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Abstract. Lossy compression has been applied to large-scale experimental model data compression due to its advantages of a 
high compression ratio. However, few methods consider the uneven distribution of compression errors affecting compression 
quality. Here we develop an adaptive lossy compression method with the stable compression error for earth system model data 
based on Hierarchical Geospatial Field Data Representation (HGFDR). We extended the original HGFDR by firstly dividing 15 
the original data into a series of the local block according to the exploratory experiment to maximize the local correlations of 
the data. After that, from the mathematical model of the HGFDR, the relationship between the compression parameter and 
compression error in HGFDR for each block is analyzed and calculated. Using optimal compression parameter selection rule 
and an adaptive compression algorithm, our method, the Adaptive-HGFDR(v1.0), achieved the data compression under the 
constraints that the compression error is as stable as possible through each dimension. Experiments concerning model data 20 
compression are carried out based on the Community Earth System Model (CESM) data. The results show that our method 
has higher compression ratio and more uniform error distributions, compared with other commonly used lossy compression 
methods, such as the Fixed-Rate Compressed Floating-Point Arrays method. 

1 Introduction 
Earth System Model Data (ESMD), which comprehensively characterize the Earth system over space-time dimensions, are 25 
presented as multidimensional arrays of high-precision floating-point numbers(Kuhn et al., 2016; Wulder et al., 2012). With 
the rapid development of earth system models, ESMD has shown an exponential increase in data volume and data 
complexity(Anon, 2011; Of and Acm, 2000). For example, the CESM (Community Earth System Model) simulation generates 
data on the order of terabytes per computing day (Baker et al., 2014; Kay et al., 2015; Paul et al., 2015). Therefore, compression 
methods, especially the lossless compression methods are applied to reduce the data volumes. However, lossless compression 30 
methods have an upper limit of compression ratios (Kumar et al., 2008; Tao et al., 2017c), which grows much slower than the 
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velocity of data volume grows (Baker et al., 2016). With the rapid exploration of ESMD, lossy compressions are recently been 
studied as an alternative solution for ESMD compression. How to keep the balance between the compression errors and 
compression ratio becomes the key issue of lossy compression of ESMD.  
The existing lossy compression methods for ESMD can be classified into two main categories: file-based compression and 35 
data encoding-based compression. File-based compression considers the model data as a complete data file and then 
compresses data using general file compressions, such as GRIB2 and NetCDF (Bing et al., 2014; Hübbe et al., 2013). However, 
the compression parameters of common data files are relatively fixed, and the error cannot be controlled in a data-driven way. 
Some researches also use the image-based file compression method in ESMD. These image-based methods slice ESMD from 
different dimensions and then compress different slices as separate images. For example, there are researches use JPEG2000 40 
or a discrete Fourier transform to compress ESMD (Taubman and Marcellin, 2002). The image-based compression method 
can directly inherit the advantages of existing image compression methods. However, as the compressions are applied to single 
image slices, the correlations between different image slices are not always well utilized during different compression 
processes. Therefore, the compression error control between different image slices may be non-uniform (Castruccio and 
Genton, 2016; Guinness and Hammerling, 2016). To summarize, the file-based compression methods can improve the 45 
compression ratio of ESMD. However, the uneven distribution of compression errors may affect the data quality and then 
affect the subsequent analysis of ESMD (Baker et al., 2014; Berres et al., 2017; Feng et al., 2014; Zabala and Pons, 2011). 
The second type of lossy compression, the data encoding-based compression methods, mainly implement data compression 
by encoding the common feature of data with more compact coding mechanisms to reduce the data volumes. With different 
encoding strategies, the data encoding-based compression methods can be further classified into three subcategories: statistical 50 
data coding, error truncation, and feature prediction-based coding compression. The statistical data coding methods use 
parametrical statistical characteristics to approximate original data (Papaioannou et al., 2011; Tao et al., 2017a). For example, 
vector quantization (VQ) (Vector Quantization) (Guinness and Hammerling, 2016) or sparse coding (Akbudak et al., 2017) 
organize the data as a simple one-dimensional array (number sequence) and use a dictionary (or code table) to compose the 
common patterns of the data. However, the use of a dictionary or code table enlarges the complexity of the data structure, 55 
which makes the structure of the compression algorithm complicated. The construction and parsing of the dictionary also make 
significant time to compress and decompress when the data volume is large (Anon, 2013; Liu et al., 2014; Mummadisetty, 
2015). The method based on error truncation mainly controls the precision of a floating-point expression of original data, 
intercepts, and eliminates redundant floating-point precision to implement the data compression. For example, FPZIP 
(Lindstrom and Isenburg, 2006) and APAX (Hübbe et al., 2013)  compress data by intercepting the floating-point precision of 60 
data. As the distribution of floating-point precision of data is not uniform, the compression errors may also distribute unevenly. 
Therefore, it is difficult to control the distribution of data compression error. To make the data error distribution more evenly 
distributed, the feature prediction-based coding compression methods try to extract features and use functions to predict the 
possible structure and coding of data (Adhianto et al., 2010; Cui et al., 2007). For example,  NUMARCK (Zheng et al., 2017), 
SSEM (Wilczyñski, 2001), SPECK (Wang and Li, 2006), and ZFP (Diffenderfer et al., 2019b) are typical methods that use 65 
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the feature prediction to achieve lossy compression. Although the compression ratio is higher and the error distribution is less 
uneven distributed compared to the pure encoding-based methods, the compression ratios of the feature prediction-based 
coding compression methods are highly dependent on the feature extraction and prediction model. If the distribution of original 
data did not fit well with the feature extraction and prediction model, the performance of the compression may low. 
Furthermore, to make the method flexible to different data, common feature extraction and prediction model are data-adaptive, 70 
which means the compression parameters are often cannot be modified custom by users.  
By summarizing all the above two different types of lossy compression methods, we find that existing data compression 
methods are mostly inherited from low dimensional data compression methods (e.g. one-dimensional vector or two-
dimensional images). None of these methods considers the ESMD as a unified, overall high dimensional data with the the 
heterogeneous correlation between different dimensions. For ESMD, there are significant correlations between different 75 
dimensions (e.g. the temporal or spatial dimensions), i.e., that values in neighboring ranges tend to be numerically close to 
each other. As the dimensions of ESMD are commonly high (e.g. even an ESMD with only one attribute and three spatial 
dimensions forms a four-dimensional data), the ignorance of the multidimensional correlation structure results low 
compression performance (Diffenderfer et al., 2019a; Schoellhammer et al., 2004). Without control of such high dimensional 
correlation structure also makes it difficult to uniformly control the error distribution of data compression in different 80 
dimensions, which leads to an uneven distribution of the compression method in different dimensions and affects the quality 
of data (Tao et al., 2017b).  
Tensors can effectively represent a multidimensional array of numerical values. The corresponding tensor decomposition 
method eliminates inconsistent, uncertain, and noisy data without destroying the intrinsic data structure, making the 
reconstructed data in approximate tensor more accurate than the initial tensor (Li et al., 2018); this method, therefore, has been 85 
gradually introduced into data compression in recent years (Yuan et al., 2015). Among these tensor methods, the hierarchical 
tensor approximation, which can extract data features level by level to obtain more detailed information, achieve far higher 
quality than traditional tensor methods at large compression ratios (Linton and Xiao, 2001; Lyre, 2004). For example, Yuan et 
al. recently designed an improved hierarchical tensor method Hierarchical Geospatial Field Data Representation (HGFDR) to 
compress geospatial data in a hierarchical tree structure, show many more advantages in compression ratio and error 90 
distribution than traditional methods like NetCDF-based data compression. Nevertheless, the HGFDR only pay attention to 
global average error to assess the compression quality and is only tested with eight types of climate variables. As the average 
error could be quite small despite a relatively large error at one or more points, maintain the stable distribution of the local 
error is important for the compressed climate data for the subsequent data analysis. We still need to work out how to control 
the balanced distribution of local compression error of the HGFDR and research on the adaptivity and universality of HGFDR 95 
with various variables of ESMD.  
In this paper, we extend the study of HGFDR by discussing the factors and constraints that affect HGFDR for ESMD 
compression. We study the empirical quantitative relationship between compression error and compression parameters and 
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develop an Adaptive-HGFDR(v1.0) algorithm based on an adaptive data block and rank adjustment mechanism under error 
constraint. Experiments on a climate simulation set of 22 variables are developed to test the general applicability of the method. 100 
The remainder of this paper is organized as follows. Section 2 introduces the basic ideas about developing Adaptive-
HGFDR(v1.0). Section 3 discusses the block mechanism, the relationship between rank and error, and the derivation of 
empirical equations, as well as the flow of the dichotomy. Section 4 uses temperature data to verify that the method can obtain 
adaptive rank under error constraint. Section 5 discusses the effectiveness and computational efficiency of the method, as well 
as the results. 105 

2 Basic idea 
For climate model data, due to the large dataset, the partial block data is not only much smaller than the original geographic 
spatial tensor, but also more balanced in size. Therefore, dividing the original data into a series of uniform local blocks is 
beneficial to the compression effect and calculation efficiency. Generally, the size of the main block depends on the size of 
the file system I/O (input/output) blocks, so there are usually multiples of the smallest block of a particular I/O. For the divided 110 
data, in order to construct data compression with stable error, the key problem to be solved is how to select the best compression 
parameter of each block data under the condition of stable error. For HGFDR, the rank on each block of data is the main control 
parameter to achieve compression. The empirical relationship between compression errors and compression parameters can 
be used to adjust the rank value of each block of data under error constraints to achieve a balanced distribution of error on each 
block of data. 115 
In order to achieve a stable distribution of errors, for each block of divided data, the compression parameters should be able to 
be adaptively adjusted according to the given error. To achieve this regulation process, the rank is continuously adjusted by 
the given target error, and the error result after each compression is compared with the target error, and an empirical relationship 
is used to determine whether the rank value should be increased or decreased. The iteration is continued to obtain the result 
that is closest to the target error and meets the target error. In order to improve the efficiency of the algorithm in continuous 120 
iteration, a fast search method is used to quickly converge the iteration to the optimal compression result with minimal 
algorithm complexity. Using the idea of dichotomy, before adjusting the rank each time, narrow the selection interval of half 
of the rank. The optimal rank of the target error is constantly approached in half, and each data block can adaptively find the 
rank closest to the target error by this method. Therefore, through step 1: set s an appropriate partitioning strategy, step 2: 
constructs an empirical relationship between compression error and compression parameters, and uses this relationship to 125 
allow each data block to determine the rank value based on the given target error, step 3: Use the fast search method to find 
the best rank, finally achieve a stable distribution of the overall compression error. The entire compression method flow is 
shown in Figure 1. 
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Figure 1: Flow chart of compression method in this paper. 130 

3 Method 
3.1 Block hierarchical tensor compression 
EMSD is a multidimensional array with high dimensional features. it can be seen as a tensor with the spatio-temporal references 
and the associated attribute domain.Without loss of generality, a three-dimenisonal tensor can be definied as I J KZ     (None, 
1970; Suiker and Chang, 2000), where I , J , and K are values that represent the number of grids along the dimensions of 135 
longitude, latitude, and time (or height), respectively. Usually, these dimensions of EMSD are imbalance due to the different 
spatial and temporal resolution. For example, the data accumulation in the temporal dimension is always significantly longer 
than that in the spatial dimension for a spatio-temporal series with long continuous temporal observation.Thus，for the 
compression of EMSD, in order to reduce the affection of dimensional imbalance and make the blocks an ideal size, a blocking 
mechanism for original data Z is firstly formulated as:  140 

1 2{ , , , }mZ C C C                                                                                                                                                                             (1) 
where Q W E

iC    represents equal data blocks divided from the original data. 
Based on the divided data blocks, Yuan (Yuan et al., 2015) proposed the HGFDR based on the hierarchical tensor compression. 
In this method, the hierarchical tensor compression is applied to each block, then the hierarchical tensor compression of each 
data block is obtained by selecting the dominant feature component and filtering out the residual structure. This method utilizes 145 
the hierarchical structure of data features, greatly reducing data redundancy, and thereby achieving the efficient compression 
of amounts of spatiotemporal data (Yuan et al., 2015). The overall compression of the HGFDR can be formulated as: 

 1 1 1 1 12( ) ( ) +r
        1, 2, ,L Lj
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Similar to the prominent components obtained by SVD (Lathauwer et al., 2000; Springer, 2011) for two-dimensional data, the 
matrix RU  and the sparse transfer tensor RB  are considered to be the r-th component of a third-order tensor in each dimension, 150 
respectively, where R  denotes the number of multi-domain features. The residual tensor, res , in Eq. (2) denotes information 
not captured by the decomposition model, and 1 1 1 1 12( )R R L L RU U U B B B B    

     in Eq. (2) is the reconstructed r-th core 
tensor and feature matrix (Matrices, 2006; Oseledets and Tyrtyshnikov, 2009). 

3.2 Adaptive parameter selection and solution 
Since the feature structure of each divided block is different (Hackbusch and Kühn, 2009), the key to control the stable 155 
distribution of compression error in HGFDR is to adaptively select the compression parameter of each local data according to 
the given compression error. So the key step is to construct the relationship between the compression error and compression 
parameter. Lars Grasedyck defines a hierarchal tensor SVD algorithm, and the approximate accuracy is determined by rank 
(Matrices, 2006). In HGFDR, Yuan gives the relationship between the compression error and compression parameter as 

Rank    , since the structure of each local data is different. Under the constraint of uniform compression error distribution, 160 
the compression parameter of each block data should be the rank value closest to the given error as follows: 
    GivenRank                                                                                                                                                                           (3) 

Given  are the given threshold values of calculation error that depend on different application scenarios; ,  are the calculation 
coefficients determined by the structure and complexity of the data; In HGFDR，the relationship between the compression 
ratio and compression parameter are given as follows： 165 

3 2
datasize

aRank bRank cRank d                                                                                                                                                     (4) 
As shown in Eqs. (2), (3), and (4), in the HGFDR, with rank decreases, the data compression rate of HGFDR increases, but 
the compression error also increases. In HGFDR, the rank value of different blocks is fixed, it results in the fluctuation of the 
compression error in specific dimension. Since the structure of each block is different, to achieve a uniform error distribution 
of compressed data under the given compression error, the key is to select the rank for each block of data separately. We can 170 
select the optimum parameter as the minimum Rank that make the conpression error close to the given value. 
In the following algorithm for finding the optimum parameter for data block Q W E

iC   , std _ err  is the given data error; 
err  is the actual error obtained by each data block compression; R _ M ax , R _ M in , and R _ Mid  are the transitive values 
for finding the optimum rank; Round()  is the rounding function; Max()  represents taking the maximum; and Rank  is the 
optimum parameter. We use a binary search to find optimal parameters, and the algorithm is implemented as follows: 175 

(1) Input a data block Q W E
iC   , and set std _ err , R _ M ax Max( Q,W ,E )  and R _ M in 0 ; 
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(2) R _ M ax R _ M inR _ Mid Round( )2
 ; 

(3) Q W E
iC    obtains err  according to Eqs. (4) and (6) 

(4) Judge err std _ err . If yes, go to (5), or else to (6); 
(5) Judge R _ Mid R _ M in 1  . If yes, Rank R _ Mid , or else R _ M ax R _ Mid  and return to (2); 180 
(6) Judge R _ M ax R _ M i d 1  . If yes, Rank R _ Mid , or else R _ M in R _ Mid  and return to (2). 

The complexity of the optimum parameter is (log )O n . According to the above optimal component rule, the algorithm flow 
chart is shown in Figure 2: 
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Figure 2: Data compression algorithm workflow based on dichotomy. 185 
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4 Case study 
4.1 Data description and experimental configuration 
In this paper, the experimental data are dynamics simulation files obtained from Open Science Data Cloud. The data files are 
in the common NetCDF (network Common Data Form) format (Springer, 2011). Each file is broken down into year and month, 
containing all the variables for one month. The data set includes air temperature data (T) stored as a  1024 512 26 (latitude190 
 longitude  height) tensor and 22 other attributes stored as a  1024 512 221 (latitude  longitude  time) tensor from 
1980/01 through 1998/05. The memory occupation of the temperature data attribute was about 38.3 M, and the memory 
occupation of 22 other attributes were about 0.73 GB. By importing data from the NetCDF into the memory, a total of 48 GB 
of data was made available to test the performance of our solution. Research experiments were performed by the MATLAB 
R2017a environment on a Windows 10 Workstation (HP Compaq Elite 8380 MT) with Intel Corei7-3770 (3.4 GHz) processors 195 
and 8 GB of RAM. 
For validation of our proposed algorithm, compression error ratio, and compression ratio are mainly used to benchmark 
performance. The following experiments were performed:  
 Simulations with different block numbers were performed with data of constant size to find the optimized block size;  
 A comparison between the compressed performance in our solution and that is commonly used compression methods;  200 
 A comparison of compressed performances using multiple variables. 

4.2 Optimal block number selection 
In the proposed compression method, the block number is a vital parameter. Here, taking temperature data (T) as an example, 
the optimum block number is decided under the conditions of the given compression error. Due to knowledge limitations, the 
block numbers are randomly selected as 4, 16, 64, and 128, and the determined compression error is 10-4; the proposed 205 
hierarchical tensor compression is applied. The corresponding compressed results and statistical parameters are shown in 
Figures 3 and 4.  
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Figure 3: Original data and compression with different block numbers: (a) original temperature data (T); (b) compression result 
with block number 4; (c) compression result with block number 16; (d) compression result with block number 64; (e) compression 210 
result with block number 128; (f) compression result with block number 256. 
The compression results with different block strategies in Figures 3(b)–3(e) show little difference compared with the original 
data in Figure 3(a). This may be because the proposed method adaptively extracts the prominent feature components under the 
same compression error range, no matter how large the local data block; the proposed method can continually adjust the 
parameter to meet the same error constraints, thus providing good compression results for different block numbers.  215 

 
Figure 4: Compression ratio compression results with different block numbers. 
Figure 4 shows that the compression ratio reaches a maximum when the block number is set to 16. Hence, the optimum block 
number is 16, and the corresponding block size is  256 128 26 . The ideal block number should achieve a high compression 
ratio. 220 

4.3 Comparison with traditional methods 
To verify the proposed adaptive compression method for climate model data, the method is compared with the traditional 
HGFDR method and the classical ZFP compression method. To compare methods, the block numbers in the proposed method 
and HGFDR method are both set to 16; and for convenience in comparison, the rank in HGFDR is selected as the average of 
the adaptive rank. Without loss of generality, the compression errors are set to 10-5, 5×10-5, 10-4, 5×10-4, 10-3 respectively; the 225 
compression ratios are shown in Figure 5. 
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Figure 5: Compression ratio versus compression error for different approaches. 
Figure 5 shows that the proposed method reaches the highest compression ratio with the corresponding compression error in 
most cases. This may because this method can adaptively adjust the parameter according to actual data complexity, and thus 230 
better capture data features to improve the compression ratio. To better show the stability in the compression error distribution, 
under the condition of the compression error of 10-4, the error distribution along the longitude dimension is shown in Figure 6, 
and the detailed distributions of spatial error, three spatial pieces (2 layers, 8 layers, 16 layers), are randomly selected and 
shown in Figure 7. Figure 6 shows that the compression error in the HGFDR method and the ZFP method fluctuates 
dramatically, forming multiple peaks and valleys. The proposed method is more stable than traditional methods given the same 235 
whole compression error ratio. The spatial distribution of error in Figure 7 also shows that the error distribution obtained by 
the proposed method is more uniform than that in the HGFDR and ZFP methods. 

 
Figure 6: Compression error distribution of three compression methods on longitudanal slices. 
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  240 
Figure 7: Spatial compression distribution of compression error for three compression methods. 

4.4 Compression performance comparison for multiple variables 
For a comprehensive comparison of the different methods, 22 monthly climate model data were entered as experimental data. 
All experimental data have a dimension of 1024×512×221. The error limit is 0.01, the block size is 256×128×26, and the block 
number is 144. A detailed description of the variables is shown in Table 1. 245 
Table 1: 22 Descriptions of climate model data variables. 

Variable 
name Variable description Variable 

name Variable description 
FLDS Downwelling longwave flux at the surface PCONVT Convection top pressure 
FLDSC 

Clearsky downwelling longwave flux at 
surface RHREFHT 

Reference height relative humidity 
FLNSC Clearsky net longwave flux at surface SOLIN Solar insolation 
FLNT Net longwave flux at top of model SRFRAD Net radiative flux at surface 
FLNTC 

Clearsky net longwave flux at top of model 
TMQ 

Total (vertically integrated) precipitable 
water 

FLUT Upwelling longwave flux at top of model TREFHT Reference height temperature 
FLUTC 

Clearsky upwelling longwave flux at top of 
model TREFMNAV 

Average of TREFHT daily minimum 
FSDSC Clearsky downwelling solar flux at surface TREFMXAV Average of TREFHT daily maximum 
FSNSC Clearsky net solar flux at surface TS Surface temperature (radiative) 
FSNTC 

Clearsky net solar flux at top of model 
TSMN 

Minimum surface temperature over output 
period 

FSNTOAC 
Clearsky net solar flux at top of atmosphere 

TSMX 
Maximum surface temperature over output 
period 

The proposed method, HGFDR method, and ZFP method were applied to the 22 variables. The comparison ratio, time, and 
standard deviation of the slice error in the X dimension were calculated and are shown in Figure 8. We can conclude that the 
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proposed method maintains the maximum compression ratio under the constraints of the same compression error for most 
variables shown in Figure 8(a). This may be because tensor reconstruction based on selected feature components removes data 250 
redundancy to improve the compression ratio. Moreover, the adaptive adjustment of parameters makes the proposed method 
yield the stationary error distribution for the multiple variables shown in Figure 8(c). In summary, the proposed method 
provides good adaptability for climate model data.  
However, of all the methods, the proposed method is the most time consuming [Figure 8 (b)], which may be because it requires 
the continual adjustment of parameters to search for the optimum rank. We pay more attention to the method construction in 255 
this work, for the efficient tensor compression solution, some optimization strategies, such as the spatiotemporal indexes, the 
unbalanced block split, can be used for improving the efficiency. 

 
Figure 8: Comparison of the compression results of three compression methods for 22 variables: (a) Compression ratio comparison; 
(b) compression time comparison; (c) standard deviation comparison of slice error. 260 

5 Conclusion 
In this paper, an Adaptive-HGFDR(v1.0) algorithm is proposed for ESMD compression. Based on HGFDR, an error-
compression parameter correction mechanism is established. Using the error and compression parameter empirical equations 
and error parameter adaptive dynamic adjustment feedback mechanism, a balanced distribution of climate model tensor 
compression errors is ensured. Compared with the traditional method, proposed method adaptively adjusts the local 265 
compression parameters, so that it can better take into account the local structural characteristics of the climate model data. 
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Proposed algorithm not only maintain a large compression ratio under the same overall error, but it can also make the error 
structure more evenly distributed in all dimensions of the data. Multivariable simulation experiments show that the method 
has better performance and can be applied to many different types of climate model variables. Future research work should 
focus on conducting larger-scale compression experiments, optimizing algorithm efficiency, and evaluating the applicability 270 
of the method in large-scale climate simulation experiments. 

Code and data availability. The Adaptive-HGFDR(v1.0) lossy compression algorithm proposed in this paper was conducted 
out in MATLAB R2017a. The exact version of Adaptive-HGFDR(v1.0) and experimental data used in this paper is archived 
on Zenodo(AndyWZJ, 2020). The experimental data are Large-scale Data Analysis and Visualization Symposium Data 
obtained from (OSDC) Open Science Data Cloud. This data set consists of files from a series of global climate dynamics 275 
simulations run on the Titan supercomputer at Oak Ridge National Laboratory in 2013 by postdoctoral researcher Abigail 
Gaddis, Ph.D. The simulations were performed at approximately 1/3-degree spatial resolution, or a mesh size of 1024x512 for 
2D. We downloaded this simulation data in the common NetCDF (network Common Data Form) format in 2016 from 
https://www.opensciencedatacloud.org/. 

Author contribution. Zhaoyuan Yu, Linwang Yuan and Wen Luo designed the paper's ideas and methods. 280 
Zhengfang Zhang and Yuan Liu implemented the method of the paper with code. Zhaoyuan Yu, Zhengfang Zhang 
and Dongshuang Li wrote the paper with considerable input from Linwang Yuan. Uzair Aslam Bhatti revised and 
checked the language of the paper. 

Funding. This work was financially supported by the National Natural Science Foundation of China[41625004 
41971404] and the National Key R&D Program of China[2017YFB0503500]. 285 

Competing interests. The authors declare that they have no conflict of interest. 

Statement. The works published in this journal are distributed under the Creative Commons Attribution 4.0 License. 
This licence does not affect the Crown copyright work, which is re-usable under the Open Government Licence 

https://doi.org/10.5194/gmd-2020-124
Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



14 
 

(OGL). The Creative Commons Attribution 4.0 License and the OGL are interoperable and do not conflict with, 
reduce or limit each other. © Crown copyright YEAR 290 

References 
Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J. and Tallent, N. R.: HPCTOOLKIT: 
Tools for performance analysis of optimized parallel programs, Concurr. Comput. Pract. Exp., 22(6), 685–701, 
doi:10.1002/cpe, 2010. 
Akbudak, K., Ltaief, H., Mikhalev, A. and Keyes, D. E.: Tile Low Rank Cholesky Factorization for Climate/Weather 295 
Modeling Applications on Manycore Architectures, in International Supercomputing Conference., 2017. 
AndyWZJ: AndyWZJ/Adaptive-lossy-compression- v1.0, , doi:10.5281/ZENODO.3862130, 2020. 
Anon: Earth science data compression issues and activities, Remote Sens. Rev., 2011. 
Anon: Data Reduction Analysis for Climate Data Sets, Int. J. Parallel Program., 2013. 
Baker, A. H., Xu, H., Dennis, J. M., Levy, M. N. and Wegener, A.: A methodology for evaluating the impact of data 300 
compression on climate simulation data, ACM., 2014. 
Baker, A. H., Hammerling, D. M., Mickelson, S. A., Xu, H. and Lindstrom, P.: Evaluating Lossy Data Compression on 
Climate Simulation Data within a Large Ensemble, Geosci. Model Dev. Discuss., 2016. 
Berres, A. S., Turton, T. L., Petersen, M., Rogers, D. H. and Ahrens, J. P.: Video Compression for Ocean Simulation Image 
Databases, in Workshop on Visualisation in Environmental Sciences (EnvirVis)., 2017. 305 
Bing, Li, Lin, Zhang, Zhuangzhuang, Shang, Qian and Dong: Implementation of LZMA compression algorithm on FPGA., 
Electron. Lett., 2014. 
Castruccio, S. and Genton, M. G.: Compressing an Ensemble With Statistical Models: An Algorithm for Global 3D Spatio-
Temporal Temperature, Technometrics, 58(3), 319–328, 2016. 
Cui, X.-N., Kim, J.-W., Choi, J.-U. and Kim, H.-I.: Reversible Watermarking in JPEG Compression Domain, J. Korea Inst. 310 
Inf. Secur. Cryptol., 17, 121–130, 2007. 
Diffenderfer, J., Fox, A. L., Hittinger, J. A., Sanders, G. and Lindstrom, P. G.: Error analysis of ZFP compression for 
floating-point data, SIAM J. Sci. Comput., 41(3), A1867–A1898, doi:10.1137/18M1168832, 2019a. 
Diffenderfer, J., Fox, A., Hittinger, J., Sanders, G. and Lindstrom, P.: Error Analysis of ZFP Compression for Floating-Point 
Data, SIAM J. Sci. Comput., 41, A1867–A1898, doi:10.1137/18M1168832, 2019b. 315 
Feng, J., Wu, Z. and Liu, G.: Fast Multidimensional Ensemble Empirical Mode Decomposition Using a Data Compression 
Technique, J. Clim., 27(10), 3492–3504, 2014. 
Guinness, J. and Hammerling, D.: Compression and Conditional Emulation of Climate Model Output, 2016. 
Hackbusch, W. and Kühn, S.: A new scheme for the tensor representation, J. Fourier Anal. Appl., 15(5), 706–722, 
doi:10.1007/s00041-009-9094-9, 2009. 320 

https://doi.org/10.5194/gmd-2020-124
Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



15 
 

Hübbe, N., Wegener, A., Kunkel, J. M., Ling, Y. and Ludwig, T.: Evaluating lossy compression on climate data, Lect. Notes 
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 7905 LNCS, 343–356, 
doi:10.1007/978-3-642-38750-0_26, 2013. 
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, 
J., Holland, M., Kushner, P., Lamarque, J. F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., 325 
Polvani, L. and Vertenstein, M.: The community earth system model (CESM) large ensemble project : A community 
resource for studying climate change in the presence of internal climate variability, Bull. Am. Meteorol. Soc., 96(8), 1333–
1349, doi:10.1175/BAMS-D-13-00255.1, 2015. 
Kuhn, M., Kunkel, J. and Ludwig, T.: Data compression for climate data, Supercomput. Front. Innov., 3(1), 75–94, 
doi:10.14529/jsfi160105, 2016. 330 
Kumar, V. S., Nanjundiah, R., Thazhuthaveetil, M. J. and Govindarajan, R.: Impact of message compression on the 
scalability of an atmospheric modeling application on clusters, Parallel Comput., 34(1), 1–16, 2008. 
Lathauwer, L. D. E., Moor, B. D. E. and Vandewalle, J.: On the best rank-1 and rank-(, , 21(4), 1324–1342, 2000. 
Li, D. S., Yang, L., Yu, Z. Y., Hu, Y. and Yuan, L. W.: A tensor-based interpolation method for sparse spatio-temporal field 
data, J. Spat. Sci., 1–19, 2018. 335 
Lindstrom, P. and Isenburg, M.: Fast and efficient compression of floating-point data, IEEE Trans. Vis. Comput. Graph., 
12(5), 1245–1250, doi:10.1109/TVCG.2006.143, 2006. 
Linton, O. B. and Xiao, Z.: A nonparametric regression estimator that adapts to error distribution of unknown form, Sfb 
Discuss. Pap., 2001. 
Liu, S., Huang, X., Ni, Y., Fu, H. and Yang, G.: A high performance compression method for climate data, Proc. - 2014 340 
IEEE Int. Symp. Parallel Distrib. Process. with Appl. ISPA 2014, 68–77, doi:10.1109/ISPA.2014.18, 2014. 
Lyre, H.: Holism and structuralism in U(1) gauge theory, Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys., 35(4), 
643–670, 2004. 
Matrices, H.: f u ¨ r Mathematik in den Naturwissenschaften Leipzig, , (March), 2006. 
Mummadisetty, B. C.: Performance Analysis of Hybrid Algorithms For Lossless Compression of Climate Data, , 345 
(December), 2015. 
None: On the spectra of tensor products of linear operators in Banach spaces., J. Für Die Reine Und Angew. Math., 
1970(244), 1970. 
Of, C. and Acm, T. H. E.: November 2000/Vol. 43, No. 11 COMMUNICATIONS OF THE ACM, Commun. ACM, 43(11), 
68–77, 2000. 350 
Oseledets, I. V and Tyrtyshnikov, E. E.: Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions, 
Siam J. Sci. Comput., 31(5), 3744–3759, 2009. 
Papaioannou, T. G., Riahi, M. and Aberer, K.: Towards Online Multi-model Approximation of Time Series, 2011 IEEE 12th 
Int. Conf. Mob. Data Manag., 1, 33–38, 2011. 

https://doi.org/10.5194/gmd-2020-124
Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



16 
 

Paul, K., Mickelson, S., Dennis, J. M., Xu, H. and Brown, D.: Light-Weight Parallel Python Tools for Earth System 355 
Modeling Workflows, in IEEE BigData 2015: Workshop on Big Data in the Geosciences., 2015. 
Schoellhammer, T., Greenstein, B., Osterweil, E., Wimbrow, M. and Estrin, D.: Lightweight temporal compression of 
microclimate datasets [wireless sensor networks], in Local Computer Networks, 2004. 29th Annual IEEE International 
Conference on., 2004. 
Springer, U. S.: Community Earth System Model (CESM), Encycl. Parallel Comput., 351, 2011. 360 
Suiker, A. S. J. and Chang, C. S.: Application of higher-order tensor theory for formulating enhanced continuum models, 
Acta Mech., 142(1–4), 223–234, 2000. 
Tao, D., Sheng, D., Chen, Z. and Cappello, F.: Exploration of Pattern-Matching Techniques for Lossy Compression on 
Cosmology Simulation Data Sets, 2017a. 
Tao, D., Di, S. and Cappello, F.: Significantly Improving Lossy Compression for Scientific Data Sets Based on 365 
Multidimensional Prediction and Error-Controlled Quantization, , doi:10.1109/IPDPS.2017.115, 2017b. 
Tao, D., Di, S., Guo, H., Chen, Z. and Cappello, F.: Z-checker: A Framework for Assessing Lossy Compression of Scientific 
Data, Int. J. High Perform. Comput. Appl., (12), 2017c. 
Taubman, D. and Marcellin, M.: JPEG2000: Image Compression Fundamentals, Standards and Practice, Springer Int., 11(2), 
286, 2002. 370 
Wang, N. and Li, X.: New low memory set partitioned embedded block coder, Tien Tzu Hsueh Pao/Acta Electron. Sin., 
34(11), 2068–2071, 2006. 
Wilczyñski, K.: SSEM: A computer model for a polymer single-screw extrusion, J. Mater. Process. Technol., 109(3), 308–
313, doi:10.1016/S0924-0136(00)00821-9, 2001. 
Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R. and Woodcock, C. E. %J R. S. of E.: Opening the archive: How 375 
free data has enabled the science and monitoring promise of Landsat, , 122(Complete), 2–10, 2012. 
Yuan, L., Yu, Z., Luo, W., Hu, Y., Feng, L. and Zhu, A. X.: A hierarchical tensor-based approach to compressing, updating 
and querying geospatial data, IEEE Trans. Knowl. Data Eng., 27(2), 312–325, doi:10.1109/TKDE.2014.2330829, 2015. 
Zabala, A. and Pons, X.: Effects of lossy compression on remote sensing image classification of forest areas, Int. J. Appl. 
Earth Obs. Geoinf., 13(1), 0–51, 2011. 380 
Zheng, Y., Hendrix, W., Son, S. W., Federrath, C., Agrawal, A., Liao, W. K. and Choudhary, A.: Parallel Implementation of 
Lossy Data Compression for Temporal Data Sets, 2017. 
 

https://doi.org/10.5194/gmd-2020-124
Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.


