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Abstract 11 

We assess the effect of increasing horizontal resolution on simulated precipitation over South America in 12 

a climate model. We use atmosphere-only simulations, performed with HadGEM3-GC31 at three horizontal 13 

resolutions: N96 (~130 km, 1.88° x 1.25°), N216 (~60 km, 0.83° × 0.56°), and N512 (~25 km, 0.35° x 14 

0.23°). We show that all simulations have systematic biases in annual mean and seasonal mean precipitation 15 

over South America (e.g. too wet over the Amazon and too dry in northeast). Increasing horizontal 16 

resolution improves simulated precipitation over the Andes and north-east Brazil. Over the Andes, 17 

improvements from horizontal resolution continue to ~25km, while over north-east Brazil, there are no 18 

improvements beyond ~60km resolution. These changes are primarily related to changes in atmospheric 19 

dynamics and moisture flux convergence. Over the Amazon basin, precipitation variability increases at 20 

higher resolution. We show that some spatial and temporal features of daily South American precipitation 21 

are improved at high resolution, including the intensity spectra of rainfall. Spatial scales of daily 22 
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precipitation features are also better simulated, suggesting that higher resolution may improve the 23 

representation of South American mesoscale convective systems.  24 

1. Introduction 25 

 26 

South America is a large area encompassing tropical, sub-tropical and extratropical climates. The Andes 27 

covers western South America, from South to North, while the eastern part of South America is flatter than 28 

the west. The Amazon basin has high mean rainfall and is covered by a rainforest, while northeastern Brazil 29 

is semi-arid. Several climatic areas are thus often defined to account for the climatic heterogeneity of South 30 

America, with focus specifically on the Andes, the Amazon Basin, north-east Brazil and south-east Brazil 31 

(de Souza Custodio et al. 2017).  32 

Climate models have biases in simulating South American precipitation, partly due to biases in simulating 33 

teleconnections between both Atlantic and Pacific sea-surface temperatures (SSTs), and precipitation over 34 

land (Bombardi and Carvalho 2008; Jung et al. 2011; Yin et al. 2013; Sierra et al. 2015; Coelho et al. 2016; 35 

Koutroulis et al. 2016). At sub-seasonal scales, precipitation variability is associated with the Madden—36 

Julian Oscillation (MJO) (Grimm 2019). The MJO modulates precipitation over South America, leading to 37 

either anomalously dry or wet conditions over South America, depending on its phase. The MJO also favors 38 

extreme events, leading to droughts and floods (Grimm 2019). At inter-annual scales, the El Niño Southern 39 

Oscillation (ENSO) strongly impacts Amazon precipitation, with El Niño events related to droughts 40 

(Grimm and Silva Dias 1995; Zeng et al. 2008; Marengo et al. 2008, 2011, 2013; Grimm and Tedeschi 41 

2009; Lewis et al. 2011). Variability in the tropical Atlantic Ocean modulates trade easterlies and impacts 42 

precipitation over north-east Brazil (Liu and Juárez 2001; Zeng et al. 2008) and south-east Brazil (Coelho 43 

et al. 2016). On decadal to multi-decadal scales, variability in north-east Brazilian precipitation is tied to 44 

the Atlantic Multidecadal Variability, which is associated with the location of the Atlantic Intertropical 45 

Convergence Zone (ITCZ)  (Knight et al. 2006). Brazilian precipitation is also associated with Interdecadal 46 
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Pacific Variability (IPV; Power et al. 1999), positive IPV phases reduce precipitation over South America 47 

(Villamayor et al. 2018). Errors in simulating teleconnections from local and remote SST variability leads 48 

to biases in the intensity, position of the ITCZ and the South Atlantic Convergence Zone (SACZ), which 49 

degrade simulated South American precipitation and temperature (Bombardi and Carvalho 2008; Custódio 50 

et al. 2012; de Souza Custodio et al. 2017).  51 

Besides teleconnections, climate variability results from complex local interactions between energy, 52 

precipitation and soil moisture. These feedbacks are particularly strong over interior South America, one 53 

of the “hot spots” in soil moisture—precipitation coupling (Koster et al. 2004; Wei and Dirmeyer 2012).  54 

Variability in recycling accounts for a large fraction of precipitation variability over north-eastern Brazil 55 

and the La Plata Basin (Sörensson and Menéndez 2011). Soil moisture memory influences atmospheric 56 

variability and could affect the development of the South American Monsoon System. Therefore, biases in 57 

simulated South American climate may be partly attributed to biases in local land-atmosphere coupling.  58 

Improving simulated precipitation in climate models may also improve subseasonal-to-decadal predictions, 59 

because the performance of initialised forecasts and free-running models relies on the representation of key 60 

physical processes, such as convection and land-atmosphere feedbacks. For instance, models with the 61 

largest systematic errors produce the lowest precipitation prediction performance (DelSole and Shukla 62 

2010). Jia et al. (2014) showed that the high-resolution version of the GFDL model produces lower biases 63 

and higher skill for seasonal variations of 2-m air temperature and precipitation over South America, than 64 

its lower-resolution counterpart. Therefore, Doblas-Reyes et al. (2013) proposed that increasing spatial 65 

resolution is one of the main challenges for improving predictions. 66 

Horizontal resolutions of Coupled Model Intercomparison Project (CMIP; Taylor et al. 2012; Eyring et al. 67 

2016) models are typically ~150 km, or coarser, in the atmosphere, and ~100 km in the ocean. Important 68 

climate processes, such as atmospheric convection, and mesoscale boundary currents and eddies, have to 69 

be parameterized rather than resolved, which may compromise dynamical processes and dynamics-physics 70 
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interactions (Collins et al. 2018). A growing body of evidence shows then that increasing horizontal 71 

resolution can improve some aspects of the simulated climate (Roberts et al. 2018, 2019; among others).  72 

Higher-resolution ocean-atmosphere coupled models outperform lower-resolution models at simulating 73 

SST over coastal upwelling regions, due to a better simulation of near-surface wind and its effect on the 74 

ocean (Shaffrey et al. 2009; Gent et al. 2010; McClean et al. 2011; Delworth et al. 2011; Sakamoto et al. 75 

2012; Small et al. 2014).  Resolution reduces the double ITCZ bias (Delworth et al. 2011) and improves 76 

variability in the El-Niño Southern Oscillation (Shaffrey et al. 2009; Sakamoto et al. 2012; Small et al. 77 

2014) and north Atlantic SSTs (Gent et al. 2010). Jung et al. (2011) and Jia et al. (2014) highlighted that 78 

increased resolution improved simulated South American precipitation and tropical mean precipitation, and 79 

atmospheric circulation. Improved land precipitation is partly due to a better representation of orography 80 

(Gent et al. 2010; Delworth et al. 2011; Sakamoto et al. 2012). Over South America, increasing horizontal 81 

resolution improves the representation of climate patterns (de Souza Custodio et al. 2017), particularly over 82 

the Ocean, over the Atlantic ITCZ and SACZ. Although strongly model and season dependent, high 83 

resolution regional climate models also improve simulated precipitation and temperature over South 84 

America (Falco et al. 2019; Solman and Blázquez 2019). Increased resolution also affects local features, 85 

such as the propagation of mesoscale systems (Vellinga et al. 2016) and local land-atmosphere feedbacks  86 

(Mueller et al. under review).   87 

However, horizontal resolution does not always improve simulated climate. Bacmeister et al. (2013) found 88 

that the high-resolution Community Atmosphere Model (CAM) did not improve simulated South American 89 

rainfall, compared to a lower-resolution configuration. Some simulations exhibit too much warming and 90 

cooling, especially over polar regions where sea ice is not accurately represented (McClean et al. 2011; 91 

Kirtman et al. 2012). Impacts of increased horizontal resolution strongly depend on the range of resolutions 92 

considered, on the region, phenomena and spatial and temporal scales of interest (Jung et al. 2011; Roberts 93 

et al. 2018). Therefore, there is a need to better understand how increasing the horizontal resolution could 94 

benefit simulated South American precipitation.  95 
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 96 

 97 

Accurate predictions and projections of extreme rainfall require realistic simulated precipitation 98 

distributions. However, models exhibit biases in the frequency and persistence of light (<10 mm.day-1) and 99 

heavy precipitation (>20 mm.day-1) (Sun et al. 2006; Dai 2006; Koutroulis et al. 2016). Errors in 100 

precipitation frequency and intensity are related to biases in the global hydrological cycle, including 101 

evaporation recycling over land (Trenberth 2011; Demory et al. 2014). Improved representations of intense 102 

small-scale events improves precipitation variability in models over parts of South America (De Sales and 103 

Xue 2011). These biases may be partly due to the coarse resolution of CMIP climate models; increased 104 

resolution could improve simulated extreme convective rainfall by enhancing smaller-scale precipitation 105 

features, as shown by Solman and Blázquez (2019) over South America. 106 

High resolution models are costly; if higher resolution produces little or no improvements in model biases, 107 

then computational resources could be used elsewhere, such as in increased ensemble size or adding 108 

initialization dates in forecasting systems, or improved or additional model physics. The European Union's 109 

Horizon 2020 PRIMAVERA project (www.primavera-h2020.eu) uses the CMIP6 High Resolution Model 110 

Intercomparison Project (HighResMIP; Haarsma et al. 2016) protocol and aims to develop a new generation 111 

of advanced high-resolution global climate models. 112 

We use PRIMAVERA simulations to evaluate whether increased horizontal resolution improves simulated 113 

South American precipitation. We address three main questions: 114 

- What are the model biases in simulated precipitation over South America?  115 

- Is South American mean precipitation and variability better simulated at higher than at lower resolution? 116 

What is the minimum resolution required to improve the lower resolution biases?  117 

 - Are the spatial and temporal organizations of precipitation, better simulated at higher resolution? 118 
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The paper is structured as follows: the model, data and methodology are described in Sect. 2. Sect. 3 focuses 119 

on the model’s ability to simulate annual and seasonal precipitation mean. We discuss seasonal to 120 

interannual variability in Sect. 4 and daily to sub-seasonal variability and spatial and temporal scales of 121 

precipitation in Sect. 5. A conclusion is given in Sect. 6. 122 

  123 
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2. Data and Methods 124 

2.1 HadGEM3-GC3.1 125 

 126 

HadGEM3-GC3.1 (hereafter HadGEM3) (Williams et al. 2018) has been run in an atmosphere-only 127 

configuration for 1950-2014, forced by HadISST2 daily 0.25° SSTs and sea ice (Rayner et al. 2006). The 128 

atmospheric model is the Global Atmosphere 7.1 scientific configuration (Walters et al. 2019), with 85 129 

vertical levels. A common historical forcing is imposed in all simulations, including SSTs, greenhouse 130 

gases and aerosols. Three sets of simulations are performed, which only differ by their horizontal resolution 131 

and by a stochastic perturbation of their initial conditions: N96 horizontal resolution (~130 km, 1.88° x 132 

1.25°; HadGEM3-GC3.1-LM), N216 horizontal resolution (~60 km, 0.83° × 0.56°; HadGEM3-GC3.1-133 

MM) and N512 horizontal resolution (~25 km, 0.35° x 0.23°; HadGEM3-GC3.1-HM). Three members 134 

were performed at each resolution, for a total of 9 simulations.  135 

 136 

2.2 Observations and reanalysis 137 

To verify the spatial and temporal scales of rainfall, three-hour and daily mean precipitation from 138 

HadGEM3 is compared against a high-resolution (0.25° x 0.25°) satellite-derived product for 1998-2017:  139 

NOAA CPC Morphing Technique (CMORPH version 1; Joyce et al. 2004). To evaluate time-mean rainfall 140 

and sub-seasonal to seasonal variability, we compare HadGEM3 to longer-period, but lower-resolution, 141 

gauge-based datasets from the University of Delaware (Willmott et al. 2001) and from the Global 142 

Precipitation Climatology Centre (GPCC; Schneider et al. 2014). We assess mean circulation against the 143 

NCEP-NCAR reanalysis (Kanamitsu et al. 2002) and ERA-interim reanalysis (Dee et al. 2011). 144 

To assess biases and impacts of the horizontal resolution on mean annual and seasonal precipitation we 145 

used monthly data, over 1950-2014, using GPCC and ERA-interim. For daily variance we used GPCC, 146 
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over 1982-2014. For the analysis of the spatial scales in precipitation, we used CMORPH, over 1998-2014. 147 

Note that results in mean and variance in precipitation were also assessed with CMORPH, in addition to 148 

GPCC, for a consistency with the spatial scales analysis. 149 

2.3 Data interpolation  150 

Differences between HadGEM3 and observations and between HadGEM3 at different horizontal 151 

resolutions are assessed by first interpolating all data to a common 0.5° x 0.5° resolution. Results were 152 

repeated, with data interpolated onto a common coarser resolution, 2.5° x 2.5° grid, showing similar results. 153 

For the analysis of the spatial scales in precipitation, both simulations and observations are interpolated 154 

onto a common lower resolution, N96.  155 

2.4 Analysis of Scales of Precipitation (ASoP) 156 

The Analysis of Scales of Precipitation (ASoP; Klingaman et al. 2017; Martin et al. 2017) diagnostics 157 

provide information on the intensity spectra of precipitation, the contribution to total precipitation from 158 

precipitation events of various intensities, the temporal persistence of precipitation and the typical spatial 159 

and temporal scales of precipitation.  160 

The intensity spectra measures intensity distributions by computing the contributions of discrete intensity 161 

bins to the total precipitation for each grid point, to be visualised as maps (at grid scale) or aggregated over 162 

regions into histograms. Spatial scales of precipitation features are measured by dividing the analysis 163 

domain into non-overlapping subregions and computing correlations of each point in the sub-region against 164 

the central grid point, then averaging the resulting correlation maps over all sub-regions. Temporal scales 165 

are measured by auto-correlations at a range of lags. Further information can be found in Klingaman et al. 166 

(2017) and Martin et al. (2017). 167 
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Further, we measure the distribution of the duration of precipitation events in discrete intensity bins by 168 

constructing a two-dimensional (2-D) histogram of binned precipitation intensity against binned duration 169 

in that intensity bin. We calculate the 2-D histogram by aggregating data across the analysis domain, then 170 

normalised by the number of spatial and temporal points in the dataset, to compare across datasets. The 171 

ASoP and duration diagnostics are applied over two subregions of South America: Amazon (AMZ; 10°S – 172 

5°N; 72°W – 50°W) and southeast South America (SESA; 35°S – 18°S; 63°W – 40°W). We apply these 173 

diagnostics to daily data on the native HadGEM3 and CMORPH grids, as well as a common N96 grid.  174 

We produce a 1-D histogram for duration of dry spells, where a dry spell is defined as a time interval of 175 

consecutive precipitation events of less than 0.1 mm.day-1. This histogram is normalized by number of 176 

spatial and temporal points in the dataset, to compare across datasets. 177 

 178 

2.5 Coupling strength metric 179 

Interactions between soil moisture, precipitation, temperature and evaporation modulate climate variability. 180 

We assess the sensitivity of coupling strength between these variables to resolution. Coupling strength is 181 

defined, at each grid point, after removing the linear trend and seasonal cycle, and on the daily time scale, 182 

as  183 

𝑟𝑎,𝑏𝜎𝑏 = 𝑐𝑜𝑟(𝑎, 𝑏) × 𝑠𝑡𝑑(𝑏) 184 

Where cor(a, b) is the correlation between the variables a and b and std is the standard deviation. As an 185 

example, for the coupling strength between soil moisture (in the top 0.1m of soil) and latent heat flux, a is 186 

the soil moisture, and b is the latent heat flux. The linear trend was removed over all days, selecting DJF 187 

months only, and across all years to define anomalies relative to the seasonal cycle. We only selected days 188 

over the DJF season, between 1950 and 2014. The coupling strength is also computed with a 2-day lag 189 

correlation. 190 
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 191 

 192 

3 Interannual and seasonal means 193 

3.1 interannual mean 194 

Observed annual mean precipitation is high over the equator, i.e. the Amazon Basin, Colombia and South 195 

Venezuela, while eastern Brazil is relatively dry (Fig. 1a). Precipitation is stronger over the eastern side of 196 

the Andes than over the western side, because moisture is carried across South America by the trade 197 

easterlies. Over the Andes, peaks in precipitation are collocated with the orography.  198 

HadGEM3 has clear deficiencies in simulating precipitation, particularly over high orography. N96 has a 199 

wet bias over southern Brazil and over the Andes, from 30°S to the equator, and a dry bias over north-east 200 

Brazil (Fig. 1b). Biases are strong, up to 3 mm.day-1 over the Andes. The dry bias over the north-east Brazil 201 

is associated with anomalously weak easterlies (Fig. 1b). An anomalously strong cyclonic circulation, 202 

located over Peru, weakens the easterlies, between 10°S and the equator, decreasing moisture flux 203 

divergence over the western Amazon Basin associated with a wet bias there (Fig. 1b). There is an 204 

anomalously strong anticyclonic circulation, over south-east Brazil, which is associated with stronger 205 

easterlies from the South Atlantic Ocean to southern Brazil and a wet bias (Fig. 1b).  206 

 207 

N216 and N512 also show, wet biases over the Andes and south-eastern Brazil, and dry biases over north-208 

east Brazil (Fig. 1c and Fig, 1d). Biases in low-level winds are also very similar in N96, N216 and N512. 209 

We highlight the impacts of each step change in resolution by displaying differences between all pairs of 210 

simulations. The total impact of shifting from N96 to N512 is given by N512-N96; intermediate steps are 211 

illustrated by N216-N96 and N512-N216. This helps to define the minimum resolution required to extract 212 

substantial simulation improvements, from the available sets of simulations. The strongest impact of 213 

increasing resolution is over the Andes, where N512-N96 reaches up to 2 mm.day-1 (Fig. 2c). Significant 214 

differences are also obtained over the Amazon Basin, north-east Brazil and north-west Argentina (Fig. 2a-215 
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c). Over the Amazon basin and the Andes, changes in precipitation in N512-N96 are due to both N216-N96 216 

and N512-N216 (Fig. 2a and Fig. 2b). In addition, differences consist of reduced precipitation (Fig. 2abc), 217 

and thus in reduced wet biases, over the Andes (Fig. 1bcd; see the stippling). Therefore, it is worth 218 

increasing horizontal resolution to N512 for simulating precipitation over the Andes.  219 

 220 

Over northern Argentina, significant changes are only due to N216-N96 (Fig. 2a), while there are no 221 

significant changes in N512-N216 (Fig. 2b). Over the Amazon Basin, significant changes are found in both 222 

N216-N96 and N512-N216. Over the Amazon Basin and northern Argentina, increasing resolution 223 

increases precipitation, which strengthens the N96 wet bias. Over north-eastern Brazil, the significant 224 

increase in precipitation with resolution reduces the N96 dry bias. However, the improvement is primarily 225 

found in N216-N96; resolutions higher than N216 do not appear to be useful. Over the Ocean, increased 226 

resolution is associated with strong changes in precipitation, i.e. precipitation increases over the eastern 227 

Pacific Ocean and decreases over the tropical Atlantic Ocean (especially just offshore of most coastal 228 

regions) (Fig. 2), but most of the effect comes from moving from N96 to N216. 229 

 230 

Changes in evaporation with resolution are significant over the eastern Pacific Ocean, and over the south-231 

west Atlantic Ocean, along the coast of South America (Fig. 2d-f). However, increasing resolution leads to 232 

only moderate changes in evaporation over land. Unlike evaporation, differences in moisture flux 233 

convergence (i.e. precipitation minus evaporation) are strong over both land and ocean (Fig. 2g-i). 234 

Therefore, the sensitivity of Amazon Basin and Andes precipitation to resolution is mostly due to sensitivity 235 

in moisture transport rather than in local moisture recycling (i.e. conversion of local evaporation into 236 

precipitation). This is consistent with Vannière et al. (2019), which showed that ocean-to-land moisture 237 

advection increases with resolution. We show small changes in specific humidity and surface air 238 

temperature over land (Fig. S1 and Fig. S2). This suggests that changes in precipitation with resolution are 239 

due to dynamic changes, rather than thermodynamic changes. Increased resolution is associated with an 240 

eastward shift, toward the coast, of the south-east Pacific anticyclonic circulation (Fig. 2g-i) in the southern 241 
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Pacific coastal region. The wind speed then strengthens and increases evaporation (Fig. 2d-f) and decreases 242 

moisture convergence (Fig. 2g-i). Over land, changes in wind speed are particularly strong over the 243 

mountains. 244 

3.2 Seasonal means  245 

We next examine the influence of resolution on seasonal rainfall, motivated by the strong seasonal cycle of 246 

South American rainfall (i.e., heavy rainfall over northern South America in July-September, while the 247 

Amazon basin is wetter in DJF than in JAS). Over north-east Brazil, the resolution sensitivity is strongest 248 

in DJF and MAM, mainly due N216-N96 (Fig. 3a; Fig. 3c; Fig. 3d and Fig. 3f), while the N512-N216 249 

differences are moderate (Fig. 3b and Fig. 3e). Differences are also strong over the Amazon Basin, in DJF 250 

and SON, where increased resolution increases mean precipitation (Fig. 3c and Fig. 3l). Changes in Amazon 251 

Basin precipitation are contributed by both N216-N96 (Fig. 3a and Fig. 3j) and N512-N216 (Fig. 3b and 252 

Fig. 3k).  253 

Over south-western Brazil—northern Argentina, increasing resolution increases precipitation in all seasons 254 

which increases the wet bias. These changes are only due to N216-N96 (Fig. 3).  Strong differences are also 255 

obtained over the tropical Pacific and Atlantic Ocean, from March to November (Fig. 3d, Fig. 3g and Fig. 256 

3j), mainly due to N216-N96. N512-N216 does not strongly affect oceanic precipitation (Fig. 3e, Fig. 3h 257 

and Fig. 3k).   258 

Improvements are shown over north-east Brazil in DJF and MAM. There is little sensitivity to resolution 259 

elsewhere in South America. Over the Amazon, changes are stronger in austral summer (i.e. DJF), during 260 

the monsoon, but biases are higher at high resolution.  261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 
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 270 

 271 

4. Seasonal to interannual variability and teleconnections 272 

We have shown a limited effect of resolution on mean precipitation. However, climate variability could be 273 

more sensitive to resolution because resolution may affect how the model simulates precipitation 274 

distribution, local and large-scale atmospheric dynamics, land-atmosphere coupling and mesoscale 275 

systems. Assessing climate variability provides useful information on the ability of climate models to 276 

simulate the climate system.   277 

The pattern in annual precipitation variance follows the pattern in annual mean precipitation, i.e. higher 278 

along the equator than over the surrounding regions (Fig. 4a). At all resolutions, HadGEM3 overestimates 279 

precipitation variability over south-east Brazil, and underestimates precipitation variability between 15°S 280 

and the equator (Fig. 4b-d). HadGEM3 overestimates both mean precipitation and precipitation variability 281 

over parts of the Andes and south-east Brazil/northern Argentina (Fig. 1b-d and Fig. 4b-d). HadGEM3 has 282 

a mean wet bias but underestimates the precipitation variability over the Amazon Basin, although increasing 283 

resolution reduces the variability bias (Fig 4.e-g). Over south-east Brazil, increasing resolution slightly 284 

reduces the overestimation of precipitation variance (Fig. 4e-g). There are no changes in precipitation 285 

variance over north-east Brazil, in N512-N96 (Fig. 4e, Fig. 4f and Fig. 4g). 286 

Precipitation variance also increases with resolution for individual seasons (not shown). Because both 287 

Pacific and Atlantic SSTs affect seasonal-to-interannual South American precipitation variability, we 288 

hypothesized that changes in variance to be associated with a change in the strength of the teleconnection 289 

between ENSO and South American precipitation, and between the South Atlantic SSTs and South 290 

American precipitation. However, this hypothesis was not supported by the following evidences: The 291 

impact of ENSO on South America is assessed through regressing the El Niño 3.4 index (170-120°W; 5°S-292 

5°N) onto precipitation for each grid point, focusing on the seasonal anomalies (Fig. S3). We found that 293 

increasing horizontal resolution does not systematically alter the influence of ENSO on Brazilian 294 
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precipitation. These analyses were repeated, focusing on tropical Atlantic gradients in SST, yielding a 295 

similar conclusion to the one for ENSO, i.e. increasing the horizontal resolution does not change impacts 296 

of the SST on precipitation over land (not shown). 297 

  298 
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5. Daily to sub-seasonal variability and teleconnections 299 

5.1 Daily variability 300 

Daily precipitation variance is more sensitive to resolution that monthly or annual variance. Over the 301 

Amazon Basin, differences between the simulations are stronger in austral summer than other seasons (Fig. 302 

S4). Besides, precipitation variability is strongly tied to the South American summer monsoon, which 303 

mainly occurs in DJF. Therefore, we focus further analysis on daily variance and on DJF.  304 

In DJF, N96 underestimates daily precipitation variance (Fig. 5a). N216 and N512 outperform N96, with a 305 

reduced underestimation of precipitation variance over the Amazon Basin (Fig. 5b and Fig. 5c). The 306 

increase in variance is due to shifts from N96 to N216 and N216 to N512 (Fig. 5d and Fig. 5e). The 307 

difference in P-E variance is high, close to the difference in P variance (Fig. 5g; Fig. 5h and Fig. 5i). 308 

Therefore, changes in precipitation variance are mostly associated with changes in the variance of moisture 309 

flux convergence.  310 

Biases in DJF daily precipitation variance have also been assessed using CMORPH over 1998-2014. The 311 

same conclusions are drawn: N96 underestimates variance and N512 overestimates variance (Fig. S4). 312 

However, the N96 biases are much reduced when compared to CMORPH instead of GPCC, such that N96 313 

outperforms N216 and N512 (Fig. S4 and Fig. S5).  In addition, the northern Brazil circulation is dominated 314 

by easterlies (Fig. 1a), whose variability reinforces by increasing the horizontal resolution (Fig. S6). Over 315 

southern Brazil, the circulation is dominated by northerlies; increasing resolution increases meridional wind 316 

variance (Fig. S7). Therefore, we suggest the change in precipitation variance is associated with changes in 317 

atmospheric dynamics. A positive feedback exists since an increase in precipitation is associated with a 318 

strengthening of local vertical velocity, which strengthens the low-level wind. However, changes in wind 319 

variance exhibit a large-scale pattern that suggests changes that are not due solely to local precipitation 320 

increases. The variance of the meridional wind increases strongly over the eastern side of the Andes (Fig. 321 

S7), highlighting the importance of the orography in modulating the circulation and transporting moisture.  322 
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We analyzed the variance of the zonal and meridional components of the moisture flux and found the same 323 

patterns as for the low-level wind (not shown), suggesting that changes are mostly attributed to dynamic 324 

changes, rather than thermodynamic changes.  325 

5.2 Effects of the Madden-Julian Oscillation 326 

The Madden Julian Oscillation (MJO) strongly affects sub-seasonal precipitation variability over Brazil 327 

(Grimm and Silva Dias 1995; Marengo et al. 2008, 2011, 2013; Grimm and Tedeschi 2009; Lewis et al. 328 

2011; Grimm 2019). Therefore, a change in the MJO teleconnection to South America may alter 329 

precipitation mean and variance.  330 

Indices of the Madden-Julian Oscillation (MJO) have been computed using NCEP for observed wind and 331 

outgoing longwave radiation from NOAA Cooperative Institute for Research in Environmental Sciences 332 

data set (Liebmann and Smith 1996), following Wheeler and Hendon (2004), by computing empirical 333 

orthogonal functions on daily values of 850 and 200 hPa zonal winds and outgoing longwave radiation. 334 

Simulated MJO indices are performed by projecting model data onto the reanalysis EOFs, after first 335 

removing the model annual mean and the first three harmonics of the model annual cycle. MJO indices 336 

were computed on data first interpolated on a 2.5° resolution. See Wheeler and Hendon (2004) for a longer 337 

description of the method. Time series have been deseasonalised and linearly detrended prior to computing 338 

impacts of MJO on precipitation mean and variance.   339 

In observations (GPCC), the MJO strongly impacts tropical South American precipitation, leading to above 340 

average precipitation during phases 1 and 8, while phases 3, 4 and 5 are associated with anomalously dry 341 

conditions (Fig. 6, top two rows), as shown in Grimm (2019). South of 20°S, phases 1, 2 7 and 8 are 342 

associated with anomalously dry conditions and phases 3, 4 and 5 with anomalously wet conditions (Fig. 343 

6, top panel). We select two areas, the Amazon Basin, where differences in precipitation variance between 344 

simulations are strong and East Brazil, which is strongly impacted by the MJO. Note the boxes on Fig. 6a. 345 
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Both areas experience above average precipitation during MJO phases 1, 7 and 8, and below average 346 

precipitation during phases 3, 4 and 5 (Fig. 6a-b). HadGEM3 reproduces the impact of MJO on East Brazil 347 

and Amazon Basin precipitation in sign and magnitude (Fig. 6i-j). There are no clear differences between 348 

N96, N216 and N512 simulations, and an impact of the horizontal resolution does not emerge.  349 

We show strong impacts of resolution on precipitation variance in Sect. 5.1. Therefore, we address here 350 

how precipitation variance could be affected by resolution within each MJO phase. Results are given 351 

relative to the variance of the precipitation computed from the full original daily timeseries (with no 352 

selection of any specific MJO phases). Results for precipitation variance differ slightly from those for the 353 

mean precipitation, with for instance a decrease in the variance during phase 1 when mean precipitation is 354 

higher, and stronger during phase 3 when mean precipitation is lower. This difference could also arise from 355 

local differences that could strongly impact the area-average. HadGEM3 simulates well the impact of the 356 

MJO on the precipitation variance, with above average variance during phases 7 and 8 and below average 357 

variance during phases 4 and 5. Unlike the observation, HadGEM3 simulates an increase in the variance of 358 

the precipitation during phase 1 of the MJO. N216 and N512 simulations perform better than N96 for phase 359 

3 of the MJO, since the N96 simulates reduced precipitation variance while the variance is anomalously 360 

high in observation and in the N512 and N216 simulations. However, there is no clear sensitivity of MJO-361 

related precipitation variance to horizontal resolution.  362 

 363 

5.3 Land-atmosphere feedback 364 

Soil moisture memory contributes to atmospheric variability and could potentially affect the development 365 

of the South American Monsoon System. Land-atmosphere coupling is particularly strong over South 366 

America (Koster et al. 2004; Sörensson and Menéndez 2011). In this section we assess the sensitivity of 367 

land-atmosphere feedbacks to resolution, using ERA-interim as verifying “observations”. The coupling 368 
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strength metric is defined as the correlation between two variables, weighted by the standard deviation of 369 

the reference variable (see Sect. 2.4).  370 

Over the Amazon Basin, there is a positive relationship between observed precipitation and observed soil 371 

moisture (Fig. 7a), such that an increase in precipitation is associated with anomalously high soil moisture, 372 

with soil moisture are coincident with changes in precipitation (Fig. 7e). Over the Amazon Basin and in all 373 

HadGEM3 resolutions, the bias in the precipitation—soil moisture coupling strength is small (Fig. 7b-d) 374 

and increase in the resolution does not change precipitation—soil moisture coupling strength (Fig. 7i-k; 375 

Fig. 7l-n), probably because, over the Amazon, the soil is saturated, such that increases in precipitation 376 

variability do not impact soil moisture variability. Soil moisture and evaporation are negatively correlated 377 

in observations, such that increased evaporation decreases soil moisture, over the Amazon Basin (Fig. 8a). 378 

Over the Amazon Basin, there is not a strong lead-lag relationship between soil moisture and evaporation 379 

in observations (Fig. 8e) or in HadGEM3 (Fig, 8f-h). The coupling strength is overestimated in N96 (Fig. 380 

8b) but an increase in resolution reduces this overestimation (Fig. 8c-d and Fig.8f-g). Over the Amazon 381 

Basin, the moisture budget is energy-limited, rather than moisture limited (Cook et al. 2014). Therefore, 382 

we also assessed the coupling strength between temperature and evaporation. An increase in temperature is 383 

associated with increased evaporation (Fig. S8) and thus decreased soil moisture, but, in HadGEM3, this 384 

coupling strength is not sensitive to resolution (Fig. S8). These results are consistent with our previous 385 

results, showing that local recycling plays a moderate role in explaining changes in precipitation variance, 386 

which is mainly associated with change in the moisture convergence variability (Fig. 6), rather than with a 387 

stronger land-atmosphere coupling (Fig. 8). 388 

Outside of the Amazon Basin, the soil moisture-precipitation relationship is positive in both observations 389 

(Fig. 7a) and HadGEM3 (Fig. 7b-d), with precipitation variability leading soil moisture variability (Fig. 7b 390 

and Fig. 7f-h). The increase in soil moisture increases evaporation over eastern Brazil (Fig. 8a). The soil 391 

moisture—evaporation coupling strength is too high in all simulations over north-eastern and eastern Brazil 392 

(Fig. 8b-d), with soil moisture driving evaporation, because evaporation is moisture-limited over north-east 393 
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Brazil, with changes in evaporation leading changes in temperature (Fig. S8). The strengths of both 394 

precipitation—soil moisture and soil moisture—evaporation couplings are overestimated in N96 (Fig. 7b 395 

and Fig.8b) over eastern Brazil. Increasing resolution reduces this overestimation (Fig. 7cd; Fig. 7i-k; Fig. 396 

8cd; Fig, 8i-k).  397 

 398 

 399 

 400 

5.4 Scales of precipitation 401 

 402 

We use the ASoP diagnostics (see section 2.4) to assess daily precipitation features over South America in 403 

HadGEM3, and verify them against CMORPH. We compute the fractional contribution to total CMORPH 404 

precipitation from four precipitation intensity bins, over South America, with a focus over two sub-regions, 405 

the Amazon Basin (AMZ) and southeast South America (SESA). We compare spatial and temporal scales 406 

of precipitation features across datasets for the two subregions. Results are given, separately, for light, 407 

moderate and heavy rainfall events. We focus on the occurrence and duration of dry spells. 408 

 409 

 410 

5.4.1 Light precipitation and dry spells 411 

In CMORPH, light precipitation events (<10 mm.day-1) contribute the most of all intensity categories to 412 

total precipitation over most of the Andes and northern and southern South America, the Pacific Ocean and 413 

western Atlantic Ocean (Fig. 9a). N96 underestimates contributions from light precipitation events over the 414 

Andes and south-east Brazil, but overestimates contributions from light precipitation over the Amazon 415 

Basin and eastern Brazil (Fig. 9e). The results are consistent with Seth et al. (2004), which also show an 416 

overestimation of the percentage of light rain events over South America. This bias is reduced by increasing 417 

resolution to N216 and N512 (Fig, 9i-p; Fig. S9).  418 

Figure 10 shows frequencies of precipitation events, as classified by intensity and duration. Results are 419 

shown for two regions: AMZ, where variance is too weak; and SESA, where variance is too high. Over 420 
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AMZ and SESA, near-zero precipitation (rainy events of 0.1 – 1 mm.day-1) can last for more than 15 days, 421 

while events of 1 – 10 mm.day-1 can last for up to 4 or 5 days (Fig. 10a and Fig. 10f). Over AMZ, N96 422 

overestimates the frequency of events of 2 to 12 mm.day-1 and underestimates the frequency of those of less 423 

than 1 mm.day-1, compared to CMORPH (Fig. 10b). For SESA, N96 underestimates the frequency of 424 

precipitation events of less than 1 mm.day-1 and lasting between 1 and 8 days; the model overestimates the 425 

frequency of near-zero rainy days, lasting more than 8 days (Fig. 10g). Intensity-duration biases improve 426 

with resolution over AMZ (Fig. 10c-10d) and SESA (Fig. 10h-10i). However, the biases worsen with 427 

resolution for near-zero precipitation lasting for any duration over AMZ, and for intensities between 1-9 428 

mm.day-1 with a duration of 1-5 days over SESA.  429 

In addition to events of less than 10 mm.day-1, we assess simulated frequency and duration of dry spells, 430 

defined by events of less than 0.1 mm.day-1. We create 2-D histograms for duration versus frequency of dry 431 

days over AMZ and SESA (Fig. 11). CMORPH shows more frequent short-duration dry spells as compared 432 

to HadGEM3 over AMZ at both native (Fig. 11a) and N96 (Fig. 11c) resolutions. Over SESA, CMORPH 433 

also generally shows more frequent dry spells for durations longer than 1 day (Fig. 11b, 11d). The sensitivity 434 

of dry-spell frequency to model resolution is generally smaller than the model bias. Once all datasets are 435 

interpolated to the common N96 resolution, N96 produces longer and more frequent dry spells than N216 436 

and N512, and is closer to CMORPH.  437 

5.4.2 Moderate precipitation 438 

Over most other parts of South America (i.e. Amazon and central and eastern Brazil), most of the total 439 

precipitation is contributed by light to moderate events (10-40 mm.day-1; Fig. 9a-c). Compared to 440 

CMORPH, N96 overestimates the contribution from moderate events, to total precipitation, over the Andes 441 

and underestimates this contribution over South America outside of the Andes (Fig. 9f, 9g). Although the 442 

spatial pattern of biases is similar to N96, biases in contribution from moderate rainfall to total precipitation 443 

reduce when increasing resolution (Fig. 9f-j-n and Fig. 9g-k-o; Fig. S9).  444 

https://doi.org/10.5194/gmd-2020-125
Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



21 
 

Over AMZ and SESA, most precipitation comes from moderate events in both CMORPH and HadGEM3 445 

(Fig. 10b-e). Over AMZ, CMORPH distribution peaks at ~30 mm.day-1 (Fig. 10b, 10d), when using the 446 

CMORPH native grid (Fig. 10b), and at ~20 mm.day-1 when using the N96 grid (Fig. 10d). At their native 447 

resolutions, N96, N216 and N512 have a primary peak at ~9 mm.day-1 and a secondary peak at ~30 mm.day-448 

1 (Fig. 10b). On the N96 grid, the secondary peak is removed in N216 and N512. As the fractional 449 

contribution in HadGEM3 peaks at lower intensities for all three resolutions, HadGEM3 overestimates the 450 

contribution from intensities below ~15 mm.day-1 and underestimates contribution from intensities above 451 

15 mm.day-1 (Fig. 10b). When compared on their native grids, the model biases reduce with resolution over 452 

AMZ. However, once interpolated to N96, N512 has the largest bias in fractional contribution, around the 453 

peak intensity (i.e. at ~10 mm.day-1). Over AMZ, N96 underestimates the frequency of events of 12-40 454 

mm.day-1 (Fig. 10d and Fig. 12b). Increasing resolution reduces the biases for the frequency of events of 455 

12-25 mm.day-1 but leads to an underestimation of precipitation of 30 to 40 mm.day-1 (Fig. 10b and Fig. 456 

12c-e). Over SESA, distribution peaks at ~20-30 mm.day-1 (Fig. 10c and Fig. 10e). Over SESA, N96 457 

underestimates (overestimates) the frequency of events of 2-20 mm.day-1 (20-40 mm.day-1) (Fig. 10e; Fig. 458 

12g). These biases are reduced in at N216 and N512 (Fig. 10e; Fig. 12h-j). 459 

5.4.3 Heavy precipitation 460 

Parts of the Peruvian Andes, Uruguay and eastern Argentina receive most of their rainfall from heavy events 461 

(>40 mm.day-1; Fig. 9d).  N96 overestimates these contributions (>40 mm.day-1) over central Brazil, the 462 

eastern Amazon and south-eastern Brazil (Fig. 9h). Like for the light and moderate events, increasing 463 

resolution reduces these biases (Fig. 9h-p and Fig. S9). This suggests that, at higher resolution, HadGEM3 464 

performs better for the frequency of extreme events, such as those that lead to flooding. However, the 465 

improvements primarily come from the increase from N96 to N216, not from N216 to N512 (Fig. S9). In 466 

addition, N96 overestimates the frequency of events > 40 mm.day-1 over AMZ and SESA (Fig. 10b; Fig. 467 

10g). Increasing resolution reduces these biases, again mostly due to increase from the N96 to N216 468 
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resolution, not from N216 to N512. For AMZ, N512 has a higher bias than N216 for events of 40-90 469 

mm.day-1.  470 

 471 

5.4.4 Temporal and spatial scales  472 

 473 

To compare spatial and temporal scales of precipitation features across datasets, we plot correlations as 474 

functions of time (Fig. 13a-d) and distance (Fig. 13e-h) (see section 2.4). Over AMZ, N96 overestimates 475 

the spatial and temporal scales of precipitation events relative to CMORPH, on their native grids (Fig. 13a 476 

and Fig. 13e). However, once CMORPH is interpolated to the N96 grid, N96 simulation underestimates the 477 

spatial scale (and overestimates the temporal scale) of precipitation (Fig 13b and Fig. 13f), highlighting that 478 

results strongly depend on the analysis grid. For SESA, N96 also underestimates the spatial scale and 479 

overestimates temporal scale of precipitation (Fig. 13d-g-h). When considering native grids only, there are 480 

no clear differences between N96 and CMORPH for the spatial extent of precipitation events (Fig. 13c). 481 

On native grids, N96 simulates events with larger spatial scales than N216 and N512 (Fig. 13a). However, 482 

this is mainly due to the coarse N96 grid. While all datasets are interpolated onto the N96 grid, N96 events 483 

are smaller than those in N216 and N512, which show similar scales and are closer to CMORPH (Fig. 13b). 484 

Over SESA, spatial scales are similar in all simulations, on their native grids (Fig. 13c). However, as for 485 

AMZ, at N96 resolution N512 and N216 are closer to CMORPH than to N96 (Fig. 13d). For both AMZ 486 

and SESA, therefore, the spatial features of daily precipitation events are better simulated at higher 487 

resolution. 488 

At all resolutions, precipitation features persist longer than in CMORPH (Fig. 13e-h). Over AMZ and 489 

SESA, biases are lowest in N96, which simulates events that are less persistent than in N216 and N512 490 

(Fig. 13f, Fig. 13h). This bias increases at higher resolution. Therefore, increasing horizontal resolution 491 

does not improve biases in temporal scales of precipitation. 492 
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6 Conclusion 493 

 494 

 495 

We assess the effects of increasing horizontal resolution on simulated South American precipitation. We 496 

use atmosphere-only simulations, performed with HadGEM3-GC3.1 (Williams et al. 2018) at three 497 

horizontal resolutions: N96 (~130 km, 1.88° x 1.25), N216 (~60 km, 0.83° × 0.56°), and N512 (~25 km, 498 

0.35° x 0.23°). We assess, systematically, how the step change between each resolution effects simulated 499 

precipitation, focusing on precipitation mean and variance, and on fine scale processes, such as temporal 500 

and spatial scales, frequency of heavy and light precipitation events and dry-spell durations.  501 

 502 

We show that the atmosphere-only simulations have systematic biases in simulating annual mean and 503 

seasonal mean precipitation over South America. North-east Brazil is anomalously dry, while the southeast 504 

Brazil and the Andes are too wet. These biases are mostly due to atmospheric circulation biases: 505 

underestimated trade easterlies, and a displaced anticyclonic circulation over southeast Brazil, both acting 506 

to modify moisture transport over South America. Increasing horizontal resolution affects the simulated 507 

precipitation. For instance, precipitation biases reduce over the Andes and over northeast Brazil. It is worth 508 

increasing the resolution to N512 (~25 km) for simulating precipitation over the Andes Mountains. This is 509 

consistent with Vannière et al. (2019), which shows that the added value of increasing horizontal resolution 510 

is greatest over orography. Over northeast Brazil, the largest improvement comes from increasing resolution 511 

to N216 (~60 km); a further increase to N512 is only associated with moderate changes. Increasing 512 

resolution does not improve model biases over the Amazon Basin. These results are consistent with Roberts 513 

et al. (2018) for the Amazon Basin and northeast and south Brazil. In addition, improvements vary 514 

seasonally: changes are the strongest over northeast Brazil in DJF and MAM, when precipitation is also 515 

highest. Over the Andes, the results are similar in all seasons.  516 

 517 

Biases in mean precipitation are collocated with biases in regional precipitation variance. For instance, 518 

northeast Brazil is too dry and HadGEM3-GC3.1 systematically underestimates precipitation variance, 519 
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while southeast Brazil is too wet and HadGEM3-GC3.1 systematically overestimates precipitation 520 

variance. However, this does not hold for the Amazon Basin, which is too wet but where the precipitation 521 

variance is strongly underestimated. Precipitation variance is stronger at daily scales than at monthly scales; 522 

biases are strongest in DJF and over the Amazon Basin. Increasing resolution increases precipitation 523 

variance, hence reducing biases. The increase in precipitation variance is associated with an increase in 524 

moisture flux convergence variance over land, and with changes in the variance of the low-level winds; 525 

local recycling of evaporation has a limited role. Relatedly, coupling strengths between evaporation, soil 526 

moisture and precipitation are only weakly sensitive to resolution, except for some improvements in 527 

coupling strength over eastern and south-eastern Brazil. We found only modest sensitivity to resolution for 528 

the teleconnections of the El-Niño Southern Oscillation and Madden-Julian Oscillation to land 529 

precipitation. This suggests that changes in precipitation mean and variance are not due to changes in these 530 

teleconnections.  531 

 532 

HadGEM3-GC3.1 has biases in its precipitation distribution. For instance, the model does not produce 533 

enough dry days over the Amazon Basin or moderate rain days (10-40 mm.day-1), while simulating too 534 

many light events (<10 mm.day-1) and heavy events (>40 mm.day-1). Over south-east Brazil, the model 535 

simulates too few short dry spells and too many long ones. HadGEM3-GC3.1 simulates too few and too 536 

short events of 2 to 16 mm.day-1, but simulates too many and too long events of more than 20 mm.day-1. 537 

These metrics are important for understanding the ability of climate models to simulate high-impact events. 538 

Increasing resolution reduces these biases; N512 is therefore better at simulating precipitation distributions 539 

than N96. In addition, increasing the horizontal resolution increases the spatial scale of daily rain events, 540 

suggesting a better simulation of organised mesoscale systems. However, the persistence of precipitation 541 

events is better simulated at N96, showing no clear sensitivity to resolution. Other models also overestimate 542 

light events at the expense of heavy events over the Amazon and eastern Brazil, and overestimate heavy 543 

events at the expense of lighter ones in southeast Brazil (Seth et al. 2004).  544 

 545 
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Over South America, precipitation results from the combination of the predominant role played by the 546 

InterTropical Convergence Zone and the South Atlantic Convergence Zone (Waliser et al. 1993; Liebmann 547 

et al. 1999). In addition, mesoscale systems such as squall lines may be responsible for a large fraction of 548 

Amazonian precipitation  (Cohen et al. 1995). Our results show that increasing the horizontal resolution 549 

increases the spatial scale of rain events, i.e. of the mesoscale systems, over both Amazonia and south-east 550 

Brazil. Therefore, we speculate that increasing resolution could lead to more organized convective systems, 551 

which would be consistent with the increase in moisture flux convergence, as shown over South America 552 

at the highest resolution. This would be consistent with Vellinga et al. (2016) who showed that N512 553 

resolution improved mesoscale systems over West Africa relative to N96 or N216. Conversely, the decrease 554 

in the persistence of such events (highest at the N96 resolution) could be associated with an increase in 555 

daily rainfall variability, because of less persistent rainy events. Those are hypotheses that should be 556 

assessed in more detail in a specific study, potentially with models at sufficiently high resolution to disable 557 

convective parameterisations. 558 

 559 

The mechanism for increases in precipitation variance with resolution are still unclear. The increase in 560 

precipitation variance is a global feature, not limited to South America (Fig. S10). Further work is needed 561 

to understand better this behavior at global scale. Besides, we used AMIP-type simulations; and results 562 

could be different in coupled models, in which the ocean can interact with atmospheric variability, 563 

particularly when accounting for SST teleconnections.  564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 
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Code availability. Codes used to perform analysis and figures are publicly available at 572 
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Figures      771 

 772 

Figure 1: (a) Observed mean annual precipitation (GPCC; mm.day-1; colors) and 850 hPa wind (NCEP; 773 

m.s-1; vectors), averaged over the period 1950-2014. Bias in precipitation and 850 hPa wind in (b) N96 (i.e. 774 

N96-GPCC), (c) N216 (i.e. N216-GPCC) and (d) N512 (i.e. N512-GPCC). On the panels (a), (b) and (c) 775 

biases in precipitation are shown when statistically significant in all of the three members, according to a 776 

Student’s t-test and a 95% confidence level.  777 

 778 

 779 

 780 

 781 

https://doi.org/10.5194/gmd-2020-125
Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



33 
 

 782 

Figure 2: Ensemble-mean (a) N216-N96, (b) N512-N216 and (c) N512-N96 differences in mean annual 783 

precipitation (mm.day-1). (d), (e) and (f): same as (a), (b) and (c) but for evaporation (mm.day-1). (g), (h) 784 

and (i): same as (a), (b) and (c) but for the moisture flux convergence (P-E; mm.day-1; colors) and the 850 785 

hPa wind (m.s-1; vectors). For precipitation (i.e. left row) stippling indicates that the mean bias is reduced 786 

at the higher than at the lower horizontal resolution. Differences are shown when significantly different to 787 

zero according to a Student’s t-test and a 95% confidence level.  788 
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 790 

Figure 3: Ensemble-mean N216-N96 difference in (a) DJF, (d), MAM, (g) JJA and (j) SON precipitation 791 

(mm.day-1). (b), (e), (h) and (k), as in (a), (d), (g) and (j) but for N512-N216. (c), (f), (i) and (l), as in (a), 792 

(d), (g) and (j) but for N512-N96. Differences are shown when statistically different to zero, according to a 793 

Student’s t-test and a 95% confidence level.  794 

 795 

 796 

 797 
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 799 

Figure 4: (a) Observed annual-mean precipitation variance (GPCC; mm2.day-2), as computed over the 800 

period 1982-2014. A linear trend is removed. Bias in annual-mean precipitation variance in (b) N96 (i.e. 801 

N96-GPCC), (c) N216 (i.e. N216-GPCC) and (d) N512 (i.e. N512-GPCC). (e) N216-N96, (f) N512-N216 802 

and (g) N512-N96 differences in annual-mean precipitation variance. On (b), (c) and (d), biases are shown 803 

when all three members produces a bias that is significant according to a f-test and a 95% confidence level. 804 

On (e), (f) and (g), stippling indicates that the bias is improved at the higher than at the lower resolution. 805 

 806 

 807 

https://doi.org/10.5194/gmd-2020-125
Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



36 
 

 808 

Figure 5: (Left row) Bias in daily precipitation variance (mm2.day-2) for (a) N96 (i.e. N96-GPCC), (b) N216 809 

(i.e. N216-GPCC) and (b) N512 (i.e. N512-GPCC) simulations, over the DJF period. Seasonal cycle and 810 

linear trend are removed prior to computing variance. Differences in daily precipitation variance (mm2.day-811 
2) for (d) N216-N96, (e) N512-N216 and (f) N512-N96. (g), (h) and (i), as in (d), (e) and (f) but for P-E 812 

(precipitation minus evaporation) variance. 813 
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 814 

Figure 6: Observed impacts of Madden-Julian Oscillation phase (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7 815 

and (h) 8 on precipitation (GPCC and NCEP for the RMM index; mm.day-1). Precipitation anomalies 816 

(mm.day-1), associated with each phase of the Madden-Julian Oscillation, relative to the period 1982-2014, 817 

and averaged over the (i) Amazon Basin and (j) East Brazil (see the box on (a)), for observation (black), 818 

N96 (green), N216 (orange) and N512 (red). (k) and (l), as in (i) and (j) but for precipitation variance, in 819 

percent (%) of the precipitation variance over the period 1982-2014.  820 
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 825 

Figure 7: (a) Observed (ERA-Interim) and (b) N96, (c) N216 and (d) N512 Coupling strength (ra,bσb) 826 

between daily precipitation and soil moisture (in the top 0.1m of soil) during the southern summer 827 

wet season (DJF), over the period 1979-2014. 2-day time lag (i.e. the soil situation 2 days after 828 

precipitation) for (e) ERA-Interim, (f) N96, (g) N216 and (h) N512. (i) N216-N96, (j) N512-N216 829 

and (k) N512-N96 coupling strength. (l), (m), (n), as for (i), (j) and (k) but with a 2-day time lag 830 

between precipitation and soil moisture. 831 

  832 

 833 
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 835 

Figure 8: As in Figure 7 but for the coupling strength between daily soil moisture (in the top 0.1m of 836 

soil) and latent heat flux (LHF).  837 
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 838 
 839 

Figure 9: Fractional contribution to the total precipitation from ranges of intensity bins shown in the labels 840 

above each panel for CMORPH (a-d) (the sum of each column is unity). Differences in the fractional 841 

contributions compared against CMORPH for N96 (e-f), N216 (i-l) and N512 (m-p) all on the N96 common 842 

grid. The four ranges of intensity bins are (first row) 0.005 to 10 mm/day, (second row) 10 to 20 mm/day, 843 

(third row) 20 to 40 mm/day and (last row) >40 mm.day-1.   844 

 845 
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 847 

Figure 10: Two-dimensional histograms of binned precipitation lasting for each duration bin, aggregated 848 

over all grid points and normalized by the number of spatial and temporal points in each dataset for (a) 849 

CMORPH for the AMZ region at N96 grid. Differences between the two-dimensional histograms for (b) 850 

N96 minus CMORPH; (c) N216 minus N96; (d) N512 minus N96 and (e) N512 minus N216 computed on 851 

the common N96 grid. (f-j) is same as (a-e) but for the SESA region.   852 
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 853 

 854 

Figure 11: Histograms of dry days (with precipitation less than 0.1 mm day-1) lasting for each duration bin, 855 

aggregated over all grid points and normalized by the number of spatial and temporal points in each dataset 856 

(a) Amazon and (b) SESA at native resolution for all datasets. (c-d) is same as (a-b) but for datasets on the 857 

common N96 grid.  858 

 859 

 860 

https://doi.org/10.5194/gmd-2020-125
Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



43 
 

 861 

Figure 12: (a) Subregions used in our study (i) the Amazon region (AMZ; green box; 10°S – 5°N; 72°W – 862 

50°W) and (ii) the southeast South America region (SESA; brown box; 35°S – 18°S; 63°W – 40°W). 863 

Histograms of the average precipitation contributions to the total precipitation from each precipitation bin 864 

for CMORPH and all simulations on their native grids (b) AMZ and (c) SESA. (d-e) is same as (b-c) but at 865 

96 grid. 866 

 867 
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 868 

Figure 13: (a) metric of the spatial scale of daily precipitation (at native resolution), computed by dividing 869 

the analysis domain into 1500 km x 1500 km sub-regions and calculating the mean lag-0 correlation 870 

between the central grid point and all grid points within each distance bin (which are 1 delta x wide, starting 871 

from 0.51x) away from the central grid point, then averaging the correlations over all sub-regions in AMZ; 872 

(e) metric of the temporal scale of daily precipitation, computed as the autocorrelation at each point, 873 

averaged over all points AMZ. The horizontal lines in (a-d) show the range of distances spanned by each 874 

distance bin; the filled circle is placed at the median distance. For clarity, we omit the correlations for zero 875 

distance and zero lag, which are 1.0 by definition. (b and f) same as (a and c) respectively for all datasets 876 

on the N96 grid; (c-d and g-h) same as (a-b and e-f) respectively but for SESA. 877 

https://doi.org/10.5194/gmd-2020-125
Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.


