
GMD review

We would like to thank both referees for their extensive analysis of our manuscript which we believe
helps a lot improving our paper. All the comments have been addressed and point by point response is
provided below each comment. Note that some slight changes were made in the manuscript in order to
improve its clarity, and are visible in the track changes. In the following, the reviewer initial comments
are written in black, our answer in blue and the corrections in the paper are highlighted in red. Line
references  for  modifications  correspond to  the initial  submitted version  of  the manuscript,  not  the
modified.

Reviewer 1

In this study, the authors developed two variants of the particle filter (PF), named the global PF and the
klocal PF, to assimilate snow depth and reflectance for snow water equivalent (SWE) estimation. The
global  PF  assimilation  all  observations  in  the  domain  while  the  klocal  PF  is  a  localized  PF that
assimilate only a subset of observations. To prevent the degeneracy of PF, the global PF inflates the
observation  error  covariance  until  a  sufficient  number  of  replicas  are  available,  while  the  klocal
approach applies the maximum of “k” observations to maintain a sufficiently large observation-state
variable variation.  Some notable assumptions include the observations are free of noise, error,  and
correlation in space and time, and the prior estimates and the observations are generated from the same
model (identical twin). The results prove that the inflations and the k-localization effectively prevent
the degeneracy, and the PF systems are able to spread the observed snow signal to non-observed areas.

This is a nice contrition to the existing PF literature and has the potential to significantly extend the
applicability of PF. The study fits the scope of the journal. I hope the authors consider the following
comments in the revision:
The authors would like to thank Reviewer 1 for his/her thorough review and his/her questions  on
several subjects (the semi-distributed geometry, the methodology and assumptions, and the potential
shortcomings of the different assimilation algorithms) which deserved more details and rigor in the
formulation. We would like also to thank Reviewer 1 for expressing his/her need for more physical
explanation on the ensemble correlation patterns of Fig. 4. We believe that these comments helped a lot
improving the clarity of the manuscript, and we hope that the corrections fully address the reviewer
comments.
1.  The domain  is  divided into  classes  based on elevation  band,  aspect  and slope,  but  there  is  no
information regarding the geographic distribution of these classes. The PF’s performance is generally
good in high-elevation areas, but performance variations still exist among these areas. Could this be a
result that the observation improve the more local classes more than the class that is farther away from
the observation?
The  semi-distributed  framework  does  not  allow to  define  a  horizontal  euclidian  distance  between
topographic classes. Therefore, we do not consider any variability of the horizontal proximity between
classes.  However,  in  mountainous  environments,  topographic  conditions  often  more  directly  drive
snowpack  variability  than  distance.   As  the  reviewer  points  out,  there  is  indeed  a  difference  in
performance between the observed classes and the unobserved classes,  the former achieving better
improvements, in general (see Figs.  6-7 and Sec. 4.2.1), and locations that are farther away (in model
space) from the observations achieve the lowest performance (e.g. Fig. 8b 2100m, North, 40 degrees).
Furthermore as the reviewer notes, there is also a notable variability of performance even among the
observed classes, in particular for the reflectance assimilation.
According to this comment, the end of Sec. 4.2.2 (l. 331 of the manuscript) was amended to be more
precise and descriptive:



Fig.  8. shows  the  spatial  performance  of  the  different  algorithms  for  member  2016_p60.  Spatial
patterns similar to the HS assimilation are found. rlocal performance is limited to the observed classes,
while global and klocal manage to improve the simulations across aspects and slopes. However, skill
scores are lower than for HS (0.2-0.5), and the performance of all algorithms is poor in the classes that
are the farther away from the observations, i.e. at lower elevations (600-900 m) and in some of the high
altitude steep Northern classes (e.g. 2100_N_40 on Figs. 8b-c). Finally note that slight degradations of
performance can sometimes be evidenced even in the observed classes for all the algorithms (e.g. in flat
conditions  at  3300  m  on  Fig. 8}a  for  the  rlocal},  not  evidenced  by  this  example  for  the  other
algorithms).

2. Some discussions on the assumption and the feasibility-testing nature of the system is needed in the
abstract or be acknowledged in the introduction section.
The  feasibility-testing  nature  and  the  identical  twin  setup  of  this  experiment  were  indeed  not
acknowledged enough in the abstract. This is now corrected on (L 13.14):
...based  on  background  correlation  patterns.  Feasibility-testing  experiments  are  carried  out  in  an
identical twin experiment setup, with synthetic observations of HS and VIS-NIR reflectances available
in only a 1/6th of the simulation domain. …

Another notable assumption, the fact that observations are not corrupted, needed to be underlined and
justified. We are actually conscious of this limitation, and a recent study has been submitted (Revuelto
et al., submitted) in which we assimilate synthetic corrupted observations at the point scale. In our
situation we did not corrupt the observations because little is known about the spatial structure of errors
of reflectance (e.g. Cluzet et al., 2020): we know that assuming independent errors (i.e. diagonal R) is a
very  rough  approximation  of  the  reality  which  has  strong  consequences  on  the  propagation  of
information.  Corrupting the observations  with such random structures would be theoretically  more
consistent,  but  would  not  yield  much  more  insight  on  the  potential  for  information  from  real
observations to be spatially propagated as real spatial correlation of observation errors might be very
different from this hypothesis. Future efforts should concentrate in better characterizing these spatial
structures of errors. Consistently, the following sentence was modified at the beginning of Sec. 3 (L.
206)
Synthetic observations are extracted from a model run and assimilated without adding any noise. These
observations mimic…

and a paragraph was added in the end of Sec. 5.2:
Regarding the observations, our study has some methodological limits, however. Observation errors are
very roughly prescribed, and the assimilated observations are not corrupted as usually done in synthetic
experiments (e.g. Durand et al.,  2006). These choices were motivated by the fact that very little is
known about the spatial  correlation of reflectance observation errors in the semi-distributed setting
(Cluzet et al.,  2020). In a recently submitted paper, the impact of random and systematic errors of
reflectance observations on point-scale assimilation experiments is thoroughly investigated (Revuelto
et al., in prep).  Efforts to better characterize these observation errors should be conducted in future
work

Lastly, the synthetic nature of the experiments should be stated in the conclusions. The sentence on
L490 was changed to:
In the framework of synthetic experiments, we have shown in particular that:…

In addition to the assumptions mentioned above,  the depth observation error is assumed to be 0.1m
(error covariance is 1e-2mˆ2), which is quite a high-bar for existing observation techniques, especially
when used on space-borne platform for large-scale measurements.



We agree that the prescribed observation error is a high-bar for space-borne sensors. Indeed, results
from recent studies such as Eberhard et al., (2020) could be used to provide a more accurate estimate of
HS retrieval errors from satellites. Conversely, it could be considered as a low value for other sources
of HS observations (e.g. stereo satellite imagery, Deschamps-Berger et al., 2020; local measurements
with a high spatial representativeness error).  As our work is a feasibility-testing experiment based on
synthetic observations, an arbitrary observation error was chosen but indeed it may be important to
adjust  this  value when applying the  algorithm to real  observations.  This  is  now mentioned in  the
discussion on line 371:
Global and klocal algorithms exhibit strong performances when assimilating HS (Fig. 5). HS is closely
linked with the SWE (by the bulk density) and the interest of this variable for data assimilation is clear
(Margulis et  al.,  2019). Here, it  should be kept in mind that  HS assimilation is used as a baseline
experiment to evaluate the algorithms and put reflectance assimilation into perspective. The prescribed
HS observation errors (\sigma_0=0.1m) are not necessarily realistic. They should be adapted to the
nature of the  HS sensor.  For example,  space-borne  HS observation errors are typically larger (e.g.
Eberhard et al., 2020; Deschamps-Berger et al., 2020). The assimilation of such observations would
probably yield lower improvements.
Though the performance is lower for Reflectance than in our HS experiments, it remains considerable 
and in line with previous results on point simulations (Charrois et al., 2016), with an average score 
improvement of 20-40\%…

Finally,  note  that  the  inflation  procedure  inside  the  global  and  rlocal  approaches  modifies  the
observation error which is assumed to be poorly known, reducing the impact of the prescribed value as
mentioned in Sec. 2.3.1.

3. Line 27: panel a of Figure 1 does not look like flat âĂŤ the surface does seem to make an angle with
the level surface (the brown triangle)
This panel is actually flat, but we agreed the perspective view might be misleading. For this reason, we
changed the background color of Fig. 1 in order to reinforce the perspective view, hoping that it helps.
Changed Fig. 1.

4. Line 128: it would be useful to include more details of the perturbation for each key forcing variable,
like  what  perturbation  models  and  error  statistics  are  used,  and  whether  spatial  correlations  are
considered.
We agree tat this part was too elusive. Spatial correlations are not considered (i.e. equal to one) this is
what we meant with  “spatially homogeneous” (l. 128 of the manuscript), but this formulation could be
misleading  and  more  details  were  added..  For  the  sake  of  clarity,  we  also  add  the  mention  that
perturbations are temporally correlated. The sentence was therefore modified accordingly
Before the beginning of the simulation, spatially homogeneous stochastic perturbations (e.g. at a given
date,  the  same  perturbation  parameter  is  applied  across  the  whole  domain)  with  temporal  auto-
correlations are applied to this forcing to generate an ensemble of forcings.

In addition, an appendix was added giving more details on the perturbation procedure and parameters.
Added appendix A.

 
5. Figure 2: how do the forcing particle (Fi) and the model particle (Mi) get paired? Is it random or
does it follow some protocol?
Yes, the pairing is random and keeps the same during the whole simulation. For the sake of clarity, the
line 130-131 was changed to:



At the beginning of the simulation, each forcing $F_i$ is associated with a random $M_i$ ESCROC
configuration and this relation is fixed during the whole simulation.

6. Line 180: can posterior estimates form the klocal approach show spatial discontinuity, since each
area is updated independently by different measurements?
Thanks for underlining this point. Yes indeed klocalisation generates spatial discontinuities, it is one of
the common drawbacks of localised approaches (see Farchi and Bocquet, 2018, already cited, for a
thorough review). However, we expect the k-localisation to produce similar analyses (i.e. PF samples)
for  similar  locations  because  their  analyses  will  be  based on similar  sets  of  observations,  thereby
reducing  the  discontinuities  compared  to  the  r-local  approach.   In  our  setup,  this  has  no  direct
consequence  on  the  simulation  as  simulation  points  are  independent,  but  it  can  hamper  the
interpretation of the spatial patterns of individual members. We changed the following lines inside the
introduction (l. 69 of the manuscript):
It makes it possible to constrain the model in locations that are not directly observed, but with nearby
observations. Contrary to global approaches, localisation has the disadvantage of producing spatially
discontinuous analyses (each point receives a different analysis). This issue can be mitigated in various
ways  (Poterjoy,  2016;  Farchi  and  Bocquet,  2018;  Van  Leeuwen  et  al.,  2019).  The  underlying
hypothesis…

Furthermore, we discussed this point in the end of Sec. 5.3:
Finally, in the case of modeled coupling between simulation points (e.g. snow drift), which was not the
case here, the spatial discontinuities of the klocal analyses (see Sec. 1) might be a drawback compared
to  the  global  approach.  Spatial  discontinuities  may  reveal  impractical  for  the  interpretation  of
individual simulations outputs by snow forecasters too. The klocal approach is likely to reduce these
discontinuities compared to the rlocal}, because similar locations will  receive similar analyses (i.e.
based on similar sets of observations). This issue could be partly mitigated by e.g. state-block-domain
approaches (Farchi and Bocquet., 2018).

7. Line 195: how are the 10% and 0.3 here determined? Are they from previous literature or are there
sensitivity test?
These parameters were adjusted during preliminary design experiments. As reflectance is not defined in
the absence of snow, the number of pairs  available to compute correlations between two locations
varies for reflectance, and spurious high correlations are found when there is a very low number of
common  members.  Regarding  the  0.3  value,  it  is  also  an  adjustment,  based  on  the  idea  that  if
correlations are too low, it does not make sense to try to propagate information, as there will likely be a
negative impact or no impact. The correlations exhibited on Fig. 4 enables the reader to realize typical
(open-loop) correlation values with 40 members. We agree that a most rigorous definition based on
significance levels would probably be a better option, and we will investigate this in future works. The
following sentence on L196. was modified:
…, and match the following criteria: which were adjusted in preliminary experiments:
\begin{itemize}
\item in $\bm{x}^i_v$, there are at least 10\% of members defined in both points. As reflectance is not 
defined when there is no snow, spurious high correlations can be obtained when the computation of 
correlations is based on a very low number of pairs.
\item $\lvert \mathbf{B}_{\bm{v}}(n,p) \rvert >0.3$. If the absolute correlation is too low, it is likely 
that there is a poor potential for the distant observation to constrain the ensemble locally. In such a 
situation, it is better to reject the observation from the local analysis. Negative ensemble correlations 
can be physically sound, e.g. after a rain-on-snow event between the HS of two points separated by the 
rain-snow line. In such a situation, an HS observation on either point can hold information on 
precipitation rates at both locations. At the observed location, the PF will select the members with the 



most appropriate precipitation rates. This sample is likely to perform well at both locations, so it can be
used to constrain the unobserved location.
\end{itemize}

8 Line 239: the PF performance with band4 and band5 observations are quite different (as in Figure 4),
what could be the reason?
 Note that Fig. 4 does not present the skill of an assimilation experiment, it is an example of open-loop
ensemble background correlation patterns for band 4 and band 5 on a specific date. Regarding the
interpretation  of  these  results,  there  was  a  lack  of  physical  explanations  to  help  interpret  the
correlations of Band4 and Band5.  These observations are sensitive to the snowpack surface properties,
namely the specific surface area (SSA, m²/kg) and light absorbing impurities content (LAP, g/g_snow).
This is now stated in the introduction (line 30-31 of the manuscript):
For instance, snowpack VIS-NIR reflectances from moderate resolution (250-500 m) satellites  such as
MODIS or Sentinel-3 can help constraining the snowpack surface properties such as microphysical
properties (characterized by the specific surface area, SSA (m^2kg^{-1}) and light absorbing particles
content (LAP, (gg_{snow}^{-1})) (Durand et al., 2006; Dozier et al., 2009).

The individual sensitivity of the spectral reflectances is now further detailed (l. 232-233).
Reflectance is sensitive to the surface SSA and LAP (see Sec. 1). A minimal set of two different bands
is used, corresponding to MODIS sensor band 4 (555 nm, sensitive to SSA and LAP) and 5 (1240 nm,
mainly sensitive to SSA) (e.g. Fig. 2. of Cluzet et al., 2020).

A slight adjustment of the interpretation of Fig. 4 was performed to point negative correlations for
Band5:
...being substantially correlated with the considered class. Note that negative correlations are evidenced
with some lower altitude South-oriented topographic classes (e.g. 1500_S_40 on Fig. 4b). Finally, these
patterns...

Indeed, the reasons why the correlation patterns of the different variables are different were already
exposed in  Sec.  5.2 & 5.3 but  in  a  way too  elusive  way.  This  comment  shows that  the  physical
interpretation is very important to understand the paper and its motivations, and its absence might have
been somewhat frustrating. In short (see track changes and Fig. 4): Band 4 is sensitive to SSA and LAP.
LAP forcings are spatially uniform, partly explaining the rather constant and high spatial correlation of
Band4. The spatial homogeneity of meteorological forcings also explains the strong HS correlations.
Band 5 is sensitive to changes in surface micro-structural properties. Differential metamorphism can
sometimes  occur  (between  southern  and  northern  aspect)  causing  a  de-correlation  in   band  5,
potentially explaining what is observed on Fig. 4b. Negative correlations can also happen for the same
reason between e.g. two elevations separated by the rain-snow line.

See the track-change throughout 5.2&5.3

Finally, investigating the skill of the PF as a function of the selected spectral bands is beyond the scope
of this paper but note that this important topic is investigated by Revuelto et al., (submitted to Journal
of Hydrology).  This reference was clearly missing (because this  reference was only in preparation
when this manuscript was submitted).
We now refer to Revuelto et al., (submitted) in the last paragraph of Sec. 5.2.

9. Line 279: Figure 3c
Corrected
10. Line 367: remove one “because of”.



Corrected
11. Figure 1: panel a is not “flat”, as it has an elevation gradient.
We addressed this comment in the response to the referee’s comment 3.
Making c the same size with b so their slope difference is more clear.
 We understand that the different horizontal extent between (b) and (c) might be confusing but in this
schematic representation, it is important that  (a), (b) and (c) reach the same elevation. (c) appears
smaller than (b) because it is steeper, but indeed they reach the same altitude. If (c) had the same basal
area as (b) as suggested by the reviewer, it would have a similar size, but it would be twice as high, and
unfortunately we believe that this would be detrimental to the description of the geometry.
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