
GMD review

We would like to thank both referees for their extensive analysis of our manuscript which we believe 
helps a lot improving our paper. All the comments have been addressed and point by point response is 
provided below each comment. Note that some slight changes were made in the manuscript in order to 
improve its clarity, and are visible in the track changes. In the following, the reviewer initial comments  
are written in black, our answer in blue and the corrections in the paper are highlighted in red. Line 
references  for  modifications  correspond to the  initial  submitted  version of  the  manuscript,  not  the 
modified.

Reviewer 1

In this study, the authors developed two variants of the particle filter (PF), named the global PF and the  
klocal PF, to assimilate snow depth and reflectance for snow water equivalent (SWE) estimation. The 
global  PF assimilation  all  observations  in  the  domain  while  the  klocal  PF is  a  localized  PF  that  
assimilate only a subset of observations. To prevent the degeneracy of PF, the global PF inflates the  
observation  error  covariance  until  a  sufficient  number  of  replicas  are  available,  while  the  klocal 
approach applies the maximum of “k” observations to maintain a sufficiently large observation-state 
variable variation.  Some notable assumptions include the observations are free of noise,  error,  and 
correlation in space and time, and the prior estimates and the observations are generated from the same 
model (identical twin). The results prove that the inflations and the k-localization effectively prevent 
the degeneracy, and the PF systems are able to spread the observed snow signal to non-observed areas.

This is a nice contrition to the existing PF literature and has the potential to significantly extend the 
applicability of PF. The study fits the scope of the journal. I hope the authors consider the following 
comments in the revision:
The authors would like to thank Reviewer 1 for his/her thorough review and his/her questions  on 
several subjects (the semi-distributed geometry, the methodology and assumptions, and the potential 
shortcomings of the different assimilation algorithms) which deserved more details and rigor in the 
formulation. We would like also to thank Reviewer 1 for expressing his/her need for more physical 
explanation on the ensemble correlation patterns of Fig. 4. We believe that these comments helped a lot 
improving the clarity of the manuscript, and we hope that the corrections fully address the reviewer 
comments.
1.  The domain  is  divided into  classes  based  on elevation  band,  aspect  and slope,  but  there  is  no 
information regarding the geographic distribution of these classes. The PF’s performance is generally 
good in high-elevation areas, but performance variations still exist among these areas. Could this be a  
result that the observation improve the more local classes more than the class that is farther away from 
the observation?
The  semi-distributed  framework does  not  allow to  define  a  horizontal  euclidian  distance  between 
topographic classes. Therefore, we do not consider any variability of the horizontal proximity between 
classes.  However,  in  mountainous  environments,  topographic  conditions  often  more  directly  drive 
snowpack  variability  than  distance.   As  the  reviewer  points  out,  there  is  indeed  a  difference  in 
performance between the observed classes and the unobserved classes, the former achieving better 
improvements, in general (see Figs.  6-7 and Sec. 4.2.1), and locations that are farther away (in model 
space) from the observations achieve the lowest performance (e.g. Fig. 8b 2100m, North, 40 degrees). 
Furthermore as the reviewer notes, there is also a notable variability of performance even among the 
observed classes, in particular for the reflectance assimilation.
According to this comment, the end of Sec. 4.2.2 (l. 331 of the manuscript) was amended to be more 
precise and descriptive:



Fig.  8. shows  the  spatial  performance  of  the  different  algorithms  for  member  2016_p60.  Spatial 
patterns similar to the HS assimilation are found. rlocal performance is limited to the observed classes, 
while global and klocal manage to improve the simulations across aspects and slopes. However, skill 
scores are lower than for HS (0.2-0.5), and the performance of all algorithms is poor in the classes that 
are the farther away from the observations, i.e. at lower elevations (600-900 m) and in some of the high 
altitude steep Northern classes (e.g. 2100_N_40 on Figs. 8b-c). Finally note that slight degradations of 
performance can sometimes be evidenced even in the observed classes for all the algorithms (e.g. in flat 
conditions  at  3300  m  on  Fig. 8}a  for  the  rlocal},  not  evidenced  by  this  example  for  the  other 
algorithms).

2. Some discussions on the assumption and the feasibility-testing nature of the system is needed in the 
abstract or be acknowledged in the introduction section.
The  feasibility-testing  nature  and  the  identical  twin  setup  of  this  experiment  were  indeed  not 
acknowledged enough in the abstract. This is now corrected on (L 13.14):
...based  on  background  correlation  patterns.  Feasibility-testing  experiments  are  carried  out  in  an 
identical twin experiment setup, with synthetic observations of HS and VIS-NIR reflectances available 
in only a 1/6th of the simulation domain. …

Another notable assumption, the fact that observations are not corrupted, needed to be underlined and 
justified. We are actually conscious of this limitation, and a recent study has been submitted (Revuelto 
et al.,  submitted) in which we assimilate synthetic corrupted observations at the point scale. In our 
situation we did not corrupt the observations because little is known about the spatial structure of errors 
of reflectance (e.g. Cluzet et al., 2020): we know that assuming independent errors (i.e. diagonal R) is a 
very  rough  approximation  of  the  reality  which  has  strong  consequences  on  the  propagation  of 
information.  Corrupting the observations  with such random structures  would be theoretically  more 
consistent,  but  would  not  yield  much  more  insight  on  the  potential  for  information  from  real 
observations to be spatially propagated as real spatial correlation of observation errors might be very 
different from this hypothesis. Future efforts should concentrate in better characterizing these spatial 
structures of errors. Consistently, the following sentence was modified at the beginning of Sec. 3 (L.  
206)
Synthetic observations are extracted from a model run and assimilated without adding any noise. These 
observations mimic…

and a paragraph was added in the end of Sec. 5.2:
Regarding the observations, our study has some methodological limits, however. Observation errors are 
very roughly prescribed, and the assimilated observations are not corrupted as usually done in synthetic 
experiments (e.g. Durand et al.,  2006). These choices were motivated by the fact that very little is 
known about the spatial correlation of reflectance observation errors in the semi-distributed setting 
(Cluzet et al.,  2020). In a recently submitted paper, the impact of random and systematic errors of 
reflectance observations on point-scale assimilation experiments is thoroughly investigated (Revuelto 
et al., in prep).  Efforts to better characterize these observation errors should be conducted in future 
work

Lastly, the synthetic nature of the experiments should be stated in the conclusions. The sentence on 
L490 was changed to:
In the framework of synthetic experiments, we have shown in particular that:…

In addition to the assumptions mentioned above,  the depth observation error is assumed to be 0.1m 
(error covariance is 1e-2mˆ2), which is quite a high-bar for existing observation techniques, especially 
when used on space-borne platform for large-scale measurements.



We agree that the prescribed observation error is a high-bar for space-borne sensors. Indeed, results 
from recent studies such as Eberhard et al., (2020) could be used to provide a more accurate estimate of 
HS retrieval errors from satellites. Conversely, it could be considered as a low value for other sources 
of HS observations (e.g. stereo satellite imagery, Deschamps-Berger et al., 2020; local measurements 
with a high spatial representativeness error).  As our work is a feasibility-testing experiment based on 
synthetic observations, an arbitrary observation error was chosen but indeed it may be important to 
adjust  this  value  when applying the algorithm to real  observations.  This  is  now mentioned in  the 
discussion on line 371:
Global and klocal algorithms exhibit strong performances when assimilating HS (Fig. 5). HS is closely 
linked with the SWE (by the bulk density) and the interest of this variable for data assimilation is clear 
(Margulis  et al.,  2019). Here, it should be kept in mind that  HS assimilation is used as a baseline 
experiment to evaluate the algorithms and put reflectance assimilation into perspective. The prescribed 
HS observation errors (\sigma_0=0.1m) are not necessarily realistic. They should be adapted to the 
nature of the  HS sensor.  For example,  space-borne  HS observation errors are typically larger (e.g. 
Eberhard et al., 2020; Deschamps-Berger et al., 2020). The assimilation of such observations would 
probably yield lower improvements.
Though the performance is lower for Reflectance than in our HS experiments, it remains considerable 
and in line with previous results on point simulations (Charrois et al., 2016), with an average score 
improvement of 20-40\%…

Finally,  note  that  the  inflation  procedure  inside  the  global  and  rlocal  approaches  modifies  the 
observation error which is assumed to be poorly known, reducing the impact of the prescribed value as 
mentioned in Sec. 2.3.1.

3. Line 27: panel a of Figure 1 does not look like flat âĂŤ the surface does seem to make an angle with 
the level surface (the brown triangle)
This panel is actually flat, but we agreed the perspective view might be misleading. For this reason, we 
changed the background color of Fig. 1 in order to reinforce the perspective view, hoping that it helps.
Changed Fig. 1.

4. Line 128: it would be useful to include more details of the perturbation for each key forcing variable, 
like  what  perturbation  models  and  error  statistics  are  used,  and  whether  spatial  correlations  are 
considered.
We agree tat this part was too elusive. Spatial correlations are not considered (i.e. equal to one) this is  
what we meant with  “spatially homogeneous” (l. 128 of the manuscript), but this formulation could be 
misleading  and  more  details  were  added..  For  the  sake  of  clarity,  we  also  add  the  mention  that  
perturbations are temporally correlated. The sentence was therefore modified accordingly
Before the beginning of the simulation, spatially homogeneous stochastic perturbations (e.g. at a given 
date,  the  same  perturbation  parameter  is  applied  across  the  whole  domain)  with  temporal  auto-
correlations are applied to this forcing to generate an ensemble of forcings.

In addition, an appendix was added giving more details on the perturbation procedure and parameters.
Added appendix A.

 
5. Figure 2: how do the forcing particle (Fi) and the model particle (Mi) get paired? Is it random or 
does it follow some protocol?
Yes, the pairing is random and keeps the same during the whole simulation. For the sake of clarity, the 
line 130-131 was changed to:



At the beginning of the simulation, each forcing $F_i$ is associated with a random $M_i$ ESCROC 
configuration and this relation is fixed during the whole simulation.

6. Line 180: can posterior estimates form the klocal approach show spatial discontinuity, since each 
area is updated independently by different measurements?
Thanks for underlining this point. Yes indeed klocalisation generates spatial discontinuities, it is one of 
the common drawbacks of localised approaches (see Farchi and Bocquet, 2018, already cited, for a 
thorough review). However, we expect the k-localisation to produce similar analyses (i.e. PF samples) 
for  similar  locations  because  their  analyses  will  be  based on similar  sets  of  observations,  thereby 
reducing  the  discontinuities  compared  to  the  r-local  approach.   In  our  setup,  this  has  no  direct 
consequence  on  the  simulation  as  simulation  points  are  independent,  but  it  can  hamper  the 
interpretation of the spatial patterns of individual members. We changed the following lines inside the 
introduction (l. 69 of the manuscript):
It makes it possible to constrain the model in locations that are not directly observed, but with nearby 
observations. Contrary to global approaches, localisation has the disadvantage of producing spatially 
discontinuous analyses (each point receives a different analysis). This issue can be mitigated in various 
ways  (Poterjoy,  2016;  Farchi  and  Bocquet,  2018;  Van  Leeuwen  et  al.,  2019).  The  underlying 
hypothesis…

Furthermore, we discussed this point in the end of Sec. 5.3:
Finally, in the case of modeled coupling between simulation points (e.g. snow drift), which was not the 
case here, the spatial discontinuities of the klocal analyses (see Sec. 1) might be a drawback compared 
to  the  global  approach.  Spatial  discontinuities  may  reveal  impractical  for  the  interpretation  of 
individual simulations outputs by snow forecasters too. The klocal approach is likely to reduce these 
discontinuities compared to the rlocal}, because similar locations will receive similar analyses (i.e. 
based on similar sets of observations). This issue could be partly mitigated by e.g. state-block-domain 
approaches (Farchi and Bocquet., 2018).

7. Line 195: how are the 10% and 0.3 here determined? Are they from previous literature or are there 
sensitivity test?
These parameters were adjusted during preliminary design experiments. As reflectance is not defined in 
the absence of snow, the number of pairs available to compute correlations between two locations 
varies for reflectance, and spurious high correlations are found when there is a very low number of 
common  members.  Regarding  the  0.3  value,  it  is  also  an  adjustment,  based  on  the  idea  that  if 
correlations are too low, it does not make sense to try to propagate information, as there will likely be a 
negative impact or no impact. The correlations exhibited on Fig. 4 enables the reader to realize typical 
(open-loop) correlation values with 40 members. We agree that a most rigorous definition based on 
significance levels would probably be a better option, and we will investigate this in future works. The 
following sentence on L196. was modified:
…, and match the following criteria: which were adjusted in preliminary experiments:
\begin{itemize}
\item in $\bm{x}^i_v$, there are at least 10\% of members defined in both points. As reflectance is not 
defined when there is no snow, spurious high correlations can be obtained when the computation of 
correlations is based on a very low number of pairs.
\item $\lvert \mathbf{B}_{\bm{v}}(n,p) \rvert >0.3$. If the absolute correlation is too low, it is likely 
that there is a poor potential for the distant observation to constrain the ensemble locally. In such a 
situation, it is better to reject the observation from the local analysis. Negative ensemble correlations 
can be physically sound, e.g. after a rain-on-snow event between the HS of two points separated by the 
rain-snow line. In such a situation, an HS observation on either point can hold information on 
precipitation rates at both locations. At the observed location, the PF will select the members with the 



most appropriate precipitation rates. This sample is likely to perform well at both locations, so it can be 
used to constrain the unobserved location.
\end{itemize}

8 Line 239: the PF performance with band4 and band5 observations are quite different (as in Figure 4), 
what could be the reason?
 Note that Fig. 4 does not present the skill of an assimilation experiment, it is an example of open-loop  
ensemble background correlation patterns for band 4 and band 5 on a specific date. Regarding the 
interpretation  of  these  results,  there  was  a  lack  of  physical  explanations  to  help  interpret  the 
correlations of Band4 and Band5.  These observations are sensitive to the snowpack surface properties, 
namely the specific surface area (SSA, m²/kg) and light absorbing impurities content (LAP, g/g_snow). 
This is now stated in the introduction (line 30-31 of the manuscript):
For instance, snowpack VIS-NIR reflectances from moderate resolution (250-500 m) satellites  such as 
MODIS or Sentinel-3 can help constraining the snowpack surface properties such as microphysical 
properties (characterized by the specific surface area, SSA (m^2kg^{-1}) and light absorbing particles 
content (LAP, (gg_{snow}^{-1})) (Durand et al., 2006; Dozier et al., 2009).

The individual sensitivity of the spectral reflectances is now further detailed (l. 232-233).
Reflectance is sensitive to the surface SSA and LAP (see Sec. 1). A minimal set of two different bands 
is used, corresponding to MODIS sensor band 4 (555 nm, sensitive to SSA and LAP) and 5 (1240 nm, 
mainly sensitive to SSA) (e.g. Fig. 2. of Cluzet et al., 2020).

A slight adjustment of the interpretation of Fig. 4 was performed to point negative correlations for 
Band5:
...being substantially correlated with the considered class. Note that negative correlations are evidenced 
with some lower altitude South-oriented topographic classes (e.g. 1500_S_40 on Fig. 4b). Finally, these 
patterns...

Indeed, the reasons why the correlation patterns of the different variables are different were already 
exposed in  Sec.  5.2  & 5.3  but  in  a  way too  elusive  way.  This  comment  shows that  the  physical  
interpretation is very important to understand the paper and its motivations, and its absence might have 
been somewhat frustrating. In short (see track changes and Fig. 4): Band 4 is sensitive to SSA and LAP. 
LAP forcings are spatially uniform, partly explaining the rather constant and high spatial correlation of 
Band4. The spatial homogeneity of meteorological forcings also explains the strong HS correlations. 
Band 5 is sensitive to changes in surface micro-structural properties. Differential metamorphism can 
sometimes  occur  (between  southern  and  northern  aspect)  causing  a  de-correlation  in   band  5, 
potentially explaining what is observed on Fig. 4b. Negative correlations can also happen for the same 
reason between e.g. two elevations separated by the rain-snow line.

See the track-change throughout 5.2&5.3

Finally, investigating the skill of the PF as a function of the selected spectral bands is beyond the scope 
of this paper but note that this important topic is investigated by Revuelto et al., (submitted to Journal 
of Hydrology).  This reference was clearly missing (because this  reference was only in preparation 
when this manuscript was submitted).
We now refer to Revuelto et al., (submitted) in the last paragraph of Sec. 5.2.

9. Line 279: Figure 3c
Corrected
10. Line 367: remove one “because of”.



Corrected
11. Figure 1: panel a is not “flat”, as it has an elevation gradient.
We addressed this comment in the response to the referee’s comment 3.
Making c the same size with b so their slope difference is more clear.
 We understand that the different horizontal extent between (b) and (c) might be confusing but in this 
schematic representation, it is important that  (a), (b) and (c) reach the same elevation. (c) appears 
smaller than (b) because it is steeper, but indeed they reach the same altitude. If (c) had the same basal 
area as (b) as suggested by the reviewer, it would have a similar size, but it would be twice as high, and 
unfortunately we believe that this would be detrimental to the description of the geometry.



Reviewer 2 Kristoffer Aalstad

General comments

This  manuscript  presents  a  new  ensemble-based  snow  data  assimilation  framework,  Crocus-
Observations (CrocO), to assimilate observations into the Crocus snowpack model in a semi-distributed 
geometry with a particle filter (PF). To address the issue of degeneracy, different variants of the PF are 
tested in a series of synthetic experiments where spatially sparse observations of height of snow (HS) 
or reflectance are assimilated for a massif (group of mountains) that is discretized into topographic 
classes. The sparsity of observations is meant to mimic the real situation where in-situ HS observations  
are usually only available for a handful of locations in a massif while clouds, shadows, and canopies 
can cause spatial gaps in (useful) reflectance retrievals. The objective is to use the PF to propagate 
information in space; i.e. to constrain the model ensemble not just in the observed classes, but also in  
the unobserved classes. The issue, compared to a completely local approach (called rlocal), is that this 
requires the assimilation of a larger number of observations which may trigger degeneracy. Through a 
series of 16 synthetic scenarios the authors demonstrate that it is possible to achieve such a propagation 
of information without degeneracy, both in the case of HS and reflectance assimilation, using either a  
global PF with inflation (called global)  or a PF that is localized based on background correlations 
(called klocal).  This work fits well  within the scope of GMD, and it is certainly of interest to the 
growing snow data assimilation community where the PF is gaining popularity. To my knowledge, it is 
also the first snow data assimilation study to demonstrate how the PF could be used in a spatialized 
context (non-local analyses) while avoiding degeneracy. The technical level of the work is also high 
with  the  framework  being  built  up  to  eventually  be  run  for  operational  purposes  in  an  HPC 
environment. I therefore recommend this paper for publication pending minor revisions with a few 
technical concerns as outlined below.
The  authors  would  like  to  thank  Kristoffer  Aalstad  for  this  exhaustive  review.  We  believe  that 
comments helped to improve the clarity of several essential  points (e.g.  the formulation of the PF 
implementation, the statement of the degeneracy problem, and the non intuitive behavior of the PF in 
case  of  negative  correlations).  Regarding  the  motivations,  and  methodology,  there  was  a  lack  of 
justification for the choice of the PF over the EnKF and obviously, the question of the SCF, an essential 
variable, was overlooked. Theoretical limitations of our work were shed to light, an issue which had to 
be acknowledged, even though we believe that we agree on the fact that it  might  not be severely 
detrimental to the applicability of our method. Finally, there were significant theoretical inputs on the 
bases of the PF and on potential avenues. These contributions were beneficial to the authors much 
beyond what will appear in the manuscript. The authors wanted to express their gratitude for this as 
well.
Specific comments

L1 Consider changing "the snowpack" to just "snowpack" since not all snowpack properties are crucial.
Corrected
L2 Change "on the snowpack" to "on the state of the snowpack".
Corrected
L4 Change "inform on" to "provide information about".
Corrected
L5 Change "enables to estimate" to "enables the estimation of". It is not clear who or what is "enabled 
to".
Corrected
L7 Consider changing "non observed" to "unobserved".
Thanks for the suggestion, changed throughout the text.
L10 Change "known" to "prone" and "a too large number of" to "too many".
Corrected



L34 It could be worth mentioning that higher resolution optical satellites (e.g. Landsat, Sentinel-2) are 
better  able  to  resolve  fractional  snow  cover  at  the  MODIS  scale  (e.g.  Aalstad  et  al.,  2020,  and 
references therein).
Thanks for this suggestion, this statement actually makes sense. Even though SCF is not the main focus 
in this work, we for sure consider assimilating it in future work, and it is worth mentioning it. In order 
not  to  loose  track  on  our  objectives  (i.e.  assimilating  reflectances),  we  propose  the  following 
formulation, which acknowledges that SCF has more or less the same spatio-temporal limitations of 
reflectance, and mention that it saturates for deep snowpack.
The higher resolution offered by products from Landsat or Sentinel-2 might be an avenue to this issue 
(e.g. Masson et al., 2018; Aalstad et al., 2020) but at these resolution, reflectance retrievals are quite 
noisy due to e.g. digital elevation model errors (Cluzet et al., 2020). Finally, note that pixel fractional 
snow cover  (snow cover  fraction,  SCF)  can  be  accurately  retrieved  even  from noisy  reflectances 
(Sirguey et  al.,  2009;  Aalstad  et  al.,  2020),  but  it  inherits  the  same spatio-temporal  limitations  as 
reflectances.  SCF informativeness might also be limited in deep snowpack conditions (De Lannoy et 
al., 2012).

L38 Change "enable to" to (e.g.) "enable us to".
The sentence was changed to:
Detailed  snowpack  models  are  the  only  ones  able  to  assess  avalanche  hazard  and  monitor  water 
resources alike (Morin et al, 2020), but these applications are limited by their considerable errors and 
uncertainties (Essery et al., 2013; Lafaysse et al., 2017).

L41 Change "enables to" to "lets us".
The sentence was changed to:
Indeed, data assimilation combines the spatial and temporal coverage of snowpack models with the 
available information from observations in an optimal way.

L51-53 To be more precise I would suggest stating more explicitly that the two steps in the SIR PF 
analysis are importance sampling of the (unnormalized) posterior, with the prior as the proposal (or 
importance) density, followed by resampling to reduce the variance in the weights. In that way, it is 
also easier to understand the origin of the name "SIR". van Leeuwen (2009), who is already cited, 
explains these steps clearly for curious readers.
Thanks  for  this  nice  suggestion  for  improving  this  paragraph,  explaining  this  two-step  is  a  plus. 
However,  as the referee understood, we are not familiar  with Bayesian terms such as “importance 
sampling” and “proposal” and we are wondering whether using such terms would confuse readers 
without a background in Bayesian theory. We propose an alternative formulation, keeping the spirit of 
the  two-steps  and  the  term  of  “importance  sampling”,  and  helps  understanding  the  “Sequential 
Importance Resampling” formulation.
The analysis of the  PF-SIR (later on "PF") works in two steps. In a first step, so-called "importance 
sampling", the particles are weighted according to their distance to the observations (relative to the 
observation errors). Then, a resampling of the particles is performed in order to reduce the variance in 
the weights.

L55 When you say "i.e.. . . " I expected a brief definition or explanation of what degeneracy is. Instead  
you state a consequence (or remedy) to degeneracy. It may be better to define degeneracy (as you do 
later on L163), after which you can mention solutions.



We agree that the statement lacked rigor, it was reformulated. As this comment was separated in three 
and  required  nested  modifications,  please  refer  to  the  whole  changes  at  the  bottom of  the  whole 
comment.

Moreover, degeneracy is only mentioned in the context of assimilating a large number of observations; 
which is seemingly what you try and deal with in this study. This problem can arise even in low 
dimensional states and is often a result of the likelihood (and thus posterior) becoming more peaked 
and harder to resolve with the available particles. An arguably broader issue that causes degeneracy 
with the PF (and importance sampling in general) is the curse of dimensionality where the required 
ensemble size (to avoid degeneracy) scales exponentially with the dimension of the state. This is also 
discussed in the studies of Snyder et al. (2008); Bengtsson et al. (2008) that are already cited. I would 
suggest introducing the curse of dimensionality explicitly, since it can help explain why one expects 
that using a global (rather than local) PF algorithms, where the state space becomes much larger, is 
quite difficult.
This is a very interesting input, as it sheds light on the reasons why we expect the localised approach to  
be more suited to large scale problems, it was accounted for.

It is also surprising that the EnKF is barely mentioned, one of its strengths and the reason it is widely 
used in many applications is that it is more robust to this curse.
We agree that further discussion was needed on the PF vs. EnKF. Indeed, the main reason why we 
cannot  consider  using  the  EnKF  is  the  Lagrangian  formulation  of  our  model  which  makes  the 
computation of ensemble mean and updates impractical . This is thoroughly explained in Charrois et al. 
(2016) (already cited in the paper).  On the contrary,  as you say it  is  important  to state  that  while 
applying the EnKF in spatialised application is quite easy, degeneracy/ curse of dimensionality are a 
severe drawbacks for the PF.

The concerned paragraph and the previous one were therefore modified:
The Particle Filter with sequential importance resampling (PF-SIR, Gordon 1993; van Leeuwen 2009 is 
a  Bayesian  ensemble  data  assimilation  technique well  suited  to  snowpack modeling  (Dechant and 
Moradkhani, 2011; Charrois et al.,  2016; Magnusson et al.,  2017; Piazzi et  al.,  2018; Larue et al., 
2018). The PF-SIR is a sequential algorithm relying on an ensemble of model runs (particles) which 
represents the forecast uncertainty. At each observation date, the prior (or background) composed of the 
particles is evaluated against the observations. The analysis of the PF-SIR (later on "PF") works in two 
steps. In a first step, so-called "importance sampling", the particles are weighted according to their 
distance to the observations (relative to the observation errors). Then, a resampling of the particles is 
performed in order to reduce the variance in the weights. The Ensemble Kalman Filter (EnKF, Evensen 
2003), has also been widely used for snow cover data assimilation (e.g. Slater et al., 2006; De Lannoy 
et al.,  2012; Magnusson et al.,  2014). However, the  PF is more adapted to models with a variable 
number of numerical layers such as detailed snowpack models (Charrois et al., 2016).
The  PF could  be  used  in  a  spatialised context  to  propagate  the  information  from observation  as 
suggested  by  Largeron  et  al.,  (2020) and  Winstral  et  al.,  (2019).  Contrary  to  the  EnKF,  such 
applications are rare to date (e.g. Thirel et al., 2013; Baba et al., 2018; Cantet et al., 2019). Indeed, 
spatialised data assimilation with the  PF is not straightforward because of the degeneracy issue, i.e. 
only a few particles are replicated in the analysis, often resulting in a poor representation of the forecast 
uncertainties. Degeneracy can be mitigated by increasing the number of particles,  but the required 
population scales exponentially with the number of observations simultaneously assimilated (Snyder et 
al., 2008). Furthermore, an accurate representation of spatial error statistics by the ensemble is essential 
for the success of the assimilation system. To achieve that,  the required ensemble size also scales 
exponentially with the system dimension, an issue known as the curse of dimensionality (Bengtsson, 
2008). These issues are severe drawbacks when considering applications of the  PF on large domains 



(i.e. implying a large number of observations and/or simulation points) with a reasonable number of 
particles (Stigter et al., 2017).

L60 While it is probably true that observation error variances are often underestimated, it is (in terms of 
Bayes’ rule) strictly speaking incoherent to keep inflating these variances outside of certain frameworks 
such as likelihood tempering (see van Leeuwen et al., 2019, and references therein). Tempering of the 
likelihood  explains  the  coherency  of  the  ensemble  smoother  with  multiple  data  assimilation  (ES-
MDA), used in Aalstad et al. (2018) for snow DA, which also inflates the observation error covariance 
matrix. It is not necessarily a big problem that the use of inflation here is incoherent, but the fact that it  
is a heuristic approach should be mentioned explicitly and potential solutions such as tempering could 
be proposed.
Thank you for the very interesting input on tempering methods. We didn’t realize that Aalstad et al., 
(2018) was performing inflation, which we interpret as conceptually closer to the tempering presented 
in van Leeuwen et al., (2019) than to our approach. Our understanding of this literature and of the 
present  comments  is  that  tempering  mitigates  sampling  issues  but  does  not  alter  the  extraction  of 
information  from  observations  since  tempering/inflation  coefficients  sum  to  one.  In  contrary,  our 
method does, and is therefore theoretically sub-optimal if not inconsistent. As you say, the inflation 
method we propose, as introduced by Larue et al., (2018) is a heuristic method aiming at mitigating 
mis-specified  observation  and  representativeness  errors.  We  acknowledge  that  this  fact  is  worth 
underlining here (see changes). Meanwhile, we understand that tempering might be suited to tackle 
badly specified observation errors, but not in its present form. This is for sure an interesting lead to 
investigate. The following change is proposed for lines 58-62:
Several solutions exist to tackle the PF degeneracy. A first approach is to inflate the observation errors  
in the PF. The tolerance of the PF is increased, leading to more particles being replicated. This heuristic 
approach  is  based  on  the  fact  that  observation  error  statistics  (including  sensor,  retrieval  and 
representativeness  errors)  are  usually  poorly  known and  underestimated.  It  can  also  be  used  as  a 
safeguard to prevent the PF to degenerate on specific dates, when observations are not compatible with 
the ensemble. PF inflation was successfully implemented in point scale simulations of the snowpack 
(Larue et al., 2018).
see also change line 168 of the manuscript:
A first approach to mitigate degeneracy is to use inflation. This heuristic method iteratively...

L69 Change "It makes" to "This makes".
Corrected
L79 Change "operationally used" to "used operationally".
Corrected
L81 Change "enables to" to "enables us to".
Corrected
L91 Change "reflectance" to "reflectance observations".
Corrected
L95 Change "Following" to "Subsequently".
Corrected
L101 Change "the model into" to "the model for".
Corrected
L102 Change "enables to" to "enables us to".
Corrected
L112 Change "enabling to represent the snowpack coupling" to "coupling the snowpack with".
Corrected
L117 Change "This way," to "As such,".
Corrected



L140 In general I would suggest to put the hat just above the variable and not the sub/superscript. 
Similarly, I don’t think sub/superscripts should be in bold since b ib rather than they are not matrices or 
vectors. That means (for example) using x*** x b and X b rather than X b . This is a recurring issue 
throughout the math in the text. To conform with usual DA notation it might be better to not use a hat  
for the state (i.e. just x) and instead use a hat for the predicted observations (x or better yet y)
Thanks for this rigorous input which has been accounted for in the revised manuscript.
L146 Remove "supposed" since you state the independence assumption in the
ensuing brackets.
Corrected
L148 Change "type of variable of observation" to "type of observation".
Corrected
L165 I didn’t see N ef f defined or even mentioned in Doucet et al. (2001), but maybe I missed it.
Thanks for pointing this citation error. Correct reference is: Doucet, A.: On sequential simulation-based 
methods for Bayesian filtering, Tech. Rep., 1998, but it is not peer-reviewed, so we opted for Liu and 
Chen (1995)
L168 Change "sample population" (a mix of distinct terms) to "effective sample size".
Corrected
L175 Change "inspired on" to "inspired by".
Corrected
L180  Change  "observations  simultaneously  assimilated"  to  "observations  that  are  simultaneously 
assimilated".
Corrected
L195&L201 I don’t really follow the procedure here. First you say reflectance is not defined when 
there is no snow, then you say it is set to 0.2 for snow-free ground. Which is it? Are the bare ground  
reflectance  values  set  as  undefined  or  actually  considered?  I  would  expect  the  residuals  to  also 
contribute important information in the assimilation also in the cases that an observation or particle is  
bare as opposed to snow-covered.
Thanks  for  this  interesting  remark  which  underlines  the  strong link  between  reflectance  and SCF 
assimilation.  We completely agree on the fact  that  snow/no snow holds  precious information.  Our 
choice was to not comment this question too much in order to focus on reflectances, but we agree it  
deserves clarifications. L.195 explains that TARTES optical scheme only provides snow reflectance 
(i.e. not a surface reflectance of a mixed soil-snow surface): this variable is not defined in the absence 
of snow. Some members being “undefined” is problematic for the PF. Conversely, in the observations, 
“no-snow” is an information, contrary to “no observation”. For this reason, in  L201-202 we force a 
default value in the computation of the weights. By putting a reflectance of 0.2, (which corresponds to 
the bare soil broadband albedo in ISBA) in the unmasked snow-free synthetic observations and snow-
free members, we extract this binary information in a very rough way. Ideally, future work should 
jointly assimilate reflectance and SCF in order to better leverage this information.
According to  this  explanation,  Sec.  2.3.3 was expanded (the  fact  that  reflectance observations  are 
bounded was dropped):
Assimilating reflectance with the  PF requires some adaptations. In Crocus,  TARTES optical scheme 
(see Sec. 2.2.1) only provides snow reflectance, not all-surface reflectance: no value for the surface 
reflectance is issued in the absence of snow. Conversely, the weights of the particles are not defined in 
Eq.  2  if  the  members  are  snow-free.  These  issues  were  roughly  accommodated  by  setting  the 
reflectances of snow-free members and observations to 0.2 (the value of bare soil broadband albedo in 
ISBA model) in the PF Eq. 2 (Sec. 2.2.3).

L196 Why are negative background correlations  considered "significant"? If  the prior  ensemble is 
negatively  correlated  between  the  analysis  point  and  the  observed  point  then  surely  the  residuals 



(innovations) in the observed point should not necessarily be expected to carry over to the hypothetical 
residual at the analysis point? Is the reasoning that the hypothetical residual at the analysis point is in 
the perfectly negatively correlated case equal to minus the innovation at the observed point and that 
only the square of the innovation matters with a diagonal R?
Thanks for pointing the question of negative correlations.  We are not sure to  fully  understand the 
question,  so we try to  answer but  we might  have missed something.  Negative correlations can be 
physically sound. Consider HS and two points separated by the rain-snow line during a rain-on-snow 
event, an ensemble built by perturbations on the precipitation rates, and an observation available after 
the  precipitation  event.  In  the  snowy  (rainy)  point,  the  members  with  the  highest  solid  (liquid) 
precipitation will see their HS increase (decrease), resulting in a negative ensemble correlation between 
the HS of the two points. Now consider that only the HS of the snowy point is observed, and that the 
ensemble underestimated HS: it is likely that precipitation rates were underestimated at both locations: 
HS  is  likely  overestimated  in  the  rainy  point.  The  PF  will  select  the  members  with  the  highest 
precipitation  rates  at  the  snowy point,  but  this  information  is  also  valid  for  the  rainy  point,  and 
therefore this information should be transferred by using the same PF sample there.
The correspond item was therefore modified:
\item $\lvert \mathbf{B}_{\bm{v}}(n,p) \rvert >0.3$. If the absolute correlation is low, it is likely that 
there  is  a  poor  potential  for  the  distant  observation  to  constrain  the  ensemble  locally.  In  such  a 
situation, it is better to reject the observation from the local analysis. Negative ensemble correlations 
can be physically sound, e.g. after a rain-on-snow event between the HS of two points separated by the 
rain-snow  line.  In  such  a  situation,  an  HS observation  on  either  point  can  hold  information  on 
precipitation rates at both locations. At the observed location, the PF will select the members with the 
most appropriate precipitation rates. This sample is likely to perform well at both locations, so it can be 
used to constrain the unobserved location.

Also, perhaps use another term then "significant" which unfortunately still has strong statistical (null 
hypothesis significance testing) connotations.
Thanks for this remark, this was modified throughout the text.

L205 Change "openloop" to "open-loop".
Corrected (multiple changes).
L206 The sentence "These observations allow to mimic real observations with a perfect knowledge of 
the true state" can easily be misunderstood to mean that real observations capture the true state. If  
anything, perfect observations are quite unrealistic and do not perfectly mimic reality at all. The fact 
that observations are not perfect is central to the Bayesian origins of ensemble-based DA in general and 
particle filtering in particular. With perfect observations DA just becomes an optimization problem. 
Ironically, you would end up with a sure-thing hypothesis (Jaynes, 2003; Schöniger et al., 2015), your 
likelihood would be a Dirac-delta function, and your particle weights would be nonsensical. In practice 
you do use a non-zero σ k 2 in the analysis so this doesn’t happen, but it is inconsistent to not perturb 
your synthetic observations.
Thanks for his thorough remark. Despite this is  mentioned on L209, we acknowledge that the fact that 
we don’t corrupt the observations should be pointed out more clearly as a limit of our methodological  
study compared to the literature (e.g. Durand et al., 2006) despite recent studies did not do so either  
(e.g. Charrois et al., 2016). We are actually conscious of this limitation, and a recent study has been 
submitted (Revuelto et al., submitted) in which we assimilate  synthetic corrupted observations at the 
point scale. In our situation we did not corrupt the observations because little is known about the spatial 
structure of errors of reflectance (e.g. Cluzet et al., 2020): we know that assuming independent errors 
(i.e. diagonal R) is a very rough approximation of the reality which has strong consequences on the 
propagation  of  information.  Corrupting  the  observations  with  such  random  structures  would  be 
theoretically more consistent, but would not yield much more insight on the potential for information 



from real observations to be spatially propagated as real spatial correlation of observation errors might 
be very different from this hypothesis. Future efforts should concentrate in better characterizing these 
spatial structures of errors. Consistently, the following sentence was modified:
Synthetic observations are extracted from a model run and assimilated without adding any noise. These 
observations mimic...
and a paragraph was added in the end of Sec. 5.2:
Regarding the observations, our study has some methodological limits, however. Observation errors are 
very roughly prescribed, and the assimilated observations are not corrupted as usually done in synthetic 
experiments (e.g. Durand et al.,  2006). These choices were motivated by the fact that very little is 
known about the spatial correlation of reflectance observation errors in the semi-distributed setting (e.g. 
Cluzet et  al.,  2020). In a recently submitted paper,  the impact of random and systematic errors of 
reflectance observations on point-scale assimilation experiments is thoroughly investigated (Revuelto 
et al., 2021). Efforts to better characterize these observation errors should be conducted in future work

L207 Change "It allows" to "This allows us to". Linked to previous comment.
Corrected

L223 I guess by integral you really mean average? It is hard to imagine what the integral of SWE over 
time would represent physically unless it is normalized by the time period you are integrating over.
Indeed we computed the time integral, for the sake of computational simplicity, not the average.  There 
is only a proportionality factor between the integral and the average, so SWE percentiles correspond to 
average  SWE  percentiles.  We  propose  to  simplify  the  statement  by  replacing  the  “integral”  by 
“average”, which makes it more sound, and does not change anything to the idea.
Changed “integral” to “average”

L224 On a first reading it was not clear why you extract percentiles of the open-loop ensemble to be 
used as synthetic observations. Perhaps you could make it clearer that you are effectively independently 
considering several different synthetic truth scenarios rather than a single truth run?
Thanks for pointing out this lack of clarity. The following sentence was added on L225:
...e.g. 2014_p80). This method enables us to evaluate the efficiency of data assimilation experiments 
under contrasted snow condition scenarios. Before any assimilation experiment...

Also, after you have extracted these different synthetic truth runs, what is in the way of perturbing the 
observed variables in these (for each scenario) to generate synthetic observations as is usually done in 
twin experiments? This would allow for a more realistic evaluation, since real observations are noisy 
and  you  would  still  have  access  to  the  synthetic  true  SWE  (unobserved)  that  you  use  in  your 
evaluation?
See previous answer to comment from L206.
L230 Change "date" to "dates".
Corrected
L233 Change "is set" to "are set".
Corrected
L235 Change "uses only" to "only uses".
Corrected
L247-265 When you compute your evaluation metrics you are using the corresponding truth not the 
corresponding (non-existent) observations. Your entire evaluation is based on how CrocO performs in 
terms of estimating the (unobserved) true SWE. As such, I suggest changing o c,t to T c,t (T for truth,  
or something similar) and similarly for O c,t to make this clearer. Alternatively, you could be more 
explicit that all your evaluation is SWE-based and instead use notation like SW E m,c,t for the SWE 
ensemble and SW E ?c,t for the true SWE in a given scenario?



Thanks for this nice suggestion. We opted for the first option, substituting o_{c,t by \tau_{c,t}. (see 
changes).
L250 I suggest calling this the absolute error of the (ensemble) mean (AEM), to avoid confusion with  
the (ensemble) mean absolute error (MAE).
Thanks for this comment. We opted for the AEM name, which is unambiguous. Modifications were 
performed accordingly (including Fig. 3.)
For the caption of Figure 3, and when discussing this Figure (around L281) you call "AE" the RMSE 
which is incorrect. Judging by Fig.3a the RMSE would be considerably larger for the open-loop than 
for any of the analyses.
Thanks for this comment. We actually forgot to replace RMSE by AE (AEM) in the text, thanks for  
pointing this out !
L264 This could be understood to mean that this is Eq .8 in Hersbach (2000),which it is not, and it is  
unusual to enumerate an equation (your Eq. 8) before it is presented on the next line. Furthermore, I  
couldn’t find such an equation in Hersbach (2000), the closest I could find was his Eq. 39 which had an 
extra uncertainty term and a sign reversal for the "Resol" term. Could you explain the discrepancy?
Thanks for pointing this out. There was an error in the reference, the appropriate one being Candille et 
al., 2015. While the interpretation of the Reli term is unambiguous, interpretation of the Resol term is 
more controversial (P. de Mey and G. Candille, personal communication). This is why we didn’t focus 
on the Resol term. Recent publication from Leutbecher et al., (2020) might help understanding Resol 
for curious readers.

L277 Change "well representative" to just "representative".
Corrected
L292 Change "contrasted" to "contrasting".
Corrected
L294 Change "as for HS" to just "for HS"?
, we actually mean that for band4, spatial correlation patterns are similar to those of HS.
We replaced “as for HS” by “Similar results are obtained for HS.”

L296 Again consider using another word than significant.
Corrected
Furthermore, are high background correlations that surprising given that, for a given ensemble member, 
you use the same multiphysics (M i ) and forcing perturbations (F i ) across the entire (semidistributed) 
domain?  Isn’t  this  mainly  an  indication  that  the  SAFRAN forcing  is  quite  spatially  homogeneous 
(L128)?
Thanks for this remark. Indeed, intrinsic correlations come from the forcing variables and ESCROC 
members  and,  this  point  is  actually  discussed in  Sec 5.3 of  the manuscript.  Nevertheless Fig.4a-b 
actually shows that despite same Mi and Fi are applied across the entire domain, some locations are 
completely decorrelated due to the combination of strong vertical gradients and some highly non-linear 
processes.
We amended L412 of  the  manuscript  to  also mention  that  ESCROC members  were also spatially 
constant:
Strong Band 4 correlations might be due to the spatially homogeneous perturbations of LAP fluxes 
used to force the simulations (see Sec. 2.2.2), a key driver of this variable, and because the same snow 
model  configuration  is  applied  for  a  given member  across  the  simulation  domain.  Several  studies 
suggest...

Moreover, this comment points out a lack of interpretation of these background correlations in our 
manuscript. In line with our answer to comment 8 of Reviewer 1, physical interpretation of the Band 5 
background  correlations  evidenced  in  Fig.  4b  is  a  bit  more  complex  than  for  Band  4  and  HS. 



Differential metamorphism can happen between the opposite sides of a mountain (because of different 
illumination conditions), or similarly, across the rain snow line, resulting in a de-correlation of band 5 
reflectances. Details on these processes were added throughout sections 5.2 and 5.3, and we suggest to 
refer to the track-change.
See track change in Secs. 5.2 and 5.3

L301 Change "launched" to "conducted". In general, I would suggest referring to the SWE percentile-
based sets  of observations  as  "synthetic  observation scenarios" rather  than "synthetic  members"  to 
avoid confusion with the ensemble members.
Corrected, thanks for this suggestion.
L319 There are many examples in the literature of fractional snow-covered area (fSCA), which is 
retrieved from reflectance, constraining bulk variables like SWE quite well.
We agree and following your suggestion, several significant changes been made throughout the text 
(introduction discussion and conclusions, see in particular the answer to L.34, L. 391, L470. We hope 
these corrections are enough. Here, for the sake of clarity, we propose to correct to:
“raw reflectance products”

HS observations are also often not representative of the model scale.
This  is  an  important  point  on  which  we  completely  agree,  but  we  do  not  aim  at  discussing  HS 
assimilation too much as the main focus of this study is reflectance.

L320 Change "all other things equal" to "all other things being equal". Perhaps make it clearer that you 
are not jointly assimilating HS and reflectance in this experiment.
Thanks for this suggestion. The sentence was changed to:
In order to assess this difference, we conduct assimilation of reflectance only, in the same setup as in 
Sec. 4.2.1}, all other things being equal.

L324 Change "well represent" to "properly represent". Also on the next line use (e.g.) "marked" instead 
of "significant".
Corrected
L327 Change "with respect to" to "compared to".
Corrected
L330 Why is "Skill" capitalized?
Corrected
L350 I would recommend switching "a right probability" to "the right frequency". Paraphrasing the 
discussion from the bottom of page 564 in Hersbach (2000): for the (average) CRPS, the reliability is  
similar to the rank histogram which can show if the frequency that the truth has a certain rank in the 
ensemble is equal for all ranks. In applications Bayesian (rather than frequentist) inference, which is 
what  the  PF  is  used  for,  there  is  an  important  distinction  between  the  concept  of  frequency  and 
probability; the latter is a measure of uncertainty (degree of belief, plausibility) (e.g. Lindley, 2000; 
Jaynes, 2003).
Corrected, accounted for, thanks a lot for this input.

L356 Change "conceptual" to "synthetic".
Corrected
L360 Change "on the" to "for the".
Corrected



L362 This is an interesting speculation, but these are ensemble correlations between two areas in your 
domain not real spatial correlations. Maybe the ensemble is similar in the eastern and western aspects 
of the domain because a rain shadow effect (or something else) is not captured in your open-loop.
The potential  mismatch between ensemble correlations and real spatial  correlations  is  discussed in 
L411 of the manuscript. We agree that as you mention, not accounting for the intra-massif variability of 
meteorological conditions (in the sense that you mean, e.g. Western slopes should lie preferentially in 
the windward side of the massif and receive more/less snow than those on the windward side). On L. 
411, we added a mention to this:
Strong and almost uniform HS correlations (Fig. 4b) might be caused by the satial homogeneity of 
precipitation perturnations and because we do not account for e.g. wind drift, intra-massif variability of 
meteorological conditions and gravitational redistribution of snow (Wayand et al., 2018)....
L364 Change "such elevation" to "such elevations".
Corrected
L370 I would argue that the fSCA depletion is quite informative for any seasonal snowpack, it is not 
necessarily maximally informative for intermittent snowpacks below the rain-snow line.
Thanks again for this remark. We believe that answer to L319 comment is appropriate here too.
L372 Change "well linked" to "closely linked".
Corrected
L375 Change "outstanding" to "unexpected" and (next line) "between these" to "for these two".
Corrected, the sentence was changed to:
This study unexpectedly suggests that reflectance information can be spread from southern slopes to 
the northern ones,...

L379 Change the sentence "It is informative. . . " to "In our ensemble data assimilation framework, 
however, it does seem to be informative.". On the next line I also recommend removing "in this case".
Corrected
L382 Change "enabling to correct" to "enabling a correction of".
Corrected, changed to: … parametrisations, thus correcting the ensemble...
L387 Sentinel-2  and the  Landsats  should  not  be  put  in  the  same moderate  resolution  category  as 
MODIS, VIIRS, and Sentinel-3.
Corrected, changed to: …the abundance of moderate to high resolution space-borne sensors (MODIS, 
Sentinel2-3, VIIRS, Landsat…)…
 
L391 Change "usually" to "often" to qualify this statement.
Corrected, changed to : “generally” a bit stronger than “often”.

L394-395 In terms of the current status of remote sensing of snow using optical satellites, this sentence  
seems too pessimistic.  Even though Warren (2013) states that retrieving BC content of snow from 
satellites  is  unlikely  to  be  successful,  it  does  not  follow  that  reflectances  retrievals  from  optical 
satellites  are  currently  too  inaccurate  to  be  used  to  provide  accurate  information  on  snowpack 
properties.For example Aalstad et al. (2020) (and many other references therein) show that fractional 
snow-covered area (fSCA) can be estimated quite accurately from reflectances through a variety of 
methods using optical satellite sensors that are currently in orbit. These fSCA retrievals can, in turn, be 
used to constrain modeled estimates of other snowpack properties such as SWE through particle-based 
DA methods (see e.g. Alonso-González et al., 2020, for a recent example).
Thanks for pointing out this sentence whose formulation was inappropriate. Our purpose was to talk 
about surface properties (grain size, and light absorbing particle contents (LAP)). Thanks to a previous 
comment (L34), it is now acknowledged that SCF is accurately retrieved. Regarding surface properties, 
as you say,  Warren (2013) statement only stands for LAP, while for snow microphysical properties, the 



required accuracy might be reached. And of course, for SCF, it is already the case, this point was added 
in the introduction (see changes to comment on line 34).
In  the  near-infrared,  the  signal-to-noise  ratio  of  reflectances observations  might  be  sufficient  to 
constrain the surface  microphysical properties (Durand et al., 2007; Mary et al., 2013), whereas the 
required  accuracy  for  visible  reflectance  retrievals  to  remain  informative  on  the  snowpack light 
absorbing particles content is high (Warren, 2013), and it is yet to prove whether either approach can 
achieve this requirement.

Regarding the interest of SCF for data assimilation, we agree also on its added value, and that it needed 
to be acknowledged in the discussion. A sentence was added at the beginning paragraph of Sec. 5.3 (L.  
388)
Reflectance is an appealing variable for  snowpack modelling because of its sensitivity to  snowpack 
surface  properties  (Dozier,  2009) and  the  abundance  of  moderate  to  high  resolution  space-borne 
sensors  (MODIS,  Sentinel2-3,  VIIRS,  Landsat...)  providing  us  with  a  handful  of  observations  to 
assimilate, contrary to HS. The potential for assimilation of SCF, which is retrieved from reflectances, 
is  clear  (Margulis  et  al.,  2016,  Aalstad  et  al.,  2018,  Alonso-Gonzalez  et  al.,  2020).  This  study 
demonstrates  the potential  of  the  PF to spread information  and assimilate  raw  reflectances with  a 
positive impact (Sec.  5.2). Yet, assimilating real observations of reflectance is another challenge, for 
two reasons.

L408 Change "informations" to "information".
Corrected
L410 How can a correlation pattern based on an ensemble be realistic? In Bayesian inference the 
ensemble represents a probability distribution: a measure of uncertainty which is in the mind, not real. 
Jaynes (2003) explains this well with what he calls a mind projection fallacy: confusing reality and 
states of knowledge about reality.
We acknowledge this is a bad formulation, thank you for pointing this out. We mean: based on the 
assumption that ensemble background correlations are a realistic representation of modeling errors. The 
sentence was changed to:
The klocal algorithm could be more suited to this situation, because it is looking for local optima, based 
on the assumption that background correlation are a realistic representation of modelling errors.

L414 Change "reliable model for that" to "reliable LAP model".
Corrected, changed to : ...no reliable model of such processes exists in complex terrain.

L418 Change "suffers from obvious" to "suffering from obvious" and "suffer for large" to "suffer from 
large".
Corrected
L421 As before, in Bayesian probability theory how can an ensemble correlation be real?
See answer to L410: changed to:
In the future, improving the ability of ensemble correlations to represent modelling errors correlations 
could make the spreading of information an even more challenging task with the klocal algorithm.

L424 Change "area" to "areas".
Corrected
L426 Change "into larger" to "for larger".
Corrected
L427 Change "take the best" to "outperform".
Corrected
L451 Change "in the way of a new" to just "in a new".



Corrected
L456 Change "spatialized" to "semi-distributed".
We  acknowledge  that  this  work  has  only  been  done  in  a  semi-distributed  geometry,  which  is  a 
spatialized  setting.  We would  like  to  stick  with  the  use  of  “spatialized”  because  the  term “semi-
distributed” is quite obscure for the majority of the people, and it might confuse the audience especially 
if they only read the abstract/conclusion. We consider that it is clearly stated everywhere else in the 
paper that we work in a semi-distributed setting and that this will be clear for curious readers. Finally, 
as we mentioned later on, nothing specific to the semi-distrubited geometry was developed here: CrocO 
can be applied seamlessly on networks of in-situ stations and fully distributed frameworks.
Also mention somewhere in the conclusion that this is a synthetic experiment.
We completely agree that this should be mentioned. The sentence on L490 was changed to:
In the framework of synthetic experiments, we have shown in particular that:

L460 Capitalize the leading words in this enumeration.
Corrected
L469 Change "errors" to error".
Corrected
L470 Again, why would fSCA only be worth assimilating at lower elevations? The depletion of fSCA 
might  provide  useful  information  anywhere  in  your  domain.  For  example,  Margulis  et  al.  (2016) 
assimilated fSCA with a particle batch smoother (equivalent to your rlocal PF without resampling) to 
produce  a  30  year  high  resolution  snow  reanalysis  for  the  Californian  Sierra  Nevada  with 
unprecedented accuracy. This study and others like it surely indicate that fSCA is quite valuable also 
for a PF even at higher elevations.
We agree that this statement was too pessimistic regarding the SCF. The sentence was changed to:
Snow cover  fraction  would  be  a  good  companion  variable  to  jointly  assimilate  with  reflectances, 
requiring the use of an appropriate observation operator.

L490 Change "softwares" to "software".
Corrected
L500 Change "enabling to" to "enabling us to".
Corrected, changed to: necessary to
Fig. 1 caption: Change "elevation bands altitudes" to "altitudes of the elevation bands". Also change 
"40 ◦ degrees slopes" to "40 ◦ slopes" since the ◦ symbol is shorthand for degrees.
Corrected
Fig. 2: Why is the superscript of the fourth prior particle at t 1 3 and not 4? As suggested earlier for  
L140, consider changing the use of hats in your math notation.
Corrected
Table 1: Change N eeff to N ef f . In the caption, change "setup of" to "Setup for" and change "snow  
depth" to "height of snow" to be consistent with the rest of themanuscript. The same applies to the title 
of subsection 4.2.1.
Corrected
Table 2: Change N eeff to N eff . In the caption, change "setup of" to "Setup for". Furthermore, change  
"second" to "first"; this is the first reflectance experiment.
Corrected
Table 3: Same problems as with the other Tables.
Corrected
Fig. 3: In the caption, change RMSE to AE (or AEM).
Corrected, changed to AEM
Fig. 4: In the caption, change "the denote" to "denote the".
Corrected



Fig. 4: In the caption, change "on the whole" to "for the whole".
Corrected
Fig. 6: In the caption, consider changing "synthetic members" to "synthetic scenarios" (since these are 
not ensemble members). Also, why is "Skill" capitalized?
Corrected accounted for, according to previous corrections.
Fig. 8&9: In the caption, consider changing "member" to "scenario" to avoid confusing the concept of  
your truth scenarios and the ensemble.
Corrected
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Abstract. Monitoring the evolution of the snowpack properties in mountainous areas is crucial for avalanche hazard forecast-

ing and water resources management. In-situ and remotely sensed observations provide precious information on the
✿✿✿

state
✿✿✿

of

✿✿

the
✿

snowpack but usually offer a limited spatio-temporal coverage of bulk or surface variables only. In particular, visible-near

infrared (VIS-NIR) reflectance observations can inform on
✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

about the snowpack surface properties but are

limited by terrain shading and clouds. Snowpack modelling enables to estimate
✿✿

the
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of any physical variable, virtually5

anywhere, but is affected by large errors and uncertainties. Data assimilation offers a way to combine both sources of informa-

tion, and to propagate information from observed areas to non observed areas. Here, we present CrocO, (Crocus-Observations)

an ensemble data assimilation system able to ingest any snowpack observation (applied as a first step to the height of snow

(HS) and VIS-NIR reflectances) in a spatialised geometry. CrocO uses an ensemble of snowpack simulations to represent

modelling uncertainties, and a Particle Filter (PF) to reduce them. The PF is known
✿✿✿✿

prone
✿

to collapse when assimilating a10

too large number of
✿✿✿

too
✿✿✿✿✿

many observations. Two variants of the PF were specifically implemented to ensure that observations

information is propagated in space while tackling this issue. The global algorithm ingests all available observations with an

iterative inflation of observation errors, while the klocal algorithm is a localised approach performing a selection of the obser-

vations to assimilate based on background correlation patterns. Experiments
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Feasibility-testing
✿✿✿✿✿✿✿✿✿✿

experiments
✿

are carried out in

a
✿✿

an
✿✿✿✿✿✿✿✿

identical twin experiment setup, with synthetic observations of HS and VIS-NIR reflectances available in only a 1/6th of15

the simulation domain. Results show that compared against runs without assimilation, analyses exhibit an average improve-

ment of snow water equivalent Continuous Rank Probability Score (CRPS) of 60% when assimilating HS with a 40-member

ensemble, and an average 20% CRPS improvement when assimilating reflectance with a 160-member ensemble. Significant

improvements are also obtained outside the observation domain. These promising results open a way for the assimilation of

real observations of reflectance, or of any snowpack observations in a spatialised context.20
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1 Introduction

Seasonal snowpack is a key
✿

an
✿✿✿✿✿✿✿✿

essential
✿

element of mountainous areas. Monitoring the evolution of its physical properties

is essential to forecast avalanche hazard (Morin et al., 2020), rain-on-snow related floods (Pomeroy et al., 2016; Würzer

et al., 2016) and to monitor water resources (Mankin et al., 2015). Observations alone are too scarce to monitor snowpack25

conditions. In-situ observations provide precise observations of several key variables, but they lack spatial representativeness

and have a poor spatial coverage. Remote sensing of snowpack variables such as the height of snow (HS, (m)), snow wa-

ter equivalent (SWE, (kgm−2)), visible-near infrared (VIS-NIR) reflectance, or surface temperature, provide comprehensive

information over large areas but usually have a limited temporal resolution on a small set of variables. Furthermore, these

observations are usually available in fractions of simulation domains only, even for space-borne data (Davaze et al., 2018;30

Veyssière et al., 2019; Shaw et al., 2019). For instance, snowpack VIS-NIR reflectances from moderate resolution (250-500

m) satellites such as MODIS or Sentinel-3 can help constraining the snowpack surface properties (Dozier et al., 2009)
✿✿✿✿

such
✿✿

as

✿✿✿✿✿✿✿✿✿✿✿

microphysical
✿✿✿✿✿✿✿✿✿

properties
✿✿✿✿✿✿✿✿✿✿✿

(characterized
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

specific
✿✿✿✿✿✿

surface
✿✿✿✿✿

area,
✿✿✿✿

SSA
✿

(m2kg−1)
✿✿✿✿

and
✿✿✿✿

light
✿✿✿✿✿✿✿✿

absorbing
✿✿✿✿✿✿✿

particles
✿✿✿✿✿✿✿

content
✿✿✿✿✿

(LAP,

✿

(gg−1
snow✿✿

))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Durand and Margulis, 2006; Dozier et al., 2009). However, in the areas covered by clouds, forests, or concerned by

high sub-pixel variability (ridges, roughness, fractional snow cover) and shadows, satellite retrievals are less accurate (Mas-35

son et al., 2018; Lamare et al., 2020), and data should be filtered out (Cluzet et al., 2020).
✿✿✿

The
✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿✿✿

offered

✿✿

by
✿✿✿✿✿✿✿

products
✿✿✿✿✿

from
✿✿✿✿✿✿✿

Landsat
✿✿

or
✿✿✿✿✿✿✿✿✿

Sentinel-2
✿✿✿✿✿

might
✿✿✿

be
✿✿

an
✿✿✿✿✿✿

avenue
✿✿

to
✿✿✿✿

this
✿✿✿✿

issue
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Masson et al., 2018; Aalstad et al., 2020)
✿✿✿

but
✿✿

at

✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

resolution,
✿✿✿✿✿✿✿✿✿✿

reflectance
✿✿✿✿✿✿✿✿

retrievals
✿✿✿

are
✿✿✿✿

quite
✿✿✿✿✿

noisy
✿✿✿✿

due
✿✿

to
✿✿✿

e.g.
✿✿✿✿✿✿

digital
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿

model
✿✿✿✿✿

errors
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Cluzet et al., 2020).
✿✿✿✿✿✿✿

Finally,

✿✿✿

note
✿✿✿✿

that
✿✿✿✿✿

pixel
✿✿✿✿✿✿✿✿

fractional
✿✿✿✿✿

snow
✿✿✿✿✿

cover
✿✿✿✿✿✿

(snow
✿✿✿✿✿

cover
✿✿✿✿✿✿✿✿

fraction,
✿✿✿✿

SCF)
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

accurately
✿✿✿✿✿✿✿

retrieved
✿✿✿✿✿

even
✿✿✿✿

from
✿✿✿✿✿✿

noisy
✿✿✿✿✿✿✿✿✿✿

reflectances

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Sirguey et al., 2009; Aalstad et al., 2020)
✿

,
✿✿✿

but
✿

it
✿✿✿✿✿✿✿

inherits
✿✿

its
✿✿✿✿✿✿✿✿✿✿✿✿✿

spatio-temporal
✿✿✿✿✿✿✿✿✿✿

limitations.
✿✿✿✿

SCF
✿✿✿✿✿✿✿✿✿✿✿✿✿

informativeness
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿

limited
✿✿

in40

✿✿✿✿

deep
✿✿✿✿✿✿✿✿

snowpack
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(De Lannoy et al., 2012)
✿

.

Snowpack models of different complexity offer an exhaustive spatial and temporal coverage (Krinner et al., 2018). They are

applied within several spatial configurations, including collection of points, regular or irregular grids (Morin et al., 2020). In this

paper, "spatialised" refers indistinctly to any of these configurations. Only detailed snowpack models enable
✿✿✿✿✿✿

Detailed
✿✿✿✿✿✿✿✿✿

snowpack45

✿✿✿✿✿✿

models
✿✿✿

are
✿✿✿

the
✿✿✿✿

only
✿✿✿✿

ones
✿✿✿

able
✿

to assess avalanche hazard and monitor water resources alike (Morin et al., 2020), but they suffer

from
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

applications
✿✿✿

are
✿✿✿✿✿✿

limited
✿✿✿

by
✿✿✿✿

their
✿

considerable errors and uncertainties (Essery et al., 2013; Lafaysse et al., 2017),

limiting their use. In that context, combining remote sensing observations with models through data assimilation is an appealing

solution (?). It enables to optimally combine
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Largeron et al., 2020).
✿✿✿✿✿✿✿

Indeed,
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿

combines
✿

the spatial and tem-

poral coverage of snowpack models with the available information from observations
✿

in
✿✿

an
✿✿✿✿✿✿✿

optimal
✿✿✿✿

way. Assimilation of optical50

reflectance could reduce modelled SWE errors by up to a factor of two (Charrois et al., 2016)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Durand and Margulis, 2007; Charrois et al., 2016)

, and preliminary studies showed its potential for spatialised assimilation (Cluzet et al., 2020). Assimilation of HS is very effi-

cient in reducing modelled SWE errors (Margulis et al., 2019). However, the limited spatial coverage of observations is stressing

the need for data assimilation algorithms able to spread
✿✿✿✿✿✿✿✿

propagate the snowpack observations information into the non-observed

areas (Winstral et al., 2019; Cantet et al., 2019; ?)
✿✿✿✿✿✿✿✿✿

unobserved
✿✿✿✿

areas
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Winstral et al., 2019; Cantet et al., 2019; Largeron et al., 2020)55

2



.

The Particle Filter with Sequential Importance Resampling (PF, Gordon et al., 1993; Van Leeuwen, 2009)
✿✿✿✿✿✿✿✿

sequential
✿✿✿✿✿✿✿✿✿✿

importance

✿✿✿✿✿✿✿✿✿

resampling
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(PF-SIR, Gordon et al., 1993; Van Leeuwen, 2009) is a Bayesian ensemble data assimilation technique well suited

to snowpack modelling (Magnusson et al., 2017). This sequential algorithm relies
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Dechant and Moradkhani, 2011; Charrois et al., 2016; Magnusson60

✿

.
✿✿✿

The
✿✿✿✿✿✿✿

PF-SIR
✿✿

is
✿✿

a
✿✿✿✿✿✿✿✿

sequential
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿

relying
✿

on an ensemble of model runs (particles) to represent
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

represents the

forecast uncertainty. At each observation date, the prior (or background) composed of the particles is evaluated against the

observations. The PF posterior (or analysis ) is built by replicating the particles that are nearest to the observation (with respect

✿✿✿✿✿✿

analysis
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

PF-SIR
✿✿✿✿✿

(later
✿✿✿

on
✿✿✿✿✿

"PF")
✿✿✿✿✿✿

works
✿✿

in
✿✿✿

two
✿✿✿✿✿✿

steps.
✿✿

In
✿

a
✿✿✿✿

first
✿✿✿✿✿

step,
✿✿✿✿✿✿✿

so-called
✿✿✿✿✿✿✿✿✿✿✿

"importance
✿✿✿✿✿✿✿✿✿

sampling",
✿✿✿

the
✿✿✿✿✿✿✿✿

particles
✿✿✿

are

✿✿✿✿✿✿✿

weighted
✿✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿✿

their
✿✿✿✿✿✿✿✿

distance
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿

(relative to the observation error)and discarding the others.
✿✿✿✿✿✿

errors).65

✿✿✿✿✿

Then,
✿

a
✿✿✿✿✿✿✿✿✿✿

resampling
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

particles
✿✿

is
✿✿✿✿✿✿✿✿✿

performed
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿

reduce
✿✿✿

the
✿✿✿✿✿✿✿

variance
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

weights.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

Ensemble
✿✿✿✿✿✿✿

Kalman
✿✿✿✿✿

Filter

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(EnKF Evensen, 2003)
✿

,
✿✿✿

has
✿✿✿✿

also
✿✿✿✿

been
✿✿✿✿✿

widely
✿✿✿✿✿

used
✿✿

for
✿✿✿✿✿

snow
✿✿✿✿✿

cover
✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Slater and Clark, 2006; De Lannoy et al., 2012; Magnusson

✿

.
✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿

PF
✿✿

is
✿✿✿✿

more
✿✿✿✿✿✿✿

adapted
✿✿

to
✿✿✿✿✿✿✿

models
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿

variable
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

layers
✿✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿

detailed
✿✿✿✿✿✿✿✿

snowpack
✿✿✿✿✿✿✿

models

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Charrois et al., 2016).

The PF could be used in a spatialised context to spread observations information
✿✿✿✿✿✿✿✿

propagate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

observation as70

suggested by ?
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Largeron et al. (2020) and Winstral et al. (2019). This
✿✿✿✿✿✿✿

Contrary
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

EnKF,
✿✿✿✿

such
✿✿✿✿✿✿✿✿✿✿

applications
✿✿✿

are
✿✿✿✿

rare
✿✿

to
✿✿✿✿

date

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Thirel et al., 2013; Baba et al., 2018; Cantet et al., 2019)
✿

.
✿✿✿✿✿✿

Indeed,
✿✿✿✿✿✿✿✿✿

spatialised
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿

with
✿✿✿

the
✿✿✿

PF is not straight-

forward because of the PF degeneracy
✿✿✿✿✿✿✿✿✿

degeneracy
✿✿✿✿✿

issue, i.e. the required
✿✿✿

only
✿

a
✿✿✿✿

few
✿✿✿✿✿✿✿

particles
✿✿✿

are
✿✿✿✿✿✿✿✿

replicated
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

analysis,
✿✿✿✿✿

often

✿✿✿✿✿✿✿

resulting
✿✿

in
✿

a
✿✿✿✿✿

poor
✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿✿✿✿✿✿

uncertainties.
✿✿✿✿✿✿✿✿✿✿

Degeneracy
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

mitigated
✿✿✿

by
✿✿✿✿✿✿✿✿

increasing
✿✿✿

the
✿

number of parti-

cles
✿

,
✿✿✿

but
✿✿

the
✿✿✿✿✿✿✿

required
✿✿✿✿✿✿✿✿✿

population
✿

scales exponentially with the number of observations (Bengtsson et al., 2008; Snyder et al., 2008)75

. This issue is a severe drawback
✿✿✿✿✿✿✿✿✿✿✿✿

simultaneously
✿✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Snyder et al., 2008)
✿

.
✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿

an
✿✿✿✿✿✿✿✿

accurate
✿✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿

of

✿✿✿✿✿

spatial
✿✿✿✿✿

error
✿✿✿✿✿✿✿

statistics
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

is
✿✿✿✿✿✿✿✿

essential
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

success
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

system.
✿✿

To
✿✿✿✿✿✿✿

achieve
✿✿✿✿

that,
✿✿✿

the
✿✿✿✿✿✿✿✿

required

✿✿✿✿✿✿✿✿

ensemble
✿✿✿

size
✿✿✿✿

also
✿✿✿✿✿

scales
✿✿✿✿✿✿✿✿✿✿✿

exponentially
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿

dimension,
✿✿

an
✿✿✿✿✿

issue
✿✿✿✿✿

known
✿✿

as
✿✿✿

the
✿✿✿✿✿

curse
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

dimensionality
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Bengtsson et al., 2008)

✿

.
✿✿✿✿✿

These
✿✿✿✿✿

issues
✿✿✿

are
✿✿✿✿✿

severe
✿✿✿✿✿✿✿✿✿

drawbacks
✿

when considering applications of the PF on large domains
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿

implying
✿✿

a
✿✿✿✿

large
✿✿✿✿✿✿✿

number
✿✿

of

✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿

and/or
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿✿✿

points) with a reasonable number of particles (Stigter et al., 2017).80

Several solutions exist to tackle the PF degeneracy. A first approach is to inflate the observation errors in the PF. The tolerance

of the PF is increased, leading to more particles being replicated. This approach is based on the fact that observation error

statistics
✿✿✿✿✿✿✿✿✿

(including
✿✿✿✿✿✿

sensor,
✿✿✿✿✿✿✿

retrieval
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

representativeness
✿✿✿✿✿✿

errors) are usually poorly known and underestimated. It can also be

used as a safeguard to prevent the PF to degenerate on specific dates, when observations are not compatible with the ensemble.

PF inflation was successfully implemented in point scale simulations of the snowpack (Larue et al., 2018). When dealing with85

a large number of observations, inflation might lead to degeneracy or null analysis (posterior equal to the prior). In this work,

we generalize over space the inflation of Larue et al. (2018), trying to ingest all the observations into a single analysis over the

domain, in a so-called global approach.

PF localisation is a more widespread alternative, tackling degeneracy by reducing the number of observations
✿✿✿

that
✿✿✿

are simulta-

neously assimilated by the PF (Poterjoy, 2016; Poterjoy and Anderson, 2016; Penny and Miyoshi, 2016; Poterjoy et al., 2019,90
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italic notations are taken from the review of Farchi and Bocquet, 2018). In this method, the simulation domain is divided into

blocks where different PF analyses are performed considering a local subset of observations (domain) based on a localisation

radius. It
✿✿✿✿

This makes it possible to constrain the model in locations that are not directly observed, but with nearby observations.

✿✿✿✿✿✿✿

Contrary
✿✿

to
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿

approaches,
✿✿✿✿✿✿✿✿✿✿

localisation
✿✿✿✿

has
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

disadvantage
✿✿

of
✿✿✿✿✿✿✿✿✿

producing
✿✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿✿✿✿✿

discontinuous
✿✿✿✿✿✿✿✿

analyses
✿✿✿✿✿

(each
✿✿✿✿✿

point

✿✿✿✿✿✿

receives
✿✿

a
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

analysis).
✿✿✿✿

This
✿✿✿✿

issue
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

mitigated
✿✿

in
✿✿✿✿✿✿

various
✿✿✿✿

ways
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Poterjoy, 2016; Farchi and Bocquet, 2018; Van Leeuwen et al., 2019)95

✿

.

The underlying hypothesis of localisation is that model points are independent beyond a certain distance, i.e. constraining

one point with the observation from a too distant point would be meaningless, and likely degrade the analysis performance

(Houtekamer and Mitchell, 1998). However, in the case of small simulation domains or modelled systems driven by large-scale

coherent causalities, large scale correlations (relative to the domain size) may be physically sound, and defining a localisation100

radius may be a difficult task. In order to face this issue, we developed a new localisation approach called the k-localisation,

where localisation domains are based on background correlation patterns.

These developments were implemented into CrocO (Crocus-Observations) an ensemble data assimilation system able to se-

quentially assimilate snowpack observations with a PF in a spatialised context. CrocO can be implemented in any geome-

try, (e.g. within a distributed (gridded) framework or any irregular spatial discretisation). Here, we apply CrocO in a semi-105

distributed framework, which is a conceptual spatialised geometry, operationally used
✿✿✿✿

used
✿✿✿✿✿✿✿✿✿✿✿

operationally by Météo-France for

avalanche hazard forecasting (Lafaysse et al., 2013; Morin et al., 2020). This framework is similar to many topographic-based

discretisation in hydrological models (e.g. Clark et al., 2015). This setup enables
✿✿

us
✿

to account for the snowpack variability

induced by the topography at the scale of a mountain range, through meteorological conditions (elevation controls the air tem-

perature and precipitation phase) and the snowpack radiative budget (also dependent on the aspect and slope angle) (Durand110

et al., 1993).

CrocO uses an ensemble of stochastic perturbations of SAFRAN meteorological analysis (Durand et al., 1993; Charrois et al.,

2016) to force ESCROC (Ensemble System CROCus, Lafaysse et al. (2017)),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Ensemble System CROCus, Lafaysse et al., 2017)

✿

, the multi-physical version of Crocus snowpack model (Vionnet et al., 2012). The ensemble setup accounts for the major

sources of uncertainties in snowpack modelling (Raleigh et al., 2015) and was formerly described and evaluated in the semi-115

distributed geometry by Cluzet et al. (2020).

Inflation and k-localisation were implemented into CrocO. Here, we present CrocO and evaluate how it addresses the issues

of reflectance observation sparseness and PF degeneracy in the context of snowpack modelling. This problem is divided into

two scientific questions: (1) Is CrocO PF able to efficiently spread the information from sparse observations in space without

degenerating? (2) Is the spatial information content of reflectance
✿✿✿✿✿✿✿✿✿✿

observations
✿

valuable for snowpack models? We assess these120

questions by evaluating the performance of CrocO to model the SWE when assimilating synthetic observations of HS and

reflectance covering only a portion of the domain.

Section 2 presents the CrocO system, i.e. the ensemble modelling system and the PF algorithms. Section 3 introduces the

evaluation methodology. Following
✿✿✿✿✿✿✿✿✿✿✿

Subsequently,
✿

Sec. 4 assesses the performance of CrocO and Sec. 5 discusses the results.

Finally, Sec. 6 provides perspectives and research directions.125
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2 Material and methods

2.1 Modelling geometry

Simulations are performed in the semi-distributed geometry. Mountain ranges such as the Alps are discretized into so-called

massifs of about 1000 km2 to account for regional variability of meteorological conditions. Within each massif, topographic-

induced variability is taken into account by running the model into
✿✿

for a fixed set of topographic classes, e.g. by 300 m elevation130

bands, for 0o, 20o and 40o slopes and 8 aspects (see Fig. 1). This set enables
✿✿

us to reproduce the main features of snowpack

variability (e.g. Mary et al., 2013).

In this study, we focus on the Grandes Rousses, a single massif in the central French Alps. This area of about 500 km2 is

represented by Npts = 187
✿✿✿✿✿✿✿✿

Npts = 187
✿

independent topographic classes (see Fig. 1). In the following, specific topographic

classes are denoted as follows: elevation_aspect_slope, e.g. 1800_N_40 stands for a 40o slope, with a northern aspect at 1800135

m. a.s.l. m.a.s.l.
✿

.

2.2 CrocO Ensemble data assimilation setup

The ensemble data assimilation workflow of CrocO is represented in Fig. 2. In the following, only a short description of

the system and its elements is provided. More details on the ensemble modelling setup are available in Cluzet et al. (2020).

✿✿✿✿✿✿✿✿✿✿

Information
✿✿✿✿

about
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿✿✿

into
✿✿✿✿✿✿✿✿✿✿✿

Météo-France
✿✿✿✿✿

HPC
✿✿✿✿✿✿

system
✿✿✿

can
✿✿

be
✿✿✿✿✿✿

found
✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

B1.140

2.2.1 Ensemble of snowpack models

Crocus is a detailed snowpack model, enabling to represent the snowpack coupling
✿✿✿✿✿✿

coupled
✿

with the ground and atmosphere

in the ISBA land surface model (Interaction Soil-Biosphere-Atmosphere). It is embedded within the SURFEX_v8.1 mod-

elling platform (SURFace Externalisée, Masson et al. (2013))
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(SURFace EXternalisée, Masson et al., 2013). The TARTES op-145

tical scheme (Libois et al., 2013, 2015) represents VIS-NIR spectral radiative transfer within the snowpack, driven by snow

metamorphism (Carmagnola et al., 2014) and Light Absorbing Particles (LAP (gg−1
snow)) deposition fluxes (Tuzet et al., 2017).

Moreover, TARTES computes the snowpack reflectance with a high spectral resolution, making the model directly comparable

to the observations. This way
✿✿✿

As
✿✿✿✿

such, TARTES is both a physical component of Crocus and an observation operator.

ESCROC (Ensemble System CROCus, Lafaysse et al., 2017) multi-physical ensemble version of Crocus is used to account150

for snowpack modelling uncertainties. A random draw among 1944 ESCROC multi-physics configurations was performed and

used in all the simulations and denoted (Mi)0<i≤Ne
, Ne

✿✿✿✿✿✿✿✿✿✿

(Mi)0<i≤Ne ,✿✿✿

Ne being the ensemble size (e.g. 40 or 160 members,

see Fig. 2). These configurations are considered equiprobable before any data assimilation.
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2.2.2 Ensemble of meteorological forcings155

Meteorological forcings are taken from SAFRAN (Durand et al., 1993) reanalysis, where forecasts from the ARPEGE Nu-

merical Weather Prediction (NWP) model are downscaled and adjusted with surface observations within the massif area. They

are combined with MOCAGE LAP fluxes (Josse et al., 2004) interpolated at Col du Lautaret (2058 m.a.s.lm.a.s.l, inside

the Grandes-Rousses) to constitute the reference forcing dataset. Before the beginning of the simulation, spatially homoge-

neous stochastic perturbations
✿✿✿✿

(e.g.
✿✿

at
✿✿

a
✿✿✿✿✿

given
✿✿✿✿✿

date,
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿✿✿✿✿✿✿

parameter
✿✿

is
✿✿✿✿✿✿✿

applied
✿✿✿✿✿

across
✿✿✿✿

the
✿✿✿✿✿

whole
✿✿✿✿✿✿✿✿

domain)160

✿✿✿✿

with
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

auto-correlations
✿

are applied to this forcing to generate an ensemble of forcings (Fi)0<i≤Ne ✿✿✿✿✿✿✿✿✿✿

(Fi)0<i≤Ne ✿✿✿✿

with

✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿

procedure
✿

as described in Cluzet et al. (2020). Each
✿✿✿✿✿

More
✿✿✿✿✿

details
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿✿✿✿✿✿

procedure
✿✿✿✿

can
✿✿

be
✿✿✿✿✿

found
✿✿✿

in

✿✿✿✿✿✿✿✿

Appendix
✿✿

A.
✿✿✿

At
✿✿✿

the
✿✿✿✿✿✿✿✿

beginning
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulation,
✿✿✿✿

each
✿

forcing Fi is associated with the corresponding
✿

a
✿✿✿✿✿✿

random
✿

Mi ESCROC

configuration and this relation is fixed during the whole simulation.

165

2.2.3 The Particle Filter in CrocO

The PF is applied sequentially at each observation date on the background state vectors (soil and snowpack state variables, de-

noted BG on Fig. 2). Its analysis is an ensemble of initial conditions used to propagate the model forward. The algorithm is im-

plemented into SODA (SURFEX Offline Data Assimilation, Albergel et al. (2017)),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

((SURFEX Offline Data Assimilation, Albergel et al., 2017)

✿

, the data assimilation module of SURFEX_v8.1, enabling a continuous execution sequence between ensemble propagation170

and analysis, as depicted in Fig. 2.

2.3 The Particle Filter equations

At a given observation date, we consider a set of observed variables available at several locations, totalling Ny different

observations.

– Each member x̂i
b ✿✿

xi
b of the background state X̂b

✿✿✿

Xb is projected into the observation space using the observation operator175

h. In our case, h is just an orthogonal projection on the Ny observations since HS and reflectance are diagnosed within

Crocus (see Sec. 2.2.1). The projection xi
b = hx̂i

b = (xi
k)0<k≤Ny ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

x̂i
b = hxi

b = (x̂i
k)0<k≤Ny

, corresponds to the modelled

values at each observed variable/point.

– these Ny observations are collected in the vector y = (yk)0<k≤Ny
. The associated observation error covariance matrix

R (Eq. 1) is supposed diagonal (e.g. observation errors are assumed independent):180

R= diag(diag
✿✿✿✿

✿

(σ2
k,0< k ≤Ny) (1)

Where σ2
k stands for the observation error variance of observation k and depends only on the type of variable of obser-

vation yk (e.g. HS or reflectance).

The PF analysis usually works in two steps.
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– (1) computing the particle weights wi as the normalised observation likelihood for each particle (Eq. 2):185

wi =
e−

1

2
(y−xi

b
)TR

−1(y−xi

b
)

∑Ne

k=1 e
− 1

2
(y−xk

b
)TR−1(y−xk

b
)

e−
1

2
(y−x̂i

b)
T
R

−1(y−x̂i
b)

∑Ne

k=1 e
− 1

2
(y−x̂k

b
)TR−1(y−x̂k

b
)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(2)

– (2) resampling the particles based on their weights to build the analysis vector X̂a
✿✿✿

Xa. Here, we apply the PF resampling

from Kitagawa (1996) which returns s= (si)0<i≤Ne
, (si ∈ [1..Ne]

✿✿✿✿✿✿✿✿✿✿✿✿

s= (si)0<i≤Ne ,✿✿✿✿✿✿✿✿✿✿✿

(si ∈ [1..Ne]) a sorted vector with

duplications, representing the particles to replicate.

A sample reordering step was added for numerical optimisation with no expected incidence on the PF behaviour (see in190

Appendix B2 for more details).

Two simple variants of this algorithm can be identified in a spatialised context:

– global approach: perform one analysis over the domain, putting all the available observations in y.

– rlocal approach: perform one analysis per model point, assimilating only local observations, if any. This corresponds to

a localised PF with block and domain size of 1.195

2.3.1 Particle Filter degeneracy

Degeneracy occurs when only a small fraction of the particles have non-negligible weights, resulting in a sample s where only a

few different indices are present. It can be diagnosed from the weights using the effective sample size Neff (Liu and Chen, 1995; Doucet et al.,

:
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Liu and Chen, 1995)
✿

:

Neff =
1

∑Ne

i=1(w
i)2

1
∑Ne

i=1(w
i)2

✿✿✿✿✿✿✿✿✿

(3)200

With a degenerate sample, Neff & 1, and with innocuous analysis (all particles are replicated) Neff =Ne
✿✿✿✿✿✿✿✿

Neff =Ne.

A first approach to mitigate degeneracy is to use inflation. This
✿✿✿✿✿✿✿

heuristic
✿

method iteratively inflates R values until the sample

population
✿✿✿✿✿✿✿

effective
✿✿✿✿✿✿

sample
✿✿✿✿

size is large enough. Here, we develop a variant from Larue et al. (2018) method, which was not

explicitly relying on Neff (Eq. 3). Consider applying an inflation factor 1
α to R, (0< α≤ 1, α= 1 being the value for no in-

flation), and update Neff (Eqs. 2 and 3): Neff is naturally a decreasing function of α (the more we inflate R the more different205

particles will be replicated). The idea of our method is to ensure that Neff exceeds a target value, N∗
eff. If Neff <N∗

eff (degenerate

case), we reduce α (inflate) until Neff =N∗
eff using Alg. 1. In the following, inflation is used in the global and rlocal PF (see

Sec. 2.2.3).

The core of Alg. 1 is an hybrid bisection-secant method to find the zero of f : α 7→Neff(α)−N∗
eff in [0,1]. It is inspired210

on
✿✿

by rtsafe algorithm (Vetterling et al., 1992). The guess function computes a new guess α2 to minimize f. Note that in the

unlikely case where Alg. 1 does not converge, all the particles are replicated.
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Algorithm 1 Weighting algorithm with inflation.

Input: xi,y,R,N∗
eff

✿✿✿✿✿✿✿✿✿✿

x̂i,y,R,N∗
eff

Output: wi

✿✿

wi

1: α← 1

2: R← 1

α
R

3: wi←
✿✿✿✿

wi←weights(xi,y,R
✿✿✿✿✿✿

x̂i,y,R) (Eq. 2)

4: Neff←eff_weights(wi) (Eq. 3)

5: if Neff <N∗
eff then

6: α1← 0

7: Neff1 ←Ne
✿✿✿✿✿✿✿✿✿

Neff1 ←Ne

8: cond← True
✿✿✿✿✿✿✿✿✿✿

cond← True
✿

9: i← 0

10: while cond do

11: α2←guess(α1,α,Neff1 ,Neff,N
∗
eff)

12: R← 1

α2

R

13: wi
2←weights(xi,y,R

✿✿✿✿✿✿

x̂i,y,R) (Eq. 2)

14: Neff2 ←eff_weights(wi
2) (Eq. 3)

15: if |Neff2 −N∗
eff|< ǫ then

16: cond← False
✿✿✿✿✿✿✿✿✿✿

cond← False

17: α← α2

18: wi← wi
2

19: else

20: α← α1

21: α1← α2

22: Neff←Neff1

23: Neff1 ←Neff2

24: end if

25: i← i+1

26: if i=maxiter then

27: print "failed to converge, duplicating all particles"

28: wi← 1

Ne ✿✿✿✿✿✿

wi← 1

Ne✿

29: end if

30: end while

31: end if
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2.3.2 k-localisation

In the k-localisation algorithm, degeneracy is mitigated by reducing the number of observations
✿✿✿

that
✿✿

are
✿

simultaneously assim-215

ilated. The PF analysis is applied to each simulation point sequentially. In order to build the analysis at point n, background

correlations Bv are computed for each variable v (e.g HS or reflectance) between n and all the observed points. In a first step,

all observations from points exhibiting significant
✿✿✿✿✿✿✿✿

substantial
✿

background correlations (see below select_k_biggest function)

are used. If the PF degenerates, the number of observations is progressively decreased until degeneracy is mitigated. As earlier,

degeneracy is considered mitigated when Neff ≥N∗
eff. This way, we ensure that a maximal number of observations has been220

ingested by the PF without degenerating.

In case of degeneracy, the observation point displaying the lowest correlation is ruled out. The PF weights are computed (Eq.

2), and a new effective sample size is derived (Eq. 3). While the target sample size is not exceeded, this selection proceeds

iteratively. The notation k in "k-localisation" refers to the number k of retained observations of each variable. This approach

is similar to EnKF localisation algorithm where the localisation domain is based on background correlations (Hamill et al.,225

2001).

The detailed k-localisation algorithm is described in Alg. 2, where:

– The select_k_biggest method returns for each variable, the domain dv , of up to k observed points (named p) that are

the most correlated (in absolute value) with n, and match the following criteria
✿

,
✿✿✿✿✿

which
✿✿✿✿✿

were
✿✿✿✿✿✿✿

adjusted
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿

preliminary

✿✿✿✿✿✿✿✿✿✿

experiments:230

– in x̂i
v ✿✿

xi
v , there are at least 10% of members defined in both points(

✿

.
✿✿✿

As reflectance is not defined when there is

no snow) ,
✿✿✿✿✿✿✿✿

spurious
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

computation
✿✿

of
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿

is
✿✿✿✿✿

based
✿✿

on
✿✿

a
✿✿✿✿

very
✿✿✿

low

✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿

pairs.
✿

– |Bv(n,p)|> 0.3: correlations are significant.
✿

.
✿✿

If
✿✿✿

the
✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿

is
✿✿✿

too
✿✿✿✿

low,
✿✿

it
✿✿✿

is
✿✿✿✿✿

likely
✿✿✿✿

that
✿✿✿✿

there
✿✿✿

is
✿

a

✿✿✿✿

poor
✿✿✿✿✿✿✿

potential
✿✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

distant
✿✿✿✿✿✿✿✿✿✿

observation
✿✿

to
✿✿✿✿✿✿✿✿✿

constrain
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

locally.
✿✿

In
✿✿✿✿✿

such
✿

a
✿✿✿✿✿✿✿✿✿

situation,
✿

it
✿✿✿

is
✿✿✿✿✿

better
✿✿

to235

✿✿✿✿

reject
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿

local
✿✿✿✿✿✿✿✿

analysis.
✿✿✿✿✿✿✿✿

Negative
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

physically
✿✿✿✿✿✿

sound,
✿✿✿

e.g.
✿✿✿✿

after

✿

a
✿✿✿✿✿✿✿✿✿✿✿

rain-on-snow
✿✿✿✿✿

event
✿✿✿✿✿✿✿

between
✿✿✿✿

the
✿✿✿

HS
✿✿

of
✿✿✿✿

two
✿✿✿✿✿

points
✿✿✿✿✿✿✿✿✿

separated
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

rain-snow
✿✿✿✿

line.
✿✿✿

In
✿✿✿✿

such
✿

a
✿✿✿✿✿✿✿✿✿

situation,
✿✿

an
✿✿✿

HS

✿✿✿✿✿✿✿✿✿

observation
✿✿✿

on
✿✿✿✿✿

either
✿✿✿✿✿

point
✿✿✿

can
✿✿✿✿

hold
✿✿✿✿✿✿✿✿✿✿

information
✿✿

on
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿

rates
✿✿

at
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

locations.
✿✿

At
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿

location,

✿✿

the
✿✿✿

PF
✿✿✿✿

will
✿✿✿✿✿✿✿✿

probably
✿✿✿✿✿

select
✿✿✿

the
✿✿✿✿✿✿✿✿

members
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿✿✿✿

appropriate
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿

rates.
✿✿✿✿

This
✿✿✿✿✿✿✿

sample
✿✿

is
✿✿✿✿✿

likely
✿✿

to

✿✿✿✿✿✿

perform
✿✿✿✿

well
✿✿

at
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

locations,
✿✿

so
✿

it
✿✿✿✿

can
✿✿

be
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿

constrain
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

unobserved
✿✿✿✿✿✿✿

location.
✿

240

– d is the collection of the domains dv

– extract_points extracts d from y,xi
✿✿✿✿

y, x̂i
✿

and R.
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Algorithm 2 k-localisation algorithm

Input: xi

✿✿

x̂i, y, B, R, N∗
eff

Output: (wi

n)0<n≤Ne
✿✿✿✿✿✿✿✿✿✿

(wi
n)0<n≤Npts

1: for n= 1 to Npts
✿✿✿

Npts do

2: k← kmax
✿✿✿✿✿✿✿

k← kmax {try to ingest all available observations.}

3: cond← True
✿✿✿✿✿✿✿✿✿✿

cond← True
✿

4: while cond and k > 0 do

5: for v = 1 to Nv
✿✿

Nv do

6: dv ←
✿✿✿✿

dv←
✿

select_k_biggest(n,k,Bv ,xi

v
✿✿✿✿✿

Bv ,x̂i
v , y)

7: end for

8: yk,x
i

k,Rk←
✿✿✿✿✿✿✿✿✿✿

yk, x̂
i
k,Rk←

✿

extract_points(y, xi

✿✿

x̂i,R, d)

9: wi
n← weights(xi

k,yk,Rk
✿✿✿✿✿✿✿✿

x̂i
k,yk,Rk ) (Eq. 2)

10: Neff← eff_weights(wi
n) (Eq. 3)

11: if Neff ≥N∗
eff then

12: cond← False
✿✿✿✿✿✿✿✿✿✿

cond← False

13: end if

14: k← k− 1

15: end while

16: if k = 1 then

17: wi
n← inflation(xi

k,yk,Rk
✿✿✿✿✿✿✿

x̂i
k,yk,Rk, N∗

eff)

18: end if

19: end for

2.3.3 Particle Filter and reflectance observations

Assimilating reflectance with the PF requires some adaptations. Snow reflectance is a bounded variable (0-1) and is not defined

✿✿

In
✿✿✿✿✿✿

Crocus,
✿✿✿✿✿✿✿✿

TARTES
✿✿✿✿✿✿

optical
✿✿✿✿✿✿

scheme
✿✿✿✿

(see
✿✿✿✿

Sec.
✿✿✿✿✿

2.2.1)
✿✿✿✿

only
✿✿✿✿✿✿✿

provides
✿✿✿✿✿

snow
✿✿✿✿✿✿✿✿✿

reflectance,
✿✿✿

not
✿✿✿✿✿✿✿✿✿

all-surface
✿✿✿✿✿✿✿✿✿✿

reflectance:
✿✿

no
✿✿✿✿✿

value
✿✿✿

for
✿✿✿

the245

✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

reflectance
✿✿

is
✿✿✿✿✿

issued
✿

in the absence of snow. For this reason,
✿✿✿✿✿✿✿✿✿

Conversely,
✿✿✿

the
✿✿✿✿✿✿✿

weights
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

particles
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿

defined
✿✿

in

✿✿✿

Eq.
✿

2
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿

members
✿✿✿

are
✿✿✿✿✿✿✿✿✿

snow-free.
✿✿✿✿✿

These
✿✿✿✿✿

issues
✿✿✿✿✿

were
✿✿✿✿✿✿

roughly
✿✿✿✿✿✿✿✿✿✿✿✿✿

accommodated
✿✿

by
✿✿✿✿✿✿

setting
✿✿✿

the reflectances of snow-free members

and observations were set to 0.2 (snow-free ground reflectance value in Crocus
✿✿

the
✿✿✿✿✿

value
✿✿

of
✿✿✿✿

bare
✿✿✿

soil
✿✿✿✿✿✿✿✿✿

broadband
✿✿✿✿✿✿

albedo
✿✿

in
✿✿✿✿✿

ISBA

✿✿✿✿✿

model) in the PF Eq. 2 (Sec. 2.2.3).

3 Evaluation strategy250

Our strategy is to assess the performance of the analysis by means of twin experiments, i.e. using synthetic observations

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Reichle and Koster, 2003). The assimilation run is compared to an identical run without assimilation (openloop
✿✿✿✿✿✿✿✿

open-loop

run). Synthetic observations are extracted from a model run and assimilated
✿✿✿✿✿✿

without
✿✿✿✿✿✿

adding
✿✿✿✿

any
✿✿✿✿✿

noise. These observations
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allow to mimic real observations with a perfect knowledge of the true state. Analysis and openloop
✿✿✿✿✿✿✿✿

open-loop
✿

experiments can

therefore be compared with this true state anywhere, for any variable. It allows in
✿

In
✿

a first step,
✿✿✿✿

this
✿✿✿✿✿✿

allows
✿✿

us to get rid of the255

error and bias issues inherent to real observations (Cluzet et al., 2020), a reason why we did not add any noise to the synthetic

observations as commonly done in twin experiments (Lahoz and Menard, 2010). This way, we can focus on the two following

questions (see Sec. 1):

– Is CrocO PF able to efficiently spread the information from sparse observations into space without degenerating?

– Is spatial information content of reflectance a valuable source of information for snowpack models?260

In order to disentangle these questions, we run baseline experiments assimilating synthetic observations of HS which is strongly

linked with SWE (Margulis et al., 2019). These experiments are used to evaluate the PF algorithms efficiency, and as a baseline

for synthetic reflectance assimilation experiments evaluating the information content of reflectance.

Three different algorithms are evaluated: the global algorithm (with inflation), the rlocal algorithm (with inflation) and the

k-localized algorithm klocal.265

3.1 Experiments

3.1.1 Twin experiments setup

In our twin experiment setup, an openloop
✿✿✿✿✿✿✿✿

open-loop
✿

ensemble is used as a reference and to generate synthetic observations.

Openloop
✿✿✿✿✿✿✿✿

open-loop simulations are carried out with CrocO for 4 consecutive winters (2013-2017) in the Grandes-Rousses270

(see Sec. 2.1), with 160 members. For each year, the integral
✿✿✿✿✿✿

average
✿

of SWE over time and space is computed from each mem-

ber, and members corresponding to the 20th, 40th, 60th and 80th percentiles of the ensemble are extracted to be used as synthetic

observations (denoted year_ppercentile e.g. 2014_p80).
✿✿✿✿

This
✿✿✿✿✿✿

method
✿✿✿✿✿✿✿

enables
✿✿

us
✿✿

to
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿✿✿

efficiency
✿✿

of
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation

✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿

under
✿✿✿✿✿✿✿✿✿

contrasted
✿✿✿✿

snow
✿✿✿✿✿✿✿✿

condition
✿✿✿✿✿✿✿✿✿

scenarios. Before any assimilation experiment, the openloop
✿✿✿✿✿✿✿✿

open-loop member

(Fi −Mi couple in Fig. 2) used as true state is withdrawn and replaced by a new random member.275

The spatial coverage of synthetic observations was reduced, mimicking a typical reflectance mask. Synthetic observations were

only available above an assumed constant tree line at 1800 m (see Fig. 1), and not available in steep slopes (over 20o) and in

northern aspects (shadows, considering a daily satellite pass around 10-11:00 UTC.), for the whole snow season. As a result, in

this case, only 35 (over 187) topographic classes are observed. Observation date
✿✿✿✿✿

dates were chosen corresponding to clear-sky

days with a MODIS overpass, resulting in an approximately weekly frequency (e. g. Revuelto et al. (2018); Cluzet et al. (2020)280

).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Revuelto et al., 2018; Cluzet et al., 2020).

Considering reflectance, a
✿✿✿✿✿✿✿✿✿

Reflectance
✿✿

is
✿✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿✿✿

SSA
✿✿✿

and
✿✿✿✿

LAP
✿✿✿✿

(see
✿✿✿✿

Sec.
✿✿✿

1).
✿✿

A
✿

minimal set of two different

bands is used, corresponding to MODIS sensor band 4 (555 nm,
✿✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿✿

SSA
✿✿✿

and
✿✿✿✿

LAP) and 5 (1240 nm) (Charrois et al., 2016)

✿

,
✿✿✿✿✿✿

usually
✿✿✿✿

only
✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿✿✿

SSA)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Fig. 2. of Cluzet et al., 2020). Observation error variances is
✿✿

are
✿

set to 1.0× 10−2m2 for

HS and 5.6× 10−4 and 2.0× 10−3 for band 4 and band 5 reflectance respectively (Wright et al., 2014). These values are only285
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initial values for the inflation in the global and rlocal algorithms. Since the klocal algorithm uses only
✿✿✿

only
✿✿✿✿✿

used inflation if

k drops to 1 (see Sec. 2), observation error variances are multiplied by a factor of 5 to enable the klocal algorithm to ingest

observations from several points.

In order to study the ability of the global, klocal and rlocal algorithms to spread the information in space, a first set of ex-

periments is conducted assimilating HS with 40 members (see setup in Tab. 1). In order to evaluate the algorithms ability to290

assimilate reflectance (Band 4 and Band 5) a second set of experiments is conducted, other things being equal (Tab. 2). The

ensemble size is increased from 40 to 160 in a third set of experiments assimilating reflectance, in order to analyse the influence

of a larger ensemble on the algorithms performance (Tab. 3). Note in Tab. 1-3 that N∗
eff is adjusted to the ensemble size, in

order to preserve Ne/N
∗
eff ≈ 5− 7

✿✿✿✿✿✿✿✿✿✿✿✿✿

Ne/N
∗
eff ≈ 5− 7 following Larue et al. (2018).

295

3.2 Evaluation Scores

The performance of the assimilation and openloop
✿✿✿✿✿✿✿✿

open-loop
✿

run is evaluated against the synthetic truth using several scores.

The Absolute Error of the ensemble mean (AE
✿✿✿✿✿

AEM) and ensemble spread σ are two common metrics of ensemble modelling.

Given an ensemble Em,c,t of Ne
✿✿

Ne
✿

members m in topographic class c at time t and the corresponding observations oc,t
✿✿✿✿

truth

✿✿✿

τc,t, the ensemble mean is described by Eq. 4:300

Ec,t =
1

Ne

1

Ne
✿✿

∑

m=1

NeEm,c,t
NeEm,c,t
✿✿✿✿✿✿✿

(4)

From which we can compute the absolute error AE
✿✿✿✿✿

AEM (Eq. 5) and the spread (or dispersion) σ (Eq. 6):

AEAEM
✿✿✿✿✿

c,t = |Ec,t − oτ
✿
c,t| ∀(c, t) ∈ [1,Nptspts

✿

]× [1,Nt] (5)

σc,t =

√√√√ 1

Ne

Ne∑

m=1

(Em,c,t −Ec,t)2

√√√√ 1

Ne

Ne∑

m=1

(Em,c,t −Ec,t)2

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∀(c, t) ∈ [1,Nptspts
✿

]× [1,Nt] (6)305

Where Nt is the number of evaluation time steps.

The Continuous Ranked Probability Score (CRPS, (Eq. 7) Matheson and Winkler, 1976) evaluates the reliability and resolu-

tion of an ensemble based on a verification dataset. An ensemble is reliable when events are forecast with the right probability,

and has a good resolution when it is able to discriminate distinct observed events. For a reliable system, the resolution is equiv-310

alent to the sharpness, which is the spread of the produced forecasts.

If we denote Fc,t the Cumulative Distribution Function (CDF) and Oc,t the corresponding observation
✿✿✿

Tc,t
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding

✿✿✿✿

truth CDF (Heaviside function centred on the truth value), the CRPS is computed at (c, t) following:

CRPSc,t =

∫

R

(Fc,t(x)−OT
✿
c,t(x))

2dx ∀(c, t) ∈ [1,Nptspts
✿

]× [1,Nt] (7)
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In this work, CRPSc,t value is averaged over time alone or time and space depending on the desired level of aggregation.315

The CRPS can be decomposed in two terms following Hersbach (2000) (Eq. 8)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Candille et al. (2015):

CRPS = Reli + Resol (8)

Where Reli quantifies the reliability of the ensemble. The associated skill scores (CRPSS and ReliS) can be used to compare

the performance of an ensemble E to a reference R, here, the openloop
✿✿✿✿✿✿✿✿✿

open-loop run:

CRPSS(E) = 1−
CRPS(E)
CRPS(R)

(9)320

A skill score of 1 denotes a perfect score, 0 a neutral performance and −∞ is the worst achievable skill score.

4 Results

4.1 Preliminary Results

4.1.1 Impact of the inflation

The inflation algorithm was introduced by Larue et al. (2018) in point scale simulations but to the best of our knowledge, never325

applied in a spatialised context. Here we evaluate its impact on the global algorithm by switching it on/off. As an example,

Fig. 3 shows the impact of the inflation on SWE when assimilating the HS of 2015_p80 (as defined in Sec. 3.1.1) member with

the global algorithm, in a topographic class which is not observed (1800_N_40, as defined in Sec. 2.1). This choice of member

and topographic class is well representative of the impact of the inflation on the global algorithm.

In this case, both inflation (N∗
eff = 7) and no inflation (N∗

eff = 1) lead to a significant reduction of the ensemble spread com-330

pared with the openloop
✿✿✿✿✿✿✿✿

open-loop
✿

(Fig 3a-b
✿

b). From January 2015 until the peak of SWE in mid-April 2015, (Fig. 1c) the

simulation with inflation has significantly lower errors than without inflation and the openloop
✿✿✿✿✿✿✿✿

open-loop
✿

(10-20 kgm−2 vs.

60-80 kgm−2 and 30-50 kgm−2 respectively), leading to a better agreement with the synthetic truth in the melting season

(Fig. 3a). During the melting season (mid-April 2015 onwards), the RMSE
✿✿✿✿

AEM
✿

of the assimilation algorithms is reaching a

peak, coinciding with an absence of observations. In comparison, the openloop RMSE
✿✿✿✿✿✿✿✿✿

open-loop
✿✿✿✿✿

AEM is smaller in the first335

part of the melting season, but the spread is three times larger, making it almost uninformative. For several analyses (2014,

November 21th, and 2014, December 30th for example) the ensemble spread without inflation drops to 0 while its RMSE
✿✿✿✿✿

AEM

strongly increases compared to the openloop
✿✿✿✿✿✿✿✿

open-loop, suggesting that it is prone to degeneracy.

4.1.2 Correlation patterns340

The klocal algorithm relies on background correlation patterns to define localisation domains. To illustrate the potential of us-

ing such information in the PF, Fig. 4 shows the correlation patterns of the 40 members openloop in a non observed
✿✿✿✿✿✿✿✿

open-loop

✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿✿

unobserved topographic class (1800_N_40, red dot) in the mid-winter , several months after the snow season onset (2015,
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February 20th)for the different assimilation variables . These variables
✿

,
✿✿✿✿✿✿

several
✿✿✿✿✿✿✿

months
✿✿✿✿

after
✿✿✿

the
✿✿✿✿✿

snow
✿✿✿✿✿✿

season
✿✿✿✿✿✿

onset.
✿✿✿✿

The

✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

variables
✿

exhibit strong but contrasted
✿✿✿✿✿✿✿✿✿

contrasting
✿

correlation patterns. Band 4 (Fig. 4a) correlations are gener-345

ally high (0.6-1) and uniform. Many of the observed classes (black dots) are strongly correlated with the considered classas
✿

.

✿✿✿✿✿✿

Similar
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿✿✿

obtained
✿

for HS (Fig. 4c). Band 5 (Fig. 4b) exhibits significant
✿✿✿✿✿✿✿✿

substantial
✿

correlations, in particular across

slopes. However, they are more restricted to the northern aspects, only a few observed classes in the Eastern aspects being

significantly
✿✿✿✿✿✿✿✿✿✿✿

substantially correlated with the considered class. Finally, note that
✿✿✿✿

Note
✿✿✿

that
✿✿✿✿✿✿✿

negative
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

are
✿✿✿✿✿✿✿✿✿

evidenced

✿✿✿✿

with
✿✿✿✿

some
✿✿✿✿✿

lower
✿✿✿✿✿✿✿

altitude
✿✿✿✿✿✿✿✿✿✿✿✿

South-oriented
✿✿✿✿✿✿✿✿✿✿

topographic
✿✿✿✿✿✿

classes
✿✿✿✿

(e.g.
✿✿✿✿✿✿✿✿✿

1500_S_40
✿✿✿

on
✿✿✿

Fig.
✿✿✿✿

4b).
✿✿✿✿✿✿✿

Finally, these patterns vary with time350

but remain significant
✿✿✿✿✿✿✿✿

substantial
✿

along the whole season (not shown), and that increasing the ensemble size up to 160 leads to

identical patterns (not shown).

4.2 Results of the experiments

4.2.1 Assimilation of
✿✿✿

the
✿✿✿✿✿✿

Height
✿✿

of
✿

SnowDepth355

In a first step, assimilation of HS from the different synthetic members was launched
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

scenarios
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿

conducted

to serve as a reference for reflectance assimilation. Fig. 5 shows the CRPSS (Eq. 9, aggregated over time only) of the HS

assimilation with the three PF algorithms considering the synthetic member 2013_q20 as reference. Results for this specific

synthetic member were chosen here as a representative example of the algorithms performance.

The rlocal performance compared with the openloop
✿✿✿✿✿✿✿✿

open-loop is high (0.7-1), but limited to the observed classes (black dots)360

since there is no spatial propagation in this algorithm. global and klocal algorithms have similar, overall good performance,

managing to strongly reduce modelling uncertainties except at very low altitudes (600-900 m), (skills of -0.2) where snow does

not usually last for more than a few weeks.

This behaviour may vary with the snow conditions, i.e., between the different assimilated synthetic members
✿✿✿✿✿✿✿✿✿✿

observation

✿✿✿✿✿✿✿

scenarios
✿

and from one year to another. In order to generalize this result, Fig. 6 shows the CRPS and Reli (aggregated over365

time and space) of the different algorithms for the 16 synthetic members
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

scenarios
✿

and differentiated between

observed and non-observed
✿✿✿✿✿✿✿✿✿

unobserved classes. CRPS and Reliability are considerably reduced compared with the openloop

✿✿✿✿✿✿✿✿

open-loop
✿

(by a factor of 2-3 and 4-5, respectively) for all the algorithms in the observed classes. This suggests that the PF

manages to reduce the spread of the ensemble while reducing its errors. In the non observed
✿✿✿✿✿✿✿✿✿

unobserved
✿

classes, the gain is

almost as good (CRPSS of 0.6) except for the rlocal algorithm, which is identical to the openloop
✿✿✿✿✿✿✿✿

open-loop
✿

as expected. No370

significant difference of skill is obtained between global and klocal algorithms.

4.2.2 Assimilation of Reflectance

Optical reflectance is a promising assimilation variable due to its extended availability in satellite observations, but assimila-

tion of reflectance
✿✿✿

raw
✿✿✿✿✿✿✿✿✿✿

reflectance
✿✿✿✿✿✿✿

products
✿

is not expected to constrain bulk variables like SWE or HS as well
✿✿✿✿

much
✿

as HS375
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assimilation. Here
✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿

assess
✿✿✿✿

this
✿✿✿✿✿✿✿✿

difference, we conduct reflectance assimilation
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

of
✿✿✿✿✿✿✿✿✿

reflectance
✿✿✿✿✿

only, in the

same setup as in Sec 4.2.1, all other things equal, to assess this difference
✿✿✿✿

being
✿✿✿✿✿

equal.

Fig. 7 shows the performance of the reflectance assimilation for the 16 synthetic members
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

scenarios
✿

with 40 mem-

bers (filled boxes). The different algorithms only lead to moderate improvements in CRPS (median CRPSS of 0.-0.2, median

ReliS of 0.2-0.4). Moreover, the global and klocal algorithms frequently degrade the performance, suggesting that this config-380

uration is not robust.

Suspecting that 40 members is insufficient to well
✿✿✿✿✿✿✿

properly represent the multivariate probability density function of reflectance

and other model variables, the ensemble size was increased to 160 (hatched boxes), leading to significant
✿✿✿✿✿✿

marked improve-

ments in the performance and robustness of the algorithms (median CRPSS of 0.2, median Reli of 0.4-0.6). Reliability of the

global algorithm is significantly improved with respect
✿✿✿✿✿✿✿✿

compared
✿

to the klocal algorithm.385

Fig. 8 shows the spatial performance of the different algorithms for member 2016_p60. Spatial patterns similar to the HS assim

✿✿✿✿✿✿✿✿✿✿

assimilation are found. rlocal performance is limited to the observed classes, while global and klocal manage to improve the

simulations across aspects and slopes. However, Skill
✿✿✿

skill
✿

scores are lower than for HS (0.2-0.5), and the performance of all

algorithms is poor
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

classes
✿✿✿✿

that
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿

farther
✿✿✿✿✿

away
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿✿✿

i.e. at lower elevations , even
✿✿✿✿✿✿✿✿

(600-900 m
✿

)

✿✿✿

and
✿

in some of the observed classes.
✿✿✿✿

high
✿✿✿✿✿✿

altitude
✿✿✿✿✿

steep
✿✿✿✿✿✿✿✿

Northern
✿✿✿✿✿✿

classes
✿✿✿✿✿

(e.g.
✿✿✿✿✿✿✿✿✿✿

2100_N_40
✿✿

on
✿✿✿✿✿

Figs.
✿✿✿✿✿✿

8b-c).
✿✿✿✿✿✿

Finally
✿✿✿✿

note
✿✿✿✿

that390

✿✿✿✿

slight
✿✿✿✿✿✿✿✿✿✿✿

degradations
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿

can
✿✿✿✿✿✿✿✿✿

sometimes
✿✿✿

be
✿✿✿✿✿✿✿✿

evidenced
✿✿✿✿

even
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

classes
✿✿✿

for
✿✿✿

all
✿✿

the
✿✿✿✿✿✿✿✿✿✿

algorithms
✿✿✿✿

(e.g.
✿✿

in
✿✿✿

flat

✿✿✿✿✿✿✿✿

conditions
✿✿

at
✿✿✿✿✿

3300 m
✿✿

on
✿✿✿✿

Fig.
✿✿✿

8a
✿✿

for
✿✿✿

the
✿✿✿✿✿✿

rlocal,
✿✿✿

not
✿✿✿✿✿✿✿✿✿

evidenced
✿✿

by
✿✿✿✿

this
✿✿✿✿✿✿✿

example
✿✿✿

for
✿✿✿

the
✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿

algorithms).

5 Discussion

In this section, we discuss the performance of CrocO PF algorithms using the assimilation of HS, and consider the potential of395

the assimilation of reflectance in view of assimilating real data.

5.1 Tackling Particle Filter degeneracy

Because they assimilate several observations at the same time, global and klocal approaches could be prone to PF degener-

acy. However, they almost never degrade the performances when assimilating HS in a variety of years and synthetic members

✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

scenarios
✿

percentiles (Fig. 6). This suggests that either inflating the observation errors (as demonstrated by Larue400

et al. (2018), a result we have generalized in space) or exploiting background correlations to reduce the number of assimilated

observations, are two efficient approaches to tackle degeneracy.

In several cases though, a strong degradation of score occurs when assimilating reflectance (Fig. 7), which could either be

attributed to an algorithmic failure in the PF, or an intrinsic lack of informativeness of reflectance in some situations. Based

on the good behaviour of the algorithm with HS, and because by construction, global and klocal algorithms cannot lead to a405

degenerate PF sample we consider this comes from the reflectance itself (this point will be further discussed in the following

sections).
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Beyond tackling degeneracy, global and klocal algorithms also beat the rlocal approach on Reli and CRPS scores (Figs. 7 and

8). This suggests that assimilating multiple observations increases the quality of the PF analysis, even locally. More precisely,

most of the improvement is due to the Reli term of the CRPS. This property is key
✿✿✿✿✿

crucial
✿

for ensemble modelling, because it410

ensures that events are forecasted with a right probability
✿✿✿✿✿✿✿✿

frequency. However, this is not sufficient, e.g. the climatology has a

perfect reliability but is not informative at all. Successful assimilation manages to improve general metrics such as the CRPS

while improving the reliability. On this aspect, the global and klocal algorithms have a satisfying performance.

5.2 Propagating the observations information415

Having sparse observations is one of the most challenging tasks for data assimilation systems of snowpack observations

(Magnusson et al., 2014; ?)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Magnusson et al., 2014; Largeron et al., 2020). In our partially observed, conceptual
✿✿✿✿✿✿✿

synthetic setup,

the global and klocal PF variants developed here efficiently propagate the observations information to the non-observed

✿✿✿✿✿✿✿✿✿

unobserved
✿

classes, with generally a better performance than the openloop
✿✿✿✿✿✿✿✿

open-loop and the rlocal approach in the non-observed

✿✿✿✿✿✿✿✿✿

unobserved
✿

classes when assimilating HS (Fig. 5).420

The algorithms performance is particularly good across aspects and slopes with only a few steep, northern aspect slopes

exhibiting neutral to poor performances (Figs. 5 and 8). This suggests that southern aspect and flat classes are informative on

✿✿

for
✿

the majority of the simulation domain. Conversely, considering that there are strong background correlations between the

western and eastern sides of the domain, we can speculate that observing either side could yield overall good results.425

On these figures, propagation of the information is limited towards lower elevation (600-1200 m). At such elevation
✿✿✿✿✿✿✿✿

elevations,

the snow cover is usually intermittent and a good discrimination of the precipitation phase is crucial. The PF does this indi-

rectly through HS and reflectance observations, because rain causes a decrease of HS through compaction and melting while

reflectance
✿✿✿✿✿

Band
✿

4
✿✿✿✿

and
✿✿✿✿✿

Band
✿

5
✿✿✿✿✿✿✿✿✿✿

reflectances
✿

also decreases because of because of quick isothermal metamorphism .
✿✿✿

(i.e.
✿✿✿

the430

✿✿✿✿✿✿

surface
✿✿✿✿

SSA
✿✿✿✿✿✿✿✿✿

decreases).
✿

However, in our setup, the lowest observed elevation is 1800 m, therefore indirect observation of the

rain-snow line positioning under this level is not possible, potentially explaining the moderate performance of the PF there.

In that case, assimilation of Snow Cover Fraction might be the best solution: since the snowpack is intermittent there, the

informativeness of this variable is maximal (Aalstad et al., 2018).

Global and klocal algorithms exhibit strong performances when assimilating HS (Fig. 5), and moderate performances for435

reflectance. HS is well
✿✿✿✿✿

closely
✿

linked with the SWE (by the bulk density) and the interest of this variable for data assimilation

is clear (Margulis et al., 2019).
✿✿✿✿

Here,
✿✿

it
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿

kept
✿✿

in
✿✿✿✿

mind
✿✿✿✿

that
✿✿✿

HS
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

is
✿✿✿✿

used
✿✿

as
✿

a
✿✿✿✿✿✿✿

baseline
✿✿✿✿✿✿✿✿✿✿

experiment
✿✿

to
✿✿✿✿✿✿✿

evaluate

✿✿

the
✿✿✿✿✿✿✿✿✿✿

algorithms
✿✿✿

and
✿✿✿✿

put
✿✿✿✿✿✿✿✿✿

reflectance
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿

into
✿✿✿✿✿✿✿✿✿✿

perspective.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

prescribed
✿✿✿

HS
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

errors
✿✿✿✿✿✿✿✿

(σ0 = 0.1m)
✿✿✿

are
✿✿✿✿

not

✿✿✿✿✿✿✿✿✿

necessarily
✿✿✿✿✿✿✿

realistic.
✿✿✿✿✿

They
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿✿✿

adapted
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

nature
✿✿

of
✿✿✿

the
✿✿✿

HS
✿✿✿✿✿✿

sensor.
✿✿✿

For
✿✿✿✿✿✿✿✿

example,
✿✿✿✿✿✿✿✿✿✿✿

space-borne
✿✿✿

HS
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

errors

✿✿

are
✿✿✿✿✿✿✿✿

typically
✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Eberhard et al., 2020; Deschamps-Berger et al., 2020)
✿

.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

of
✿✿✿✿

such
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿

would440

✿✿✿✿✿✿✿

probably
✿✿✿✿✿

yield
✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿✿✿✿✿

improvements.
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Though the performance is lower for Reflectance
✿✿✿

than
✿✿

in
✿✿✿✿

our
✿✿✿

HS
✿✿✿✿✿✿✿✿✿✿

experiments, it remains considerable and in line with pre-

vious results on point simulations (Charrois et al., 2016), with an average score improvement of 20-40%. An outstanding

result here, is that our study
✿✿✿✿

This
✿✿✿✿✿

study
✿✿✿✿✿

quite
✿✿✿✿✿✿✿✿✿✿

surprisingly suggests that reflectance information can be spread from southern

slopes to the northern ones, although in many situations, the snowpack evolves in different ways between these
✿✿✿

for
✿✿✿✿

these
✿✿✿✿

two445

aspects. For example, in sunny conditions, melt and wet metamorphism will cause a drop in reflectance in southern slopes,

while reflectance will not evolve much in northern slopes. Therefore, a reflectance observation in a southern slope is
✿✿✿✿

Such
✿✿

a

✿✿✿✿✿✿✿✿✿✿

phenomenon
✿✿✿✿✿

could
✿✿✿✿✿✿✿

explain
✿✿✿✿

why
✿✿✿✿

low
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

southern
✿✿✿

and
✿✿✿✿✿✿✿✿

northern
✿✿✿✿✿✿

aspects
✿✿✿

are
✿✿✿✿✿✿✿✿✿

exhibited
✿✿

in
✿✿✿✿✿

Band

✿

5
✿✿✿✿

(Fig.
✿✿✿

4),
✿✿✿✿✿✿

which
✿✿

is
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿✿✿

metamorphism
✿✿✿✿✿✿✿

through
✿✿✿✿✿

SSA.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

example
✿✿✿✿✿

shows
✿✿✿✿

that
✿✿✿✿✿

Band
✿

5
✿✿✿✿✿✿✿✿✿✿

reflectance

✿✿✿✿✿✿✿✿✿✿

observations
✿✿

in
✿✿✿✿✿✿✿✿

southern
✿✿✿✿✿

slopes
✿✿✿

are
✿

not necessarily informative on reflectance value
✿✿✿✿

Band
✿

5
✿✿✿✿✿✿✿✿✿✿

reflectance
✿✿✿✿✿

values
✿

in the northern450

aspect per se . It is informative however, in our ensemble data assimilation framework. Indirectly, in this case this observation

could
✿✿

on
✿✿✿✿✿

every
✿✿✿✿✿

date.
✿✿✿

On
✿✿✿✿✿✿✿

average,
✿✿✿✿✿✿✿✿

however,
✿✿✿

the
✿✿✿✿✿✿✿

positive
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿✿✿✿

reflectance
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿

suggests
✿✿✿✿

that
✿✿✿✿

they enable the PF

to reject all the ensemble members that did not have an appropriate meteorological forcing
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

inadequate
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological

✿✿✿✿✿✿✿

forcings (snowfall or cloud cover would lead to wrong reflectance values), or multiphysical parametrisations , thus enabling

to correct
✿✿✿✿✿✿✿✿✿✿

(influencing
✿✿✿

e.g.
✿✿✿

the
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿✿✿✿

metamorphism),
✿✿✿✿

thus
✿✿✿✿✿✿✿✿✿

correcting the ensemble in the whole domain. These insights are455

consistent with the study of Winstral et al. (2019), where in situ observations are used to correct meteorological forcing param-

eters across large simulation domains.

✿✿✿✿✿✿✿✿

Regarding
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿✿

our
✿✿✿✿✿

study
✿✿✿

has
✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿✿✿✿

methodological
✿✿✿✿✿✿

limits,
✿✿✿✿✿✿✿

however.
✿✿✿✿✿✿✿✿✿✿

Observation
✿✿✿✿✿

errors
✿✿✿

are
✿✿✿✿

very
✿✿✿✿✿✿✿

roughly
✿✿✿✿✿✿✿✿✿

prescribed,

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

corrupted
✿✿

as
✿✿✿✿✿✿✿

usually
✿✿✿✿

done
✿✿

in
✿✿✿✿✿✿✿✿

synthetic
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Durand and Margulis, 2006)
✿

.460

✿✿✿✿✿

These
✿✿✿✿✿✿

choices
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿

motivated
✿✿

by
✿✿✿

the
✿✿✿✿

fact
✿✿✿

that
✿✿✿✿

very
✿✿✿✿

little
✿✿

is
✿✿✿✿✿✿

known
✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿

of
✿✿✿✿✿✿✿✿✿

reflectance
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

errors

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-distributed
✿✿✿✿✿✿

setting
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Cluzet et al., 2020)
✿

.
✿✿

In
✿✿

a
✿✿✿✿✿✿✿

recently
✿✿✿✿✿✿✿✿

submitted
✿✿✿✿✿✿

paper,
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿

random
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

systematic

✿✿✿✿✿

errors
✿✿

of
✿✿✿✿✿✿✿✿✿

reflectance
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

on
✿✿✿✿✿✿✿✿✿

point-scale
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿

is
✿✿✿✿✿✿✿✿✿

thoroughly
✿✿✿✿✿✿✿✿✿✿

investigated
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Revuelto et al., in prep)
✿

.

✿✿✿✿✿✿

Efforts
✿✿

to
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿✿

characterize
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

structure
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

errors
✿✿✿✿✿

should
✿✿✿

be
✿✿✿✿✿✿✿✿✿

conducted
✿✿

in
✿✿✿✿✿

future
✿✿✿✿✿

work.
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5.3 Towards the assimilation of real observations of reflectance

Reflectance is an appealing variable for snowpack modelling because of its sensitivity to snowpack surface properties (Dozier

et al., 2009) and the abundance of moderate-resolution
✿✿✿✿✿✿✿

moderate
✿✿

to
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿

resolution space-borne sensors (MODIS, Sentinel2-3,

VIIRS, Landsat...) providing us with a handful of observations to assimilate, contrary to HS.
✿✿✿

The
✿✿✿✿✿✿✿

potential
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

of

✿✿✿✿

SCF,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿

retrieved
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿

reflectances,
✿✿

is
✿✿✿✿✿

clear
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Margulis et al., 2016; Aalstad et al., 2018; Alonso-Gónzalez et al., 2020)
✿

.470

This study demonstrates the potential of the PF to spread information and assimilate reflectance
✿✿✿

raw
✿✿✿✿✿✿✿✿✿✿

reflectances with a positive

impact (Sec. 5.2). Yet, assimilating real observations
✿

of
✿✿✿✿✿✿✿✿✿

reflectance
✿

is another challenge, for two reasons.

First, space-borne reflectance observations are usually
✿✿✿✿✿✿✿

generally
✿

noisy and biased (e.g. Cluzet et al., 2020). Satellite retrievals

could be improved in the future (Kokhanovsky et al., 2019; Lamare et al., 2020), and Cluzet et al. (2020) showed that assimilat-

ing ratios of reflectance could be a workaround to tackle this issue. However, the
✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

near-infrared,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

signal-to-noise
✿✿✿✿

ratio
✿✿

of475

17



✿✿✿✿✿✿✿✿✿

reflectances
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

might
✿✿

be
✿✿✿✿✿✿✿✿

sufficient
✿✿

to
✿✿✿✿✿✿✿✿

constrain
✿✿

the
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿✿

microphysical
✿✿✿✿✿✿✿✿✿

properties
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Durand and Margulis, 2007; Mary et al., 2013)

✿

,
✿✿✿✿✿✿✿

whereas
✿✿✿

the required accuracy for reflectance retrieval
✿✿✿✿✿

visible
✿✿✿✿✿✿✿✿✿

reflectance
✿✿✿✿✿✿✿✿

retrievals
✿

to remain informative on the snowpack

properties
✿✿✿

light
✿✿✿✿✿✿✿✿✿

absorbing
✿✿✿✿✿✿✿

particles
✿✿✿✿✿✿

content
✿

is high (Warren, 2013), and it is yet to prove whether either approach can achieve

this requirement.

Second, in this twin experiment framework, spatial patterns of the synthetic observations are likely compatible with the ensem-480

ble since they come from the same modelling system. This may not be the case in reality, therefore making it more difficult to

assimilate, and we refer to this issue as model or ensemble realism.

We must assess the strengths and weaknesses of the global and klocal approaches facing those two issues. The global algorithm

assumes that a global optimum can be found across the whole domain, e.g. the information from the different observations is

consistent and can be ingested in one block by the PF. With this strategy, the degeneracy due to the size of the observation485

vector is efficiently mitigated by the inflation algorithm as discussed in Sec. 5.1. The klocal approach considers that only a

fraction of the observation information is relevant to constrain the model state at a given location. This algorithm tries to ingest

as much information as possible while rejecting observations coming from too statistically different snowpack conditions. As

a consequence, because we do not account for the real spatial patterns of observation errors, and because we work in a twin

experiment setup, a global optimum on the whole domain can exist and can be found by the global algorithm. This might be490

a reason why it beats the klocal approach (Figs. 6 and 7). In the real world, from the model point of view, there might be

contradictory informations
✿✿✿✿✿✿✿✿✿✿

information among the observations that would be difficult to disentangle with a global strategy.

The klocal algorithm could be more suited to this situation, because it is looking for local optima, based on the assumption that

background correlation patterns are realistic
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

are
✿

a
✿✿✿✿✿✿✿

realistic
✿✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿

of
✿✿✿✿✿✿✿✿

modelling
✿✿✿✿✿✿

errors.

These background correlation structures could be overestimated by the ensemble, and tests with real observations are neces-495

sary. Strong Band 4 correlations
✿✿✿✿

(Fig.
✿✿✿

4a) might be due to the spatially homogeneous perturbations of LAP fluxes used to force

the simulations (see Sec. 2.2.2), a key driver of this variable
✿

,
✿✿✿

and
✿✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

snow
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿

is
✿✿✿✿✿✿

applied
✿✿✿

for
✿✿

a

✿✿✿✿

given
✿✿✿✿✿✿✿

member
✿✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿✿✿

domain. Several studies suggest that LAP fluxes vary with elevation and other topographic

parameters (de Magalhães et al., 2019; Sabatier et al., 2020), but to date no reliable model for that
✿✿

of
✿✿✿✿

such
✿✿✿✿✿✿✿✿✿

processes exists in

complex terrain. In such a context, assuming uniform LAP forcing seems a reasonable compromise. Strong and almost uniform500

correlations in HS
✿✿✿

HS
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿✿

(Fig.
✿✿✿

4b) might be caused by the spatial homogeneity of precipitation perturbations and be-

cause we do not account for snow transport by the wind
✿✿

e.g.
✿✿✿✿✿

wind
✿✿✿✿

drift,
✿✿✿✿

intra
✿✿✿✿✿✿

massif
✿✿✿✿✿✿✿✿✿✿✿

heterogeneity
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿✿

conditions

and gravitational redistribution of snow (Wayand et al., 2018). Despite this semi-distributed framework suffers
✿✿✿✿✿✿✿

suffering
✿

from

obvious limitations, NWP models still suffer for large errors in mountainous areas, hampering the potential for high-resolution

snowpack modelling (Vionnet et al., 2016; Fiddes et al., 2019)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Vionnet et al., 2020; Fiddes et al., 2019; Marsh et al., 2020)
✿✿

is505

✿✿✿✿✿✿✿✿

hampered
✿✿

by
✿✿✿✿✿

large
✿✿✿✿✿

errors
✿✿

of
✿✿✿

the
✿✿✿✿✿

NWP
✿✿✿✿✿✿

models
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

mountainous
✿✿✿✿✿

areas
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Nousu et al., 2019).

In the future, improving the realism
✿✿✿✿✿

ability
✿

of ensemble correlations
✿

to
✿✿✿✿✿✿✿✿

represent
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿✿✿

errors could make the spreading

of information an even more challenging task with the klocal algorithm. But there should remain significant potential for in-

formation propagation, as results at a larger scale suggest
✿✿✿✿✿✿✿✿

suggested
✿✿✿

by
✿✿✿✿✿

results
✿✿

at
✿✿✿✿✿

larger
✿✿✿✿✿✿

scales (Magnusson et al., 2014; Cantet510
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et al., 2019). The potential de-correlation of topographic classes would also impact the global algorithm. In a non-observed

✿✿✿✿✿✿✿✿✿

unobserved
✿

class, constraining the state of the snowpack with information from area
✿✿✿✿

areas that are not linked with it would

likely degrade the forecasting skill, as suggested by the poor performance of the algorithms at low altitudes (Figs. 5 and 8).

On the contrary, applying CrocO into
✿✿✿✿

over larger domains (e.g. distributed simulations or a collection of semi-distributed mas-

sifs), would probably see the klocal algorithm take the best over the
✿✿✿✿✿✿✿✿✿

outperform
✿✿✿

the
✿

global. The increased domain size would515

make it less plausible to find a global optimum over the domain, whereas spatial flexibility would be an asset of the klocal

algorithm.
✿✿✿✿✿✿

Finally,
✿✿

in
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿✿✿✿✿✿

modelled
✿✿✿✿✿✿✿✿

coupling
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿✿

points
✿✿✿✿

(e.g.
✿✿✿✿✿

snow
✿✿✿✿✿

drift),
✿✿✿✿✿✿

which
✿✿✿

was
✿✿✿

not
✿✿✿

the
✿✿✿✿

case
✿✿✿✿✿

here,

✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿✿✿✿

discontinuities
✿✿

of
✿✿✿

the
✿✿✿✿✿

klocal
✿✿✿✿✿✿✿

analyses
✿✿✿✿

(see
✿✿✿✿

Sec.
✿✿

1)
✿✿✿✿✿

might
✿✿✿

be
✿

a
✿✿✿✿✿✿✿✿✿

drawback
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿

approach.
✿✿✿✿✿✿

Spatial

✿✿✿✿✿✿✿✿✿✿✿✿

discontinuities
✿✿✿✿

may
✿✿✿✿✿

reveal
✿✿✿✿✿✿✿✿✿✿

impractical
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

interpretation
✿✿

of
✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿✿✿

outputs
✿✿✿

by
✿✿✿✿✿

snow
✿✿✿✿✿✿✿✿✿

forecasters
✿✿✿✿

too.
✿✿✿✿

The

✿✿✿✿✿

klocal
✿✿✿✿✿✿✿✿

approach
✿✿

is
✿✿✿✿✿

likely
✿✿

to
✿✿✿✿✿✿

reduce
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿✿✿

discontinuities
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿

rlocal
✿

,
✿✿✿✿✿✿✿

because
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿

locations
✿✿✿

will
✿✿✿✿✿✿✿

receive
✿✿✿✿✿✿

similar520

✿✿✿✿✿✿✿

analyses
✿✿✿

(i.e.
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿

similar
✿✿✿

sets
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

observations).
✿✿✿✿

This
✿✿✿✿

issue
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿✿

partly
✿✿✿✿✿✿✿✿

mitigated
✿✿

by
✿✿✿

e.g.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

state-block-domain
✿✿✿✿✿✿✿✿✿

approaches

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Farchi and Bocquet, 2018).

5.4 Outlook for ensemble modelling and data assimilation

In the snowpack modelling community, ensemble modelling appears as a powerful tool to represent modelling uncertainties525

(Vernay et al., 2015; Richter et al., 2020) and for data assimilation (Essery et al., 2013; Lafaysse et al., 2017; Piazzi et al.,

2018; Aalstad et al., 2018). This study offers a novel approach to extract valuable information on the snowpack spatial be-

haviour from spatial correlation patterns of the ensemble. These patterns could be used to diagnose links between locations,

transfer information between areas, or assess the representativeness of point simulations. More broadly, ensemble background

correlations have been exploited for long in the NWP and oceanographic communities to refine modelling errors representation530

which led to significant improvements in the DA systems (Evensen, 2003; Buehner, 2005).

Ensembles might open a way for the assimilation of point scale observations, or sparse remotely-sensed observations into

spatialised simulations of the snowpack as suggested by Winstral et al. (2019) and the present work. For instance, there are

numerous snow gauges and snow pit observations in the ski resorts of the French Alps. These data could be assimilated to

correct the ensemble in spatialised simulations (Winstral et al., 2019). The spatial pattern of assimilated observations in the535

experiments of Sec. 4 do not correspond to the real-life spatial coverage of this kind of observations. To give an insight of their

potential, we also applied our methodology to assimilate only five synthetic HS observations with the global PF in the 1200 m

to 2400 m flat classes. The results are shown in Fig. 9. The assimilation improves the performance in all aspects and slopes.

Naturally, this suffers from the same limitation as discussed in Sec. 5.3, not to mention the limited spatial representativeness

of in situ observations but it shows some potential for this idea.540

In that way, a more rational use of the available observations could be implemented towards a new ensemble data assimilation

system. In the present CrocO system, SAFRAN reanalysis are only assimilating weather station information (precipitation

phase, temperature, wind), and makes no use of the numerous snow observations available. Here, snow observations are as-

similated by the PF, but are not used to correct meteorological forcings (only snow variables, see Fig. 2). In the way of a new
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ensemble data assimilation system, within CrocO, the SAFRAN meteorological analysis could be bypassed, the PF operating545

directly both on the meteorological and snowpack variables in a more comprehensive and coupled strategy.

6 Conclusions

In this study, we introduced CrocO, a new ensemble data assimilation system able to reduce the errors of a spatialised snowpack

model in locations that are not observed. The ensemble is built by a combination of meteorological and multi-physical ensem-550

bles to represent modelling uncertainties. A Particle Filter assimilates observations of HS and Reflectance. We developed two

variants of the PF using inflation or k-localisation, in order to spread the information from partial observations of the system,

without degeneracy of the PF. We
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿✿

framework
✿✿

of
✿✿✿✿✿✿✿✿

synthetic
✿✿✿✿✿✿✿✿✿✿✿

experiments,
✿✿✿

we have shown in particular that:

1. these
✿✿✿✿

These
✿

variants are able to ingest numerous observations without degeneracy;

2. an
✿✿✿

An
✿

efficient spreading of the observations information towards the non observed
✿✿✿✿✿✿✿✿✿

unobserved
✿

areas is achieved with555

the global and klocal approaches;

3. reflectance
✿✿✿✿✿✿✿✿✿

Reflectance
✿

assimilation leads to an overall 20% improvement in CRPS and 60% in reliability.

We suggest that this approach could be used in any spatialised framework to assimilate sparse observations from e.g. net-

works of in-situ snowpack observations. Beyond the snowpack modelling community, the inflation and k-localisation strategies

could help address the problem of partially observed systems. This work is also a first step towards the operational assimila-560

tion of reflectance in a semi-distributed context. To reach that goal, biases of reflectance retrievals should be studied, and

observation errors
✿✿✿✿

error
✿

structures duly quantified. Snow Cover Fraction
✿✿✿✿

cover
✿✿✿✿✿✿✿

fraction
✿

would be a good companion variable

to assimilate at lower elevations
✿✿✿✿✿

jointly
✿✿✿✿✿✿✿✿✿

assimilate
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

reflectances, requiring the use of an appropriate observation operator.

Extending the simulation domain to several massifs would allow the exchange of information between neighbouring massifs

with the klocal algorithm.565

Code availability. The Crocus snowpack model (including all physical options of the ESCROC system) and the Particle Filter algorithm are

developed inside the opensource SURFEX project. The source files of SURFEX code are provided at https://doi.org/10.5281/zenodo.3774861

to guarantee the permanent reproductibility of results. However, we recommend potential future users and developers to access to the

code from its git repository (git.umr-cnrm.fr/git/Surfex_Git2.git) to benefit from all tools of code management (history management, bug

fixes, documentation, interface for technical support, etc.). This needs a quick registration, the procedure is described at https://opensource.570

cnrm-game-meteo.fr/projects/snowtools/wiki/Procedure_for_new_users. The version used in this work is tagged as CrocO_v1.0.

A python software called CrocO_toolbox was specifically developed, in order to pre-post process and launch CrocO experiments. It is

available on Github (https://github.com/bertrandcz/CrocO, release v1.0) along with a documentation.

20

https://opensource.cnrm-game-meteo.fr/projects/snowtools/wiki/Procedure_for_new_users
https://opensource.cnrm-game-meteo.fr/projects/snowtools/wiki/Procedure_for_new_users
https://opensource.cnrm-game-meteo.fr/projects/snowtools/wiki/Procedure_for_new_users


The article version of CrocO_toolbox is archived at: https://doi.org/10.5281/zenodo.3784980. This software strongly relies on two external575

python projects ensuring the files management between the different steps of a simulation and the interface with Meteo-France HPC system

(including parallelization and data storage): snowtools and vortex. Their sources are available at https://doi.org/10.5281/zenodo.3774861

(same archive as SURFEX) to guarantee the permanent reproducibility of results. However, as for the SURFEX project and for the same

reasons, it is recommended to access snowtools code from its git repository (git.umr-cnrm.fr/git/snowtools_git.git). The version used in this

work is also tagged as CrocO_v1.0. The vortex project gathers all environment-specific codes of Météo-France modelling systems relative to580

its HPC computing system. For this project, only the sources which are specific to this article simulations are provided. The common objects

inheritance is based on Vortex version 1.6.1. The version used in this work is also tagged as CrocO_v1.0 in the vortex git repository.

Because these software could not be applied outside Météo-France HPC environment, CrocO python software offers the possibility to run

CrocO simulations locally. This functionality was not used here due to the high numerical cost of our simulations, which required the use of585

Météo-France HPC environment.

Data availability. Input and output data necessary to reproduce the manuscript simulations and figures are provided at

https://doi.org/10.5281/zenodo.3775007. This archive includes : SAFRAN reanalyses, (also available at https://doi.org/10.25326/37), MOCAGE

forcings, namelists, configuration files and spinup files necessary to reproduce the simulations. Raw model outputs can be provided on re-

quest but since they amount up to 500+ Gigabytes, only post-processed simulations outputs are provided in this archive, along with scores590

and scripts to reproduce the manuscript figures.

Appendix A:
✿✿✿✿✿✿✿✿✿

Stochastic
✿✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forcings

✿✿✿

The
✿✿✿✿✿✿✿✿

stochastic
✿✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿✿✿✿✿✿

procedure
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forcings
✿✿

is
✿✿✿✿✿✿✿✿✿

introduced
✿✿

in
✿✿✿✿

Sec.
✿✿✿✿

2.2.2
✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿

identical
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Charrois et al. (2016)
✿✿

for
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cluzet et al. (2020)
✿✿

for
✿✿✿

the
✿✿✿✿✿

light
✿✿✿✿✿✿✿✿

absorbing
✿✿✿✿✿✿✿

particles
✿✿✿✿✿✿

(LAP)
✿✿✿✿✿✿

fluxes.
✿✿✿

For
✿

a
✿✿✿✿✿

given
✿✿✿✿

date
✿✿✿

and
✿✿✿✿✿✿✿

forcing

✿✿✿✿✿✿✿

variable,
✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿✿✿✿

values
✿✿✿

are
✿✿✿

the
✿✿✿✿✿

same
✿✿✿

for
✿✿

all
✿✿✿

the
✿✿✿✿✿✿

points
✿✿

in
✿✿✿✿✿

space
✿✿✿

(no
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

auto-correlation
✿✿

is
✿✿✿✿✿✿✿✿✿✿

considered),
✿✿

as
✿✿✿✿✿✿✿✿✿

SAFRAN595

✿✿✿✿✿✿✿✿✿✿✿✿✿

semi-distributed
✿✿✿✿✿✿

massifs
✿✿✿✿✿

have
✿

a
✿✿✿✿✿✿

limited
✿✿✿✿✿✿

spatial
✿✿✿✿✿

extent
✿✿✿✿✿✿

(about
✿✿✿✿

1000
✿

km2
✿

).
✿✿✿✿✿✿✿✿✿✿✿

Precipitation,
✿✿✿✿✿✿✿✿

incoming
✿✿✿✿✿✿✿✿✿

radiations,
✿✿✿✿✿

wind
✿✿✿✿✿

speed
✿✿✿

and
✿✿✿

air

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

SAFRAN
✿✿✿

are
✿✿✿✿✿✿✿✿

perturbed
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

temporally
✿✿✿✿✿✿✿✿✿✿✿✿

autocorrelated
✿✿✿✿✿✿✿✿✿

stochastic
✿✿✿✿✿✿✿✿✿✿

parameters.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

precipitation,
✿✿✿✿✿✿✿✿

incoming

✿✿✿✿✿✿✿✿

shortwave
✿✿✿✿✿✿✿✿

radiation,
✿✿✿✿

and
✿✿✿✿✿

wind
✿✿✿✿✿

speed
✿✿✿

are
✿✿✿✿✿✿✿✿

perturbed
✿✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

multiplicative
✿✿✿✿✿

noise.
✿✿✿✿✿✿✿✿✿

Longwave
✿✿✿✿✿✿✿✿

radiation
✿✿✿✿

and
✿✿

air
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

are

✿✿✿✿✿✿✿✿

perturbed
✿✿✿✿

with
✿✿

an
✿✿✿✿✿✿✿

additive
✿✿✿✿✿

noise.

✿✿✿

For
✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿

variables,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿✿✿

vector
✿✿

V
✿✿

is
✿✿✿✿

built
✿✿

as
✿✿✿✿✿✿✿

follows:
✿

600

V (t) = φV (t− 1)+ ε(t)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(A1)

✿✿✿✿✿

Where
✿✿✿✿✿✿✿✿✿✿✿

φ= e−dt/τ ,
✿✿✿✿

with
✿✿

dt
✿✿✿

the
✿✿✿✿✿✿✿

forcing
✿✿✿✿✿✿✿

timestep,
✿✿

τ
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

decorrelation
✿✿✿✿✿

time
✿✿

(in
✿

h
✿

)
✿✿✿

and
✿✿

ε
✿

a
✿✿✿✿✿✿✿

normal
✿✿✿

law
✿✿

of
✿✿✿✿✿

mean
✿✿

0
✿✿✿

and
✿✿✿✿✿✿✿✿

variance

✿✿✿✿✿✿✿✿✿

σ2(1−φ2).
✿✿✿✿✿✿✿✿✿

Parameter
✿✿✿✿✿✿

values
✿✿✿

for
✿✿✿✿✿

each
✿✿✿✿✿✿✿

variable
✿✿✿

are
✿✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿✿

Tab.
✿✿✿✿

A1.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

auto-correlation
✿✿✿✿

time
✿✿✿

of

✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿

1500
✿

h
✿✿✿

was
✿✿✿✿✿

tuned
✿✿

to
✿✿✿✿✿✿✿

roughly
✿✿✿✿✿

adjust
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

spread
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿✿

intra-massif
✿✿✿✿✿✿✿✿

variability
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

yearly-cumulated

✿✿✿✿✿✿✿✿✿✿✿

precipitation.
✿✿✿✿

Note
✿✿✿✿

that
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿

phase
✿✿

is
✿✿✿✿✿✿✿

adjusted
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

perturbed
✿✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

to
✿✿✿✿✿✿

ensure
✿

a
✿✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿✿

consistency.605

21



✿✿✿✿✿✿

Further
✿✿✿✿✿✿

details
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

procedure
✿✿✿

can
✿✿

be
✿✿✿✿✿

found
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Charrois et al. (2016)
✿

.

✿✿✿✿✿✿✿✿

Regarding
✿✿✿✿✿

LAP
✿✿✿✿✿✿

fluxes,
✿✿✿

dry
✿✿✿✿

and
✿✿✿

wet
✿✿✿✿✿

black
✿✿✿✿✿✿

carbon
✿✿✿✿

and
✿✿✿✿✿✿✿

mineral
✿✿✿✿

dust
✿✿✿✿✿✿✿✿✿

deposition
✿✿✿✿✿

fluxes
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

MOCAGE
✿✿✿

are
✿✿✿✿✿✿✿✿

perturbed
✿✿✿✿✿

with

✿

a
✿✿✿✿✿✿✿

random
✿✿✿✿✿

factor
✿✿✿✿✿✿

which
✿✿✿✿✿✿

keeps
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿✿✿

year.
✿✿✿✿✿

Each
✿✿✿✿✿✿✿

member
✿✿✿✿

has
✿

a
✿✿✿✿✿✿

single
✿✿✿✿✿✿✿✿✿✿✿✿

multiplicative
✿✿✿✿✿

factor
✿✿✿✿✿✿✿✿✿

following
✿✿

a

✿✿✿✿✿✿✿✿✿

log-normal
✿✿✿

law
✿✿

of
✿✿✿✿✿

mean
✿✿

µ
✿✿✿

and
✿✿✿✿✿✿✿

variance
✿✿

σ
✿✿✿

(see
✿✿✿✿

Tab.
✿✿✿✿

A2).
✿✿✿✿

The
✿✿✿✿

mean
✿✿✿

of
✿✿✿✿

black
✿✿✿✿✿✿

carbon
✿✿✿✿✿✿✿

random
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿

was
✿✿✿✿✿✿✿

adjusted
✿✿✿✿✿

based
✿✿✿

on610

✿✿✿✿✿✿✿✿✿✿

comparisons
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

and
✿✿✿✿

field
✿✿✿✿✿✿✿✿✿✿

observations
✿✿

at
✿✿✿

col
✿✿✿

du
✿✿✿✿✿✿✿✿

Lautaret,
✿

a
✿✿✿✿✿✿✿✿

mountain
✿✿✿✿

pass
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿✿

considered
✿✿✿✿✿✿✿✿✿

SAFRAN

✿✿✿✿✿✿

massif.

Appendix B: Complements on the implementation

B1 Technical implementation and code performance

CrocO is implemented within Météo-France HPC (High Performance Computing) environment, enabling to fully parallelize615

the ensemble (one core per member), and bridge the gap with operational applications (Lafaysse et al., 2013; Morin et al.,

2020). This implementation is strongly parallel. As an example, the execution time of a one-year assimilation run of 187 model

points with 160 members on 4 nodes of 40 cores each lasts for only two hours. The PF is a lightweight algorithm, most of the

computational burden owing to the propagation of the ensemble
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

input/output. Note also that no significant difference in

execution time can be noted between the different PF algorithms.620

B2 PF sample reordering

As mentioned in Sec. 2.3, a reordering step was implemented after the PF resampling from Kitagawa (1996), for practical

reasons.

– (3) from s, build s̃ such that all elements of the unique values of s lie in the position given by their value. Example with

16 particles:

s= [1,1,2,3,3,3,8,8,9,9,9,9,9,16,16,16]⇒ s̃= [1,2,3,1,3,3,8,8,9,9,9,9,9,16,16,16]

Indeed, I/O represents a bottleneck in the PF. When building the analysis X̂a, the background X̂b is already loaded in memory.625

Since X̂a is just a reordering of X̂b columns based on s, a reordering of s avoids to build a copy of X̂b. This way, X̂a is built

by an online modification of X̂b using two pointers. Reordering is a growing consideration in the PF community (Farchi and

Bocquet, 2018).
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Figure 1. 3D schematic view of the semi-distributed geometry, where the numbers represent the
✿✿✿✿✿✿

altitudes
✿✿

of
✿✿✿

the
✿

elevation bands altitudes

(m
✿

in
✿

m). From left to right, the three different mountains represent the flat, 20o and 40o degrees slopes.
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Figure 2. Workflow of CrocO ensemble data assimilation system with 4 members. x̂0: initial state at time t0, Fi: forcing, Mi: ESCROC

member, X̂b: background state, ̂xi
b: background particles, X̂a: analysis, x̂i

a: analysis particles, y: observation, t1 and t2: observation dates.
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PF Algorithm Ne
✿✿

Ne inflation N∗
eeff

✿✿✿

N∗
eff HS σ2

o (m2)

rlocal 40 on 7 1.0× 10−2

global 40 on 7 1.0× 10−2

klocal 40 on (if k=1) 7 5.0× 10−2

Table 1. setup of
✿✿✿✿

Setup
✿✿

for
✿

the Snow depth
✿✿✿✿✿

height
✿✿

of
✿✿✿✿

snow assimilation experiment.

32



PF Algorithm Ne
✿✿

Ne inflation N∗
eeff

✿✿✿

N∗
eff B4 σ2

o B5 σ2

o

rlocal 40 on 7 5.6× 10−4 2.0× 10−3

global 40 on 7 5.6× 10−4 2.0× 10−3

klocal 40 on (if k=1) 7 2.8× 10−3 1.0× 10−2

Table 2. setup of
✿✿

for the second
✿✿✿

first
✿

reflectance assimilation experiment.
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PF Algorithm Ne
✿✿

Ne inflation N∗
eeff

✿✿✿

N∗
eff B4 σ2

o B5 σ2

o

rlocal 160 on 25 5.6× 10−4 2.0× 10−3

global 160 on 25 5.6× 10−4 2.0× 10−3

klocal 160 on (if k=1) 25 2.8× 10−3 1.0× 10−2

Table 3. setup of
✿✿✿✿

Setup
✿✿

for
✿

the second reflectance assimilation experiment.
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Figure 3. Impact of the inflation (N∗
eeff = 7

✿✿✿✿✿✿

N∗
eff = 7) versus no inflation (N∗

eff = 1) in the 1800_N_40 topographic class (not observed),

when assimilating HS of 2015_q80 with the global PF. (a) SWE minimum-maximum envelopes as a function of time, (b) spread and (c)

RMSE
✿✿✿✿

AEM. Dashed lines represent the assimilation dates.
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Figure 4. 2015, February 20th openloop
✿✿✿✿✿✿✿

open-loop
✿

(40 members) Pearson correlations between the domain points and the 1800_N_40

topographic class (red dot), in Band 4 (a), Band 5 (b) and HS (c). Left bars show the flat topographic classes in the associated elevation

bands, while pie plots show the 20o and 40o slope topographic classes, as depicted in Fig. 1. Black dots the denote
✿✿

the observed classes.
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Figure 5. CRPS Skill Score
✿✿✿

skill
✿✿✿✿✿

score of SWE for the rlocal (a), global (b) and klocal (c) algorithms assimilating the HS of 2013_p20

synthetic member
✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿

scenario. The score is computed on
✿✿

for
✿

the whole snow season for each topographic class. Black dots denote

the observed classes.
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Figure 6. Boxplots of SWE CRPS (a,b) and Reli (e,f) for the different algorithms for the 16 different synthetic members
✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿

scenarios,

separated between observed (left column) and not observed (right panel) classes. Panels (c,d) and (g,h) show the associated Skill Scores
✿✿✿

skill

✿✿✿✿

scores.
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Figure 7. Same as Fig. 6 for reflectance with 40 members (filled) and 160 members (hatched).
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Figure 8. Same as Fig. 5 for the assimilation of the reflectance of 2016_p60 member
✿✿✿✿✿✿✿

synthetic
✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿

scenario.
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Figure 9. Same as Fig. 5 for the assimilation of HS of 2016_p60 member
✿✿✿✿✿✿

synthtic
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

scenario
✿

in the 1200-2400 m flat classes.
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✿✿✿✿✿✿

Variable
✿ ✿✿✿✿✿✿✿✿✿

Perturbation
✿

σ
✿ ✿

τ
✿

(h
✿

)

✿✿✿✿✿✿✿✿✿

Precipitation
✿

(kgm−2h−1

✿

)
✿✿✿✿✿✿✿✿✿✿

Multiplicative
✿ ✿✿✿

0.7
✿✿✿✿

1500

✿✿✿✿✿✿✿✿

Shortwave
✿✿✿✿✿✿✿

radiation
✿

(Wm−2

✿

)
✿✿✿✿✿✿✿✿✿✿

Multiplicative
✿ ✿✿✿

0.7
✿

3

✿✿✿

Wind
✿✿✿✿✿

speed
✿✿✿✿

(unit
✿

ms−1

✿

)
✿✿✿✿✿✿✿✿✿✿

Multiplicative
✿ ✿✿✿

0.6
✿✿✿

100

✿✿✿✿✿✿✿✿

Longwave
✿✿✿✿✿✿✿

radiation
✿

(Wm−2

✿

)
✿✿✿✿✿✿

Additive
✿ ✿✿✿

24.5
✿

Wm−2

✿✿

30

✿✿

Air
✿✿✿✿✿✿✿✿✿

Temperature
✿✿

(K
✿

)
✿✿✿✿✿✿

Additive
✿ ✿✿✿

1.08
✿

K
✿✿

15
Table A1.

✿✿✿✿✿✿✿✿✿

Perturbation
✿✿✿✿✿✿✿✿

parameters
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿

variables.

✿✿✿✿✿✿

Variable
✿ ✿✿

µ
✿

σ

✿✿

BC
✿✿✿✿

(wet
✿✿✿

and
✿✿✿

dry)
✿

(kgm−2h−1)
✿ ✿✿

-2
✿

1
✿

✿✿✿✿

Dust
✿✿✿

(wet
✿✿✿

and
✿✿✿✿

dry)
✿

(kgm−2h−1

✿

)
✿

0
✿ ✿

1
Table A2.

✿✿✿✿✿✿✿✿✿

Perturbation
✿✿✿✿✿✿✿✿

parameters
✿✿✿

for
✿✿

the
✿✿✿✿

LAP
✿✿✿✿✿

fluxes.
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