 2.0× 10−3

for band 4 and band 5 reflectance respectively (Wright et al., 2014). These values are only initial values for the inflation in

the global and rlocal algorithms. Since the klocal algorithm uses only inflation if k drops to 1 (see Sec. 2), observation error235

variances are multiplied by a factor of 5 to enable the klocal algorithm to ingest observations from several points.

In order to study the ability of the global, klocal and rlocal algorithms to spread the information in space, a first set of ex-

periments is conducted assimilating HS with 40 members (see setup in Tab. 1). In order to evaluate the algorithms ability to

assimilate reflectance (Band 4 and Band 5) a second set of experiments is conducted, other things being equal (Tab. 2). The

ensemble size is increased from 40 to 160 in a third set of experiments assimilating reflectance, in order to analyse the influence240

of a larger ensemble on the algorithms performance (Tab. 3). Note in Tab. 1-3 that N∗
eff is adjusted to the ensemble size, in

order to preserve Ne/N∗
eff ≈ 5− 7 following Larue et al. (2018).

3.2 Evaluation Scores

The performance of the assimilation and openloop run is evaluated against the synthetic truth using several scores. The Absolute245

Error of the ensemble mean (AE) and ensemble spread σ are two common metrics of ensemble modelling. Given an ensemble

Em,c,t of Ne members m in topographic class c at time t and the corresponding observations oc,t, the ensemble mean is

described by Eq. 4:

Ec,t =
1
Ne

Ne∑

m=1

Em,c,t (4)

10

https://doi.org/10.5194/gmd-2020-130
Preprint. Discussion started: 10 July 2020
c© Author(s) 2020. CC BY 4.0 License.



From which we can compute the absolute error AE (Eq. 5) and the spread (or dispersion) σ (Eq. 6):250

AEc,t = |Ec,t− oc,t| ∀(c, t) ∈ [1,Npts]× [1,Nt] (5)

σc,t =

√√√√ 1
Ne

Ne∑

m=1

(Em,c,t−Ec,t)2 ∀(c, t) ∈ [1,Npts]× [1,Nt] (6)

Where Nt is the number of evaluation time steps.

255

The Continuous Ranked Probability Score (CRPS, (Eq. 7) Matheson and Winkler, 1976) evaluates the reliability and resolu-

tion of an ensemble based on a verification dataset. An ensemble is reliable when events are forecast with the right probability,

and has a good resolution when it is able to discriminate distinct observed events. For a reliable system, the resolution is equiv-

alent to the sharpness, which is the spread of the produced forecasts.

If we denote Fc,t the Cumulative Distribution Function (CDF) and Oc,t the corresponding observation CDF (Heaviside func-260

tion centred on the truth value), the CRPS is computed at (c, t) following:

CRPSc,t =
∫

R

(Fc,t(x)−Oc,t(x))2dx ∀(c, t) ∈ [1,Npts]× [1,Nt] (7)

In this work, CRPSc,t value is averaged over time alone or time and space depending on the desired level of aggregation.

The CRPS can be decomposed in two terms following Hersbach (2000) (Eq. 8):

CRPS = Reli + Resol (8)265

Where Reli quantifies the reliability of the ensemble. The associated skill scores (CRPSS and ReliS) can be used to compare

the performance of an ensemble E to a reference R, here, the openloop run:

CRPSS(E) = 1− CRPS(E)
CRPS(R)

(9)

A skill score of 1 denotes a perfect score, 0 a neutral performance and −∞ is the worst achievable skill score.

4 Results270

4.1 Preliminary Results

4.1.1 Impact of the inflation

The inflation algorithm was introduced by Larue et al. (2018) in point scale simulations but to the best of our knowledge, never

applied in a spatialised context. Here we evaluate its impact on the global algorithm by switching it on/off. As an example,

Fig. 3 shows the impact of the inflation on SWE when assimilating the HS of 2015_p80 (as defined in Sec. 3.1.1) member with275
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the global algorithm, in a topographic class which is not observed (1800_N_40, as defined in Sec. 2.1). This choice of member

and topographic class is well representative of the impact of the inflation on the global algorithm.

In this case, both inflation (N∗
eff = 7) and no inflation (N∗

eff = 1) lead to a significant reduction of the ensemble spread com-

pared with the openloop (Fig 3a-b). From January 2015 until the peak of SWE in mid-April 2015, (Fig. 1c) the simulation with

inflation has significantly lower errors than without inflation and the openloop (10-20 kg m−2 vs. 60-80 kg m−2 and 30-50280

kg m−2 respectively), leading to a better agreement with the synthetic truth in the melting season (Fig. 3a). During the melting

season (mid-April 2015 onwards), the RMSE of the assimilation algorithms is reaching a peak, coinciding with an absence of

observations. In comparison, the openloop RMSE is smaller in the first part of the melting season, but the spread is three times

larger, making it almost uninformative. For several analyses (2014, November 21th, and 2014, December 30th for example) the

ensemble spread without inflation drops to 0 while its RMSE strongly increases compared to the openloop, suggesting that it285

is prone to degeneracy.

4.1.2 Correlation patterns

The klocal algorithm relies on background correlation patterns to define localisation domains. To illustrate the potential of

using such information in the PF, Fig. 4 shows the correlation patterns of the 40 members openloop in a non observed topo-290

graphic class (1800_N_40, red dot) in the mid-winter, several months after the snow season onset (2015, February 20th) for the

different assimilation variables. These variables exhibit strong but contrasted correlation patterns. Band 4 (Fig. 4a) correlations

are generally high (0.6-1) and uniform. Many of the observed classes (black dots) are strongly correlated with the considered

class as for HS (Fig. 4c). Band 5 (Fig. 4b) exhibits significant correlations, in particular across slopes. However, they are more

restricted to the northern aspects, only a few observed classes in the Eastern aspects being significantly correlated with the295

considered class. Finally, note that these patterns vary with time but remain significant along the whole season (not shown),

and that increasing the ensemble size up to 160 leads to identical patterns (not shown).

4.2 Results of the experiments

4.2.1 Assimilation of Snow Depth300

In a first step, assimilation of HS from the different synthetic members was launched to serve as a reference for reflectance

assimilation. Fig. 5 shows the CRPSS (Eq. 9, aggregated over time only) of the HS assimilation with the three PF algorithms

considering the synthetic member 2013_q20 as reference. Results for this specific synthetic member were chosen here as a

representative example of the algorithms performance.

The rlocal performance compared with the openloop is high (0.7-1), but limited to the observed classes (black dots) since there305

is no spatial propagation in this algorithm. global and klocal algorithms have similar, overall good performance, managing to

strongly reduce modelling uncertainties except at very low altitudes (600-900 m), (skills of -0.2) where snow does not usually
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last for more than a few weeks.

This behaviour may vary with the snow conditions, i.e., between the different assimilated synthetic members and from one year

to another. In order to generalize this result, Fig. 6 shows the CRPS and Reli (aggregated over time and space) of the different310

algorithms for the 16 synthetic members and differentiated between observed and non-observed classes. CRPS and Reliability

are considerably reduced compared with the openloop (by a factor of 2-3 and 4-5, respectively) for all the algorithms in the

observed classes. This suggests that the PF manages to reduce the spread of the ensemble while reducing its errors. In the non

observed classes, the gain is almost as good (CRPSS of 0.6) except for the rlocal algorithm, which is identical to the openloop

as expected. No significant difference of skill is obtained between global and klocal algorithms.315

4.2.2 Assimilation of Reflectance

Optical reflectance is a promising assimilation variable due to its extended availability in satellite observations, but assimila-

tion of reflectance is not expected to constrain bulk variables like SWE or HS as well as HS assimilation. Here, we conduct

reflectance assimilation in the same setup as in Sec 4.2.1, all other things equal, to assess this difference.320

Fig. 7 shows the performance of the reflectance assimilation for the 16 synthetic members with 40 members (filled boxes). The

different algorithms only lead to moderate improvements in CRPS (median CRPSS of 0.-0.2, median ReliS of 0.2-0.4). More-

over, the global and klocal algorithms frequently degrade the performance, suggesting that this configuration is not robust.

Suspecting that 40 members is insufficient to well represent the multivariate probability density function of reflectance and

other model variables, the ensemble size was increased to 160 (hatched boxes), leading to significant improvements in the per-325

formance and robustness of the algorithms (median CRPSS of 0.2, median Reli of 0.4-0.6). Reliability of the global algorithm

is significantly improved with respect to the klocal algorithm.

Fig. 8 shows the spatial performance of the different algorithms for member 2016_p60. Spatial patterns similar to the HS assim

are found. rlocal performance is limited to the observed classes, while global and klocal manage to improve the simulations

across aspects and slopes. However, Skill scores are lower than for HS (0.2-0.5), and the performance of all algorithms is poor330

at lower elevations, even in some of the observed classes.

5 Discussion

In this section, we discuss the performance of CrocO PF algorithms using the assimilation of HS, and consider the potential of

the assimilation of reflectance in view of assimilating real data.335

5.1 Tackling Particle Filter degeneracy

Because they assimilate several observations at the same time, global and klocal approaches could be prone to PF degener-

acy. However, they almost never degrade the performances when assimilating HS in a variety of years and synthetic members
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percentiles (Fig. 6). This suggests that either inflating the observation errors (as demonstrated by Larue et al. (2018), a result

we have generalized in space) or exploiting background correlations to reduce the number of assimilated observations, are two340

efficient approaches to tackle degeneracy.

In several cases though, a strong degradation of score occurs when assimilating reflectance (Fig. 7), which could either be

attributed to an algorithmic failure in the PF, or an intrinsic lack of informativeness of reflectance in some situations. Based

on the good behaviour of the algorithm with HS, and because by construction, global and klocal algorithms cannot lead to a

degenerate PF sample we consider this comes from the reflectance itself (this point will be further discussed in the following345

sections).

Beyond tackling degeneracy, global and klocal algorithms also beat the rlocal approach on Reli and CRPS scores (Figs. 7 and

8). This suggests that assimilating multiple observations increases the quality of the PF analysis, even locally. More precisely,

most of the improvement is due to the Reli term of the CRPS. This property is key for ensemble modelling, because it ensures

that events are forecasted with a right probability. However, this is not sufficient, e.g. the climatology has a perfect reliability350

but is not informative at all. Successful assimilation manages to improve general metrics such as the CRPS while improving

the reliability. On this aspect, the global and klocal algorithms have a satisfying performance.

5.2 Propagating the observations information

Having sparse observations is one of the most challenging tasks for data assimilation systems of snowpack observations (Mag-355

nusson et al., 2014; Largeron et al., submitted, 2020). In our partially observed, conceptual setup, the global and klocal PF

variants developed here efficiently propagate the observations information to the non-observed classes, with generally a better

performance than the openloop and the rlocal approach in the non-observed classes when assimilating HS (Fig. 5). The al-

gorithms performance is particularly good across aspects and slopes with only a few steep, northern aspect slopes exhibiting

neutral to poor performances (Figs. 5 and 8). This suggests that southern aspect and flat classes are informative on the major-360

ity of the simulation domain. Conversely, considering that there are strong background correlations between the western and

eastern sides of the domain, we can speculate that observing either side could yield overall good results.

On these figures, propagation of the information is limited towards lower elevation (600-1200 m). At such elevation, the

snow cover is usually intermittent and a good discrimination of the precipitation phase is crucial. The PF does this indirectly365

through HS and reflectance observations, because rain causes a decrease of HS through compaction and melting while re-

flectance also decreases because of because of quick isothermal metamorphism. However, in our setup, the lowest observed

elevation is 1800 m, therefore indirect observation of the rain-snow line positioning under this level is not possible, potentially

explaining the moderate performance of the PF there. In that case, assimilation of Snow Cover Fraction might be the best

solution: since the snowpack is intermittent there, the informativeness of this variable is maximal (Aalstad et al., 2018).370

Global and klocal algorithms exhibit strong performances when assimilating HS (Fig. 5), and moderate performances for re-

flectance. HS is well linked with the SWE (by the bulk density) and the interest of this variable for data assimilation is clear
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(Margulis et al., 2019). Though the performance is lower for Reflectance, it remains considerable and in line with previous

results on point simulations (Charrois et al., 2016), with an average score improvement of 20-40%.

An outstanding result here, is that our study suggests that reflectance information can be spread from southern slopes to the375

northern ones, although in many situations, the snowpack evolves in different ways between these aspects. For example, in

sunny conditions, melt and wet metamorphism will cause a drop in reflectance in southern slopes, while reflectance will not

evolve much in northern slopes. Therefore, a reflectance observation in a southern slope is not necessarily informative on re-

flectance value in the northern aspect per se. It is informative however, in our ensemble data assimilation framework. Indirectly,

in this case this observation could enable the PF to reject all the ensemble members that did not have an appropriate mete-380

orological forcing (snowfall or cloud cover would lead to wrong reflectance values), or multiphysical parametrisations, thus

enabling to correct the ensemble in the whole domain. These insights are consistent with the study of Winstral et al. (2019),

where in situ observations are used to correct meteorological forcing parameters across large simulation domains.

5.3 Towards the assimilation of real observations of reflectance385

Reflectance is an appealing variable for snowpack modelling because of its sensitivity to snowpack surface properties (Dozier

et al., 2009) and the abundance of moderate-resolution space-borne sensors (MODIS, Sentinel2-3, VIIRS, Landsat...) providing

us with a handful of observations to assimilate, contrary to HS. This study demonstrates the potential of the PF to spread in-

formation and assimilate reflectance with a positive impact (Sec. 5.2). Yet, assimilating real observations is another challenge,

for two reasons.390

First, space-borne reflectance observations are usually noisy and biased (e.g. Cluzet et al., 2020). Satellite retrievals could be

improved in the future (Kokhanovsky et al., 2019; Lamare et al., in prep, 2020), and Cluzet et al. (2020) showed that assimi-

lating ratios of reflectance could be a workaround to tackle this issue. However, the required accuracy for reflectance retrieval

to remain informative on the snowpack properties is high (Warren, 2013), and it is yet to prove whether either approach can

achieve this requirement.395

Second, in this twin experiment framework, spatial patterns of the synthetic observations are likely compatible with the ensem-

ble since they come from the same modelling system. This may not be the case in reality, therefore making it more difficult to

assimilate, and we refer to this issue as model or ensemble realism.

We must assess the strengths and weaknesses of the global and klocal approaches facing those two issues. The global algorithm

assumes that a global optimum can be found across the whole domain, e.g. the information from the different observations is400

consistent and can be ingested in one block by the PF. With this strategy, the degeneracy due to the size of the observation

vector is efficiently mitigated by the inflation algorithm as discussed in Sec. 5.1. The klocal approach considers that only a

fraction of the observation information is relevant to constrain the model state at a given location. This algorithm tries to ingest

as much information as possible while rejecting observations coming from too statistically different snowpack conditions. As

a consequence, because we do not account for the real spatial patterns of observation errors, and because we work in a twin405

experiment setup, a global optimum on the whole domain can exist and can be found by the global algorithm. This might be
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a reason why it beats the klocal approach (Figs. 6 and 7). In the real world, from the model point of view, there might be

contradictory informations among the observations that would be difficult to disentangle with a global strategy. The klocal al-

gorithm could be more suited to this situation, because it is looking for local optima, based on the assumption that background

correlation patterns are realistic.410

These background correlation structures could be overestimated by the ensemble, and tests with real observations are neces-

sary. Strong Band 4 correlations might be due to the spatially homogeneous perturbations of LAP fluxes used to force the

simulations (see Sec. 2.2.2), a key driver of this variable. Several studies suggest that LAP fluxes vary with elevation and other

topographic parameters (de Magalhães et al., 2019; Sabatier et al., 2020), but to date no reliable model for that exists in com-

plex terrain. In such a context, assuming uniform LAP forcing seems a reasonable compromise. Strong and almost uniform415

correlations in HS might be caused by the spatial homogeneity of precipitation perturbations and because we do not account

for snow transport by the wind and gravitational redistribution of snow (Wayand et al., 2018). Despite this semi-distributed

framework suffers from obvious limitations, NWP models still suffer for large errors in mountainous areas, hampering the

potential for high-resolution snowpack modelling (Vionnet et al., 2016; Fiddes et al., 2019).

420

In the future, improving the realism of ensemble correlations could make the spreading of information an even more chal-

lenging task with the klocal algorithm. But there should remain significant potential for information propagation, as results at

a larger scale suggest (Magnusson et al., 2014; Cantet et al., 2019). The potential de-correlation of topographic classes would

also impact the global algorithm. In a non-observed class, constraining the state of the snowpack with information from area

that are not linked with it would likely degrade the forecasting skill, as suggested by the poor performance of the algorithms at425

low altitudes (Figs. 5 and 8). On the contrary, applying CrocO into larger domains (e.g. distributed simulations or a collection

of semi-distributed massifs), would probably see the klocal algorithm take the best over the global. The increased domain size

would make it less plausible to find a global optimum over the domain, whereas spatial flexibility would be an asset of the

klocal algorithm.

430

5.4 Outlook for ensemble modelling and data assimilation

In the snowpack modelling community, ensemble modelling appears as a powerful tool to represent modelling uncertainties

(Vernay et al., 2015; Richter et al., 2020) and for data assimilation (Essery et al., 2013; Lafaysse et al., 2017; Piazzi et al.,

2018; Aalstad et al., 2018). This study offers a novel approach to extract valuable information on the snowpack spatial be-

haviour from spatial correlation patterns of the ensemble. These patterns could be used to diagnose links between locations,435

transfer information between areas, or assess the representativeness of point simulations. More broadly, ensemble background

correlations have been exploited for long in the NWP and oceanographic communities to refine modelling errors representation

which led to significant improvements in the DA systems (Evensen, 2003; Buehner, 2005).

Ensembles might open a way for the assimilation of point scale observations, or sparse remotely-sensed observations into

spatialised simulations of the snowpack as suggested by Winstral et al. (2019) and the present work. For instance, there are440
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numerous snow gauges and snow pit observations in the ski resorts of the French Alps. These data could be assimilated to

correct the ensemble in spatialised simulations (Winstral et al., 2019). The spatial pattern of assimilated observations in the

experiments of Sec. 4 do not correspond to the real-life spatial coverage of this kind of observations. To give an insight of their

potential, we also applied our methodology to assimilate only five synthetic HS observations with the global PF in the 1200 m

to 2400 m flat classes. The results are shown in Fig. 9. The assimilation improves the performance in all aspects and slopes.445

Naturally, this suffers from the same limitation as discussed in Sec. 5.3, not to mention the limited spatial representativeness

of in situ observations but it shows some potential for this idea.

In that way, a more rational use of the available observations could be implemented towards a new ensemble data assimilation

system. In the present CrocO system, SAFRAN reanalysis are only assimilating weather station information (precipitation

phase, temperature, wind), and makes no use of the numerous snow observations available. Here, snow observations are as-450

similated by the PF, but are not used to correct meteorological forcings (only snow variables, see Fig. 2). In the way of a new

ensemble data assimilation system, within CrocO, the SAFRAN meteorological analysis could be bypassed, the PF operating

directly both on the meteorological and snowpack variables in a more comprehensive and coupled strategy.

6 Conclusions455

In this study, we introduced CrocO, a new ensemble data assimilation system able to reduce the errors of a spatialised snowpack

model in locations that are not observed. The ensemble is built by a combination of meteorological and multi-physical ensem-

bles to represent modelling uncertainties. A Particle Filter assimilates observations of HS and Reflectance. We developed two

variants of the PF using inflation or k-localisation, in order to spread the information from partial observations of the system,

without degeneracy of the PF. We have shown in particular that:460

1. these variants are able to ingest numerous observations without degeneracy;

2. an efficient spreading of the observations information towards the non observed areas is achieved with the global and

klocal approaches;

3. reflectance assimilation leads to an overall 20% improvement in CRPS and 60% in reliability.

We suggest that this approach could be used in any spatialised framework to assimilate sparse observations from e.g. net-465

works of in-situ snowpack observations. Beyond the snowpack modelling community, the inflation and k-localisation strategies

could help address the problem of partially observed systems. This work is also a first step towards the operational assimila-

tion of reflectance in a semi-distributed context. To reach that goal, biases of reflectance retrievals should be studied, and

observation errors structures duly quantified. Snow Cover Fraction would be a good companion variable to assimilate at lower

elevations, requiring the use of an appropriate observation operator. Extending the simulation domain to several massifs would470

allow the exchange of information between neighbouring massifs with the klocal algorithm.
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Code availability. The Crocus snowpack model (including all physical options of the ESCROC system) and the Particle Filter algorithm are

developed inside the opensource SURFEX project. The source files of SURFEX code are provided at https://doi.org/10.5281/zenodo.3774861

to guarantee the permanent reproductibility of results. However, we recommend potential future users and developers to access to the

code from its git repository (git.umr-cnrm.fr/git/Surfex_Git2.git) to benefit from all tools of code management (history management, bug475

fixes, documentation, interface for technical support, etc.). This needs a quick registration, the procedure is described at https://opensource.

cnrm-game-meteo.fr/projects/snowtools/wiki/Procedure_for_new_users. The version used in this work is tagged as CrocO_v1.0.

A python software called CrocO_toolbox was specifically developed, in order to pre-post process and launch CrocO experiments. It is

available on Github (https://github.com/bertrandcz/CrocO, release v1.0) along with a documentation.480

The article version of CrocO_toolbox is archived at: https://doi.org/10.5281/zenodo.3784980. This software strongly relies on two external

python projects ensuring the files management between the different steps of a simulation and the interface with Meteo-France HPC system

(including parallelization and data storage): snowtools and vortex. Their sources are available at https://doi.org/10.5281/zenodo.3774861

(same archive as SURFEX) to guarantee the permanent reproducibility of results. However, as for the SURFEX project and for the same

reasons, it is recommended to access snowtools code from its git repository (git.umr-cnrm.fr/git/snowtools_git.git). The version used in this485

work is also tagged as CrocO_v1.0. The vortex project gathers all environment-specific codes of Météo-France modelling systems relative to

its HPC computing system. For this project, only the sources which are specific to this article simulations are provided. The common objects

inheritance is based on Vortex version 1.6.1. The version used in this work is also tagged as CrocO_v1.0 in the vortex git repository.

Because these softwares could not be applied outside Météo-France HPC environment, CrocO python software offers the possibility to490

run CrocO simulations locally. This functionality was not used here due to the high numerical cost of our simulations, which required the

use of Météo-France HPC environment.

Data availability. Input and output data necessary to reproduce the manuscript simulations and figures are provided at

https://doi.org/10.5281/zenodo.3775007. This archive includes : SAFRAN reanalyses, (also available at https://doi.org/10.25326/37), MOCAGE

forcings, namelists, configuration files and spinup files enabling to reproduce the simulations. Raw model outputs can be provided on request495

but since they amount up to 500+ Gigabytes, only post-processed simulations outputs are provided in this archive, along with scores and

scripts to reproduce the manuscript figures.

Appendix A: Complements on the implementation

A1 Technical implementation and code performance

CrocO is implemented within Météo-France HPC (High Performance Computing) environment, enabling to fully parallelize500

the ensemble (one core per member), and bridge the gap with operational applications (Lafaysse et al., 2013; Morin et al.,

2020). This implementation is strongly parallel. As an example, the execution time of a one-year assimilation run of 187 model

points with 160 members on 4 nodes of 40 cores each lasts for only two hours. The PF is a lightweight algorithm, most of the

computational burden owing to the propagation of the ensemble. Note also that no significant difference in execution time can
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be noted between the different PF algorithms.505

A2 PF sample reordering

As mentioned in Sec. 2.3, a reordering step was implemented after the PF resampling from Kitagawa (1996), for practical

reasons.

– (3) from s, build s̃ such that all elements of the unique values of s lie in the position given by their value. Example with

16 particles:

s = [1,1,2,3,3,3,8,8,9,9,9,9,9,16,16,16]⇒ s̃ = [1,2,3,1,3,3,8,8,9,9,9,9,9,16,16,16]

Indeed, I/O represents a bottleneck in the PF. When building the analysis X̂a, the background X̂b is already loaded in memory.510

Since X̂a is just a reordering of X̂b columns based on s, a reordering of s avoids to build a copy of X̂b. This way, X̂a is built

by an online modification of X̂b using two pointers. Reordering is a growing consideration in the PF community (Farchi and

Bocquet, 2018).
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Figure 1. 3D schematic view of the semi-distributed geometry, where the numbers represent the elevation bands altitudes (m). From left to

right, the three different mountains represent the flat, 20o and 40o degrees slopes.

25

https://doi.org/10.5194/gmd-2020-130
Preprint. Discussion started: 10 July 2020
c© Author(s) 2020. CC BY 4.0 License.



ෞ𝑥0

𝑥𝑏
3

𝑥𝑏
3

𝑥𝑏
2

𝑥𝑏
1

PF

𝑦

𝑥𝑎
4

𝑥𝑎
3

𝑥𝑎
2

𝑥𝑎
1

𝑥𝑏
4

𝑥𝑏
3

𝑥𝑏
2

𝑥𝑏
1

t0 t1 t1 t2 time

F4-M4

F3-M3

F2-M2

F1-M1

F4-M4

F3-M3

F2-M2

F1-M1

∙ ∙ ∙

𝑿𝒂𝑿𝒃 𝑿𝒃

Figure 2. Workflow of CrocO ensemble data assimilation system with 4 members. x̂0: initial state at time t0, Fi: forcing, Mi: ESCROC

member, X̂b: background state, x̂ib: background particles, X̂a: analysis, x̂ia: analysis particles, y: observation, t1 and t2: observation dates.

26

https://doi.org/10.5194/gmd-2020-130
Preprint. Discussion started: 10 July 2020
c© Author(s) 2020. CC BY 4.0 License.



PF Algorithm Ne inflation N∗
eeff HS σ2

o (m2)

rlocal 40 on 7 1.0× 10−2

global 40 on 7 1.0× 10−2

klocal 40 on (if k=1) 7 5.0× 10−2

Table 1. setup of the Snow depth assimilation experiment.
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PF Algorithm Ne inflation N∗
eeff B4 σ2

o B5 σ2
o

rlocal 40 on 7 5.6× 10−4 2.0× 10−3

global 40 on 7 5.6× 10−4 2.0× 10−3

klocal 40 on (if k=1) 7 2.8× 10−3 1.0× 10−2

Table 2. setup of the second reflectance assimilation experiment.
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PF Algorithm Ne inflation N∗
eeff B4 σ2

o B5 σ2
o

rlocal 160 on 25 5.6× 10−4 2.0× 10−3

global 160 on 25 5.6× 10−4 2.0× 10−3

klocal 160 on (if k=1) 25 2.8× 10−3 1.0× 10−2

Table 3. setup of the second reflectance assimilation experiment.
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lines represent the assimilation dates.
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Figure 4. 2015, February 20th openloop (40 members) Pearson correlations between the domain points and the 1800_N_40 topographic class

(red dot), in Band 4 (a), Band 5 (b) and HS (c). Left bars show the flat topographic classes in the associated elevation bands, while pie plots

show the 20o and 40o slope topographic classes, as depicted in Fig. 1. Black dots the denote observed classes.
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Figure 5. CRPS Skill Score of SWE for the rlocal (a), global (b) and klocal (c) algorithms assimilating the HS of 2013_p20 synthetic

member. The score is computed on the whole snow season for each topographic class. Black dots denote the observed classes.
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Figure 7. Same as Fig. 6 for reflectance with 40 members (filled) and 160 members (hatched).
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Figure 8. Same as Fig. 5 for the assimilation of the reflectance of 2016_p60 member.
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Figure 9. Same as Fig. 5 for the assimilation of HS of 2016_p60 member in the 1200-2400 m flat classes.
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